Highly Conductive Bimetallic Ni–Fe Metal Organic Framework as a Novel Electrocatalyst for Water Oxidation

In recent years, metal–organic frameworks (MOFs) have been extensively investigated for diverse heterogeneous catalysis due to their diversity of structures and outstanding physical and chemical properties. Currently, most related work focuses on employing MOFs as porous substrate materials to fabri...

Full description

Saved in:
Bibliographic Details
Published inACS sustainable chemistry & engineering Vol. 7; no. 11; pp. 9743 - 9749
Main Authors Zheng, Fuqin, Xiang, Dong, Li, Ping, Zhang, Ziwei, Du, Cheng, Zhuang, Zhihua, Li, Xiaokun, Chen, Wei
Format Journal Article
LanguageEnglish
Published American Chemical Society 03.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, metal–organic frameworks (MOFs) have been extensively investigated for diverse heterogeneous catalysis due to their diversity of structures and outstanding physical and chemical properties. Currently, most related work focuses on employing MOFs as porous substrate materials to fabricate confined nanoparticle or heteroatom-doped electrocatalysts which have to be annealed at high temperature before application. However, the annealing process would destroy the structure completely and lose the intrinsic active sites in MOFs framework. Herein, a simple solvothermal process is used to synthesize a series of Fe/Ni bimetallic MOFs. The as-prepared MOFs are applied directly as highly efficient oxygen evolution reaction (OER) electrocatalysts with no post-annealing treatment. The bimetallic FeNi-MOFs show higher OER activity than single metal MOFs and commercial precious RuO2 catalysts. With the optimized FeNi-MOF as the catalyst, the OER current densities of 50 and 100 mA/cm2 can be achieved at the overpotentials of only 270 and 287 mV, respectively. Meanwhile, a small Tafel slope of 49 mV/dec was obtained. Moreover, this catalyst shows high electrochemical stability in strong basic solution. This work demonstrates that through structural optimization, bimetallic and multimetallic MOFs may have promising potentials as advanced catalysts for electrochemical energy conversion.
AbstractList In recent years, metal–organic frameworks (MOFs) have been extensively investigated for diverse heterogeneous catalysis due to their diversity of structures and outstanding physical and chemical properties. Currently, most related work focuses on employing MOFs as porous substrate materials to fabricate confined nanoparticle or heteroatom-doped electrocatalysts which have to be annealed at high temperature before application. However, the annealing process would destroy the structure completely and lose the intrinsic active sites in MOFs framework. Herein, a simple solvothermal process is used to synthesize a series of Fe/Ni bimetallic MOFs. The as-prepared MOFs are applied directly as highly efficient oxygen evolution reaction (OER) electrocatalysts with no post-annealing treatment. The bimetallic FeNi-MOFs show higher OER activity than single metal MOFs and commercial precious RuO2 catalysts. With the optimized FeNi-MOF as the catalyst, the OER current densities of 50 and 100 mA/cm2 can be achieved at the overpotentials of only 270 and 287 mV, respectively. Meanwhile, a small Tafel slope of 49 mV/dec was obtained. Moreover, this catalyst shows high electrochemical stability in strong basic solution. This work demonstrates that through structural optimization, bimetallic and multimetallic MOFs may have promising potentials as advanced catalysts for electrochemical energy conversion.
In recent years, metal–organic frameworks (MOFs) have been extensively investigated for diverse heterogeneous catalysis due to their diversity of structures and outstanding physical and chemical properties. Currently, most related work focuses on employing MOFs as porous substrate materials to fabricate confined nanoparticle or heteroatom-doped electrocatalysts which have to be annealed at high temperature before application. However, the annealing process would destroy the structure completely and lose the intrinsic active sites in MOFs framework. Herein, a simple solvothermal process is used to synthesize a series of Fe/Ni bimetallic MOFs. The as-prepared MOFs are applied directly as highly efficient oxygen evolution reaction (OER) electrocatalysts with no post-annealing treatment. The bimetallic FeNi-MOFs show higher OER activity than single metal MOFs and commercial precious RuO₂ catalysts. With the optimized FeNi-MOF as the catalyst, the OER current densities of 50 and 100 mA/cm² can be achieved at the overpotentials of only 270 and 287 mV, respectively. Meanwhile, a small Tafel slope of 49 mV/dec was obtained. Moreover, this catalyst shows high electrochemical stability in strong basic solution. This work demonstrates that through structural optimization, bimetallic and multimetallic MOFs may have promising potentials as advanced catalysts for electrochemical energy conversion.
Author Chen, Wei
Du, Cheng
Zheng, Fuqin
Li, Ping
Xiang, Dong
Zhang, Ziwei
Zhuang, Zhihua
Li, Xiaokun
AuthorAffiliation University of Science and Technology of China
State Key Laboratory of Electroanalytical Chemistry
Faculty of Chemistry
Northeast Normal University
School of Applied Chemistry and Engineering
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: State Key Laboratory of Electroanalytical Chemistry
– name: Faculty of Chemistry
– name: University of Chinese Academy of Sciences
– name: Northeast Normal University
– name: School of Applied Chemistry and Engineering
Author_xml – sequence: 1
  givenname: Fuqin
  surname: Zheng
  fullname: Zheng, Fuqin
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Dong
  surname: Xiang
  fullname: Xiang, Dong
  organization: Northeast Normal University
– sequence: 3
  givenname: Ping
  surname: Li
  fullname: Li, Ping
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Ziwei
  surname: Zhang
  fullname: Zhang, Ziwei
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Cheng
  surname: Du
  fullname: Du, Cheng
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Zhihua
  surname: Zhuang
  fullname: Zhuang, Zhihua
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Xiaokun
  surname: Li
  fullname: Li, Xiaokun
  organization: State Key Laboratory of Electroanalytical Chemistry
– sequence: 8
  givenname: Wei
  orcidid: 0000-0001-5700-0114
  surname: Chen
  fullname: Chen, Wei
  email: weichen@ciac.ac.cn
  organization: University of Science and Technology of China
BookMark eNqFkD1OAzEQhS0EEr9HQHJJE7C9P7FFBREBpEAaEOVq1jsbDN412N5AOu7ADTkJG0IBNEwzozfvG43eNllvXYuE7HN2yJngR6BD6IK-xwbb2aEqGecJXyNbgudywFKZrf-YN8leCA-sL6USIfkWebwws3u7oCPXVp2OZo701DQYwVqj6bX5eHsfI71aCnTqZ9D26thDgy_OP1IIFOi1m6OlZxZ19E5D71yESGvn6R1E9HT6aiqIxrW7ZKMGG3Dvu--Q2_HZzehiMJmeX45OJgNIVBoHEqXO5FCkSZ0MdQ1lWqJUkul8KNOs1JArjQhZLipVcRCyKhMscygBk2HKMNkhB6u7T949dxhi0Zig0Vpo0XWhEELmijOVit56vLJq70LwWBfaxK9nowdjC86KZcrFr5SL75R7OvtDP3nTgF_8y_EV16-LB9f5to_jH-YTCy2crw
CitedBy_id crossref_primary_10_1016_j_resconrec_2023_106884
crossref_primary_10_1039_D0SE01908A
crossref_primary_10_1016_j_ijhydene_2021_05_155
crossref_primary_10_1039_D0SC01432J
crossref_primary_10_1016_j_ijhydene_2024_08_368
crossref_primary_10_1021_acs_energyfuels_1c03446
crossref_primary_10_1016_j_ccr_2020_213488
crossref_primary_10_1016_j_colsurfa_2021_128108
crossref_primary_10_1021_acsaem_3c01117
crossref_primary_10_1039_D4CC05348F
crossref_primary_10_1016_j_catcom_2022_106445
crossref_primary_10_1039_D0RA09496J
crossref_primary_10_1016_j_apsusc_2020_147201
crossref_primary_10_1016_j_ijhydene_2022_10_108
crossref_primary_10_1016_j_cej_2024_154945
crossref_primary_10_1016_j_jelechem_2022_116465
crossref_primary_10_1016_j_jcis_2022_01_140
crossref_primary_10_1016_j_jssc_2022_123094
crossref_primary_10_1016_j_chempr_2023_06_005
crossref_primary_10_1016_j_est_2023_106702
crossref_primary_10_1016_j_jallcom_2022_165823
crossref_primary_10_1016_j_jcis_2020_03_043
crossref_primary_10_1002_smll_202007484
crossref_primary_10_1039_C9NR10109H
crossref_primary_10_1016_j_apcatb_2021_120406
crossref_primary_10_1002_slct_202300363
crossref_primary_10_1002_ejic_202200625
crossref_primary_10_1039_D0RA09973B
crossref_primary_10_1002_celc_202100492
crossref_primary_10_1016_j_cclet_2021_11_028
crossref_primary_10_1016_j_colsurfa_2023_133093
crossref_primary_10_1016_j_electacta_2023_142725
crossref_primary_10_1021_acs_inorgchem_4c03771
crossref_primary_10_1021_acsomega_9b03295
crossref_primary_10_1021_acsanm_1c01766
crossref_primary_10_1016_j_microc_2023_108699
crossref_primary_10_1039_D4DT02447H
crossref_primary_10_1039_D3CE00360D
crossref_primary_10_1007_s11581_020_03601_w
crossref_primary_10_1021_acs_langmuir_0c01535
crossref_primary_10_1007_s10853_020_05026_2
crossref_primary_10_1016_j_cej_2020_125799
crossref_primary_10_1039_C9NJ05562B
crossref_primary_10_1021_jacs_1c10963
crossref_primary_10_1016_j_surfin_2024_105609
crossref_primary_10_1002_adfm_202103318
crossref_primary_10_1016_j_ijhydene_2022_06_217
crossref_primary_10_1021_acsomega_1c01132
crossref_primary_10_1002_chem_202100610
crossref_primary_10_1016_j_ccr_2024_215959
crossref_primary_10_1016_j_electacta_2021_139793
crossref_primary_10_1039_D0NR02697B
crossref_primary_10_1016_j_mtchem_2023_101873
crossref_primary_10_1016_j_mtener_2020_100597
crossref_primary_10_1016_j_jelechem_2024_118789
crossref_primary_10_1016_j_jhazmat_2020_123261
crossref_primary_10_1016_j_snb_2022_131466
crossref_primary_10_1039_D0CC03659E
crossref_primary_10_1016_j_ijhydene_2022_07_013
crossref_primary_10_1016_j_jcis_2019_08_005
crossref_primary_10_1021_acsnano_1c10544
crossref_primary_10_1016_j_ijhydene_2022_07_010
crossref_primary_10_1021_acssuschemeng_2c04543
crossref_primary_10_1016_j_ijhydene_2022_07_011
crossref_primary_10_1016_j_apsusc_2024_161578
crossref_primary_10_1016_j_cej_2024_154472
crossref_primary_10_1002_cey2_80
crossref_primary_10_1039_D2DT03392E
crossref_primary_10_1016_j_electacta_2022_140947
crossref_primary_10_3390_inorganics10040053
crossref_primary_10_1002_sstr_202200263
crossref_primary_10_1016_j_ijhydene_2022_12_168
crossref_primary_10_1002_cplu_202100278
crossref_primary_10_1002_cctc_202001876
crossref_primary_10_1021_acs_inorgchem_2c00542
crossref_primary_10_1039_D2RA04871J
crossref_primary_10_1002_cssc_202000376
crossref_primary_10_1016_j_ijhydene_2022_09_123
crossref_primary_10_1016_j_apsusc_2020_148336
crossref_primary_10_1039_D2NJ01994A
crossref_primary_10_1002_aesr_202100100
crossref_primary_10_1039_D0NJ02598D
crossref_primary_10_1002_eem2_12414
crossref_primary_10_1002_ejic_202300216
crossref_primary_10_1016_j_ccr_2021_214264
crossref_primary_10_1016_j_solidstatesciences_2023_107135
crossref_primary_10_1016_j_jece_2024_112883
crossref_primary_10_1021_acs_inorgchem_1c01151
crossref_primary_10_1016_j_ijhydene_2023_11_295
crossref_primary_10_1016_j_ijhydene_2022_08_179
crossref_primary_10_1039_C9CC06109F
crossref_primary_10_1002_cnma_202200115
crossref_primary_10_1039_D0EE03697H
crossref_primary_10_1002_adfm_202101724
crossref_primary_10_1016_j_ceramint_2024_12_069
crossref_primary_10_1039_D1QI00663K
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1002_smll_202410228
crossref_primary_10_1021_acsanm_0c03310
crossref_primary_10_1016_j_cej_2023_147592
crossref_primary_10_1016_j_ijhydene_2022_05_115
crossref_primary_10_1021_acs_inorgchem_1c03216
crossref_primary_10_1021_acs_inorgchem_5c00013
crossref_primary_10_1016_j_jcis_2023_07_083
crossref_primary_10_1039_D0CC03422C
crossref_primary_10_1016_j_ijhydene_2023_03_127
crossref_primary_10_1021_acs_inorgchem_2c00241
crossref_primary_10_1039_D0DT04397D
crossref_primary_10_1016_j_ccr_2023_215603
crossref_primary_10_1088_1742_6596_2705_1_012015
crossref_primary_10_1002_ange_202116934
crossref_primary_10_1016_j_jcis_2022_04_181
crossref_primary_10_3390_catal12040358
crossref_primary_10_1016_j_ijhydene_2022_04_014
crossref_primary_10_1016_j_ccr_2020_213619
crossref_primary_10_1016_j_jcis_2019_09_108
crossref_primary_10_1021_acs_chemmater_9b05289
crossref_primary_10_1039_D1DT00302J
crossref_primary_10_1039_D0TA07616C
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1039_D0AN00801J
crossref_primary_10_1016_j_mtnano_2021_100124
crossref_primary_10_1039_C9RA07499F
crossref_primary_10_1016_j_ces_2020_115941
crossref_primary_10_1002_slct_202004504
crossref_primary_10_1039_D1NR06197F
crossref_primary_10_1007_s12274_022_4451_y
crossref_primary_10_1002_anie_202116934
crossref_primary_10_1016_j_mtener_2024_101652
crossref_primary_10_1039_D0TA08094B
crossref_primary_10_1016_j_cjche_2021_11_011
crossref_primary_10_1021_acs_jpclett_0c02539
crossref_primary_10_1002_cey2_45
crossref_primary_10_1088_2053_1583_ab86d1
crossref_primary_10_1002_er_6834
crossref_primary_10_1016_j_diamond_2024_111559
crossref_primary_10_1021_acsaem_1c00429
Cites_doi 10.1021/ja983577d
10.1002/anie.201705385
10.1021/acs.jpcc.5b00105
10.1039/C7TA01838J
10.1021/ja5082553
10.1002/smll.201601131
10.1039/C6EE00377J
10.1038/ncomms15341
10.1002/adma.201703870
10.1039/C5TA09924B
10.1002/aenm.201600621
10.1002/aenm.201502585
10.1021/ja502379c
10.1039/C6CS00328A
10.1039/C6CS00362A
10.1021/acs.chemrev.6b00398
10.1039/C7CC03005C
10.1002/anie.201711376
10.1021/la703864a
10.1021/acs.accounts.5b00530
10.1021/ar100023y
10.1016/j.jpowsour.2016.09.152
10.1002/adfm.201702324
10.1039/C6TA02334G
10.1002/anie.201506219
10.1016/j.jpowsour.2016.03.040
10.1149/1.2119829
10.1002/smll.201604103
10.1039/C5NR07170D
10.1021/acscatal.6b02479
10.1002/anie.201509382
10.1038/s41570-016-0003
10.1002/anie.201610413
10.1039/C5EE02509E
10.1002/advs.201600371
10.1039/b807080f
10.1021/ja3043905
10.1021/jacs.5b01613
10.1023/A:1003901520705
10.1039/C7NH00079K
10.1002/adfm.201300510
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acssuschemeng.9b01131
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-0485
EndPage 9749
ExternalDocumentID 10_1021_acssuschemeng_9b01131
b43211673
GroupedDBID 53G
55A
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
ROL
UI2
VF5
VG9
W1F
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7S9
L.6
ID FETCH-LOGICAL-a394t-8e8c587243f37cfab4be8980c67845bca69ceea562d9d1a28db3eb6abae3740e3
IEDL.DBID ACS
ISSN 2168-0485
IngestDate Fri Jul 11 01:19:56 EDT 2025
Thu Apr 24 22:59:10 EDT 2025
Tue Jul 01 02:36:46 EDT 2025
Thu Aug 27 13:44:02 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Metal−organic framework
Electrocatalysis
Water splitting
Electrical conductivity
Iron
Oxygen evolution reaction
Catalyst
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-8e8c587243f37cfab4be8980c67845bca69ceea562d9d1a28db3eb6abae3740e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5700-0114
PQID 2286910942
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2286910942
crossref_citationtrail_10_1021_acssuschemeng_9b01131
crossref_primary_10_1021_acssuschemeng_9b01131
acs_journals_10_1021_acssuschemeng_9b01131
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-03
PublicationDateYYYYMMDD 2019-06-03
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-03
  day: 03
PublicationDecade 2010
PublicationTitle ACS sustainable chemistry & engineering
PublicationTitleAlternate ACS Sustainable Chem. Eng
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1021/ja983577d
– ident: ref11/cit11
  doi: 10.1002/anie.201705385
– ident: ref39/cit39
  doi: 10.1021/acs.jpcc.5b00105
– ident: ref41/cit41
  doi: 10.1039/C7TA01838J
– ident: ref23/cit23
  doi: 10.1021/ja5082553
– ident: ref18/cit18
  doi: 10.1002/smll.201601131
– ident: ref12/cit12
  doi: 10.1039/C6EE00377J
– ident: ref34/cit34
  doi: 10.1038/ncomms15341
– ident: ref13/cit13
  doi: 10.1002/adma.201703870
– ident: ref31/cit31
  doi: 10.1039/C5TA09924B
– ident: ref32/cit32
  doi: 10.1002/aenm.201600621
– ident: ref16/cit16
  doi: 10.1002/aenm.201502585
– ident: ref33/cit33
  doi: 10.1021/ja502379c
– ident: ref1/cit1
  doi: 10.1039/C6CS00328A
– ident: ref27/cit27
  doi: 10.1039/C6CS00362A
– ident: ref5/cit5
  doi: 10.1021/acs.chemrev.6b00398
– ident: ref17/cit17
  doi: 10.1039/C7CC03005C
– ident: ref35/cit35
  doi: 10.1002/anie.201711376
– ident: ref36/cit36
  doi: 10.1021/la703864a
– ident: ref21/cit21
  doi: 10.1021/acs.accounts.5b00530
– ident: ref20/cit20
  doi: 10.1021/ar100023y
– ident: ref40/cit40
  doi: 10.1016/j.jpowsour.2016.09.152
– ident: ref25/cit25
  doi: 10.1002/adfm.201702324
– ident: ref2/cit2
  doi: 10.1039/C6TA02334G
– ident: ref26/cit26
  doi: 10.1002/anie.201506219
– ident: ref29/cit29
  doi: 10.1016/j.jpowsour.2016.03.040
– ident: ref7/cit7
  doi: 10.1149/1.2119829
– ident: ref19/cit19
  doi: 10.1002/smll.201604103
– ident: ref14/cit14
  doi: 10.1039/C5NR07170D
– ident: ref8/cit8
  doi: 10.1021/acscatal.6b02479
– ident: ref24/cit24
  doi: 10.1002/anie.201509382
– ident: ref3/cit3
  doi: 10.1038/s41570-016-0003
– ident: ref9/cit9
  doi: 10.1002/anie.201610413
– ident: ref10/cit10
  doi: 10.1039/C5EE02509E
– ident: ref4/cit4
  doi: 10.1002/advs.201600371
– ident: ref22/cit22
  doi: 10.1039/b807080f
– ident: ref37/cit37
  doi: 10.1021/ja3043905
– ident: ref28/cit28
  doi: 10.1021/jacs.5b01613
– ident: ref6/cit6
  doi: 10.1023/A:1003901520705
– ident: ref15/cit15
  doi: 10.1039/C7NH00079K
– ident: ref30/cit30
  doi: 10.1002/adfm.201300510
SSID ssj0000993281
Score 2.543443
Snippet In recent years, metal–organic frameworks (MOFs) have been extensively investigated for diverse heterogeneous catalysis due to their diversity of structures...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9743
SubjectTerms active sites
annealing
catalysts
catalytic activity
coordination polymers
electrochemistry
energy conversion
iron
nanoparticles
nickel
oxidation
oxygen production
physicochemical properties
temperature
Title Highly Conductive Bimetallic Ni–Fe Metal Organic Framework as a Novel Electrocatalyst for Water Oxidation
URI http://dx.doi.org/10.1021/acssuschemeng.9b01131
https://www.proquest.com/docview/2286910942
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYhe1kfdu1Y1m1osKeCk1iSZekxCwllkGywhuXNSLI0QlNnxM5o-tT_sH_YX9IjX8LCCNkebThCPj7S90nnhtBH4hyXmqRB6AwJmHU8UCJOg4gBFnGT9l2Z9T6Z8osZ-zyP5i3UO-DBJ2FPGZgAnPT8bdmPrtRgkD5v-hHhIvanrcHw2-5SBegOJWVjUhJyEYB1Rk3WzqGRPCqZfB-V9jflEmnGT9HXJl-nCjC56m4K3TW3f5dv_NePeIae1KwTDyozeY5aNnuBTv6oRfgSXfmIj-UWD1eZLwELmyD-tLi2wM2XC4Oni_u732OLJ_4FrhI4DR43kV1Y5Vjh6eqXXeJR1VinvBfa5gUGVoy_A6Nd4y83i6qD0ymajUeXw4ug7sQQKCpZEQgrTCRiwqijsXFKM22FFH0DUMcibRSXALYKuFQq01ARkWpqNVdaWRqzvqWvUDtbZfY1wo45I7SOY0ENgwcFHMNox2BE6Yjsd9A5KCupV1KelE5yEiZ7GkxqDXYQa35bYuqa5r61xvKYWHcn9rMq6nFM4ENjEwksP-9TUZldbfKEEMGBcUlG3vzPxM_QY2Besow5o29Ru1hv7DtgN4V-X1r0A2E4_E0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxshEEZRemh76LvKow8q9VRpXS-wLBxdy5bbxu6htpLbCliIrDjrKruOkpzyH_oP-0s6sLtOXKmKclwkRiwMzAcz8w1CH4lzXGqSR7EzJGLW8UiJNI8SBraIm7zrQtb7eMJHM_btKDnaQrzNhYFBlCCpDE78G3aB-DO0lSu48PlHs-OO1KCXPn36AQAS4i9dvf7P9dsKoB5KQn1SEnMRgZImbfLO_yR542TKTeO0eTYHgzN8ig7XQw1xJiedVaU75uofFsf7_8sz9KTBoLhXK81ztGWLF-jxLWbCl-jEx38sLnF_WXhCWDgS8Zf5qQWkvpgbPJn_uf49tHjsG3CdzmnwsI3zwqrECk-W53aBB3WZnfBKdFlWGDAyPgR8e4Z_XMzrek6v0Gw4mPZHUVOXIVJUsioSVphEpIRRR1PjlGbaCim6BgwfS7RRXILpVYCscpnHiohcU6u50srSlHUtfY22i2VhdxB2zBmhdZoKahh8KEAcRjsGEqUjsruLPsFkZc2-KrPgMidxtjGDWTODu4i1q5eZhuHcF9pY3NWts-72q6b4uKvDh1Y1MtiM3sOiCrtclRkhggP-kozs3Wfg79HD0XR8kB18nXzfR48Ak8kQjUbfoO3qbGXfAu6p9Lug5H8BgmwEvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEA9iQexDW23FU6sR-lTY8zbJ7iaPerqordeCSgUfliSbyOF1T9w9UZ_8Dv2G_SROsntHTxCxjxvIMJvMZH7J_EPoC7E2ForkQWg1CZixcSB5kgcRA1sU67xjfdb7US_eP2WHZ9FZE1XpcmGAiRIold6J77T6KrdNhYFwC8bLEVz63MPZRVsokE2XQv3Gue7cxWu7ezx5XwHkQ4nvUUrCmAcgqNE4gec5Ss5A6XLaQE2fz97opO_R-YRdH2ty2R5Vqq3vn1Ry_L__-YDeNVgUb9fCs4BmTLGI3v5TofAjunRxIIM73B0WrjAsHI14p__bAGIf9DXu9f8-_EkNPnIDuE7r1Dgdx3thWWKJe8MbM8B7dbsd_1p0V1YYsDL-BTj3Gv-47dd9nT6h03TvpLsfNP0ZAkkFqwJuuI54Qhi1NNFWKqYMF7yjwQCySGkZCzDBEhBWLvJQEp4ralQslTQ0YR1Dl9BsMSzMMsKWWc2VShJONYMPCchDK8uAorBEdFroKyxW1uhXmXnXOQmzqRXMmhVsITbewUw3lc5dw43BS9Pak2lXdamPlyZsjsUjA6V0nhZZmOGozAjhMeAwwcjKaxjfQHM_d9Ps-0Hv2yqaB2gmfFAaXUOz1fXIfAb4U6l1L-ePuRMHQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Conductive+Bimetallic+Ni%E2%80%93Fe+Metal+Organic+Framework+as+a+Novel+Electrocatalyst+for+Water+Oxidation&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Zheng%2C+Fuqin&rft.au=Xiang%2C+Dong&rft.au=Li%2C+Ping&rft.au=Zhang%2C+Ziwei&rft.date=2019-06-03&rft.pub=American+Chemical+Society&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=7&rft.issue=11&rft.spage=9743&rft.epage=9749&rft_id=info:doi/10.1021%2Facssuschemeng.9b01131&rft.externalDocID=b43211673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon