Substitution Effects Regulate the Formation of Butterfly-Shaped Tetranuclear Dy(III) Cluster and Dy-Based Hydrogen-Bonded Helix Frameworks: Structure and Magnetic Properties

The generation of two types of complexes with different topological connections and completely different structural types merely via the substitution effect is extremely rare, especially for −CH3 and −C2H5 substituents with similar physical and chemical properties. Herein, we used 3-methoxysalicylal...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 59; no. 16; pp. 11640 - 11650
Main Authors Zhu, Zhong-Hong, Wang, Hui-Feng, Yu, Shui, Zou, Hua-Hong, Wang, Hai-Ling, Yin, Bing, Liang, Fu-Pei
Format Journal Article
LanguageEnglish
Published American Chemical Society 17.08.2020
Online AccessGet full text

Cover

Loading…
Abstract The generation of two types of complexes with different topological connections and completely different structural types merely via the substitution effect is extremely rare, especially for −CH3 and −C2H5 substituents with similar physical and chemical properties. Herein, we used 3-methoxysalicylaldehyde, 1,2-cyclohexanediamine, and Dy­(NO3)3·6H2O to react under solvothermal conditions (CH3OH:CH3CN = 1:1) at 80 °C to obtain the butterfly-shaped tetranuclear DyIII cluster [Dy4(L 1 )4(μ3-O)2(NO3)2] (Dy 4 , H2 L 1 = 6,6′-((1E,1′E)-(cyclohexane-1,3-diylbis­(azanylylidene))­bis­(methanylylidene))­bis­(2-methoxyphenol)). The ligand H2 L 1 was obtained by the Schiff base in situ reaction of 3-methoxysalicylaldehyde and 1,2-cyclohexanediamine. In the Dy 4 structure, (L 1 )2– has two different coordination modes: μ2-η1:η2:η1:η1 and μ4-η1:η2:η1:η1:η2:η1. The four DyIII ions are in two coordination environments: N2O6 (Dy1) and O9 (Dy2). The magnetic testing of cluster Dy 4 without the addition of an external field revealed that it exhibited a clear frequency-dependent behavior. We changed 3-methoxysalicylaldehyde to 3-ethoxysalicylaldehyde and obtained one case of a hydrogen-bonded helix framework, [DyL 2 (NO3)3] n ·2CH3CN (Dy-HHFs, H2 L 2 = 6,6′-((1E,1′E)-(cyclohexane-1,3-diylbis­(azanylylidene))­bis­(methanylylidene))­bis­(2-ethoxyphenol)), under the same reaction conditions. The ligand H2 L 2 was formed by the Schiff base in situ reaction of 3-ethoxysalicylaldehyde and 1,2-cyclohexanediamine. All DyIII ions in the Dy-HHFs structure are in the same coordination environment (O9). The twisted S-shaped (L 2 )2– ligand is linked by a Dy­(III) ion to form a spiral chain. The spiral chain is one of the independent units that is interconnected to form Dy-HHFs through three strong hydrogen-bonding interactions. Magnetic studies show that Dy-HHFs exhibits single-ion-magnet behavior (U eff = 68.59 K and τ0 = 1.10 × 10–7 s, 0 Oe DC field; U eff = 131.5 K and τ0 = 1.22 × 10–7 s, 800 Oe DC field). Ab initio calculations were performed to interpret the dynamic magnetic performance of Dy-HHFs, and a satisfactory consistency between theory and experiment exists.
AbstractList The generation of two types of complexes with different topological connections and completely different structural types merely via the substitution effect is extremely rare, especially for −CH3 and −C2H5 substituents with similar physical and chemical properties. Herein, we used 3-methoxysalicylaldehyde, 1,2-cyclohexanediamine, and Dy­(NO3)3·6H2O to react under solvothermal conditions (CH3OH:CH3CN = 1:1) at 80 °C to obtain the butterfly-shaped tetranuclear DyIII cluster [Dy4(L 1 )4(μ3-O)2(NO3)2] (Dy 4 , H2 L 1 = 6,6′-((1E,1′E)-(cyclohexane-1,3-diylbis­(azanylylidene))­bis­(methanylylidene))­bis­(2-methoxyphenol)). The ligand H2 L 1 was obtained by the Schiff base in situ reaction of 3-methoxysalicylaldehyde and 1,2-cyclohexanediamine. In the Dy 4 structure, (L 1 )2– has two different coordination modes: μ2-η1:η2:η1:η1 and μ4-η1:η2:η1:η1:η2:η1. The four DyIII ions are in two coordination environments: N2O6 (Dy1) and O9 (Dy2). The magnetic testing of cluster Dy 4 without the addition of an external field revealed that it exhibited a clear frequency-dependent behavior. We changed 3-methoxysalicylaldehyde to 3-ethoxysalicylaldehyde and obtained one case of a hydrogen-bonded helix framework, [DyL 2 (NO3)3] n ·2CH3CN (Dy-HHFs, H2 L 2 = 6,6′-((1E,1′E)-(cyclohexane-1,3-diylbis­(azanylylidene))­bis­(methanylylidene))­bis­(2-ethoxyphenol)), under the same reaction conditions. The ligand H2 L 2 was formed by the Schiff base in situ reaction of 3-ethoxysalicylaldehyde and 1,2-cyclohexanediamine. All DyIII ions in the Dy-HHFs structure are in the same coordination environment (O9). The twisted S-shaped (L 2 )2– ligand is linked by a Dy­(III) ion to form a spiral chain. The spiral chain is one of the independent units that is interconnected to form Dy-HHFs through three strong hydrogen-bonding interactions. Magnetic studies show that Dy-HHFs exhibits single-ion-magnet behavior (U eff = 68.59 K and τ0 = 1.10 × 10–7 s, 0 Oe DC field; U eff = 131.5 K and τ0 = 1.22 × 10–7 s, 800 Oe DC field). Ab initio calculations were performed to interpret the dynamic magnetic performance of Dy-HHFs, and a satisfactory consistency between theory and experiment exists.
Author Wang, Hui-Feng
Liang, Fu-Pei
Zhu, Zhong-Hong
Zou, Hua-Hong
Yu, Shui
Yin, Bing
Wang, Hai-Ling
AuthorAffiliation Guilin University of Technology
Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering
Northwest University
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science
AuthorAffiliation_xml – name: Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science
– name: Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering
– name: Northwest University
– name: State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science
– name: Guilin University of Technology
Author_xml – sequence: 1
  givenname: Zhong-Hong
  surname: Zhu
  fullname: Zhu, Zhong-Hong
  email: 18317725515@163.com
  organization: State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science
– sequence: 2
  givenname: Hui-Feng
  surname: Wang
  fullname: Wang, Hui-Feng
  organization: State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science
– sequence: 3
  givenname: Shui
  surname: Yu
  fullname: Yu, Shui
  organization: State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science
– sequence: 4
  givenname: Hua-Hong
  orcidid: 0000-0003-1968-4855
  surname: Zou
  fullname: Zou, Hua-Hong
  email: gxnuchem@foxmail.com
  organization: State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science
– sequence: 5
  givenname: Hai-Ling
  surname: Wang
  fullname: Wang, Hai-Ling
  organization: State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science
– sequence: 6
  givenname: Bing
  orcidid: 0000-0001-8668-9504
  surname: Yin
  fullname: Yin, Bing
  email: rayinyin@nwu.edu.cn
  organization: Northwest University
– sequence: 7
  givenname: Fu-Pei
  surname: Liang
  fullname: Liang, Fu-Pei
  email: fliangoffice@yahoo.com
  organization: Guilin University of Technology
BookMark eNqFkcFuEzEQhi1UJNLCIyD5WA4b7LV3N8uNhIZGKmpFisRt5djjZMuuHca22jwU74jTVFw5zcw__zfS6D8nZ847IOQ9Z1POSv5R6TDtncet3sE4ZZpx2davyIRXJSsqzn6ekQljued13b4h5yE8MMZaIesJ-bNOmxD7mGLvHb2yFnQM9Dts06Ai0LgDuvQ4que1t3SeYgS0w6FY79QeDL2HiMolPYBC-uVwuVqtPtDFkEK2UeVM1oq5Ctl5fTDot-CKuXfmOMPQP9ElqhEePf4Kn-g6YtIxITyD39TWQew1vUO_B4w9hLfktVVDgHcv9YL8WF7dL66Lm9uvq8Xnm0KJVsai1aaxnMm6FQ0zldJG1ptGVY02pWzUpjVSb5idCd1IU5ZsZspaCJa1soaZseKCXJ7u7tH_ThBiN_ZBwzAoBz6FrpRCNpWoeJ2t1cmq0YeAYLs99qPCQ8dZd4yny_F0_-LpXuLJHD9xx_WDT-jyQ_9h_gJu9p1_
CitedBy_id crossref_primary_10_1039_D3DT03137C
crossref_primary_10_1039_D3QI02507A
crossref_primary_10_1039_D1CE00146A
crossref_primary_10_1021_acs_cgd_2c00555
crossref_primary_10_1016_j_molstruc_2023_135843
crossref_primary_10_1021_acs_cgd_3c00788
crossref_primary_10_1021_acs_cgd_2c00550
crossref_primary_10_1039_D1CE00431J
crossref_primary_10_1039_D1NJ05717K
crossref_primary_10_1080_00958972_2022_2123738
crossref_primary_10_1016_j_jssc_2021_122686
crossref_primary_10_1039_D1TC01672E
crossref_primary_10_1039_D2DT00857B
crossref_primary_10_1039_D0CP05470D
crossref_primary_10_1021_acs_inorgchem_0c02863
crossref_primary_10_1039_D1DT00964H
crossref_primary_10_1016_j_molstruc_2024_138293
crossref_primary_10_1021_acs_cgd_4c00075
crossref_primary_10_1002_zaac_202200135
crossref_primary_10_1007_s10876_021_02075_8
crossref_primary_10_1002_aoc_7214
crossref_primary_10_1016_j_ica_2024_121942
crossref_primary_10_1039_D2QI01711C
crossref_primary_10_1021_jacs_2c02598
crossref_primary_10_1246_bcsj_20210155
crossref_primary_10_1021_acs_inorgchem_3c00743
crossref_primary_10_1039_D2DT01365G
crossref_primary_10_1016_j_molstruc_2023_136841
crossref_primary_10_1021_acs_cgd_3c00813
crossref_primary_10_1134_S0022476623060148
crossref_primary_10_1039_D2CP00776B
crossref_primary_10_1039_D2NJ00784C
crossref_primary_10_1016_j_cej_2022_138880
crossref_primary_10_1039_D1DT02925H
crossref_primary_10_1007_s10876_022_02254_1
crossref_primary_10_1007_s10876_021_02084_7
crossref_primary_10_1039_D0CE01528H
crossref_primary_10_1039_D1QI00371B
crossref_primary_10_1016_j_isci_2022_105285
crossref_primary_10_1021_acs_cgd_3c01401
crossref_primary_10_1039_D2DT01507B
crossref_primary_10_1039_D1QI00101A
Cites_doi 10.1039/C9CC02174D
10.1021/acs.inorgchem.6b01353
10.1016/j.ccr.2005.03.031
10.1021/acs.inorgchem.8b01269
10.1021/acs.inorgchem.8b01981
10.1002/aenm.201801257
10.1002/anie.201711124
10.1002/anie.201604534
10.1126/science.aad4011
10.1021/acs.cgd.9b00869
10.1021/ic300918c
10.1021/ic701097k
10.1039/C3CS60480B
10.1007/430_2014_171
10.1021/ja808585y
10.1021/jp031064+
10.1016/j.jmr.2015.03.010
10.1039/C8CS00155C
10.1021/cr0103672
10.1002/anie.201608113
10.1021/acs.inorgchem.7b03084
10.1039/C4DT02607A
10.1039/c2sc00728b
10.1021/jp0581126
10.1038/171737a0
10.1002/anie.200501028
10.1002/anie.201800469
10.1002/anie.201811211
10.1126/science.aav0652
10.1002/anie.201712246
10.1021/acs.inorgchem.7b03186
10.1002/anie.201814440
10.1039/C5CS00770D
10.1021/jacs.7b11283
10.1002/anie.201804745
10.1039/c2ce06566e
10.1002/anie.201800697
10.1002/adma.201501523
10.1021/ja500191r
10.1021/acs.inorgchem.7b01011
10.1002/anie.201201174
10.1002/9781118571767.ch6
10.1021/ic2021929
10.1039/C8QI01069B
10.1021/cr010303r
10.1039/C9DT01454C
10.1021/acs.chemrev.6b00346
10.1002/anie.201809884
10.1021/ja303701d
10.1021/acs.inorgchem.5b00061
10.1039/c2dt31388j
10.1063/1.4739763
10.1002/anie.201709650
10.1021/acs.inorgchem.9b00816
10.1016/j.ccr.2014.08.013
10.1039/C9QI00582J
10.1021/acs.inorgchem.6b00050
10.1021/ja0534708
10.1039/C7CC09391H
10.1021/ic501395p
10.1021/ja106666h
10.1002/jcc.21318
10.1021/jacs.5b04069
10.1021/acsnano.8b03131
10.1021/jacs.8b07563
10.1002/chem.201703842
10.1002/anie.201609685
10.1002/anie.201805540
10.1002/anie.201800354
10.1016/S0009-2614(02)00498-0
10.1039/C5CS00222B
10.1016/j.ccr.2017.11.012
10.1021/jacs.7b09553
10.1021/acs.inorgchem.7b01790
10.1039/C9DT03795K
10.1016/0009-2614(96)00119-4
10.1016/j.ccr.2018.02.019
10.1021/acs.inorgchem.8b03293
10.1002/anie.201711844
10.1002/jcc.24221
10.1002/anie.201811561
10.1002/chem.201902096
10.1002/anie.201810849
10.1038/s41598-019-48696-y
10.1039/C7CS00266A
10.1021/ic3021244
10.1021/jp803213j
10.1038/s41557-018-0171-z
10.1021/acs.inorgchem.5b00185
10.1039/C8SC02739K
10.1016/0301-0104(80)80045-0
10.1039/C8CS00688A
10.1002/anie.201900787
10.1039/C3CS60428D
10.1039/C5CC02685G
10.1021/acs.cgd.7b01268
10.1038/nchem.1123
10.1021/ar200313h
10.1002/adma.201603135
10.1021/acs.jpclett.8b02359
10.1038/nature23447
10.1039/D0CP00933D
10.1002/chem.201802929
10.1039/c1cp22689d
10.1021/acs.inorgchem.9b00760
10.1021/jacs.7b12110
10.1021/ic402367c
10.1021/jacs.6b02968
10.1002/anie.201809058
10.1002/anie.201705426
10.1021/jacs.8b12124
10.1002/chem.201703755
10.1002/anie.201508611
10.1021/acs.inorgchem.5b01356
10.1021/ja4104974
10.1039/C7CS00695K
10.1021/jacs.5b07053
10.1016/j.ccr.2013.01.012
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.inorgchem.0c01496
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 11650
ExternalDocumentID 10_1021_acs_inorgchem_0c01496
b51064099
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
4.4
AAYXX
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
~02
7X8
ID FETCH-LOGICAL-a394t-9cd7f10469370d5acd46b7a57cd247ab9d4cb0f83c74d2208d26330cb026e8df3
IEDL.DBID ACS
ISSN 0020-1669
IngestDate Fri Aug 16 23:08:48 EDT 2024
Fri Aug 23 00:26:04 EDT 2024
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-9cd7f10469370d5acd46b7a57cd247ab9d4cb0f83c74d2208d26330cb026e8df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1968-4855
0000-0001-8668-9504
PQID 2434753516
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2434753516
crossref_primary_10_1021_acs_inorgchem_0c01496
acs_journals_10_1021_acs_inorgchem_0c01496
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2020-08-17
PublicationDateYYYYMMDD 2020-08-17
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-17
  day: 17
PublicationDecade 2020
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref109/cit109
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.1039/C9CC02174D
– ident: ref112/cit112
  doi: 10.1021/acs.inorgchem.6b01353
– ident: ref88/cit88
  doi: 10.1016/j.ccr.2005.03.031
– ident: ref93/cit93
  doi: 10.1021/acs.inorgchem.8b01269
– ident: ref97/cit97
  doi: 10.1021/acs.inorgchem.8b01981
– ident: ref12/cit12
  doi: 10.1002/aenm.201801257
– ident: ref40/cit40
  doi: 10.1002/anie.201711124
– ident: ref33/cit33
  doi: 10.1002/anie.201604534
– ident: ref14/cit14
  doi: 10.1126/science.aad4011
– ident: ref81/cit81
  doi: 10.1021/acs.cgd.9b00869
– ident: ref85/cit85
  doi: 10.1021/ic300918c
– ident: ref77/cit77
  doi: 10.1021/ic701097k
– ident: ref11/cit11
  doi: 10.1039/C3CS60480B
– ident: ref114/cit114
  doi: 10.1007/430_2014_171
– ident: ref48/cit48
  doi: 10.1021/ja808585y
– ident: ref103/cit103
  doi: 10.1021/jp031064+
– ident: ref115/cit115
  doi: 10.1016/j.jmr.2015.03.010
– ident: ref30/cit30
  doi: 10.1039/C8CS00155C
– ident: ref44/cit44
  doi: 10.1021/cr0103672
– ident: ref66/cit66
  doi: 10.1002/anie.201608113
– ident: ref25/cit25
  doi: 10.1021/acs.inorgchem.7b03084
– ident: ref84/cit84
  doi: 10.1039/C4DT02607A
– ident: ref76/cit76
  doi: 10.1039/c2sc00728b
– ident: ref104/cit104
  doi: 10.1021/jp0581126
– ident: ref37/cit37
  doi: 10.1038/171737a0
– ident: ref46/cit46
  doi: 10.1002/anie.200501028
– ident: ref39/cit39
  doi: 10.1002/anie.201800469
– ident: ref64/cit64
  doi: 10.1002/anie.201811211
– ident: ref89/cit89
  doi: 10.1126/science.aav0652
– ident: ref15/cit15
  doi: 10.1002/anie.201712246
– ident: ref75/cit75
  doi: 10.1021/acs.inorgchem.7b03186
– ident: ref63/cit63
  doi: 10.1002/anie.201814440
– ident: ref58/cit58
  doi: 10.1039/C5CS00770D
– ident: ref18/cit18
  doi: 10.1021/jacs.7b11283
– ident: ref69/cit69
  doi: 10.1002/anie.201804745
– ident: ref87/cit87
  doi: 10.1039/c2ce06566e
– ident: ref31/cit31
  doi: 10.1002/anie.201800697
– ident: ref10/cit10
  doi: 10.1002/adma.201501523
– ident: ref29/cit29
  doi: 10.1021/ja500191r
– ident: ref78/cit78
  doi: 10.1021/acs.inorgchem.7b01011
– ident: ref35/cit35
  doi: 10.1002/anie.201201174
– ident: ref107/cit107
  doi: 10.1002/9781118571767.ch6
– ident: ref20/cit20
  doi: 10.1021/ic2021929
– ident: ref62/cit62
  doi: 10.1039/C8QI01069B
– ident: ref94/cit94
  doi: 10.1021/cr010303r
– ident: ref80/cit80
  doi: 10.1039/C9DT01454C
– ident: ref4/cit4
  doi: 10.1021/acs.chemrev.6b00346
– ident: ref9/cit9
  doi: 10.1002/anie.201809884
– ident: ref49/cit49
  doi: 10.1021/ja303701d
– ident: ref86/cit86
  doi: 10.1021/acs.inorgchem.5b00061
– ident: ref99/cit99
  doi: 10.1039/c2dt31388j
– ident: ref106/cit106
  doi: 10.1063/1.4739763
– ident: ref70/cit70
  doi: 10.1002/anie.201709650
– ident: ref24/cit24
  doi: 10.1021/acs.inorgchem.9b00816
– ident: ref2/cit2
  doi: 10.1016/j.ccr.2014.08.013
– ident: ref57/cit57
  doi: 10.1039/C9QI00582J
– ident: ref23/cit23
  doi: 10.1021/acs.inorgchem.6b00050
– ident: ref67/cit67
  doi: 10.1021/ja0534708
– ident: ref73/cit73
  doi: 10.1039/C7CC09391H
– ident: ref61/cit61
  doi: 10.1021/ic501395p
– ident: ref68/cit68
  doi: 10.1021/ja106666h
– ident: ref108/cit108
  doi: 10.1002/jcc.21318
– ident: ref8/cit8
  doi: 10.1021/jacs.5b04069
– ident: ref53/cit53
  doi: 10.1021/acsnano.8b03131
– ident: ref28/cit28
  doi: 10.1021/jacs.8b07563
– ident: ref74/cit74
  doi: 10.1002/chem.201703842
– ident: ref90/cit90
  doi: 10.1002/anie.201609685
– ident: ref16/cit16
  doi: 10.1002/anie.201805540
– ident: ref34/cit34
  doi: 10.1002/anie.201800354
– ident: ref101/cit101
  doi: 10.1016/S0009-2614(02)00498-0
– ident: ref110/cit110
  doi: 10.1039/C5CS00222B
– ident: ref3/cit3
  doi: 10.1016/j.ccr.2017.11.012
– ident: ref21/cit21
  doi: 10.1021/jacs.7b09553
– ident: ref60/cit60
  doi: 10.1021/acs.inorgchem.7b01790
– ident: ref83/cit83
  doi: 10.1039/C9DT03795K
– ident: ref102/cit102
  doi: 10.1016/0009-2614(96)00119-4
– ident: ref92/cit92
  doi: 10.1016/j.ccr.2018.02.019
– ident: ref27/cit27
  doi: 10.1021/acs.inorgchem.8b03293
– ident: ref72/cit72
  doi: 10.1002/anie.201711844
– ident: ref109/cit109
  doi: 10.1002/jcc.24221
– ident: ref38/cit38
  doi: 10.1002/anie.201811561
– ident: ref56/cit56
  doi: 10.1002/chem.201902096
– ident: ref55/cit55
  doi: 10.1002/anie.201810849
– ident: ref82/cit82
  doi: 10.1038/s41598-019-48696-y
– ident: ref111/cit111
  doi: 10.1039/C7CS00266A
– ident: ref98/cit98
  doi: 10.1021/ic3021244
– ident: ref105/cit105
  doi: 10.1021/jp803213j
– ident: ref7/cit7
  doi: 10.1038/s41557-018-0171-z
– ident: ref26/cit26
  doi: 10.1021/acs.inorgchem.5b00185
– ident: ref42/cit42
  doi: 10.1039/C8SC02739K
– ident: ref100/cit100
  doi: 10.1016/0301-0104(80)80045-0
– ident: ref6/cit6
  doi: 10.1039/C8CS00688A
– ident: ref13/cit13
  doi: 10.1002/anie.201900787
– ident: ref43/cit43
  doi: 10.1039/C3CS60428D
– ident: ref52/cit52
  doi: 10.1039/C5CC02685G
– ident: ref54/cit54
  doi: 10.1021/acs.cgd.7b01268
– ident: ref50/cit50
  doi: 10.1038/nchem.1123
– ident: ref45/cit45
  doi: 10.1021/ar200313h
– ident: ref41/cit41
  doi: 10.1002/adma.201603135
– ident: ref117/cit117
  doi: 10.1021/acs.jpclett.8b02359
– ident: ref91/cit91
  doi: 10.1038/nature23447
– ident: ref118/cit118
  doi: 10.1039/D0CP00933D
– ident: ref51/cit51
  doi: 10.1002/chem.201802929
– ident: ref113/cit113
  doi: 10.1039/c1cp22689d
– ident: ref79/cit79
  doi: 10.1021/acs.inorgchem.9b00760
– ident: ref17/cit17
  doi: 10.1021/jacs.7b12110
– ident: ref116/cit116
  doi: 10.1021/ic402367c
– ident: ref36/cit36
  doi: 10.1021/jacs.6b02968
– ident: ref71/cit71
  doi: 10.1002/anie.201809058
– ident: ref96/cit96
  doi: 10.1002/anie.201705426
– ident: ref32/cit32
  doi: 10.1021/jacs.8b12124
– ident: ref95/cit95
  doi: 10.1002/chem.201703755
– ident: ref47/cit47
  doi: 10.1002/anie.201508611
– ident: ref59/cit59
  doi: 10.1021/acs.inorgchem.5b01356
– ident: ref65/cit65
  doi: 10.1021/ja4104974
– ident: ref5/cit5
  doi: 10.1039/C7CS00695K
– ident: ref19/cit19
  doi: 10.1021/jacs.5b07053
– ident: ref1/cit1
  doi: 10.1016/j.ccr.2013.01.012
SSID ssj0009346
Score 2.561574
Snippet The generation of two types of complexes with different topological connections and completely different structural types merely via the substitution effect is...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Publisher
StartPage 11640
Title Substitution Effects Regulate the Formation of Butterfly-Shaped Tetranuclear Dy(III) Cluster and Dy-Based Hydrogen-Bonded Helix Frameworks: Structure and Magnetic Properties
URI http://dx.doi.org/10.1021/acs.inorgchem.0c01496
https://search.proquest.com/docview/2434753516
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocmgvPPpQgYJcqYe2UpbEduyE27JltVuJCnVB4hY5flDEkkWbXYnlP_EfO5MHFapQ6SVSRnIUe8aebzSebwj5FEdaeytl4JMEApTE-SBVaQQPcPY294JXpD7HP-TwTHw_j89XyP4TGXwW7WtTAgYFCUziuhsaxPTyBVll4Bsx2ur1x39YdnldmYMxUSRl2pbsPPUZdEmmfOySHp_IlZsZrJOTtlinvl1y1V3M8665-5u78bkz2CBrDeSkvdpGNsmKK16Tl_2209sbco-nR3VlAJREaz7jkv6su9Q7ChCRDtoaRzr1tGluPVkG41_6xll66ubg8pAZWc_ot-Xn0Wj0hfYnCyRhoLqwIAsOwV1aOlza2RRsNsB2xvjuJpe3dNDeECsP6LgitF3MXDXwWF8UWGZJTzBpMEP217fkbHB02h8GTRuHQPNUzIPUWOUxlQxIKLSxNlbIXOlYGcuE0nlqhclDn3CjhGUsTCyTnIcgY9Il1vN3pFNMC_eeUCtdnCIbE9MARbnMAXAAaFM-UXmsE7tFvsJiZ802LLMqw86iDIUPGsgaDWyRbqv27Kam9vjXgI-tcWSgIcys6MJNF2XGBBcQ98WR3P6fP9ghrxiaKjLsqg-kAwvsdgHjzPO9yq5_A5NS-58
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELbG9jBegA0Q24B5Eg-AlC6xHTvhDTqqdlsnRDuxt8iJbZjWpVPTSuv-E_-ROyfZNCSE9hIpJ9myfWffZ53vO0LexZHWzkgZuCSBC0piXZCqNIIPOHuTO8E9qc_wRPZPxeFZfLZCZJsLA4OooKfKB_Hv2AWifZSdlyCFuVx2wgKhvXxE1mIFHg8hUXd0R7bL6wQdvBpFUqZt5s6_ukHPVFT3PdP9g9l7m95T8uN2nP6RyUVnMc87xc1fFI4Pn8gz8qQBoPRzbTEbZMWWm2S929Z9e05-41niHxCAymjNblzR73XNeksBMNJem_FIp442pa4ny2D0S19ZQ8d2Dg4QeZL1jB4s3w8Ggw-0O1kgJQPVpQFZ8AWcp6H9pZlNwYIDLG6M_3Zyfk177Xux6hMdeXrbxcz6hkP9s8SkS_oNQwgz5IJ9QU57X8fdftAUdQg0T8U8SAujHAaWAReFJtaFETJXOlaFYULpPDWiyEOX8EIJw1iYGCY5D0HGpE2M4y_Jajkt7StCjbRxitxMTAMw5TIH-AEQTrlE5bFOzBb5CIudNZuyyny8nUUZCm81kDUa2CKdVvvZVU308b8Ge62NZKAhjLPo0k4XVcYEF3ALjCO5_ZAR7JL1_nh4nB0PTo52yGOG1ovcu-o1WYXFtm8A_czzt97U_wDjpAQZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbGJgEvGwMmNhgYiQdASpfYjp3wtnVE7WDTRDdp0h4iJ7ZhoqRV00qU_7T_yJ2TDA0JIXiJFEeObN_Z91l39x0hr-JIa2ekDFySwAUlsS5IVRrBA4y9KZzgntTn-EQOzsXRRXzRRlViLgwMooY_1d6Jj7t6alzLMBDtYftVBV9gPt96YYnwXt4ha7GKBG7K_f7oF-Eub5J08HoUSZl22Tt_-g1ap7K-bZ1uH87e4mQb5PJmrD7Q5GtvMS965Y_faBz_bzIPyHoLROl-ozmbZMVWD8m9flf_7RG5xjPFBxKA6GjDclzTT03teksBONKsy3ykE0fbktfjZTD6oqfW0DM7B0OIfMl6Rg-Xr4fD4RvaHy-QmoHqykBbcABG1NDB0swmoMkBFjnGdzu--k6zLm6sfkdHnuZ2MbO-47H-XGHyJT1FV8IMOWEfk_Ps_Vl_ELTFHQLNUzEP0tIohw5mwEehiXVphCyUjlVpmFC6SI0oi9AlvFTCMBYmhknOQ2hj0ibG8S2yWk0q-4RQI22cIkcT0wBQuSwAhgCUUy5RRawTs03ewmLn7easc-93Z1GOjTcSyFsJbJNepwH5tCH8-FuHl52e5CAh9Lfoyk4Wdc4EF3AbjCO58y8jeEHunh5m-cfhyYen5D5DBUYKXvWMrMJa210AQfPiudf2nw1BBpM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Substitution+Effects+Regulate+the+Formation+of+Butterfly-Shaped+Tetranuclear+Dy%28III%29+Cluster+and+Dy-Based+Hydrogen-Bonded+Helix+Frameworks%3A+Structure+and+Magnetic+Properties&rft.jtitle=Inorganic+chemistry&rft.au=Zhu%2C+Zhong-Hong&rft.au=Wang%2C+Hui-Feng&rft.au=Yu%2C+Shui&rft.au=Zou%2C+Hua-Hong&rft.date=2020-08-17&rft.eissn=1520-510X&rft.volume=59&rft.issue=16&rft.spage=11640&rft.epage=11650&rft_id=info:doi/10.1021%2Facs.inorgchem.0c01496&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon