Bottlebrush Polymer Synthesis by Ring-Opening Metathesis Polymerization: The Significance of the Anchor Group

Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistrythe configuration o...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 138; no. 22; pp. 6998 - 7004
Main Authors Radzinski, Scott C, Foster, Jeffrey C, Chapleski, Robert C, Troya, Diego, Matson, John B
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistrythe configuration of atoms linking the polymer to a polymerizable norborneneon the kinetics of ROMP of polystyrene and poly­(lactic acid) MMs initiated by (H2IMes)­(pyr)2­(Cl)2RuCHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼106 to ∼105 Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through.
AbstractList Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistry-the configuration of atoms linking the polymer to a polymerizable norbornene-on the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H2IMes)(pyr)2(Cl)2Ru═CHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼10(6) to ∼10(5) Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through.
Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistrythe configuration of atoms linking the polymer to a polymerizable norborneneon the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H₂IMes)(pyr)₂(Cl)₂RuCHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼10⁶ to ∼10⁵ Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through.
Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistrythe configuration of atoms linking the polymer to a polymerizable norborneneon the kinetics of ROMP of polystyrene and poly­(lactic acid) MMs initiated by (H2IMes)­(pyr)2­(Cl)2RuCHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼106 to ∼105 Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through.
Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistry-the configuration of atoms linking the polymer to a polymerizable norbornene-on the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H2IMes)(pyr)2(Cl)2Ru═CHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼10(6) to ∼10(5) Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through.Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistry-the configuration of atoms linking the polymer to a polymerizable norbornene-on the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H2IMes)(pyr)2(Cl)2Ru═CHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼10(6) to ∼10(5) Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through.
Author Chapleski, Robert C
Foster, Jeffrey C
Troya, Diego
Radzinski, Scott C
Matson, John B
AuthorAffiliation Department of Chemistry
Macromolecules Innovation Institute
Virginia Tech
AuthorAffiliation_xml – name: Virginia Tech
– name: Macromolecules Innovation Institute
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Scott C
  surname: Radzinski
  fullname: Radzinski, Scott C
  organization: Virginia Tech
– sequence: 2
  givenname: Jeffrey C
  surname: Foster
  fullname: Foster, Jeffrey C
  organization: Virginia Tech
– sequence: 3
  givenname: Robert C
  surname: Chapleski
  fullname: Chapleski, Robert C
  organization: Virginia Tech
– sequence: 4
  givenname: Diego
  surname: Troya
  fullname: Troya, Diego
  email: troya@vt.edu
  organization: Virginia Tech
– sequence: 5
  givenname: John B
  surname: Matson
  fullname: Matson, John B
  email: jbmatson@vt.edu
  organization: Virginia Tech
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27219866$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1P3DAQBmCrApWF9tZz5WMPhHqcxEm4ASofEmhRl54j2zthvUrsre0ctr8eL6Q9oCJO449nLOudQ7JnnUVCvgA7Acbh-1rqcFIqyHOoPpAZlJxlJXCxR2aMMZ5VtcgPyGEI67QteA0fyQGvODS1EDMynLsYe1R-DCt67_rtgJ4utjauMJhA1Zb-NPYxm2_QpkrvMMrpasLmj4zG2VP6sEK6MI_WdEZLq5G6jiZKz6xeOU-vvBs3n8h-J_uAn6d6RH5d_ni4uM5u51c3F2e3mcybImZ1V2hWL1E2wJUosCwb5KrjohYcCyXVshNLqGrEpgIOMldMpxUKSI21qPIj8u3l3Y13v0cMsR1M0Nj30qIbQ8tTFHkjhIB3KVRNmRKsoEz060RHNeCy3XgzSL9t_6aZwPEL0N6F4LH7R4C1u2G1u2G107AS56-4NvE5zeil6d9qmv67O1y70dsU5P_pE7yNpes
CitedBy_id crossref_primary_10_1039_D4PY01228C
crossref_primary_10_3390_polym11020298
crossref_primary_10_1021_acs_macromol_9b00845
crossref_primary_10_1039_D4SC06050D
crossref_primary_10_1002_pola_28876
crossref_primary_10_1021_acs_macromol_4c02692
crossref_primary_10_1039_D3QM01186K
crossref_primary_10_1002_anie_202210067
crossref_primary_10_1039_D4SC01986E
crossref_primary_10_1021_acsmacrolett_8b00273
crossref_primary_10_1021_acs_macromol_1c01095
crossref_primary_10_1002_aic_18794
crossref_primary_10_1039_D2TC00496H
crossref_primary_10_1021_acs_macromol_2c00254
crossref_primary_10_1021_jacs_4c10588
crossref_primary_10_1039_C6PY01982J
crossref_primary_10_54097_hset_v21i_3187
crossref_primary_10_1021_jacs_9b08835
crossref_primary_10_1039_C8PY01324A
crossref_primary_10_1021_jacs_8b07915
crossref_primary_10_1021_acs_macromol_8b02366
crossref_primary_10_1021_acs_macromol_9b00678
crossref_primary_10_1021_acs_macromol_9b00559
crossref_primary_10_1021_acs_macromol_9b01801
crossref_primary_10_1016_j_progpolymsci_2021_101387
crossref_primary_10_1021_acs_macromol_3c00172
crossref_primary_10_1021_acs_macromol_3c00214
crossref_primary_10_1016_j_eurpolymj_2016_09_012
crossref_primary_10_1021_jacs_0c06045
crossref_primary_10_1002_pola_28647
crossref_primary_10_1021_jacs_9b09752
crossref_primary_10_1007_s10118_025_3273_2
crossref_primary_10_1016_j_giant_2024_100252
crossref_primary_10_1021_acscatal_9b03226
crossref_primary_10_1021_acs_macromol_8b01708
crossref_primary_10_1080_15583724_2020_1723022
crossref_primary_10_1002_ange_202009759
crossref_primary_10_1021_jacs_7b08010
crossref_primary_10_1039_D3PY00981E
crossref_primary_10_1021_acs_macromol_7b02447
crossref_primary_10_1021_acs_joc_1c00410
crossref_primary_10_1021_acsapm_9b00852
crossref_primary_10_1021_acs_chemmater_1c04030
crossref_primary_10_1021_acsmacrolett_1c00640
crossref_primary_10_1039_C7PY01741C
crossref_primary_10_1002_pol_20240170
crossref_primary_10_1016_j_ccr_2017_09_003
crossref_primary_10_1039_C7PY01413A
crossref_primary_10_1021_acsmacrolett_0c00890
crossref_primary_10_1021_jacs_4c17151
crossref_primary_10_1002_aenm_202302845
crossref_primary_10_1021_acs_macromol_9b01996
crossref_primary_10_1021_acs_macromol_9b02721
crossref_primary_10_1039_D2PY00794K
crossref_primary_10_1002_macp_201900476
crossref_primary_10_1021_acs_langmuir_3c02813
crossref_primary_10_1039_C7CC04156J
crossref_primary_10_1016_j_polymer_2018_01_065
crossref_primary_10_1080_10601325_2021_1969947
crossref_primary_10_1002_pol_20230491
crossref_primary_10_1021_acs_biomac_7b00364
crossref_primary_10_1039_D0PY01007C
crossref_primary_10_1039_C8SC04006K
crossref_primary_10_1021_acsami_8b08480
crossref_primary_10_1021_acs_biomac_2c01097
crossref_primary_10_1002_ange_201806719
crossref_primary_10_1016_j_progpolymsci_2020_101278
crossref_primary_10_1021_acsmacrolett_1c00590
crossref_primary_10_1021_acs_macromol_4c01419
crossref_primary_10_1021_jacs_4c13759
crossref_primary_10_1021_acs_macromol_8b02223
crossref_primary_10_1021_acsmacrolett_1c00335
crossref_primary_10_1021_jacs_7b00791
crossref_primary_10_1070_RCR4870
crossref_primary_10_1016_j_eurpolymj_2024_113546
crossref_primary_10_1021_acs_macromol_2c01609
crossref_primary_10_1002_adhm_202301053
crossref_primary_10_1002_adhm_202304040
crossref_primary_10_1055_a_1874_3463
crossref_primary_10_1002_pola_28704
crossref_primary_10_1016_j_ccr_2019_213051
crossref_primary_10_1021_acsmacrolett_9b00117
crossref_primary_10_1021_jacsau_2c00010
crossref_primary_10_1039_D2PY01125E
crossref_primary_10_1002_ange_202210067
crossref_primary_10_1002_marc_202000357
crossref_primary_10_1002_adma_202207923
crossref_primary_10_1016_j_tetlet_2022_153799
crossref_primary_10_1039_C8QM00201K
crossref_primary_10_1021_acs_macromol_0c01357
crossref_primary_10_1021_acs_macromol_2c01332
crossref_primary_10_1021_acs_macromol_7b01655
crossref_primary_10_1002_pol_20230028
crossref_primary_10_1021_acs_biomac_7b01049
crossref_primary_10_1021_acs_macromol_1c00256
crossref_primary_10_1021_jacs_7b10525
crossref_primary_10_1002_anie_201806719
crossref_primary_10_1016_j_reactfunctpolym_2018_11_011
crossref_primary_10_1021_acs_macromol_4c03185
crossref_primary_10_1021_jacs_4c03320
crossref_primary_10_1016_j_reactfunctpolym_2018_03_010
crossref_primary_10_1021_acs_macromol_4c00191
crossref_primary_10_1002_macp_201800497
crossref_primary_10_1021_acsami_0c05944
crossref_primary_10_1039_D4PY00279B
crossref_primary_10_1016_j_polymer_2018_10_007
crossref_primary_10_1021_acs_macromol_2c00338
crossref_primary_10_1038_s41557_019_0352_4
crossref_primary_10_1039_D2PY00857B
crossref_primary_10_1039_C7PY01112A
crossref_primary_10_1039_D2PY00126H
crossref_primary_10_1021_acsmacrolett_2c00140
crossref_primary_10_1021_acs_macromol_8b02446
crossref_primary_10_1021_acs_macromol_1c02664
crossref_primary_10_1016_j_eurpolymj_2022_111065
crossref_primary_10_1021_acs_macromol_4c00882
crossref_primary_10_1021_acsnano_1c00263
crossref_primary_10_1002_marc_202100027
crossref_primary_10_1021_acs_macromol_4c00881
crossref_primary_10_1021_jacs_8b08648
crossref_primary_10_1021_jacs_8b07315
crossref_primary_10_1039_D1SM01146D
crossref_primary_10_1016_j_optmat_2020_110590
crossref_primary_10_1021_acs_macromol_3c01068
crossref_primary_10_1021_acs_macromol_3c02157
crossref_primary_10_1021_acsmacrolett_3c00695
crossref_primary_10_1016_j_polymdegradstab_2021_109522
crossref_primary_10_1021_acs_macromol_3c00015
crossref_primary_10_1021_acs_macromol_3c00409
crossref_primary_10_1021_acs_macromol_8b00018
crossref_primary_10_1021_acsapm_3c03053
crossref_primary_10_1021_acsmacrolett_4c00845
crossref_primary_10_1021_acs_macromol_9b00089
crossref_primary_10_1039_C7NR00015D
crossref_primary_10_1002_chem_201900520
crossref_primary_10_1021_acs_macromol_4c02817
crossref_primary_10_1021_jacs_3c05795
crossref_primary_10_1002_pol_20240130
crossref_primary_10_1002_ange_202500850
crossref_primary_10_1039_C9PY01235D
crossref_primary_10_1002_macp_202100077
crossref_primary_10_1016_j_polymer_2017_05_005
crossref_primary_10_1126_sciadv_aaz7202
crossref_primary_10_1002_pol_20220202
crossref_primary_10_1016_j_cej_2022_135284
crossref_primary_10_1021_acs_macromol_3c01412
crossref_primary_10_1016_j_pmatsci_2024_101248
crossref_primary_10_1021_acsami_8b10234
crossref_primary_10_1021_acs_macromol_3c00959
crossref_primary_10_1021_acs_macromol_6b00786
crossref_primary_10_1039_D2RA02711A
crossref_primary_10_1007_s00289_019_02936_3
crossref_primary_10_1080_10601325_2023_2247038
crossref_primary_10_1039_D0SM00397B
crossref_primary_10_1039_D2MH00844K
crossref_primary_10_1016_j_polymer_2019_06_009
crossref_primary_10_1039_D4CC06196A
crossref_primary_10_1021_acsmacrolett_7b00724
crossref_primary_10_1021_acsmacrolett_8b00576
crossref_primary_10_1021_acs_macromol_1c01311
crossref_primary_10_1039_D4SM01495B
crossref_primary_10_1002_anie_202009759
crossref_primary_10_1002_anie_202500850
crossref_primary_10_1016_j_eurpolymj_2017_11_023
crossref_primary_10_1002_pola_28621
crossref_primary_10_1039_C8PY00446C
crossref_primary_10_1002_pola_29317
crossref_primary_10_1021_acs_langmuir_4c03654
crossref_primary_10_1021_acspolymersau_3c00052
crossref_primary_10_1016_j_giant_2023_100177
crossref_primary_10_1039_C9SM00033J
crossref_primary_10_1139_cjc_2021_0279
crossref_primary_10_1039_C8PY00870A
crossref_primary_10_1021_acs_macromol_0c00744
crossref_primary_10_1021_acs_macromol_3c01080
crossref_primary_10_1021_acsmacrolett_8b00201
crossref_primary_10_1021_acs_macromol_8b00355
crossref_primary_10_1021_acs_macromol_1c02631
Cites_doi 10.1021/acs.macromol.5b01176
10.1021/ma500803k
10.1021/bm0609691
10.1021/mz300402x
10.1016/j.polymer.2015.10.028
10.1002/marc.200700083
10.1021/om400257b
10.1021/nn505125f
10.1002/pola.23626
10.1021/ja3126382
10.1021/ma401132u
10.1021/ma049647k
10.1021/ma401246b
10.1021/ma0345347
10.1021/ma0016937
10.1002/masy.19950950114
10.1016/S1381-1169(96)00078-7
10.1016/S0032-3861(98)00140-2
10.1021/ma9024174
10.1016/j.progpolymsci.2008.05.001
10.1016/j.polymer.2006.11.057
10.1002/pola.25954
10.1039/C4CS00329B
10.1021/ma902513n
10.1021/ja108441d
10.1016/S0040-4039(98)00887-9
10.1021/nn402639g
10.1021/mz200013e
10.1021/jo960733v
10.1039/b705245f
10.1002/pola.24985
10.1039/b801491d
10.1021/ma900280c
10.1039/C3CS60290G
10.1021/ja00044a070
10.1002/marc.201500672
10.1039/C4PY01567C
10.1002/macp.201200064
10.1021/mp3004868
10.1038/ncomms3505
10.1002/marc.200300196
10.1021/mz500082h
10.1021/mz400069u
10.1021/acs.macromol.5b01592
10.1073/pnas.1213055109
10.1002/anie.200352845
10.1002/marc.200400150
10.1021/om0108503
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.5b13317
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 7004
ExternalDocumentID 27219866
10_1021_jacs_5b13317
b259770454
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
AAYWT
7S9
L.6
ID FETCH-LOGICAL-a394t-8f4c08dea912b64e559e2bf26862e4babdf6d178ee97121a3b0c971e61f4c8673
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Jul 10 19:06:49 EDT 2025
Tue Aug 05 11:23:20 EDT 2025
Wed Feb 19 02:43:38 EST 2025
Tue Jul 01 04:33:28 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Thu Aug 27 13:42:22 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-8f4c08dea912b64e559e2bf26862e4babdf6d178ee97121a3b0c971e61f4c8673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27219866
PQID 1795863715
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2000396661
proquest_miscellaneous_1795863715
pubmed_primary_27219866
crossref_primary_10_1021_jacs_5b13317
crossref_citationtrail_10_1021_jacs_5b13317
acs_journals_10_1021_jacs_5b13317
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-08
PublicationDateYYYYMMDD 2016-06-08
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
28026171 - J Am Chem Soc. 2017 Jan 11;139(1):563
References_xml – ident: ref26/cit26
  doi: 10.1021/acs.macromol.5b01176
– ident: ref41/cit41
  doi: 10.1021/ma500803k
– ident: ref7/cit7
  doi: 10.1021/bm0609691
– ident: ref2/cit2
  doi: 10.1021/mz300402x
– ident: ref24/cit24
  doi: 10.1016/j.polymer.2015.10.028
– ident: ref23/cit23
  doi: 10.1002/marc.200700083
– ident: ref45/cit45
  doi: 10.1021/om400257b
– ident: ref34/cit34
  doi: 10.1021/nn505125f
– ident: ref28/cit28
  doi: 10.1002/pola.23626
– ident: ref13/cit13
  doi: 10.1021/ja3126382
– ident: ref20/cit20
  doi: 10.1021/ma401132u
– ident: ref29/cit29
  doi: 10.1021/ma049647k
– ident: ref5/cit5
  doi: 10.1021/ma401246b
– ident: ref8/cit8
  doi: 10.1021/ma0345347
– ident: ref6/cit6
  doi: 10.1021/ma0016937
– ident: ref16/cit16
  doi: 10.1002/masy.19950950114
– ident: ref31/cit31
  doi: 10.1016/S1381-1169(96)00078-7
– ident: ref43/cit43
  doi: 10.1016/S0032-3861(98)00140-2
– ident: ref44/cit44
  doi: 10.1021/ma9024174
– ident: ref1/cit1
  doi: 10.1016/j.progpolymsci.2008.05.001
– ident: ref4/cit4
  doi: 10.1016/j.polymer.2006.11.057
– ident: ref19/cit19
  doi: 10.1002/pola.25954
– ident: ref15/cit15
  doi: 10.1039/C4CS00329B
– ident: ref18/cit18
  doi: 10.1021/ma902513n
– ident: ref11/cit11
  doi: 10.1021/ja108441d
– ident: ref46/cit46
  doi: 10.1016/S0040-4039(98)00887-9
– ident: ref14/cit14
  doi: 10.1021/nn402639g
– ident: ref17/cit17
  doi: 10.1021/mz200013e
– ident: ref36/cit36
  doi: 10.1021/jo960733v
– ident: ref32/cit32
  doi: 10.1039/b705245f
– ident: ref47/cit47
  doi: 10.1002/pola.24985
– ident: ref10/cit10
  doi: 10.1039/b801491d
– ident: ref27/cit27
  doi: 10.1021/ma900280c
– ident: ref40/cit40
  doi: 10.1039/C3CS60290G
– ident: ref37/cit37
  doi: 10.1021/ja00044a070
– ident: ref42/cit42
  doi: 10.1002/marc.201500672
– ident: ref25/cit25
  doi: 10.1039/C4PY01567C
– ident: ref3/cit3
  doi: 10.1002/macp.201200064
– ident: ref12/cit12
  doi: 10.1021/mp3004868
– ident: ref39/cit39
  doi: 10.1038/ncomms3505
– ident: ref38/cit38
  doi: 10.1002/marc.200300196
– ident: ref30/cit30
  doi: 10.1021/mz500082h
– ident: ref21/cit21
  doi: 10.1021/mz400069u
– ident: ref33/cit33
  doi: 10.1021/acs.macromol.5b01592
– ident: ref9/cit9
  doi: 10.1073/pnas.1213055109
– ident: ref22/cit22
  doi: 10.1002/anie.200352845
– ident: ref48/cit48
  doi: 10.1002/marc.200400150
– ident: ref35/cit35
  doi: 10.1021/om0108503
– reference: 28026171 - J Am Chem Soc. 2017 Jan 11;139(1):563
SSID ssj0004281
Score 2.5730019
Snippet Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6998
SubjectTerms catalysts
chelation
group effect
ligands
molecular weight
polylactic acid
polymerization
pyridines
solvents
variance
Title Bottlebrush Polymer Synthesis by Ring-Opening Metathesis Polymerization: The Significance of the Anchor Group
URI http://dx.doi.org/10.1021/jacs.5b13317
https://www.ncbi.nlm.nih.gov/pubmed/27219866
https://www.proquest.com/docview/1795863715
https://www.proquest.com/docview/2000396661
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54HODC-zFeChKcUKclbZOU25iACQmEGEjcpiZ1AAEtWrfD-PU4fYAATXBq1TptGru1XX-2CTngBoronAcG2YAOhPE0a_keaGmR_VIrW6AtrkT3Lri4D--_ALI_I_jc1QcyeTPU6EsxOU1mucD315lAnd5X_iNXrDZzpRJ-BXD_OdopIJN_V0ATrMpCu5wtkvM6R6cElTw3R0PdNO-_Szb-MfElslAZmLRdSsQymYJ0hcx16r5uq-T1JHN1i_VglD_S6-xl_AoD2hunaAnmTznVY3qD6sxzSBPc0kuHRyxPVcRV5uYxRRGjvaeH1KGNnPDQzFIkpe0Uv6kDWvzWWiN3Z6e3na5XNV3wYj8Khp6ygWmpBOKIcS0CQI8DuLbcZZJAoGOdWJEwqQAiyTiLfd0yuAeC4UAlpL9OZtIshU1CWxJAaZ-bxDU6Y0HMuLURXjlRoUW_tUH2cYn61UuT94t4OEd_xB2tFq5Bjmpu9U1Vtdw1z3iZQH34Sf1WVuuYQLdfM76Pq-9iJHEK2QjnIKMQJUiycDINLzKa0e9jDbJRSs3n3Th61JESYusfz7ZN5tH8EgXwTO2QmeFgBLto4gz1XiHfH4F69cs
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8ATjYbyM8bkCA0-CJ5SpdhLb4a2rNhXYKkQ3aW9R7JxhYktQ0z6UX8_ZdTsxqdKeEjln5-K75O5yXwAfhMXgnUvQEhnIgLCJ4f00QaMckV8Z7UK0xViOLrKvl_llTFb3uTCEREcrdcGJf1tdwJcJosHckEnF1UN4RHqI8Aw9GE5u0yCF5ittV2mZxjj3u7O9HLLd_3Jog3IZhMzJExiv0QuxJb8P5zNzaP_eqdx4b_x3YSeqm2yw5I-n8ACbZ7A9XHV5ew43R62vYmym8-4X-95eL25wyiaLhvTC7qpjZsF-kHBLfNwJHdmZj05cXorAMY_zMyOGY5Orn42PPfKsxFrHCJQNGvrCTln4yfUCLk6Oz4ejJLZgSKq0yGaJdpnt6xqrggsjMyT7A4VxwueVYGYqUztZc6URC8UFr1LTt3SGktNELVX6EraatsE9YH2FqE0qbO3bnvGs4sK5glaude7Iiu3BAW1RGV-hrgzecUHWiR-NG9eDTyuilTbWMPetNK43QH9cQ_9Z1u7YAHewon9Ju-89JlWD7ZxwUEVOjKR4vhlGhPxmsgJ5D14tmWd9N0H2daGlfH2PZ3sP26Pzs9Py9Mv42xt4TIqZDCFp-i1szaZz3CflZ2beBZb_B2Kx_iw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIkEvvFuWpyvBCaVaO4ntcFsWVuVVVV0q9RbFzhgq2qTa7B6WX8_Y6yyi0kpwShSPHT8-Z2YyDwO8EhaDdS5BS8tACoRNDB-mCRrlaPmV0S54WxzJw9Ps01l-tgW8j4WhTnTUUheM-H5XX9UuZhjwqYKoIDekVnF1A256i50H9Wg8_RMKKTTvJV6lZRp93a_X9rzIdn_zog0CZmA0k7twsu5i8C_5ebCYmwP761r2xv8awz24E8VONlrh5D5sYfMAbo_7094ewuW71mczNrNF94MdtxfLS5yx6bIh-bA775hZshNicon3P6Er--q9FFdFkTjGc75lBDw2Pf_eeB8kDynWOkakbNTQl3bGws-uR3A6-fBtfJjEoxiSKi2yeaJdZoe6xqrgwsgMSQ9BYZzw8SWYmcrUTtZcacRCccGr1Awt3aHkVFFLle7CdtM2-BjYUCFqkwpb--PPeFZx4VxBLdc6d6TNDmCfpqiMW6krg5VckJbin8aJG8CbfuFKG3OZ-yM1LjZQv15TX61yeGyg2-8xUNLse8tJ1WC7oD6oIicwKZ5vphEhzpm0QT6AvRWA1m8TpGcXWson_zC2l3Dr-P2k_PLx6PNT2CH5TAbPNP0MtuezBT4nGWhuXgTU_walTAC-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bottlebrush+Polymer+Synthesis+by+Ring-Opening+Metathesis+Polymerization%3A+The+Significance+of+the+Anchor+Group&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Radzinski%2C+Scott+C&rft.au=Foster%2C+Jeffrey+C&rft.au=Chapleski%2C+Jr%2C+Robert+C&rft.au=Troya%2C+Diego&rft.date=2016-06-08&rft.eissn=1520-5126&rft.volume=138&rft.issue=22&rft.spage=6998&rft_id=info:doi/10.1021%2Fjacs.5b13317&rft_id=info%3Apmid%2F27219866&rft.externalDocID=27219866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon