Green Chemistry: Electrochemical Organic Transformations via Paired Electrolysis
Paired electrolysis is highly valuable from the viewpoint of efficiency as well as atom and energy economies. In order to optimize the latter two for chemical reactions, the development of paired electrochemical processes is necessary. When both of the electrodes in an electrochemical cell (divided...
Saved in:
Published in | ACS sustainable chemistry & engineering Vol. 9; no. 18; pp. 6148 - 6169 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
10.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-0485 2168-0485 |
DOI | 10.1021/acssuschemeng.1c00665 |
Cover
Loading…
Abstract | Paired electrolysis is highly valuable from the viewpoint of efficiency as well as atom and energy economies. In order to optimize the latter two for chemical reactions, the development of paired electrochemical processes is necessary. When both of the electrodes in an electrochemical cell (divided and undivided) are applied as working electrodes, and both sides of the processes (oxidation and reduction) yield valuable compounds, this ideal electrolysis phenomena is defined as paired electrosynthesis. This paired electrolysis offers the opportunity to reduce the spent energy and time, when compared with a single electrolysis system that is only used to achieve a product of interest, while ignoring the other side of the electrolysis (anodic or cathodic). In an ideal case, 200% current efficiency could be achieved during paired electrosynthesis using cathodic and anodic processes to provide the same product. Paired electrosynthesis is a highly efficient green process and, therefore, is beneficial for preserving resources and minimizing waste. However, while a paired electrosynthesis is beneficial, both oxidation and reduction processes must be compatible to counter the yield losses and equally ease separation and purification of both sides of the electrode products. Greater efforts are required to perform paired electrosynthesis with a more systematic and rational approach to achieve optimal products under paired conditions. Nevertheless, new computational tools could be applied for assistance in this matter. There is a considerable level of adventure in designing new paired electrosynthetic processes and accompanying opportunities to design innovative and powerful synthetic strategies. Herein, an overview of several examples of paired electrosyntheses and their advantages are summarized that will aid researchers to both develop a greater understanding of this subject and subsequently employ paired electrolysis for green and sustainable synthesis of organic molecules. |
---|---|
AbstractList | Paired electrolysis is highly valuable from the viewpoint of efficiency as well as atom and energy economies. In order to optimize the latter two for chemical reactions, the development of paired electrochemical processes is necessary. When both of the electrodes in an electrochemical cell (divided and undivided) are applied as working electrodes, and both sides of the processes (oxidation and reduction) yield valuable compounds, this ideal electrolysis phenomena is defined as paired electrosynthesis. This paired electrolysis offers the opportunity to reduce the spent energy and time, when compared with a single electrolysis system that is only used to achieve a product of interest, while ignoring the other side of the electrolysis (anodic or cathodic). In an ideal case, 200% current efficiency could be achieved during paired electrosynthesis using cathodic and anodic processes to provide the same product. Paired electrosynthesis is a highly efficient green process and, therefore, is beneficial for preserving resources and minimizing waste. However, while a paired electrosynthesis is beneficial, both oxidation and reduction processes must be compatible to counter the yield losses and equally ease separation and purification of both sides of the electrode products. Greater efforts are required to perform paired electrosynthesis with a more systematic and rational approach to achieve optimal products under paired conditions. Nevertheless, new computational tools could be applied for assistance in this matter. There is a considerable level of adventure in designing new paired electrosynthetic processes and accompanying opportunities to design innovative and powerful synthetic strategies. Herein, an overview of several examples of paired electrosyntheses and their advantages are summarized that will aid researchers to both develop a greater understanding of this subject and subsequently employ paired electrolysis for green and sustainable synthesis of organic molecules. |
Author | Sbei, Najoua Hardwick, Tomas Ahmed, Nisar |
AuthorAffiliation | Karlsruhe Institute of Technology Organic Chemistry Department Peoples’ Friendship University of Russia (RUDN University) Institute of Nanotechnology University of Manchester National Graphene Institute School of Chemistry Department of Materials |
AuthorAffiliation_xml | – name: Peoples’ Friendship University of Russia (RUDN University) – name: National Graphene Institute – name: Organic Chemistry Department – name: University of Manchester – name: Karlsruhe Institute of Technology – name: Institute of Nanotechnology – name: Department of Materials – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Najoua surname: Sbei fullname: Sbei, Najoua organization: Karlsruhe Institute of Technology – sequence: 2 givenname: Tomas surname: Hardwick fullname: Hardwick, Tomas organization: University of Manchester – sequence: 3 givenname: Nisar orcidid: 0000-0002-7954-5251 surname: Ahmed fullname: Ahmed, Nisar email: AhmedN14@cardiff.ac.uk organization: School of Chemistry |
BookMark | eNqFkMFOwzAMhiM0JMbYIyD1yGUjSdu0hROaxkCatB3GOXJTd2TqkpG0SHt7MjYk4DIfbEv298v-r0nPWIOE3DI6ZpSze1Ded1694xbNeswUpUKkF6TPmchHNMnT3q_-igy939AQRRHznPXJcuYQTTQJvPat2z9E0wZV6-xBUStoooVbg9EqWjkwvrZuC622xkefGqIlaIfVD9LsvfY35LKGxuPwVAfk7Xm6mryM5ovZ6-RpPoK4SNpRUVIONUMOohIlzwqkVThelLmAukCWAUtEmWJWI-NxDGlZlBmLk6yEkGgVD8jdUXfn7EeHvpXhAYVNAwZt5yUv8jTPeEzzsPp4XFXOeu-wlkq331-0DnQjGZUHK-UfK-XJykCn_-id01tw-7McO3JhLDe2cybYcYb5AnDSkgY |
CitedBy_id | crossref_primary_10_1002_adsc_202200259 crossref_primary_10_1021_acs_joc_4c01175 crossref_primary_10_1021_acs_joc_4c00087 crossref_primary_10_1039_D2QO01498J crossref_primary_10_1038_s41929_023_00923_6 crossref_primary_10_1002_anie_202407750 crossref_primary_10_1021_acs_orglett_4c02859 crossref_primary_10_1039_D1SC04011A crossref_primary_10_1002_ejoc_202400880 crossref_primary_10_1002_aesr_202300302 crossref_primary_10_1038_s41598_022_08770_4 crossref_primary_10_1038_s41598_023_44912_y crossref_primary_10_1039_D3CY00108C crossref_primary_10_1002_celc_202300728 crossref_primary_10_1002_anie_202408834 crossref_primary_10_1002_ange_202204140 crossref_primary_10_1002_cjoc_202200825 crossref_primary_10_1002_ange_202301026 crossref_primary_10_1039_D3GC00866E crossref_primary_10_1039_D3GC02106H crossref_primary_10_1002_slct_202301617 crossref_primary_10_1002_chem_202301034 crossref_primary_10_1016_j_mcat_2021_112022 crossref_primary_10_1149_1945_7111_ac7baf crossref_primary_10_1021_jacs_3c08839 crossref_primary_10_1039_D2QO01394K crossref_primary_10_1038_s41467_022_35073_z crossref_primary_10_1016_S1872_2067_24_60146_4 crossref_primary_10_1055_a_2038_9146 crossref_primary_10_1002_ange_202418277 crossref_primary_10_1039_D4GC00338A crossref_primary_10_1002_tcr_202100338 crossref_primary_10_1039_D2CC02745C crossref_primary_10_1016_j_coelec_2023_101425 crossref_primary_10_3762_bjoc_18_108 crossref_primary_10_1002_tcr_202100296 crossref_primary_10_1002_ejoc_202300506 crossref_primary_10_1002_cssc_202402161 crossref_primary_10_1002_cssc_202400381 crossref_primary_10_1039_D4SC01754D crossref_primary_10_1039_D2QI02713E crossref_primary_10_1002_adsc_202300607 crossref_primary_10_1016_j_cherd_2023_02_050 crossref_primary_10_1021_acs_joc_2c02377 crossref_primary_10_1016_j_nanoso_2024_101106 crossref_primary_10_1021_acs_joc_4c01086 crossref_primary_10_1021_acs_oprd_2c00111 crossref_primary_10_1016_j_ijhydene_2024_07_175 crossref_primary_10_1021_acs_orglett_2c01897 crossref_primary_10_1039_D1RE00047K crossref_primary_10_5796_electrochemistry_23_67083 crossref_primary_10_1002_aoc_7789 crossref_primary_10_1016_j_enchem_2023_100111 crossref_primary_10_1055_a_2044_2140 crossref_primary_10_1055_a_1944_9494 crossref_primary_10_1016_j_esci_2024_100333 crossref_primary_10_1021_acs_oprd_3c00340 crossref_primary_10_1038_s41467_022_32933_6 crossref_primary_10_1016_j_esci_2022_04_006 crossref_primary_10_1002_adma_202208284 crossref_primary_10_1007_s11172_024_4303_x crossref_primary_10_1021_acs_orglett_2c01542 crossref_primary_10_1016_j_envres_2024_119883 crossref_primary_10_1039_D4IM00067F crossref_primary_10_1016_j_rechem_2023_100952 crossref_primary_10_1002_celc_202400360 crossref_primary_10_1039_D2CC02641D crossref_primary_10_6023_A22060260 crossref_primary_10_1055_a_2033_8632 crossref_primary_10_1021_acs_joc_1c01657 crossref_primary_10_1039_D2QO00651K crossref_primary_10_1039_D3QO00370A crossref_primary_10_1039_D3QO02141F crossref_primary_10_1039_D3CC01197F crossref_primary_10_1002_adfm_202414120 crossref_primary_10_1039_D2SC05198B crossref_primary_10_1021_acs_iecr_3c03615 crossref_primary_10_1021_acs_joc_4c01023 crossref_primary_10_1002_ange_202407750 crossref_primary_10_1021_acsanm_1c04433 crossref_primary_10_1016_j_cej_2024_152950 crossref_primary_10_1002_ange_202408834 crossref_primary_10_1038_s41467_024_45278_z crossref_primary_10_1002_anie_202301026 crossref_primary_10_1039_D3OB01955A crossref_primary_10_1016_j_molstruc_2024_139373 crossref_primary_10_1007_s10008_023_05507_9 crossref_primary_10_1038_s41929_025_01306_9 crossref_primary_10_1016_j_elecom_2021_107176 crossref_primary_10_1002_cssc_202300807 crossref_primary_10_1021_acscatal_1c04880 crossref_primary_10_59761_RCR5104 crossref_primary_10_1149_1945_7111_acaa04 crossref_primary_10_1016_j_cclet_2023_108897 crossref_primary_10_1021_acs_orglett_3c00121 crossref_primary_10_1039_D2QO01425D crossref_primary_10_1039_D3CY00041A crossref_primary_10_1055_s_0043_1775377 crossref_primary_10_1002_asia_202300122 crossref_primary_10_1055_a_2004_6485 crossref_primary_10_1002_anie_202418277 crossref_primary_10_1002_chem_202403420 crossref_primary_10_1021_acsomega_2c07378 crossref_primary_10_1021_jacs_2c09632 crossref_primary_10_1021_acs_iecr_2c02312 crossref_primary_10_1016_j_electacta_2024_144741 crossref_primary_10_1039_D4OB01115E crossref_primary_10_1039_D4GC02848A crossref_primary_10_1021_acs_orglett_4c01311 crossref_primary_10_1021_acs_joc_3c02556 crossref_primary_10_1002_anie_202204140 crossref_primary_10_1021_acsmacrolett_4c00507 crossref_primary_10_1039_D4GC04847D |
Cites_doi | 10.1002/slct.202000869 10.1039/C9NJ06133A 10.1002/9783527822508.ch79 10.1002/ange.201909642 10.1021/acs.orglett.0c01343 10.1016/j.elecom.2014.09.018 10.1039/C8GC03786H 10.1002/anie.201809679 10.1039/D0SC01445A 10.1002/ange.201900343 10.1002/celc.201402299 10.1002/adsc.201801700 10.1002/celc.201900406 10.1246/cl.1985.1695 10.1039/C9GC02264C 10.1055/s-0037-1611772 10.1016/j.crci.2011.01.002 10.1002/9781118670750.ch05 10.1039/C9CY01312A 10.1016/0013-4686(91)85333-3 10.1039/C6GC00666C 10.1039/C9CC06746A 10.1002/celc.201801466 10.1002/ange.200600951 10.1039/C8NJ01992D 10.1002/ange.202009155 10.1002/celc.201801502 10.1039/D0GC01324B 10.1002/celc.201901799 10.1080/17415993.2019.1694679 10.1021/acssuschemeng.8b04118 10.1021/acs.iecr.8b06340 10.1126/science.aba3823 10.1080/00397911.2016.1166251 10.1002/anie.202014244 10.1016/j.tetlet.2010.01.026 10.1021/acscatal.8b00683 10.1039/C9GC01895F 10.1093/nsr/nwz146 10.1002/anie.201903936 10.1016/j.jelechem.2005.02.027 10.5796/electrochemistry.67.4 10.1021/jacs.6b08667 10.1002/tcr.202000096 10.1016/j.tet.2015.07.066 10.1016/j.tet.2018.03.010 10.31635/ccschem.020.202000218 10.1039/c0cc01964j 10.1038/s41929-018-0083-8 10.1002/adsc.201901011 10.1007/s10800-006-9122-2 10.1055/s-0037-1611797 10.1080/17415993.2016.1259416 10.1016/j.jelechem.2019.113746 10.1039/p19730002230 10.1002/chem.201701513 10.1055/s-0030-1258504 10.1016/j.tet.2015.04.020 10.1039/C5GC02626A 10.1021/acs.chemrev.7b00360 10.1055/s-0036-1588667 10.31635/ccschem.020.201900112 10.1016/j.apcatb.2019.118226 10.1021/acs.orglett.9b02884 10.1149/1.2114229 10.1007/BF00618738 10.1002/ange.202009757 10.1149/1.2402369 10.1039/c0gc00382d 10.1002/chem.201804708 10.1002/ejoc.201901635 10.1149/1.2096004 |
ContentType | Journal Article |
Copyright | 2021 American Chemical
Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acssuschemeng.1c00665 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-0485 |
EndPage | 6169 |
ExternalDocumentID | 10_1021_acssuschemeng_1c00665 c357558070 |
GroupedDBID | 53G 55A AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ GGK GNL IH9 JG JG~ ROL UI2 VF5 VG9 W1F AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ 7S9 L.6 |
ID | FETCH-LOGICAL-a394t-9b02af1e2a6d6b279e0d1c06b86af9e17a146b5e7fe1233a5b9b71347ba3470d3 |
IEDL.DBID | ACS |
ISSN | 2168-0485 |
IngestDate | Fri Jul 11 15:39:52 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Tue Jul 01 04:21:43 EDT 2025 Wed May 12 05:25:26 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Paired electro-organic synthesis Sustainable chemistry Atom economy Organic electrochemistry Energy economy Energy conversion |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a394t-9b02af1e2a6d6b279e0d1c06b86af9e17a146b5e7fe1233a5b9b71347ba3470d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7954-5251 |
PQID | 2985872308 |
PQPubID | 24069 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2985872308 crossref_citationtrail_10_1021_acssuschemeng_1c00665 crossref_primary_10_1021_acssuschemeng_1c00665 acs_journals_10_1021_acssuschemeng_1c00665 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 VG9 GGK W1F ABFRP ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-10 |
PublicationDateYYYYMMDD | 2021-05-10 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | ACS sustainable chemistry & engineering |
PublicationTitleAlternate | ACS Sustainable Chem. Eng |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref19/cit19a ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref19/cit19b ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref5/cit5 doi: 10.1002/slct.202000869 – ident: ref45/cit45 doi: 10.1039/C9NJ06133A – ident: ref22/cit22 doi: 10.1002/9783527822508.ch79 – ident: ref50/cit50 doi: 10.1002/ange.201909642 – ident: ref4/cit4 doi: 10.1021/acs.orglett.0c01343 – ident: ref60/cit60 doi: 10.1016/j.elecom.2014.09.018 – ident: ref6/cit6 doi: 10.1039/C8GC03786H – ident: ref70/cit70 doi: 10.1002/anie.201809679 – ident: ref48/cit48 doi: 10.1039/D0SC01445A – ident: ref27/cit27 doi: 10.1002/ange.201900343 – ident: ref69/cit69 doi: 10.1002/celc.201402299 – ident: ref7/cit7 doi: 10.1002/adsc.201801700 – ident: ref10/cit10 doi: 10.1002/celc.201900406 – ident: ref63/cit63 doi: 10.1246/cl.1985.1695 – ident: ref68/cit68 doi: 10.1039/C9GC02264C – ident: ref9/cit9 doi: 10.1055/s-0037-1611772 – ident: ref30/cit30 doi: 10.1016/j.crci.2011.01.002 – ident: ref35/cit35 doi: 10.1002/9781118670750.ch05 – ident: ref39/cit39 doi: 10.1039/C9CY01312A – ident: ref32/cit32 doi: 10.1016/0013-4686(91)85333-3 – ident: ref46/cit46 doi: 10.1039/C6GC00666C – ident: ref52/cit52 doi: 10.1039/C9CC06746A – ident: ref40/cit40 doi: 10.1002/celc.201801466 – ident: ref3/cit3 doi: 10.1002/ange.200600951 – ident: ref17/cit17 doi: 10.1039/C8NJ01992D – ident: ref23/cit23 doi: 10.1002/ange.202009155 – ident: ref20/cit20 doi: 10.1002/celc.201801502 – ident: ref38/cit38 doi: 10.1039/D0GC01324B – ident: ref44/cit44 doi: 10.1002/celc.201901799 – ident: ref15/cit15 doi: 10.1080/17415993.2019.1694679 – ident: ref58/cit58 doi: 10.1021/acssuschemeng.8b04118 – ident: ref64/cit64 doi: 10.1021/acs.iecr.8b06340 – ident: ref59/cit59 doi: 10.1126/science.aba3823 – ident: ref16/cit16 doi: 10.1080/00397911.2016.1166251 – ident: ref49/cit49 doi: 10.1002/anie.202014244 – ident: ref53/cit53 doi: 10.1016/j.tetlet.2010.01.026 – ident: ref2/cit2 doi: 10.1021/acscatal.8b00683 – ident: ref11/cit11 doi: 10.1039/C9GC01895F – ident: ref67/cit67 doi: 10.1093/nsr/nwz146 – ident: ref65/cit65 doi: 10.1002/anie.201903936 – ident: ref18/cit18 doi: 10.1016/j.jelechem.2005.02.027 – ident: ref42/cit42 doi: 10.5796/electrochemistry.67.4 – ident: ref26/cit26 doi: 10.1021/jacs.6b08667 – ident: ref41/cit41 doi: 10.1002/tcr.202000096 – ident: ref13/cit13 doi: 10.1016/j.tet.2015.07.066 – ident: ref12/cit12 doi: 10.1016/j.tet.2018.03.010 – ident: ref25/cit25 doi: 10.31635/ccschem.020.202000218 – ident: ref55/cit55 doi: 10.1039/c0cc01964j – ident: ref66/cit66 doi: 10.1038/s41929-018-0083-8 – ident: ref71/cit71 doi: 10.1002/adsc.201901011 – ident: ref28/cit28 doi: 10.1007/s10800-006-9122-2 – ident: ref36/cit36 doi: 10.1055/s-0037-1611797 – ident: ref14/cit14 doi: 10.1080/17415993.2016.1259416 – ident: ref62/cit62 doi: 10.1016/j.jelechem.2019.113746 – ident: ref29/cit29 doi: 10.1039/p19730002230 – ident: ref21/cit21 doi: 10.1002/chem.201701513 – ident: ref54/cit54 doi: 10.1055/s-0030-1258504 – ident: ref61/cit61 doi: 10.1016/j.tet.2015.04.020 – ident: ref51/cit51 doi: 10.1039/C5GC02626A – ident: ref43/cit43 doi: 10.1021/acs.chemrev.7b00360 – ident: ref56/cit56 doi: 10.1055/s-0036-1588667 – ident: ref47/cit47 doi: 10.31635/ccschem.020.201900112 – ident: ref33/cit33 doi: 10.1016/j.apcatb.2019.118226 – ident: ref8/cit8 doi: 10.1021/acs.orglett.9b02884 – ident: ref19/cit19a doi: 10.1149/1.2114229 – ident: ref34/cit34 doi: 10.1007/BF00618738 – ident: ref24/cit24 doi: 10.1002/ange.202009757 – ident: ref19/cit19b doi: 10.1149/1.2402369 – ident: ref1/cit1 doi: 10.1039/c0gc00382d – ident: ref57/cit57 doi: 10.1002/chem.201804708 – ident: ref37/cit37 doi: 10.1002/ejoc.201901635 – ident: ref31/cit31 doi: 10.1149/1.2096004 |
SSID | ssj0000993281 |
Score | 2.5693307 |
SecondaryResourceType | review_article |
Snippet | Paired electrolysis is highly valuable from the viewpoint of efficiency as well as atom and energy economies. In order to optimize the latter two for chemical... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6148 |
SubjectTerms | electrochemistry electrodes electrolysis electrosynthesis energy green chemistry oxidation wastes |
Title | Green Chemistry: Electrochemical Organic Transformations via Paired Electrolysis |
URI | http://dx.doi.org/10.1021/acssuschemeng.1c00665 https://www.proquest.com/docview/2985872308 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zXvTgtzi_iOBJaNemTZp4k7ExBGXgBruVfFVE2cR1HvzrfU3bsSFDvfT2SvLykvf9ewhdS6p1JpXxDAV3NQ6yzBOgJouEo0isTbh2Af2HR9YfxfdjOm6g9poMPgnbUsMCwNMromXPfqhdsmADbRIGF7mwhTpPi6AKmDsRcYNJSci4B9JJ666ddX8qtJKerWql1UfZaZreLhrU_TplgcmrP8-Vr79-wjf-dRN7aKeyOvFdKSb7qGEnB2h7CYvwEA1cBQ7u1APgbnG3nJCjK0gBXLZtajxcsnVBZvHni8QDCU-nqUkczMkRGvW6w07fq8YteDISce4JFRCZhZZIZpgiibCBgZUyxZnMhA0TCa-qojbJLKi7SFIllOtEVRI-gYmOUXMyndgThA3hhkcsCwJDY5kIxQS1SoA1WTTe0qCFboAjaXVdZqnLhJMwXWFTWrGpheL6bFJdAZcX8zPefiPzF2TvJXLHbwRX9cGnwOkicSIndjqfpURwyhNw1vjpfxZ-hrZIUQHjsF7PUTP_mNsLMGFydenE9huCa_Bi |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6qHtSDb7E-I3gSUpNNdpP1JsVSnwi22FvYV0SUVkzqwV_vZJtUK0jpJYfALJPZyc5r5xuAE0GVSoXUrqYYroZemroczWRRcOSRMVGsbEL_7p61u-F1j_ZqwKpeGGQiw5UyW8T_QRfwz_BdNsSAr0iaPTd8ZWsGc7CADgkpNPui-TjOraDXExA7n5T4LHZRSWnVvPPfSoVxUtmkcZo8m63Baa3C05hVe8_ktTHMZUN9_UFxnP1b1mCl9EGdi5HSrEPN9Ddg-Rcy4SY82Ps4TrMaB3fuXI7m5agSYMAZNXEqp_PL80UNdj5fhPMg8CDVFYkFPdmCbuuy02y75fAFVwQ8zF0uPSJS3xDBNJMk4sbTyCmTMRMpN34k8IyV1ESpQeMXCCq5tH2pUuDD08E2zPcHfbMDjiaxjgOWep6moYi4ZJwaydG3LNpwqVeHU5RIUv48WWLr4sRPJsSUlGKqQ1htUaJKGPNimsbbNLLGmOx9hOMxjeC42v8EJV2UUUTfDIZZQnhM4whDt3h3FsaPYLHdubtNbq_ub_ZgiRR3YywK7D7M5x9Dc4DOTS4PrSZ_A4Hg-MM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60gujBt1ifETwJqckmm2S9ldpSX6VgCwUPYV8RUdJiWg_-emc3SWkFKXrJITDLZDI7M7sz8w1CF4wIkTAubUnguOo7SWJTcJM64UhDpcJImAv9x07Q7vt3AzIoqip1LwwwkcFKmUni6109kkmBMOBewftsAoc-fXH2UnOFyRssoxWdutPaXW88Te9XIPLxsJlRit0gskFRSdnA89tK2kGJbN5Bzdtn43Ram-h5yq6pNXmrTca8Jr5-IDn-73u20EYRi1r1XHm20ZJKd9D6DELhLuqauhyrUY6Fu7aa-dwcUQANWHkzp7B6MxEwaLL1-cqsLgODKksSA36yh_qtZq_RtoshDDbzqD-2KXcwS1yFWSADjkOqHAmcBjwKWEKVGzKwtZyoMFHgBD1GOOWmP5UzeDjS20eVdJiqA2RJHMnICxLHkcRnIeUBJYpTiDF1Oy5xqugSJBIXmyiLTX4cu_GcmOJCTFXkl78pFgWcuZ6q8b6IrDYlG-V4HosIzksdiEHSOp3CUjWcZDGmEYlCOMJFh39h_Aytdm9a8cNt5_4IrWFdImPAYI9RZfwxUScQ44z5qVHmb3cf-0Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+Chemistry%3A+Electrochemical+Organic+Transformations+via+Paired+Electrolysis&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Sbei%2C+Najoua&rft.au=Hardwick%2C+Tomas&rft.au=Ahmed%2C+Nisar&rft.date=2021-05-10&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=9&rft.issue=18+p.6148-6169&rft.spage=6148&rft.epage=6169&rft_id=info:doi/10.1021%2Facssuschemeng.1c00665&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon |