A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-like Activity for Hydrogen Evolution Reaction

We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni­(acac)2 (acac = acetylacetonate) and HAuCl4·3H2O at 220 °C in the presence of oleylamine and oleic acid. Subject to potential cycling between 0.6 and 1.0 V (vs reversible hydrogen electrode) in 0.5 M H2SO4, the NiAu...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 137; no. 18; pp. 5859 - 5862
Main Authors Lv, Haifeng, Xi, Zheng, Chen, Zhengzheng, Guo, Shaojun, Yu, Yongsheng, Zhu, Wenlei, Li, Qing, Zhang, Xu, Pan, Mu, Lu, Gang, Mu, Shichun, Sun, Shouheng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni­(acac)2 (acac = acetylacetonate) and HAuCl4·3H2O at 220 °C in the presence of oleylamine and oleic acid. Subject to potential cycling between 0.6 and 1.0 V (vs reversible hydrogen electrode) in 0.5 M H2SO4, the NiAu NPs are transformed into core/shell NiAu/Au NPs that show much enhanced catalysis for hydrogen evolution reaction (HER) with Pt-like activity and much robust durability. The first-principles calculations suggest that the high activity arises from the formation of Au sites with low coordination numbers around the shell. Our synthesis is not limited to NiAu but can be extended to FeAu and CoAu as well, providing a general approach to MAu/Au NPs as a class of new catalyst superior to Pt for water splitting and hydrogen generation.
AbstractList We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni­(acac)2 (acac = acetylacetonate) and HAuCl4·3H2O at 220 °C in the presence of oleylamine and oleic acid. Subject to potential cycling between 0.6 and 1.0 V (vs reversible hydrogen electrode) in 0.5 M H2SO4, the NiAu NPs are transformed into core/shell NiAu/Au NPs that show much enhanced catalysis for hydrogen evolution reaction (HER) with Pt-like activity and much robust durability. The first-principles calculations suggest that the high activity arises from the formation of Au sites with low coordination numbers around the shell. Our synthesis is not limited to NiAu but can be extended to FeAu and CoAu as well, providing a general approach to MAu/Au NPs as a class of new catalyst superior to Pt for water splitting and hydrogen generation.
We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni(acac)2 (acac = acetylacetonate) and HAuCl4·3H2O at 220 °C in the presence of oleylamine and oleic acid. Subject to potential cycling between 0.6 and 1.0 V (vs reversible hydrogen electrode) in 0.5 M H2SO4, the NiAu NPs are transformed into core/shell NiAu/Au NPs that show much enhanced catalysis for hydrogen evolution reaction (HER) with Pt-like activity and much robust durability. The first-principles calculations suggest that the high activity arises from the formation of Au sites with low coordination numbers around the shell. Our synthesis is not limited to NiAu but can be extended to FeAu and CoAu as well, providing a general approach to MAu/Au NPs as a class of new catalyst superior to Pt for water splitting and hydrogen generation.We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni(acac)2 (acac = acetylacetonate) and HAuCl4·3H2O at 220 °C in the presence of oleylamine and oleic acid. Subject to potential cycling between 0.6 and 1.0 V (vs reversible hydrogen electrode) in 0.5 M H2SO4, the NiAu NPs are transformed into core/shell NiAu/Au NPs that show much enhanced catalysis for hydrogen evolution reaction (HER) with Pt-like activity and much robust durability. The first-principles calculations suggest that the high activity arises from the formation of Au sites with low coordination numbers around the shell. Our synthesis is not limited to NiAu but can be extended to FeAu and CoAu as well, providing a general approach to MAu/Au NPs as a class of new catalyst superior to Pt for water splitting and hydrogen generation.
We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni(acac)2 (acac = acetylacetonate) and HAuCl4·3H2O at 220 °C in the presence of oleylamine and oleic acid. Subject to potential cycling between 0.6 and 1.0 V (vs reversible hydrogen electrode) in 0.5 M H2SO4, the NiAu NPs are transformed into core/shell NiAu/Au NPs that show much enhanced catalysis for hydrogen evolution reaction (HER) with Pt-like activity and much robust durability. The first-principles calculations suggest that the high activity arises from the formation of Au sites with low coordination numbers around the shell. Our synthesis is not limited to NiAu but can be extended to FeAu and CoAu as well, providing a general approach to MAu/Au NPs as a class of new catalyst superior to Pt for water splitting and hydrogen generation.
We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni(acac)₂ (acac = acetylacetonate) and HAuCl₄·3H₂O at 220 °C in the presence of oleylamine and oleic acid. Subject to potential cycling between 0.6 and 1.0 V (vs reversible hydrogen electrode) in 0.5 M H₂SO₄, the NiAu NPs are transformed into core/shell NiAu/Au NPs that show much enhanced catalysis for hydrogen evolution reaction (HER) with Pt-like activity and much robust durability. The first-principles calculations suggest that the high activity arises from the formation of Au sites with low coordination numbers around the shell. Our synthesis is not limited to NiAu but can be extended to FeAu and CoAu as well, providing a general approach to MAu/Au NPs as a class of new catalyst superior to Pt for water splitting and hydrogen generation.
Author Mu, Shichun
Pan, Mu
Sun, Shouheng
Li, Qing
Yu, Yongsheng
Zhang, Xu
Xi, Zheng
Chen, Zhengzheng
Guo, Shaojun
Lv, Haifeng
Zhu, Wenlei
Lu, Gang
AuthorAffiliation Department of Chemistry
Brown University
Wuhan University of Technology
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
Department of Physics and Astronomy
California State University Northridge
School of Chemical Engineering and Technology
Harbin Institute of Technology, Harbin
AuthorAffiliation_xml – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
– name: Department of Chemistry
– name: Brown University
– name: Department of Physics and Astronomy
– name: California State University Northridge
– name: Harbin Institute of Technology, Harbin
– name: Wuhan University of Technology
– name: School of Chemical Engineering and Technology
Author_xml – sequence: 1
  givenname: Haifeng
  surname: Lv
  fullname: Lv, Haifeng
– sequence: 2
  givenname: Zheng
  surname: Xi
  fullname: Xi, Zheng
– sequence: 3
  givenname: Zhengzheng
  surname: Chen
  fullname: Chen, Zhengzheng
– sequence: 4
  givenname: Shaojun
  surname: Guo
  fullname: Guo, Shaojun
– sequence: 5
  givenname: Yongsheng
  surname: Yu
  fullname: Yu, Yongsheng
– sequence: 6
  givenname: Wenlei
  surname: Zhu
  fullname: Zhu, Wenlei
– sequence: 7
  givenname: Qing
  surname: Li
  fullname: Li, Qing
– sequence: 8
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
– sequence: 9
  givenname: Mu
  surname: Pan
  fullname: Pan, Mu
– sequence: 10
  givenname: Gang
  surname: Lu
  fullname: Lu, Gang
  email: ganglu@csun.edu
– sequence: 11
  givenname: Shichun
  surname: Mu
  fullname: Mu, Shichun
  email: msc@whut.edu.cn
– sequence: 12
  givenname: Shouheng
  surname: Sun
  fullname: Sun, Shouheng
  email: ssun@brown.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25927960$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLctN87IRw6kO7bjfByjVaFI1VIVerZmJw71ko0X22m1_55E3V4QiNN86JnRzPuesZPBD5axdwIuBUix3CLFS70BIQBesYXQEjItZHHCFgAgs7Iq1Ck7i3E7lbmsxBt2KnUty7qABWsbvrZPfOWDXX57sH3P164Zl83I1zj4PYbkqLd8hQn7Q0z8yaUHfpuy3v20vKHkHl068M4Hfn1og_9hB3716PsxOT_wO4s0JxfsdYd9tG-P8Zzdf7r6vrrObr5-_rJqbjJUdZ4y7BRYWZWFreqiLYUoKUdRWSAoiBAJVJcrLKUoN1a1NVJNIFDThhQhoDpnH5737oP_NdqYzM5Fmp7CwfoxGjkpoAqt8_y_qCgqqHWlSj2h74_ouNnZ1uyD22E4mBcRJ0A-AxR8jMF2hlzC-fEU0PVGgJmdMrNT5ujUNPTxj6GXvf_Aj_fOza0fwzAJ-Xf0NyCKoaM
CitedBy_id crossref_primary_10_1002_anie_201905430
crossref_primary_10_1039_C6NR00820H
crossref_primary_10_1039_C6NR03243E
crossref_primary_10_1016_j_colsurfa_2021_126205
crossref_primary_10_1016_j_jallcom_2019_152727
crossref_primary_10_1016_j_cjsc_2023_100071
crossref_primary_10_1021_jacs_0c00045
crossref_primary_10_1016_j_ijhydene_2019_09_034
crossref_primary_10_1039_D0RA08562F
crossref_primary_10_1016_j_ijhydene_2021_07_157
crossref_primary_10_1039_D0MH01947J
crossref_primary_10_1016_j_renene_2024_121688
crossref_primary_10_1016_j_jcat_2022_01_034
crossref_primary_10_1166_sl_2020_4293
crossref_primary_10_1016_j_matlet_2018_12_108
crossref_primary_10_3390_jcs5010018
crossref_primary_10_1039_D2NH00111J
crossref_primary_10_1039_C5EE02460A
crossref_primary_10_1016_j_electacta_2016_05_095
crossref_primary_10_1021_jacs_7b07044
crossref_primary_10_1002_advs_202104054
crossref_primary_10_1007_s11581_017_2270_z
crossref_primary_10_1016_j_apcatb_2018_02_034
crossref_primary_10_1016_j_ijhydene_2022_02_177
crossref_primary_10_1002_cssc_201601081
crossref_primary_10_1016_j_nanoen_2020_104739
crossref_primary_10_1002_asia_202400982
crossref_primary_10_1246_cl_230310
crossref_primary_10_1039_C9TA09448B
crossref_primary_10_1038_s41560_018_0209_x
crossref_primary_10_1039_C9TA06861A
crossref_primary_10_1149_1945_7111_ab68d1
crossref_primary_10_1039_C8QI00042E
crossref_primary_10_1016_j_nanoen_2016_03_017
crossref_primary_10_1021_acsami_7b06968
crossref_primary_10_1039_D1NR07836D
crossref_primary_10_1002_ange_201913704
crossref_primary_10_1016_j_ijhydene_2017_08_129
crossref_primary_10_1039_C7EE03345A
crossref_primary_10_1016_j_electacta_2017_05_145
crossref_primary_10_1039_C6TA01900E
crossref_primary_10_1002_pssr_202100657
crossref_primary_10_1016_j_jcis_2021_10_001
crossref_primary_10_1039_C9NR05750A
crossref_primary_10_1016_j_apsusc_2017_03_285
crossref_primary_10_1016_j_ijhydene_2016_08_058
crossref_primary_10_1002_adma_201502881
crossref_primary_10_1063_1_5111374
crossref_primary_10_1039_C7NR02711G
crossref_primary_10_1002_anie_202318948
crossref_primary_10_1002_celc_202300095
crossref_primary_10_1002_anie_201913704
crossref_primary_10_1021_acsanm_4c05598
crossref_primary_10_1021_jacs_5b09021
crossref_primary_10_1039_C8TA06918B
crossref_primary_10_1002_cssc_201801337
crossref_primary_10_1002_elan_201800494
crossref_primary_10_4236_eng_2024_165010
crossref_primary_10_1007_s40843_018_9315_5
crossref_primary_10_1016_j_inoche_2022_110267
crossref_primary_10_1039_C5TA10428A
crossref_primary_10_1002_slct_202200254
crossref_primary_10_1063_5_0021578
crossref_primary_10_1016_j_jcis_2018_12_066
crossref_primary_10_1021_acssuschemeng_9b06865
crossref_primary_10_1016_j_nanoen_2017_10_045
crossref_primary_10_1002_adma_201600603
crossref_primary_10_1002_smll_201703749
crossref_primary_10_1002_advs_201901833
crossref_primary_10_1016_j_electacta_2017_08_010
crossref_primary_10_1016_j_electacta_2019_135002
crossref_primary_10_1016_j_jcis_2024_03_198
crossref_primary_10_1149_1945_7111_abf267
crossref_primary_10_1016_j_apcatb_2019_118103
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1021_acsnano_4c03999
crossref_primary_10_1039_C8RA09700C
crossref_primary_10_1039_C6TA09619K
crossref_primary_10_3390_nano13212850
crossref_primary_10_1039_C7CY00384F
crossref_primary_10_1002_cctc_202200312
crossref_primary_10_1016_j_polymer_2018_08_030
crossref_primary_10_1016_j_apsusc_2018_07_046
crossref_primary_10_1039_D0CC06337A
crossref_primary_10_1016_j_electacta_2021_138406
crossref_primary_10_2139_ssrn_3978580
crossref_primary_10_1016_j_ijhydene_2019_12_018
crossref_primary_10_1021_acs_jpcc_1c03941
crossref_primary_10_1007_s11426_020_9828_5
crossref_primary_10_1002_adma_201604464
crossref_primary_10_1016_j_electacta_2018_10_083
crossref_primary_10_1016_j_ica_2021_120696
crossref_primary_10_1021_acsaem_0c00733
crossref_primary_10_1021_acscatal_8b04521
crossref_primary_10_1016_j_jallcom_2019_03_003
crossref_primary_10_1038_s41467_021_24079_8
crossref_primary_10_1039_C9NR06080D
crossref_primary_10_1002_adfm_201603674
crossref_primary_10_1002_adfm_202409335
crossref_primary_10_1021_acsnano_1c11145
crossref_primary_10_1039_C9TA07016H
crossref_primary_10_1039_C7EE02537H
crossref_primary_10_1021_acsanm_9b02380
crossref_primary_10_1039_D3GC04920E
crossref_primary_10_1039_D2RA06325E
crossref_primary_10_1360_nso_20220059
crossref_primary_10_1016_j_cplett_2017_02_029
crossref_primary_10_1186_s11671_021_03644_6
crossref_primary_10_1039_D0TA00398K
crossref_primary_10_2174_1573413714666180405142110
crossref_primary_10_1016_j_apcatb_2018_11_008
crossref_primary_10_1016_j_jpowsour_2021_230235
crossref_primary_10_1039_C8EE00402A
crossref_primary_10_1021_acsami_7b01428
crossref_primary_10_1002_cssc_202100967
crossref_primary_10_1016_j_ijhydene_2022_11_330
crossref_primary_10_1002_adma_201606864
crossref_primary_10_3390_ma18050969
crossref_primary_10_1016_j_electacta_2020_136617
crossref_primary_10_1039_C8NR07472K
crossref_primary_10_3390_ma16103760
crossref_primary_10_1016_j_ijhydene_2022_02_156
crossref_primary_10_1016_j_ijhydene_2024_09_365
crossref_primary_10_1021_acsami_9b03368
crossref_primary_10_1038_s41467_018_06311_0
crossref_primary_10_1039_D1NR07188B
crossref_primary_10_1016_j_cej_2020_127807
crossref_primary_10_1039_C7SC03997B
crossref_primary_10_1016_j_jcis_2016_08_062
crossref_primary_10_1039_C5CY01111F
crossref_primary_10_1039_D4GC00514G
crossref_primary_10_1088_1361_6528_accb5f
crossref_primary_10_1021_acsami_7b01418
crossref_primary_10_1021_acsenergylett_9b00738
crossref_primary_10_1016_j_electacta_2017_05_084
crossref_primary_10_1039_C7TA02091K
crossref_primary_10_1002_ange_202318948
crossref_primary_10_1016_j_susmat_2023_e00609
crossref_primary_10_1039_C6RA18076K
crossref_primary_10_1021_acsaem_8b01642
crossref_primary_10_1039_C8TA10935D
crossref_primary_10_1002_celc_202200318
crossref_primary_10_1021_acs_langmuir_4c02211
crossref_primary_10_1016_j_jcis_2022_09_105
crossref_primary_10_1016_j_cej_2021_134415
crossref_primary_10_1002_chem_201600774
crossref_primary_10_1021_acsnano_2c08038
crossref_primary_10_1002_asia_202100616
crossref_primary_10_1016_j_electacta_2019_135274
crossref_primary_10_1016_j_ijhydene_2019_12_186
crossref_primary_10_1039_D1TA03646G
crossref_primary_10_1002_ppsc_201600323
crossref_primary_10_1021_acs_chemmater_7b05075
crossref_primary_10_1002_adma_202000855
crossref_primary_10_1039_C9TA05309C
crossref_primary_10_1073_pnas_1800884115
crossref_primary_10_1088_1361_6528_aac9ae
crossref_primary_10_1039_C6CY02688E
crossref_primary_10_1021_acscatal_9b05404
crossref_primary_10_1002_sus2_75
crossref_primary_10_1016_j_ijhydene_2019_06_116
crossref_primary_10_1016_j_electacta_2018_11_080
crossref_primary_10_1016_j_ijhydene_2023_12_009
crossref_primary_10_1021_acs_chemmater_7b04307
crossref_primary_10_1039_C7CE02165H
crossref_primary_10_1002_er_4629
crossref_primary_10_1021_acsami_7b01114
crossref_primary_10_1002_cssc_201801044
crossref_primary_10_1002_adfm_201804361
crossref_primary_10_1016_j_colsurfb_2018_11_075
crossref_primary_10_1016_j_apcatb_2021_120935
crossref_primary_10_1016_j_cej_2020_126523
crossref_primary_10_1016_j_jcis_2023_01_122
crossref_primary_10_1002_smll_202108072
crossref_primary_10_1016_j_nanoen_2017_04_057
crossref_primary_10_1063_1_4978500
crossref_primary_10_1021_acsnano_0c08661
crossref_primary_10_3390_app12094290
crossref_primary_10_1016_j_enconman_2018_04_109
crossref_primary_10_1039_C9CC06530J
crossref_primary_10_1016_j_nanoen_2018_11_090
crossref_primary_10_1016_j_ijhydene_2024_03_297
crossref_primary_10_1016_j_nanoen_2021_106913
crossref_primary_10_1039_C9QI00689C
crossref_primary_10_1039_D0NA00617C
crossref_primary_10_1039_C7SC04849A
crossref_primary_10_1007_s12274_024_6476_x
crossref_primary_10_1002_slct_201601567
crossref_primary_10_1016_j_ijhydene_2020_06_249
crossref_primary_10_1016_j_nanoen_2016_02_030
crossref_primary_10_1016_j_apsusc_2019_04_165
crossref_primary_10_1039_C6TA05503F
crossref_primary_10_1039_D0NR08817J
crossref_primary_10_1002_ange_201905430
crossref_primary_10_1016_j_ccr_2023_215496
crossref_primary_10_1039_C7TA01838J
crossref_primary_10_20964_2019_06_55
crossref_primary_10_1016_j_jelechem_2019_113562
crossref_primary_10_1002_aenm_201701129
crossref_primary_10_1002_cssc_201901301
crossref_primary_10_1039_C5NR06669G
crossref_primary_10_1016_j_jelechem_2019_05_024
crossref_primary_10_1002_adfm_201700359
crossref_primary_10_1039_C6TA07704H
crossref_primary_10_1002_ep_13171
crossref_primary_10_1002_cey2_547
crossref_primary_10_1016_j_apcatb_2023_122771
crossref_primary_10_1021_acscatal_6b03049
crossref_primary_10_1002_admi_201700005
crossref_primary_10_1039_C5SC02667A
crossref_primary_10_1016_j_ijhydene_2020_03_220
crossref_primary_10_1016_j_ijhydene_2018_09_197
crossref_primary_10_1039_C9NR01936G
crossref_primary_10_1021_acsaem_0c02527
crossref_primary_10_1002_anie_202415975
crossref_primary_10_1016_j_jechem_2021_10_031
crossref_primary_10_1016_j_ijhydene_2017_11_048
crossref_primary_10_1002_er_6583
crossref_primary_10_1080_14328917_2017_1287491
crossref_primary_10_1016_j_ijhydene_2024_06_202
crossref_primary_10_1039_D4NR01538J
crossref_primary_10_1016_j_ijhydene_2019_02_083
crossref_primary_10_1016_j_mtener_2021_100653
crossref_primary_10_1039_D3CY00742A
crossref_primary_10_1016_j_electacta_2018_11_152
crossref_primary_10_1039_C8NR04741C
crossref_primary_10_1039_C7TA03673F
crossref_primary_10_1039_C9RA01111K
crossref_primary_10_1021_acsami_7b01241
crossref_primary_10_1039_D1NA00034A
crossref_primary_10_1021_acsami_6b09331
crossref_primary_10_1021_acs_inorgchem_4c01089
crossref_primary_10_1021_acsaem_8b01272
crossref_primary_10_1039_D0NJ03443F
crossref_primary_10_1021_acs_analchem_8b02055
crossref_primary_10_1002_adma_201605838
crossref_primary_10_1038_s41598_017_14582_8
crossref_primary_10_1016_j_electacta_2019_134895
crossref_primary_10_1002_chem_201902389
crossref_primary_10_1021_acs_chemmater_7b01598
crossref_primary_10_1021_acsenergylett_9b01527
crossref_primary_10_1021_acs_jpcc_6b11337
crossref_primary_10_1016_j_cej_2023_142692
crossref_primary_10_1002_chem_201901395
crossref_primary_10_1002_slct_202000955
crossref_primary_10_1007_s12678_021_00657_8
crossref_primary_10_1039_D4RA05826G
crossref_primary_10_1002_cssc_201702403
crossref_primary_10_1007_s10853_019_03615_4
crossref_primary_10_1039_C6NR03657K
crossref_primary_10_1002_smll_202202336
crossref_primary_10_1039_D4SE00829D
crossref_primary_10_1016_j_jpowsour_2018_03_022
crossref_primary_10_3390_catal10070788
crossref_primary_10_1016_j_nantod_2019_03_008
crossref_primary_10_1002_anie_201603967
crossref_primary_10_1039_C6CC01642A
crossref_primary_10_1002_ange_202415975
crossref_primary_10_1039_D0CE00345J
crossref_primary_10_1002_aenm_201700363
crossref_primary_10_1016_j_apsusc_2021_149560
crossref_primary_10_1007_s10853_022_07251_3
crossref_primary_10_1016_j_electacta_2016_04_104
crossref_primary_10_1021_acsami_6b05630
crossref_primary_10_1002_ente_201600110
crossref_primary_10_1016_j_apcata_2020_117575
crossref_primary_10_1016_j_cej_2021_131524
crossref_primary_10_1016_j_electacta_2019_135178
crossref_primary_10_1016_j_pmatsci_2017_09_001
crossref_primary_10_1039_D0CE01030H
crossref_primary_10_1039_C7SC04109H
crossref_primary_10_1039_C7TA05521H
crossref_primary_10_1002_ange_202209675
crossref_primary_10_1016_j_jallcom_2018_12_191
crossref_primary_10_1016_j_jma_2023_05_003
crossref_primary_10_1021_acscatal_8b00467
crossref_primary_10_1016_j_nanoen_2022_107959
crossref_primary_10_1002_anie_202209675
crossref_primary_10_1002_aenm_202003192
crossref_primary_10_1002_ange_201603967
Cites_doi 10.1021/ja309317u
10.1021/ja0504690
10.1126/science.1207272
10.1038/ncomms4783
10.1039/c1ee01488a
10.1038/35104599
10.1002/ange.200906835
10.1002/anie.201200699
10.1038/nmat3668
10.1021/ja409445p
10.1021/jp970930d
10.1103/PhysRevB.54.11169
10.1038/nmat3458
10.1021/ja500590n
10.1021/ja403440e
10.1002/cphc.200800587
10.1021/jp0043975
10.1021/cm9013046
10.1021/ja303259q
10.1021/nl500776e
10.1021/ja5030172
10.1038/ncomms2472
10.1103/PhysRevB.47.558
10.1016/j.rser.2012.02.028
10.1021/ja207510v
10.1021/jp811411y
10.1021/ja1063873
10.1103/PhysRevLett.81.2819
10.1038/376238a0
10.1021/ja201269b
10.1038/nmat3385
10.1126/science.1103197
10.1149/1.1856988
10.1126/science.1127180
10.1021/jp9831987
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.5b01100
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 5862
ExternalDocumentID 25927960
10_1021_jacs_5b01100
c615770640
Genre Journal Article
GroupedDBID -
.K2
02
186
1WB
3EH
3O-
4.4
41
53G
55A
5GY
5RE
5VS
6XO
7~N
85S
AABXI
AAUPJ
AAYJJ
ABDEX
ABDMP
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ABWLT
ACBNA
ACCAO
ACGFS
ACJ
ACKIV
ACNCT
ACS
ADKFC
AEESW
AENEX
AETEA
AFDAS
AFEFF
AFFDN
AFFNX
AFMIJ
AGXLV
AIDAL
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
D0S
DU5
DZ
EBS
ED
ED~
EJD
ET
F20
F5P
GJ
GNL
HR
IH9
IHE
JG
JG~
K2
K78
LG6
MVM
NHB
OHT
P-O
P2P
RNS
ROL
RXW
TAE
TAF
TN5
UBX
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VH1
VQA
W1F
WH7
X
X7L
XFK
YXA
YXE
YZZ
ZCG
ZE2
ZGI
ZHY
ZY4
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a394t-af30e2876e896d7117c4a18e0c06ccaac03f43a7217be3d9ac9c01a5cbc3ca0a3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Jul 10 18:08:23 EDT 2025
Fri Jul 11 01:26:17 EDT 2025
Mon Jul 21 06:00:38 EDT 2025
Tue Jul 01 04:33:13 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Thu Aug 27 13:42:09 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-af30e2876e896d7117c4a18e0c06ccaac03f43a7217be3d9ac9c01a5cbc3ca0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25927960
PQID 1680958375
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_2000365544
proquest_miscellaneous_1680958375
pubmed_primary_25927960
crossref_citationtrail_10_1021_jacs_5b01100
crossref_primary_10_1021_jacs_5b01100
acs_journals_10_1021_jacs_5b01100
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
AGXLV
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
1WB
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-13
PublicationDateYYYYMMDD 2015-05-13
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Sun X. L. (ref8/cit8b) 2014; 136
Zhang S. (ref8/cit8a) 2014; 136
Green L. X. Y. (ref5/cit5a) 2011; 333
Kresse G. (ref16/cit16a) 1993; 47
Cui C. H. (ref11/cit11b) 2013; 12
ref15/cit15c
Lee Y. M. (ref6/cit6) 2012; 22
Yu Y. S. (ref10/cit10) 2014; 14
McKone J. R. (ref3/cit3a) 2011; 4
Mazloomi K. (ref2/cit2a) 2012; 16
Hammer B. (ref18/cit18b) 1995; 376
Gong K. P. (ref12/cit12) 2010; 132
Molenbroek A. M. (ref13/cit13a) 2001; 105
Turner J. A. (ref1/cit1a) 2004; 305
Kauffman D. R. (ref7/cit7a) 2012; 134
Zhou S. H. (ref9/cit9a) 2008; 9
Zhou S. H. (ref9/cit9b) 2009; 113
ref4/cit4a
Cobo S. (ref4/cit4b) 2012; 11
Mavrikakis M. (ref18/cit18a) 1998; 81
Dresselhaus M. S. (ref1/cit1b) 2001; 414
Nørskov J. K. (ref2/cit2b) 2006; 312
Nørskov J. K. (ref17/cit17) 2005; 152
Markovic N. M. (ref15/cit15d) 1997; 101
Chen W. (ref13/cit13b) 2010; 122
Wang D. L. (ref11/cit11a) 2012; 12
Popczun E. J. (ref3/cit3b) 2013; 135
Li Y. G. (ref15/cit15a) 2011; 133
Hinnemann B. (ref14/cit14b) 2005; 127
Perez J. (ref14/cit14a) 1998; 102
Chen W. F. (ref15/cit15b) 2012; 51
Kresse G. (ref16/cit16b) 1996; 54
Zhu W. L. (ref7/cit7c) 2013; 135
Chen Y. H. (ref7/cit7b) 2012; 134
Kimm H. Y. (ref5/cit5b) 2012; 134
References_xml – volume: 134
  start-page: 19969
  year: 2012
  ident: ref7/cit7b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309317u
– volume: 127
  start-page: 5308
  year: 2005
  ident: ref14/cit14b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0504690
– volume: 333
  start-page: 736
  year: 2011
  ident: ref5/cit5a
  publication-title: Science
  doi: 10.1126/science.1207272
– ident: ref4/cit4a
  doi: 10.1038/ncomms4783
– volume: 4
  start-page: 3573
  year: 2011
  ident: ref3/cit3a
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01488a
– volume: 414
  start-page: 332
  year: 2001
  ident: ref1/cit1b
  publication-title: Nature
  doi: 10.1038/35104599
– volume: 122
  start-page: 2979
  year: 2010
  ident: ref13/cit13b
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200906835
– volume: 51
  start-page: 6131
  year: 2012
  ident: ref15/cit15b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201200699
– volume: 12
  start-page: 765
  year: 2013
  ident: ref11/cit11b
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3668
– volume: 135
  start-page: 16833
  year: 2013
  ident: ref7/cit7c
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409445p
– volume: 101
  start-page: 5405
  year: 1997
  ident: ref15/cit15d
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970930d
– volume: 54
  start-page: 11169
  year: 1996
  ident: ref16/cit16b
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 12
  start-page: 81
  year: 2012
  ident: ref11/cit11a
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3458
– volume: 136
  start-page: 5745
  year: 2014
  ident: ref8/cit8b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500590n
– volume: 135
  start-page: 9267
  year: 2013
  ident: ref3/cit3b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403440e
– volume: 9
  start-page: 2475
  year: 2008
  ident: ref9/cit9a
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200800587
– volume: 105
  start-page: 5450
  year: 2001
  ident: ref13/cit13a
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0043975
– volume: 22
  start-page: 755
  year: 2012
  ident: ref6/cit6
  publication-title: Chem. Mater.
  doi: 10.1021/cm9013046
– volume: 134
  start-page: 10237
  year: 2012
  ident: ref7/cit7a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303259q
– volume: 14
  start-page: 2778
  year: 2014
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl500776e
– volume: 136
  start-page: 7734
  year: 2014
  ident: ref8/cit8a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5030172
– ident: ref15/cit15c
  doi: 10.1038/ncomms2472
– volume: 47
  start-page: 558
  year: 1993
  ident: ref16/cit16a
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 16
  start-page: 3024
  year: 2012
  ident: ref2/cit2a
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2012.02.028
– volume: 134
  start-page: 1560
  year: 2012
  ident: ref5/cit5b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207510v
– volume: 113
  start-page: 5758
  year: 2009
  ident: ref9/cit9b
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp811411y
– volume: 132
  start-page: 14364
  year: 2010
  ident: ref12/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1063873
– volume: 81
  start-page: 2819
  year: 1998
  ident: ref18/cit18a
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 376
  start-page: 238
  year: 1995
  ident: ref18/cit18b
  publication-title: Nature
  doi: 10.1038/376238a0
– volume: 133
  start-page: 7296
  year: 2011
  ident: ref15/cit15a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201269b
– volume: 11
  start-page: 802
  year: 2012
  ident: ref4/cit4b
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3385
– volume: 305
  start-page: 972
  year: 2004
  ident: ref1/cit1a
  publication-title: Science
  doi: 10.1126/science.1103197
– volume: 152
  start-page: J23
  year: 2005
  ident: ref17/cit17
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 312
  start-page: 1322
  year: 2006
  ident: ref2/cit2b
  publication-title: Science
  doi: 10.1126/science.1127180
– volume: 102
  start-page: 10931
  year: 1998
  ident: ref14/cit14a
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9831987
SSID ssj0004281
Score 2.5913715
Snippet We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni­(acac)2 (acac = acetylacetonate) and HAuCl4·3H2O at 220 °C in the presence...
We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni(acac)2 (acac = acetylacetonate) and HAuCl4·3H2O at 220 °C in the presence...
We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni(acac)₂ (acac = acetylacetonate) and HAuCl₄·3H₂O at 220 °C in the presence...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5859
SubjectTerms alloy nanoparticles
catalysts
catalytic activity
durability
electrodes
gold
hydrogen
hydrogen production
nanogold
nickel
oleic acid
sulfuric acid
Title A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-like Activity for Hydrogen Evolution Reaction
URI http://dx.doi.org/10.1021/jacs.5b01100
https://www.ncbi.nlm.nih.gov/pubmed/25927960
https://www.proquest.com/docview/1680958375
https://www.proquest.com/docview/2000365544
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da8IwEA-be9he9v3hvoiwPY26NknT9rEUnQwmY07wTdIkgig6tB24v36XfihzyPZaLiTNXXK_Sy6_Q-iOSHCLXBFLxwG12IDZloAtwXJjTpXhnyMZietLm7e67Lnn9lYJsus3-MTwA8l53Y0zbrNttEM4rF8DgaLO6v0j8Z0S5no-p0WC-3pr44Dk_KcD2oAqM-_SPEBP5RudPKlkVE-TuC6_flM2_jHwQ7RfAEwc5hZxhLb05BjtRmVdtxOkQgw7G45MQbiOSQPF7WGYPoYphp0WQui8IY7Muc5inmBzUotfE2s8HGkcyrzaBAasi1sLNZuCAeLGZ2HA-E3nDyVOUbfZeI9aVlFrwRI0YIklBtTWED1x7QdceY7jSSYcX9vS5qBkIW06YFRAvOjFmqpAyEDajnBlLKkUtqBnqDKZTvQFwj4gEkKVgpUPLtIGzWsHQBbzA1fEmqkqqsHM9Iu1Mu9n1-AEwhDztZivKnooldSXBVm5qZkx3iB9v5T-yEk6NsjVSn33YdLN1YiY6GkKY-A-YE0I1t3NMiQj7wH4xaroPDeWZW8QRBIPgsHLf_zbFdoD1OWaFASHXqNKMkv1DSCbJL7NzPob-OzwlQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEB26HNpL9yVdFWhPxa0tydvRmIR0SShdoDcjSwqEhKTEdqH9-o5sJ6WFQK9iZMvSeOaNNHoDcEElukVPUUunIbN4n9uWQJNguanHlOGfoyWJa7fndV753Zv7Vl9WN3dhcBAZPikrD_F_2AUMTRA2umlJcbYMq4hDqFHoKH7-uQZJA2eGdv3AY3We-9_exg_J7LcfWgAuSyfT3oTefHhlbsnwusjTa_n1h7nx3-Pfgo0abpKo0o9tWNLjHViLZ1XedkFFBO0ciU15uGeTFEp6g6i4iQqCdhcD6qojic0uz2eWE7NvSx5zazQYahLJqvYEQeRLOp9qOkF1JK2PWp3Jk66uTezBa7v1EnesuvKCJVjIc0v0ma0xlvJ0EHrKdxxfcuEE2pa2h0supM36nAmMHv1UMxUKGUrbEa5MJZPCFmwfVsaTsT4EEiA-oUwptAPoMG3UA-0g5OJB6IpUc9WAJs5MUv85WVIeilMMSkxrPV8NuJqtVSJr6nJTQWO0QPpyLv1eUXYskGvOlj3BSTcHJWKsJwWOwQsQeWLo7i6WoSWVD4Ix3oCDSmfmb8OQkvoYGh7949vOYa3z0n1IHm5798ewjnjMNckJDjuBlXxa6FPEPHl6Vmr6N2c0-PY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48QH3xPuq5gj5JNMlurscQLfUqpSr4Fja7W5CWtjSJoL_e2RwVhYK-JrPJHrMz3-zxDcCZLdAtutI2VBJQg_WYaXA0CYaTuFRq_jm7IHF9bLutF3b36rzOgVXfhcFKpPiltNjE17N6LHsVw4CmCsIXTlLQnM3Dot6x00odRk_fVyFt36oRr-e7tDrr_ru09kUi_emLZgDMwtE016A7rWJxvqR_mWfJpfj8xd74rzasw2oFO0lY6skGzKnhJixHdba3LZAhQXtHIp0m7kkfDiXttzC_CnOC9hcD67IgifRqz0eaEb1-SzqZMXjrKxKKMgcFQQRMWh9yMkK1JDfvlVqTriqvT2zDS_PmOWoZVQYGg9OAZQbvUVNhTOUqP3ClZ1meYNzylSlMF4eeC5P2GOUYRXqJojLgIhCmxR2RCCq4yekOLAxHQ7UHxEecYlMp0R6g4zRRH5SF0Iv5gcMTxWQDTrFn4moGpXGxOW5jcKKfVv3VgIt6vGJRUZjrTBqDGdLnU-lxSd0xQ-60HvoYO11vmPChGuVYB9dHBIohvDNbxi4ofRCUsQbslnoz_RuGlraHIeL-H9p2Akud62b8cNu-P4AVhGWOPqNg0UNYyCa5OkLokyXHhbJ_AZMo-3k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Core%2FShell+NiAu%2FAu+Nanoparticle+Catalyst+with+Pt-like+Activity+for+Hydrogen+Evolution+Reaction&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lv%2C+Haifeng&rft.au=Xi%2C+Zheng&rft.au=Chen%2C+Zhengzheng&rft.au=Guo%2C+Shaojun&rft.date=2015-05-13&rft.eissn=1520-5126&rft.volume=137&rft.issue=18&rft.spage=5859&rft_id=info:doi/10.1021%2Fjacs.5b01100&rft_id=info%3Apmid%2F25927960&rft.externalDocID=25927960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon