Bottlebrush Polymer Synthesis by Ring-Opening Metathesis Polymerization: The Significance of the Anchor Group
Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistrythe configuration o...
Saved in:
Published in | Journal of the American Chemical Society Vol. 138; no. 22; pp. 6998 - 7004 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistrythe configuration of atoms linking the polymer to a polymerizable norborneneon the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H2IMes)(pyr)2(Cl)2RuCHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼106 to ∼105 Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through. |
---|---|
AbstractList | Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistry-the configuration of atoms linking the polymer to a polymerizable norbornene-on the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H2IMes)(pyr)2(Cl)2Ru═CHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼10(6) to ∼10(5) Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through. Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistrythe configuration of atoms linking the polymer to a polymerizable norborneneon the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H₂IMes)(pyr)₂(Cl)₂RuCHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼10⁶ to ∼10⁵ Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through. Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistrythe configuration of atoms linking the polymer to a polymerizable norborneneon the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H2IMes)(pyr)2(Cl)2RuCHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼106 to ∼105 Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through. Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistry-the configuration of atoms linking the polymer to a polymerizable norbornene-on the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H2IMes)(pyr)2(Cl)2Ru═CHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼10(6) to ∼10(5) Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through.Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistry-the configuration of atoms linking the polymer to a polymerizable norbornene-on the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H2IMes)(pyr)2(Cl)2Ru═CHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼10(6) to ∼10(5) Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through. |
Author | Chapleski, Robert C Foster, Jeffrey C Troya, Diego Radzinski, Scott C Matson, John B |
AuthorAffiliation | Department of Chemistry Macromolecules Innovation Institute Virginia Tech |
AuthorAffiliation_xml | – name: Virginia Tech – name: Macromolecules Innovation Institute – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Scott C surname: Radzinski fullname: Radzinski, Scott C organization: Virginia Tech – sequence: 2 givenname: Jeffrey C surname: Foster fullname: Foster, Jeffrey C organization: Virginia Tech – sequence: 3 givenname: Robert C surname: Chapleski fullname: Chapleski, Robert C organization: Virginia Tech – sequence: 4 givenname: Diego surname: Troya fullname: Troya, Diego email: troya@vt.edu organization: Virginia Tech – sequence: 5 givenname: John B surname: Matson fullname: Matson, John B email: jbmatson@vt.edu organization: Virginia Tech |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27219866$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1P3DAQBmCrApWF9tZz5WMPhHqcxEm4ASofEmhRl54j2zthvUrsre0ctr8eL6Q9oCJO449nLOudQ7JnnUVCvgA7Acbh-1rqcFIqyHOoPpAZlJxlJXCxR2aMMZ5VtcgPyGEI67QteA0fyQGvODS1EDMynLsYe1R-DCt67_rtgJ4utjauMJhA1Zb-NPYxm2_QpkrvMMrpasLmj4zG2VP6sEK6MI_WdEZLq5G6jiZKz6xeOU-vvBs3n8h-J_uAn6d6RH5d_ni4uM5u51c3F2e3mcybImZ1V2hWL1E2wJUosCwb5KrjohYcCyXVshNLqGrEpgIOMldMpxUKSI21qPIj8u3l3Y13v0cMsR1M0Nj30qIbQ8tTFHkjhIB3KVRNmRKsoEz060RHNeCy3XgzSL9t_6aZwPEL0N6F4LH7R4C1u2G1u2G107AS56-4NvE5zeil6d9qmv67O1y70dsU5P_pE7yNpes |
CitedBy_id | crossref_primary_10_1039_D4PY01228C crossref_primary_10_3390_polym11020298 crossref_primary_10_1021_acs_macromol_9b00845 crossref_primary_10_1039_D4SC06050D crossref_primary_10_1002_pola_28876 crossref_primary_10_1021_acs_macromol_4c02692 crossref_primary_10_1039_D3QM01186K crossref_primary_10_1002_anie_202210067 crossref_primary_10_1039_D4SC01986E crossref_primary_10_1021_acsmacrolett_8b00273 crossref_primary_10_1021_acs_macromol_1c01095 crossref_primary_10_1002_aic_18794 crossref_primary_10_1039_D2TC00496H crossref_primary_10_1021_acs_macromol_2c00254 crossref_primary_10_1021_jacs_4c10588 crossref_primary_10_1039_C6PY01982J crossref_primary_10_54097_hset_v21i_3187 crossref_primary_10_1021_jacs_9b08835 crossref_primary_10_1039_C8PY01324A crossref_primary_10_1021_jacs_8b07915 crossref_primary_10_1021_acs_macromol_8b02366 crossref_primary_10_1021_acs_macromol_9b00678 crossref_primary_10_1021_acs_macromol_9b00559 crossref_primary_10_1021_acs_macromol_9b01801 crossref_primary_10_1016_j_progpolymsci_2021_101387 crossref_primary_10_1021_acs_macromol_3c00172 crossref_primary_10_1021_acs_macromol_3c00214 crossref_primary_10_1016_j_eurpolymj_2016_09_012 crossref_primary_10_1021_jacs_0c06045 crossref_primary_10_1002_pola_28647 crossref_primary_10_1021_jacs_9b09752 crossref_primary_10_1007_s10118_025_3273_2 crossref_primary_10_1016_j_giant_2024_100252 crossref_primary_10_1021_acscatal_9b03226 crossref_primary_10_1021_acs_macromol_8b01708 crossref_primary_10_1080_15583724_2020_1723022 crossref_primary_10_1002_ange_202009759 crossref_primary_10_1021_jacs_7b08010 crossref_primary_10_1039_D3PY00981E crossref_primary_10_1021_acs_macromol_7b02447 crossref_primary_10_1021_acs_joc_1c00410 crossref_primary_10_1021_acsapm_9b00852 crossref_primary_10_1021_acs_chemmater_1c04030 crossref_primary_10_1021_acsmacrolett_1c00640 crossref_primary_10_1039_C7PY01741C crossref_primary_10_1002_pol_20240170 crossref_primary_10_1016_j_ccr_2017_09_003 crossref_primary_10_1039_C7PY01413A crossref_primary_10_1021_acsmacrolett_0c00890 crossref_primary_10_1021_jacs_4c17151 crossref_primary_10_1002_aenm_202302845 crossref_primary_10_1021_acs_macromol_9b01996 crossref_primary_10_1021_acs_macromol_9b02721 crossref_primary_10_1039_D2PY00794K crossref_primary_10_1002_macp_201900476 crossref_primary_10_1021_acs_langmuir_3c02813 crossref_primary_10_1039_C7CC04156J crossref_primary_10_1016_j_polymer_2018_01_065 crossref_primary_10_1080_10601325_2021_1969947 crossref_primary_10_1002_pol_20230491 crossref_primary_10_1021_acs_biomac_7b00364 crossref_primary_10_1039_D0PY01007C crossref_primary_10_1039_C8SC04006K crossref_primary_10_1021_acsami_8b08480 crossref_primary_10_1021_acs_biomac_2c01097 crossref_primary_10_1002_ange_201806719 crossref_primary_10_1016_j_progpolymsci_2020_101278 crossref_primary_10_1021_acsmacrolett_1c00590 crossref_primary_10_1021_acs_macromol_4c01419 crossref_primary_10_1021_jacs_4c13759 crossref_primary_10_1021_acs_macromol_8b02223 crossref_primary_10_1021_acsmacrolett_1c00335 crossref_primary_10_1021_jacs_7b00791 crossref_primary_10_1070_RCR4870 crossref_primary_10_1016_j_eurpolymj_2024_113546 crossref_primary_10_1021_acs_macromol_2c01609 crossref_primary_10_1002_adhm_202301053 crossref_primary_10_1002_adhm_202304040 crossref_primary_10_1055_a_1874_3463 crossref_primary_10_1002_pola_28704 crossref_primary_10_1016_j_ccr_2019_213051 crossref_primary_10_1021_acsmacrolett_9b00117 crossref_primary_10_1021_jacsau_2c00010 crossref_primary_10_1039_D2PY01125E crossref_primary_10_1002_ange_202210067 crossref_primary_10_1002_marc_202000357 crossref_primary_10_1002_adma_202207923 crossref_primary_10_1016_j_tetlet_2022_153799 crossref_primary_10_1039_C8QM00201K crossref_primary_10_1021_acs_macromol_0c01357 crossref_primary_10_1021_acs_macromol_2c01332 crossref_primary_10_1021_acs_macromol_7b01655 crossref_primary_10_1002_pol_20230028 crossref_primary_10_1021_acs_biomac_7b01049 crossref_primary_10_1021_acs_macromol_1c00256 crossref_primary_10_1021_jacs_7b10525 crossref_primary_10_1002_anie_201806719 crossref_primary_10_1016_j_reactfunctpolym_2018_11_011 crossref_primary_10_1021_acs_macromol_4c03185 crossref_primary_10_1021_jacs_4c03320 crossref_primary_10_1016_j_reactfunctpolym_2018_03_010 crossref_primary_10_1021_acs_macromol_4c00191 crossref_primary_10_1002_macp_201800497 crossref_primary_10_1021_acsami_0c05944 crossref_primary_10_1039_D4PY00279B crossref_primary_10_1016_j_polymer_2018_10_007 crossref_primary_10_1021_acs_macromol_2c00338 crossref_primary_10_1038_s41557_019_0352_4 crossref_primary_10_1039_D2PY00857B crossref_primary_10_1039_C7PY01112A crossref_primary_10_1039_D2PY00126H crossref_primary_10_1021_acsmacrolett_2c00140 crossref_primary_10_1021_acs_macromol_8b02446 crossref_primary_10_1021_acs_macromol_1c02664 crossref_primary_10_1016_j_eurpolymj_2022_111065 crossref_primary_10_1021_acs_macromol_4c00882 crossref_primary_10_1021_acsnano_1c00263 crossref_primary_10_1002_marc_202100027 crossref_primary_10_1021_acs_macromol_4c00881 crossref_primary_10_1021_jacs_8b08648 crossref_primary_10_1021_jacs_8b07315 crossref_primary_10_1039_D1SM01146D crossref_primary_10_1016_j_optmat_2020_110590 crossref_primary_10_1021_acs_macromol_3c01068 crossref_primary_10_1021_acs_macromol_3c02157 crossref_primary_10_1021_acsmacrolett_3c00695 crossref_primary_10_1016_j_polymdegradstab_2021_109522 crossref_primary_10_1021_acs_macromol_3c00015 crossref_primary_10_1021_acs_macromol_3c00409 crossref_primary_10_1021_acs_macromol_8b00018 crossref_primary_10_1021_acsapm_3c03053 crossref_primary_10_1021_acsmacrolett_4c00845 crossref_primary_10_1021_acs_macromol_9b00089 crossref_primary_10_1039_C7NR00015D crossref_primary_10_1002_chem_201900520 crossref_primary_10_1021_acs_macromol_4c02817 crossref_primary_10_1021_jacs_3c05795 crossref_primary_10_1002_pol_20240130 crossref_primary_10_1002_ange_202500850 crossref_primary_10_1039_C9PY01235D crossref_primary_10_1002_macp_202100077 crossref_primary_10_1016_j_polymer_2017_05_005 crossref_primary_10_1126_sciadv_aaz7202 crossref_primary_10_1002_pol_20220202 crossref_primary_10_1016_j_cej_2022_135284 crossref_primary_10_1021_acs_macromol_3c01412 crossref_primary_10_1016_j_pmatsci_2024_101248 crossref_primary_10_1021_acsami_8b10234 crossref_primary_10_1021_acs_macromol_3c00959 crossref_primary_10_1021_acs_macromol_6b00786 crossref_primary_10_1039_D2RA02711A crossref_primary_10_1007_s00289_019_02936_3 crossref_primary_10_1080_10601325_2023_2247038 crossref_primary_10_1039_D0SM00397B crossref_primary_10_1039_D2MH00844K crossref_primary_10_1016_j_polymer_2019_06_009 crossref_primary_10_1039_D4CC06196A crossref_primary_10_1021_acsmacrolett_7b00724 crossref_primary_10_1021_acsmacrolett_8b00576 crossref_primary_10_1021_acs_macromol_1c01311 crossref_primary_10_1039_D4SM01495B crossref_primary_10_1002_anie_202009759 crossref_primary_10_1002_anie_202500850 crossref_primary_10_1016_j_eurpolymj_2017_11_023 crossref_primary_10_1002_pola_28621 crossref_primary_10_1039_C8PY00446C crossref_primary_10_1002_pola_29317 crossref_primary_10_1021_acs_langmuir_4c03654 crossref_primary_10_1021_acspolymersau_3c00052 crossref_primary_10_1016_j_giant_2023_100177 crossref_primary_10_1039_C9SM00033J crossref_primary_10_1139_cjc_2021_0279 crossref_primary_10_1039_C8PY00870A crossref_primary_10_1021_acs_macromol_0c00744 crossref_primary_10_1021_acs_macromol_3c01080 crossref_primary_10_1021_acsmacrolett_8b00201 crossref_primary_10_1021_acs_macromol_8b00355 crossref_primary_10_1021_acs_macromol_1c02631 |
Cites_doi | 10.1021/acs.macromol.5b01176 10.1021/ma500803k 10.1021/bm0609691 10.1021/mz300402x 10.1016/j.polymer.2015.10.028 10.1002/marc.200700083 10.1021/om400257b 10.1021/nn505125f 10.1002/pola.23626 10.1021/ja3126382 10.1021/ma401132u 10.1021/ma049647k 10.1021/ma401246b 10.1021/ma0345347 10.1021/ma0016937 10.1002/masy.19950950114 10.1016/S1381-1169(96)00078-7 10.1016/S0032-3861(98)00140-2 10.1021/ma9024174 10.1016/j.progpolymsci.2008.05.001 10.1016/j.polymer.2006.11.057 10.1002/pola.25954 10.1039/C4CS00329B 10.1021/ma902513n 10.1021/ja108441d 10.1016/S0040-4039(98)00887-9 10.1021/nn402639g 10.1021/mz200013e 10.1021/jo960733v 10.1039/b705245f 10.1002/pola.24985 10.1039/b801491d 10.1021/ma900280c 10.1039/C3CS60290G 10.1021/ja00044a070 10.1002/marc.201500672 10.1039/C4PY01567C 10.1002/macp.201200064 10.1021/mp3004868 10.1038/ncomms3505 10.1002/marc.200300196 10.1021/mz500082h 10.1021/mz400069u 10.1021/acs.macromol.5b01592 10.1073/pnas.1213055109 10.1002/anie.200352845 10.1002/marc.200400150 10.1021/om0108503 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.5b13317 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 7004 |
ExternalDocumentID | 27219866 10_1021_jacs_5b13317 b259770454 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a394t-8f4c08dea912b64e559e2bf26862e4babdf6d178ee97121a3b0c971e61f4c8673 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 19:06:49 EDT 2025 Tue Aug 05 11:23:20 EDT 2025 Wed Feb 19 02:43:38 EST 2025 Tue Jul 01 04:33:28 EDT 2025 Thu Apr 24 22:59:25 EDT 2025 Thu Aug 27 13:42:22 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a394t-8f4c08dea912b64e559e2bf26862e4babdf6d178ee97121a3b0c971e61f4c8673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27219866 |
PQID | 1795863715 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000396661 proquest_miscellaneous_1795863715 pubmed_primary_27219866 crossref_primary_10_1021_jacs_5b13317 crossref_citationtrail_10_1021_jacs_5b13317 acs_journals_10_1021_jacs_5b13317 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-08 |
PublicationDateYYYYMMDD | 2016-06-08 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 28026171 - J Am Chem Soc. 2017 Jan 11;139(1):563 |
References_xml | – ident: ref26/cit26 doi: 10.1021/acs.macromol.5b01176 – ident: ref41/cit41 doi: 10.1021/ma500803k – ident: ref7/cit7 doi: 10.1021/bm0609691 – ident: ref2/cit2 doi: 10.1021/mz300402x – ident: ref24/cit24 doi: 10.1016/j.polymer.2015.10.028 – ident: ref23/cit23 doi: 10.1002/marc.200700083 – ident: ref45/cit45 doi: 10.1021/om400257b – ident: ref34/cit34 doi: 10.1021/nn505125f – ident: ref28/cit28 doi: 10.1002/pola.23626 – ident: ref13/cit13 doi: 10.1021/ja3126382 – ident: ref20/cit20 doi: 10.1021/ma401132u – ident: ref29/cit29 doi: 10.1021/ma049647k – ident: ref5/cit5 doi: 10.1021/ma401246b – ident: ref8/cit8 doi: 10.1021/ma0345347 – ident: ref6/cit6 doi: 10.1021/ma0016937 – ident: ref16/cit16 doi: 10.1002/masy.19950950114 – ident: ref31/cit31 doi: 10.1016/S1381-1169(96)00078-7 – ident: ref43/cit43 doi: 10.1016/S0032-3861(98)00140-2 – ident: ref44/cit44 doi: 10.1021/ma9024174 – ident: ref1/cit1 doi: 10.1016/j.progpolymsci.2008.05.001 – ident: ref4/cit4 doi: 10.1016/j.polymer.2006.11.057 – ident: ref19/cit19 doi: 10.1002/pola.25954 – ident: ref15/cit15 doi: 10.1039/C4CS00329B – ident: ref18/cit18 doi: 10.1021/ma902513n – ident: ref11/cit11 doi: 10.1021/ja108441d – ident: ref46/cit46 doi: 10.1016/S0040-4039(98)00887-9 – ident: ref14/cit14 doi: 10.1021/nn402639g – ident: ref17/cit17 doi: 10.1021/mz200013e – ident: ref36/cit36 doi: 10.1021/jo960733v – ident: ref32/cit32 doi: 10.1039/b705245f – ident: ref47/cit47 doi: 10.1002/pola.24985 – ident: ref10/cit10 doi: 10.1039/b801491d – ident: ref27/cit27 doi: 10.1021/ma900280c – ident: ref40/cit40 doi: 10.1039/C3CS60290G – ident: ref37/cit37 doi: 10.1021/ja00044a070 – ident: ref42/cit42 doi: 10.1002/marc.201500672 – ident: ref25/cit25 doi: 10.1039/C4PY01567C – ident: ref3/cit3 doi: 10.1002/macp.201200064 – ident: ref12/cit12 doi: 10.1021/mp3004868 – ident: ref39/cit39 doi: 10.1038/ncomms3505 – ident: ref38/cit38 doi: 10.1002/marc.200300196 – ident: ref30/cit30 doi: 10.1021/mz500082h – ident: ref21/cit21 doi: 10.1021/mz400069u – ident: ref33/cit33 doi: 10.1021/acs.macromol.5b01592 – ident: ref9/cit9 doi: 10.1073/pnas.1213055109 – ident: ref22/cit22 doi: 10.1002/anie.200352845 – ident: ref48/cit48 doi: 10.1002/marc.200400150 – ident: ref35/cit35 doi: 10.1021/om0108503 – reference: 28026171 - J Am Chem Soc. 2017 Jan 11;139(1):563 |
SSID | ssj0004281 |
Score | 2.5730019 |
Snippet | Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6998 |
SubjectTerms | catalysts chelation group effect ligands molecular weight polylactic acid polymerization pyridines solvents variance |
Title | Bottlebrush Polymer Synthesis by Ring-Opening Metathesis Polymerization: The Significance of the Anchor Group |
URI | http://dx.doi.org/10.1021/jacs.5b13317 https://www.ncbi.nlm.nih.gov/pubmed/27219866 https://www.proquest.com/docview/1795863715 https://www.proquest.com/docview/2000396661 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54HODC-zFeChKcUKclbZOU25iACQmEGEjcpiZ1AAEtWrfD-PU4fYAATXBq1TptGru1XX-2CTngBoronAcG2YAOhPE0a_keaGmR_VIrW6AtrkT3Lri4D--_ALI_I_jc1QcyeTPU6EsxOU1mucD315lAnd5X_iNXrDZzpRJ-BXD_OdopIJN_V0ATrMpCu5wtkvM6R6cElTw3R0PdNO-_Szb-MfElslAZmLRdSsQymYJ0hcx16r5uq-T1JHN1i_VglD_S6-xl_AoD2hunaAnmTznVY3qD6sxzSBPc0kuHRyxPVcRV5uYxRRGjvaeH1KGNnPDQzFIkpe0Uv6kDWvzWWiN3Z6e3na5XNV3wYj8Khp6ygWmpBOKIcS0CQI8DuLbcZZJAoGOdWJEwqQAiyTiLfd0yuAeC4UAlpL9OZtIshU1CWxJAaZ-bxDU6Y0HMuLURXjlRoUW_tUH2cYn61UuT94t4OEd_xB2tFq5Bjmpu9U1Vtdw1z3iZQH34Sf1WVuuYQLdfM76Pq-9iJHEK2QjnIKMQJUiycDINLzKa0e9jDbJRSs3n3Th61JESYusfz7ZN5tH8EgXwTO2QmeFgBLto4gz1XiHfH4F69cs |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8ATjYbyM8bkCA0-CJ5SpdhLb4a2rNhXYKkQ3aW9R7JxhYktQ0z6UX8_ZdTsxqdKeEjln5-K75O5yXwAfhMXgnUvQEhnIgLCJ4f00QaMckV8Z7UK0xViOLrKvl_llTFb3uTCEREcrdcGJf1tdwJcJosHckEnF1UN4RHqI8Aw9GE5u0yCF5ittV2mZxjj3u7O9HLLd_3Jog3IZhMzJExiv0QuxJb8P5zNzaP_eqdx4b_x3YSeqm2yw5I-n8ACbZ7A9XHV5ew43R62vYmym8-4X-95eL25wyiaLhvTC7qpjZsF-kHBLfNwJHdmZj05cXorAMY_zMyOGY5Orn42PPfKsxFrHCJQNGvrCTln4yfUCLk6Oz4ejJLZgSKq0yGaJdpnt6xqrggsjMyT7A4VxwueVYGYqUztZc6URC8UFr1LTt3SGktNELVX6EraatsE9YH2FqE0qbO3bnvGs4sK5glaude7Iiu3BAW1RGV-hrgzecUHWiR-NG9eDTyuilTbWMPetNK43QH9cQ_9Z1u7YAHewon9Ju-89JlWD7ZxwUEVOjKR4vhlGhPxmsgJ5D14tmWd9N0H2daGlfH2PZ3sP26Pzs9Py9Mv42xt4TIqZDCFp-i1szaZz3CflZ2beBZb_B2Kx_iw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIkEvvFuWpyvBCaVaO4ntcFsWVuVVVV0q9RbFzhgq2qTa7B6WX8_Y6yyi0kpwShSPHT8-Z2YyDwO8EhaDdS5BS8tACoRNDB-mCRrlaPmV0S54WxzJw9Ps01l-tgW8j4WhTnTUUheM-H5XX9UuZhjwqYKoIDekVnF1A256i50H9Wg8_RMKKTTvJV6lZRp93a_X9rzIdn_zog0CZmA0k7twsu5i8C_5ebCYmwP761r2xv8awz24E8VONlrh5D5sYfMAbo_7094ewuW71mczNrNF94MdtxfLS5yx6bIh-bA775hZshNicon3P6Er--q9FFdFkTjGc75lBDw2Pf_eeB8kDynWOkakbNTQl3bGws-uR3A6-fBtfJjEoxiSKi2yeaJdZoe6xqrgwsgMSQ9BYZzw8SWYmcrUTtZcacRCccGr1Awt3aHkVFFLle7CdtM2-BjYUCFqkwpb--PPeFZx4VxBLdc6d6TNDmCfpqiMW6krg5VckJbin8aJG8CbfuFKG3OZ-yM1LjZQv15TX61yeGyg2-8xUNLse8tJ1WC7oD6oIicwKZ5vphEhzpm0QT6AvRWA1m8TpGcXWson_zC2l3Dr-P2k_PLx6PNT2CH5TAbPNP0MtuezBT4nGWhuXgTU_walTAC- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bottlebrush+Polymer+Synthesis+by+Ring-Opening+Metathesis+Polymerization%3A+The+Significance+of+the+Anchor+Group&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Radzinski%2C+Scott+C&rft.au=Foster%2C+Jeffrey+C&rft.au=Chapleski%2C+Jr%2C+Robert+C&rft.au=Troya%2C+Diego&rft.date=2016-06-08&rft.eissn=1520-5126&rft.volume=138&rft.issue=22&rft.spage=6998&rft_id=info:doi/10.1021%2Fjacs.5b13317&rft_id=info%3Apmid%2F27219866&rft.externalDocID=27219866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |