Highly Conductive Bimetallic Ni–Fe Metal Organic Framework as a Novel Electrocatalyst for Water Oxidation
In recent years, metal–organic frameworks (MOFs) have been extensively investigated for diverse heterogeneous catalysis due to their diversity of structures and outstanding physical and chemical properties. Currently, most related work focuses on employing MOFs as porous substrate materials to fabri...
Saved in:
Published in | ACS sustainable chemistry & engineering Vol. 7; no. 11; pp. 9743 - 9749 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
03.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, metal–organic frameworks (MOFs) have been extensively investigated for diverse heterogeneous catalysis due to their diversity of structures and outstanding physical and chemical properties. Currently, most related work focuses on employing MOFs as porous substrate materials to fabricate confined nanoparticle or heteroatom-doped electrocatalysts which have to be annealed at high temperature before application. However, the annealing process would destroy the structure completely and lose the intrinsic active sites in MOFs framework. Herein, a simple solvothermal process is used to synthesize a series of Fe/Ni bimetallic MOFs. The as-prepared MOFs are applied directly as highly efficient oxygen evolution reaction (OER) electrocatalysts with no post-annealing treatment. The bimetallic FeNi-MOFs show higher OER activity than single metal MOFs and commercial precious RuO2 catalysts. With the optimized FeNi-MOF as the catalyst, the OER current densities of 50 and 100 mA/cm2 can be achieved at the overpotentials of only 270 and 287 mV, respectively. Meanwhile, a small Tafel slope of 49 mV/dec was obtained. Moreover, this catalyst shows high electrochemical stability in strong basic solution. This work demonstrates that through structural optimization, bimetallic and multimetallic MOFs may have promising potentials as advanced catalysts for electrochemical energy conversion. |
---|---|
AbstractList | In recent years, metal–organic frameworks (MOFs) have been extensively investigated for diverse heterogeneous catalysis due to their diversity of structures and outstanding physical and chemical properties. Currently, most related work focuses on employing MOFs as porous substrate materials to fabricate confined nanoparticle or heteroatom-doped electrocatalysts which have to be annealed at high temperature before application. However, the annealing process would destroy the structure completely and lose the intrinsic active sites in MOFs framework. Herein, a simple solvothermal process is used to synthesize a series of Fe/Ni bimetallic MOFs. The as-prepared MOFs are applied directly as highly efficient oxygen evolution reaction (OER) electrocatalysts with no post-annealing treatment. The bimetallic FeNi-MOFs show higher OER activity than single metal MOFs and commercial precious RuO2 catalysts. With the optimized FeNi-MOF as the catalyst, the OER current densities of 50 and 100 mA/cm2 can be achieved at the overpotentials of only 270 and 287 mV, respectively. Meanwhile, a small Tafel slope of 49 mV/dec was obtained. Moreover, this catalyst shows high electrochemical stability in strong basic solution. This work demonstrates that through structural optimization, bimetallic and multimetallic MOFs may have promising potentials as advanced catalysts for electrochemical energy conversion. In recent years, metal–organic frameworks (MOFs) have been extensively investigated for diverse heterogeneous catalysis due to their diversity of structures and outstanding physical and chemical properties. Currently, most related work focuses on employing MOFs as porous substrate materials to fabricate confined nanoparticle or heteroatom-doped electrocatalysts which have to be annealed at high temperature before application. However, the annealing process would destroy the structure completely and lose the intrinsic active sites in MOFs framework. Herein, a simple solvothermal process is used to synthesize a series of Fe/Ni bimetallic MOFs. The as-prepared MOFs are applied directly as highly efficient oxygen evolution reaction (OER) electrocatalysts with no post-annealing treatment. The bimetallic FeNi-MOFs show higher OER activity than single metal MOFs and commercial precious RuO₂ catalysts. With the optimized FeNi-MOF as the catalyst, the OER current densities of 50 and 100 mA/cm² can be achieved at the overpotentials of only 270 and 287 mV, respectively. Meanwhile, a small Tafel slope of 49 mV/dec was obtained. Moreover, this catalyst shows high electrochemical stability in strong basic solution. This work demonstrates that through structural optimization, bimetallic and multimetallic MOFs may have promising potentials as advanced catalysts for electrochemical energy conversion. |
Author | Chen, Wei Du, Cheng Zheng, Fuqin Li, Ping Xiang, Dong Zhang, Ziwei Zhuang, Zhihua Li, Xiaokun |
AuthorAffiliation | University of Science and Technology of China State Key Laboratory of Electroanalytical Chemistry Faculty of Chemistry Northeast Normal University School of Applied Chemistry and Engineering University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: State Key Laboratory of Electroanalytical Chemistry – name: Faculty of Chemistry – name: University of Chinese Academy of Sciences – name: Northeast Normal University – name: School of Applied Chemistry and Engineering |
Author_xml | – sequence: 1 givenname: Fuqin surname: Zheng fullname: Zheng, Fuqin organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Dong surname: Xiang fullname: Xiang, Dong organization: Northeast Normal University – sequence: 3 givenname: Ping surname: Li fullname: Li, Ping organization: University of Science and Technology of China – sequence: 4 givenname: Ziwei surname: Zhang fullname: Zhang, Ziwei organization: University of Science and Technology of China – sequence: 5 givenname: Cheng surname: Du fullname: Du, Cheng organization: University of Science and Technology of China – sequence: 6 givenname: Zhihua surname: Zhuang fullname: Zhuang, Zhihua organization: University of Science and Technology of China – sequence: 7 givenname: Xiaokun surname: Li fullname: Li, Xiaokun organization: State Key Laboratory of Electroanalytical Chemistry – sequence: 8 givenname: Wei orcidid: 0000-0001-5700-0114 surname: Chen fullname: Chen, Wei email: weichen@ciac.ac.cn organization: University of Science and Technology of China |
BookMark | eNqFkD1OAzEQhS0EEr9HQHJJE7C9P7FFBREBpEAaEOVq1jsbDN412N5AOu7ADTkJG0IBNEwzozfvG43eNllvXYuE7HN2yJngR6BD6IK-xwbb2aEqGecJXyNbgudywFKZrf-YN8leCA-sL6USIfkWebwws3u7oCPXVp2OZo701DQYwVqj6bX5eHsfI71aCnTqZ9D26thDgy_OP1IIFOi1m6OlZxZ19E5D71yESGvn6R1E9HT6aiqIxrW7ZKMGG3Dvu--Q2_HZzehiMJmeX45OJgNIVBoHEqXO5FCkSZ0MdQ1lWqJUkul8KNOs1JArjQhZLipVcRCyKhMscygBk2HKMNkhB6u7T949dxhi0Zig0Vpo0XWhEELmijOVit56vLJq70LwWBfaxK9nowdjC86KZcrFr5SL75R7OvtDP3nTgF_8y_EV16-LB9f5to_jH-YTCy2crw |
CitedBy_id | crossref_primary_10_1016_j_resconrec_2023_106884 crossref_primary_10_1039_D0SE01908A crossref_primary_10_1016_j_ijhydene_2021_05_155 crossref_primary_10_1039_D0SC01432J crossref_primary_10_1016_j_ijhydene_2024_08_368 crossref_primary_10_1021_acs_energyfuels_1c03446 crossref_primary_10_1016_j_ccr_2020_213488 crossref_primary_10_1016_j_colsurfa_2021_128108 crossref_primary_10_1021_acsaem_3c01117 crossref_primary_10_1039_D4CC05348F crossref_primary_10_1016_j_catcom_2022_106445 crossref_primary_10_1039_D0RA09496J crossref_primary_10_1016_j_apsusc_2020_147201 crossref_primary_10_1016_j_ijhydene_2022_10_108 crossref_primary_10_1016_j_cej_2024_154945 crossref_primary_10_1016_j_jelechem_2022_116465 crossref_primary_10_1016_j_jcis_2022_01_140 crossref_primary_10_1016_j_jssc_2022_123094 crossref_primary_10_1016_j_chempr_2023_06_005 crossref_primary_10_1016_j_est_2023_106702 crossref_primary_10_1016_j_jallcom_2022_165823 crossref_primary_10_1016_j_jcis_2020_03_043 crossref_primary_10_1002_smll_202007484 crossref_primary_10_1039_C9NR10109H crossref_primary_10_1016_j_apcatb_2021_120406 crossref_primary_10_1002_slct_202300363 crossref_primary_10_1002_ejic_202200625 crossref_primary_10_1039_D0RA09973B crossref_primary_10_1002_celc_202100492 crossref_primary_10_1016_j_cclet_2021_11_028 crossref_primary_10_1016_j_colsurfa_2023_133093 crossref_primary_10_1016_j_electacta_2023_142725 crossref_primary_10_1021_acs_inorgchem_4c03771 crossref_primary_10_1021_acsomega_9b03295 crossref_primary_10_1021_acsanm_1c01766 crossref_primary_10_1016_j_microc_2023_108699 crossref_primary_10_1039_D4DT02447H crossref_primary_10_1039_D3CE00360D crossref_primary_10_1007_s11581_020_03601_w crossref_primary_10_1021_acs_langmuir_0c01535 crossref_primary_10_1007_s10853_020_05026_2 crossref_primary_10_1016_j_cej_2020_125799 crossref_primary_10_1039_C9NJ05562B crossref_primary_10_1021_jacs_1c10963 crossref_primary_10_1016_j_surfin_2024_105609 crossref_primary_10_1002_adfm_202103318 crossref_primary_10_1016_j_ijhydene_2022_06_217 crossref_primary_10_1021_acsomega_1c01132 crossref_primary_10_1002_chem_202100610 crossref_primary_10_1016_j_ccr_2024_215959 crossref_primary_10_1016_j_electacta_2021_139793 crossref_primary_10_1039_D0NR02697B crossref_primary_10_1016_j_mtchem_2023_101873 crossref_primary_10_1016_j_mtener_2020_100597 crossref_primary_10_1016_j_jelechem_2024_118789 crossref_primary_10_1016_j_jhazmat_2020_123261 crossref_primary_10_1016_j_snb_2022_131466 crossref_primary_10_1039_D0CC03659E crossref_primary_10_1016_j_ijhydene_2022_07_013 crossref_primary_10_1016_j_jcis_2019_08_005 crossref_primary_10_1021_acsnano_1c10544 crossref_primary_10_1016_j_ijhydene_2022_07_010 crossref_primary_10_1021_acssuschemeng_2c04543 crossref_primary_10_1016_j_ijhydene_2022_07_011 crossref_primary_10_1016_j_apsusc_2024_161578 crossref_primary_10_1016_j_cej_2024_154472 crossref_primary_10_1002_cey2_80 crossref_primary_10_1039_D2DT03392E crossref_primary_10_1016_j_electacta_2022_140947 crossref_primary_10_3390_inorganics10040053 crossref_primary_10_1002_sstr_202200263 crossref_primary_10_1016_j_ijhydene_2022_12_168 crossref_primary_10_1002_cplu_202100278 crossref_primary_10_1002_cctc_202001876 crossref_primary_10_1021_acs_inorgchem_2c00542 crossref_primary_10_1039_D2RA04871J crossref_primary_10_1002_cssc_202000376 crossref_primary_10_1016_j_ijhydene_2022_09_123 crossref_primary_10_1016_j_apsusc_2020_148336 crossref_primary_10_1039_D2NJ01994A crossref_primary_10_1002_aesr_202100100 crossref_primary_10_1039_D0NJ02598D crossref_primary_10_1002_eem2_12414 crossref_primary_10_1002_ejic_202300216 crossref_primary_10_1016_j_ccr_2021_214264 crossref_primary_10_1016_j_solidstatesciences_2023_107135 crossref_primary_10_1016_j_jece_2024_112883 crossref_primary_10_1021_acs_inorgchem_1c01151 crossref_primary_10_1016_j_ijhydene_2023_11_295 crossref_primary_10_1016_j_ijhydene_2022_08_179 crossref_primary_10_1039_C9CC06109F crossref_primary_10_1002_cnma_202200115 crossref_primary_10_1039_D0EE03697H crossref_primary_10_1002_adfm_202101724 crossref_primary_10_1016_j_ceramint_2024_12_069 crossref_primary_10_1039_D1QI00663K crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1002_smll_202410228 crossref_primary_10_1021_acsanm_0c03310 crossref_primary_10_1016_j_cej_2023_147592 crossref_primary_10_1016_j_ijhydene_2022_05_115 crossref_primary_10_1021_acs_inorgchem_1c03216 crossref_primary_10_1021_acs_inorgchem_5c00013 crossref_primary_10_1016_j_jcis_2023_07_083 crossref_primary_10_1039_D0CC03422C crossref_primary_10_1016_j_ijhydene_2023_03_127 crossref_primary_10_1021_acs_inorgchem_2c00241 crossref_primary_10_1039_D0DT04397D crossref_primary_10_1016_j_ccr_2023_215603 crossref_primary_10_1088_1742_6596_2705_1_012015 crossref_primary_10_1002_ange_202116934 crossref_primary_10_1016_j_jcis_2022_04_181 crossref_primary_10_3390_catal12040358 crossref_primary_10_1016_j_ijhydene_2022_04_014 crossref_primary_10_1016_j_ccr_2020_213619 crossref_primary_10_1016_j_jcis_2019_09_108 crossref_primary_10_1021_acs_chemmater_9b05289 crossref_primary_10_1039_D1DT00302J crossref_primary_10_1039_D0TA07616C crossref_primary_10_1002_smll_202207342 crossref_primary_10_1039_D0AN00801J crossref_primary_10_1016_j_mtnano_2021_100124 crossref_primary_10_1039_C9RA07499F crossref_primary_10_1016_j_ces_2020_115941 crossref_primary_10_1002_slct_202004504 crossref_primary_10_1039_D1NR06197F crossref_primary_10_1007_s12274_022_4451_y crossref_primary_10_1002_anie_202116934 crossref_primary_10_1016_j_mtener_2024_101652 crossref_primary_10_1039_D0TA08094B crossref_primary_10_1016_j_cjche_2021_11_011 crossref_primary_10_1021_acs_jpclett_0c02539 crossref_primary_10_1002_cey2_45 crossref_primary_10_1088_2053_1583_ab86d1 crossref_primary_10_1002_er_6834 crossref_primary_10_1016_j_diamond_2024_111559 crossref_primary_10_1021_acsaem_1c00429 |
Cites_doi | 10.1021/ja983577d 10.1002/anie.201705385 10.1021/acs.jpcc.5b00105 10.1039/C7TA01838J 10.1021/ja5082553 10.1002/smll.201601131 10.1039/C6EE00377J 10.1038/ncomms15341 10.1002/adma.201703870 10.1039/C5TA09924B 10.1002/aenm.201600621 10.1002/aenm.201502585 10.1021/ja502379c 10.1039/C6CS00328A 10.1039/C6CS00362A 10.1021/acs.chemrev.6b00398 10.1039/C7CC03005C 10.1002/anie.201711376 10.1021/la703864a 10.1021/acs.accounts.5b00530 10.1021/ar100023y 10.1016/j.jpowsour.2016.09.152 10.1002/adfm.201702324 10.1039/C6TA02334G 10.1002/anie.201506219 10.1016/j.jpowsour.2016.03.040 10.1149/1.2119829 10.1002/smll.201604103 10.1039/C5NR07170D 10.1021/acscatal.6b02479 10.1002/anie.201509382 10.1038/s41570-016-0003 10.1002/anie.201610413 10.1039/C5EE02509E 10.1002/advs.201600371 10.1039/b807080f 10.1021/ja3043905 10.1021/jacs.5b01613 10.1023/A:1003901520705 10.1039/C7NH00079K 10.1002/adfm.201300510 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acssuschemeng.9b01131 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-0485 |
EndPage | 9749 |
ExternalDocumentID | 10_1021_acssuschemeng_9b01131 b43211673 |
GroupedDBID | 53G 55A AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ ROL UI2 VF5 VG9 W1F AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7S9 L.6 |
ID | FETCH-LOGICAL-a394t-8e8c587243f37cfab4be8980c67845bca69ceea562d9d1a28db3eb6abae3740e3 |
IEDL.DBID | ACS |
ISSN | 2168-0485 |
IngestDate | Fri Jul 11 01:19:56 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Tue Jul 01 02:36:46 EDT 2025 Thu Aug 27 13:44:02 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Metal−organic framework Electrocatalysis Water splitting Electrical conductivity Iron Oxygen evolution reaction Catalyst |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a394t-8e8c587243f37cfab4be8980c67845bca69ceea562d9d1a28db3eb6abae3740e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5700-0114 |
PQID | 2286910942 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2286910942 crossref_citationtrail_10_1021_acssuschemeng_9b01131 crossref_primary_10_1021_acssuschemeng_9b01131 acs_journals_10_1021_acssuschemeng_9b01131 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-03 |
PublicationDateYYYYMMDD | 2019-06-03 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-03 day: 03 |
PublicationDecade | 2010 |
PublicationTitle | ACS sustainable chemistry & engineering |
PublicationTitleAlternate | ACS Sustainable Chem. Eng |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref38/cit38 doi: 10.1021/ja983577d – ident: ref11/cit11 doi: 10.1002/anie.201705385 – ident: ref39/cit39 doi: 10.1021/acs.jpcc.5b00105 – ident: ref41/cit41 doi: 10.1039/C7TA01838J – ident: ref23/cit23 doi: 10.1021/ja5082553 – ident: ref18/cit18 doi: 10.1002/smll.201601131 – ident: ref12/cit12 doi: 10.1039/C6EE00377J – ident: ref34/cit34 doi: 10.1038/ncomms15341 – ident: ref13/cit13 doi: 10.1002/adma.201703870 – ident: ref31/cit31 doi: 10.1039/C5TA09924B – ident: ref32/cit32 doi: 10.1002/aenm.201600621 – ident: ref16/cit16 doi: 10.1002/aenm.201502585 – ident: ref33/cit33 doi: 10.1021/ja502379c – ident: ref1/cit1 doi: 10.1039/C6CS00328A – ident: ref27/cit27 doi: 10.1039/C6CS00362A – ident: ref5/cit5 doi: 10.1021/acs.chemrev.6b00398 – ident: ref17/cit17 doi: 10.1039/C7CC03005C – ident: ref35/cit35 doi: 10.1002/anie.201711376 – ident: ref36/cit36 doi: 10.1021/la703864a – ident: ref21/cit21 doi: 10.1021/acs.accounts.5b00530 – ident: ref20/cit20 doi: 10.1021/ar100023y – ident: ref40/cit40 doi: 10.1016/j.jpowsour.2016.09.152 – ident: ref25/cit25 doi: 10.1002/adfm.201702324 – ident: ref2/cit2 doi: 10.1039/C6TA02334G – ident: ref26/cit26 doi: 10.1002/anie.201506219 – ident: ref29/cit29 doi: 10.1016/j.jpowsour.2016.03.040 – ident: ref7/cit7 doi: 10.1149/1.2119829 – ident: ref19/cit19 doi: 10.1002/smll.201604103 – ident: ref14/cit14 doi: 10.1039/C5NR07170D – ident: ref8/cit8 doi: 10.1021/acscatal.6b02479 – ident: ref24/cit24 doi: 10.1002/anie.201509382 – ident: ref3/cit3 doi: 10.1038/s41570-016-0003 – ident: ref9/cit9 doi: 10.1002/anie.201610413 – ident: ref10/cit10 doi: 10.1039/C5EE02509E – ident: ref4/cit4 doi: 10.1002/advs.201600371 – ident: ref22/cit22 doi: 10.1039/b807080f – ident: ref37/cit37 doi: 10.1021/ja3043905 – ident: ref28/cit28 doi: 10.1021/jacs.5b01613 – ident: ref6/cit6 doi: 10.1023/A:1003901520705 – ident: ref15/cit15 doi: 10.1039/C7NH00079K – ident: ref30/cit30 doi: 10.1002/adfm.201300510 |
SSID | ssj0000993281 |
Score | 2.543443 |
Snippet | In recent years, metal–organic frameworks (MOFs) have been extensively investigated for diverse heterogeneous catalysis due to their diversity of structures... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9743 |
SubjectTerms | active sites annealing catalysts catalytic activity coordination polymers electrochemistry energy conversion iron nanoparticles nickel oxidation oxygen production physicochemical properties temperature |
Title | Highly Conductive Bimetallic Ni–Fe Metal Organic Framework as a Novel Electrocatalyst for Water Oxidation |
URI | http://dx.doi.org/10.1021/acssuschemeng.9b01131 https://www.proquest.com/docview/2286910942 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYhe1kfdu1Y1m1osKeCk1iSZekxCwllkGywhuXNSLI0QlNnxM5o-tT_sH_YX9IjX8LCCNkebThCPj7S90nnhtBH4hyXmqRB6AwJmHU8UCJOg4gBFnGT9l2Z9T6Z8osZ-zyP5i3UO-DBJ2FPGZgAnPT8bdmPrtRgkD5v-hHhIvanrcHw2-5SBegOJWVjUhJyEYB1Rk3WzqGRPCqZfB-V9jflEmnGT9HXJl-nCjC56m4K3TW3f5dv_NePeIae1KwTDyozeY5aNnuBTv6oRfgSXfmIj-UWD1eZLwELmyD-tLi2wM2XC4Oni_u732OLJ_4FrhI4DR43kV1Y5Vjh6eqXXeJR1VinvBfa5gUGVoy_A6Nd4y83i6qD0ymajUeXw4ug7sQQKCpZEQgrTCRiwqijsXFKM22FFH0DUMcibRSXALYKuFQq01ARkWpqNVdaWRqzvqWvUDtbZfY1wo45I7SOY0ENgwcFHMNox2BE6Yjsd9A5KCupV1KelE5yEiZ7GkxqDXYQa35bYuqa5r61xvKYWHcn9rMq6nFM4ENjEwksP-9TUZldbfKEEMGBcUlG3vzPxM_QY2Besow5o29Ru1hv7DtgN4V-X1r0A2E4_E0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxshEEZRemh76LvKow8q9VRpXS-wLBxdy5bbxu6htpLbCliIrDjrKruOkpzyH_oP-0s6sLtOXKmKclwkRiwMzAcz8w1CH4lzXGqSR7EzJGLW8UiJNI8SBraIm7zrQtb7eMJHM_btKDnaQrzNhYFBlCCpDE78G3aB-DO0lSu48PlHs-OO1KCXPn36AQAS4i9dvf7P9dsKoB5KQn1SEnMRgZImbfLO_yR542TKTeO0eTYHgzN8ig7XQw1xJiedVaU75uofFsf7_8sz9KTBoLhXK81ztGWLF-jxLWbCl-jEx38sLnF_WXhCWDgS8Zf5qQWkvpgbPJn_uf49tHjsG3CdzmnwsI3zwqrECk-W53aBB3WZnfBKdFlWGDAyPgR8e4Z_XMzrek6v0Gw4mPZHUVOXIVJUsioSVphEpIRRR1PjlGbaCim6BgwfS7RRXILpVYCscpnHiohcU6u50srSlHUtfY22i2VhdxB2zBmhdZoKahh8KEAcRjsGEqUjsruLPsFkZc2-KrPgMidxtjGDWTODu4i1q5eZhuHcF9pY3NWts-72q6b4uKvDh1Y1MtiM3sOiCrtclRkhggP-kozs3Wfg79HD0XR8kB18nXzfR48Ak8kQjUbfoO3qbGXfAu6p9Lug5H8BgmwEvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEA9iQexDW23FU6sR-lTY8zbJ7iaPerqordeCSgUfliSbyOF1T9w9UZ_8Dv2G_SROsntHTxCxjxvIMJvMZH7J_EPoC7E2ForkQWg1CZixcSB5kgcRA1sU67xjfdb7US_eP2WHZ9FZE1XpcmGAiRIold6J77T6KrdNhYFwC8bLEVz63MPZRVsokE2XQv3Gue7cxWu7ezx5XwHkQ4nvUUrCmAcgqNE4gec5Ss5A6XLaQE2fz97opO_R-YRdH2ty2R5Vqq3vn1Ry_L__-YDeNVgUb9fCs4BmTLGI3v5TofAjunRxIIM73B0WrjAsHI14p__bAGIf9DXu9f8-_EkNPnIDuE7r1Dgdx3thWWKJe8MbM8B7dbsd_1p0V1YYsDL-BTj3Gv-47dd9nT6h03TvpLsfNP0ZAkkFqwJuuI54Qhi1NNFWKqYMF7yjwQCySGkZCzDBEhBWLvJQEp4ralQslTQ0YR1Dl9BsMSzMMsKWWc2VShJONYMPCchDK8uAorBEdFroKyxW1uhXmXnXOQmzqRXMmhVsITbewUw3lc5dw43BS9Pak2lXdamPlyZsjsUjA6V0nhZZmOGozAjhMeAwwcjKaxjfQHM_d9Ps-0Hv2yqaB2gmfFAaXUOz1fXIfAb4U6l1L-ePuRMHQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Conductive+Bimetallic+Ni%E2%80%93Fe+Metal+Organic+Framework+as+a+Novel+Electrocatalyst+for+Water+Oxidation&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Zheng%2C+Fuqin&rft.au=Xiang%2C+Dong&rft.au=Li%2C+Ping&rft.au=Zhang%2C+Ziwei&rft.date=2019-06-03&rft.pub=American+Chemical+Society&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=7&rft.issue=11&rft.spage=9743&rft.epage=9749&rft_id=info:doi/10.1021%2Facssuschemeng.9b01131&rft.externalDocID=b43211673 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon |