Development of Toughened Blends of Poly(lactic acid) and Poly(butylene adipate-co-terephthalate) for 3D Printing Applications: Compatibilization Methods and Material Performance Evaluation

The research presented in this article discusses the subject of poly­(lactic acid) (PLA) modification via reactive mixing with the poly­(butylene adipate-co-terephthalate) (PBAT) copolymer for 3D printing applications. Filaments suitable for fused deposition modeling were prepared from blends of PLA...

Full description

Saved in:
Bibliographic Details
Published inACS sustainable chemistry & engineering Vol. 8; no. 17; pp. 6576 - 6589
Main Authors Andrzejewski, Jacek, Cheng, Joyce, Anstey, Andrew, Mohanty, Amar K, Misra, Manjusri
Format Journal Article
LanguageEnglish
Published American Chemical Society 04.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The research presented in this article discusses the subject of poly­(lactic acid) (PLA) modification via reactive mixing with the poly­(butylene adipate-co-terephthalate) (PBAT) copolymer for 3D printing applications. Filaments suitable for fused deposition modeling were prepared from blends of PLA containing 10, 20, and 30% by weight of PBAT. Mechanical testing clearly indicated that the blending with PBAT effectively increases the impact strength of PLA, from an initial value of approximately 30 J/m to more than 700 J/m for the optimized PLA/PBAT (30%) chain extender-modified blend. The addition of the multifunctional chain extender (ESA) also has a positive effect on the rheological profile of the PLA/PBAT materials, which facilitates both the production process of the extruded filament and the maintenance of a stable width of the printed material path. Despite the use of a significant PBAT content, the analysis of thermomechanical properties did not show any significant deterioration in the thermal resistance of the materials, while a detailed differential scanning calorimetry analysis indicates a small tendency to nucleate the PLA structure by PBAT inclusions. The structural analysis of scanning electron microscopy clearly indicates a change in the mechanism of deformation from a brittle fracture for pure PLA to a more favorable shear yielding for PBAT-rich blends. The comparison of the properties of printed and injected PLA/PBAT blends indicates the possibility of obtaining similar or in some respects better mechanical properties, especially for ESA-modified samples.
AbstractList The research presented in this article discusses the subject of poly­(lactic acid) (PLA) modification via reactive mixing with the poly­(butylene adipate-co-terephthalate) (PBAT) copolymer for 3D printing applications. Filaments suitable for fused deposition modeling were prepared from blends of PLA containing 10, 20, and 30% by weight of PBAT. Mechanical testing clearly indicated that the blending with PBAT effectively increases the impact strength of PLA, from an initial value of approximately 30 J/m to more than 700 J/m for the optimized PLA/PBAT (30%) chain extender-modified blend. The addition of the multifunctional chain extender (ESA) also has a positive effect on the rheological profile of the PLA/PBAT materials, which facilitates both the production process of the extruded filament and the maintenance of a stable width of the printed material path. Despite the use of a significant PBAT content, the analysis of thermomechanical properties did not show any significant deterioration in the thermal resistance of the materials, while a detailed differential scanning calorimetry analysis indicates a small tendency to nucleate the PLA structure by PBAT inclusions. The structural analysis of scanning electron microscopy clearly indicates a change in the mechanism of deformation from a brittle fracture for pure PLA to a more favorable shear yielding for PBAT-rich blends. The comparison of the properties of printed and injected PLA/PBAT blends indicates the possibility of obtaining similar or in some respects better mechanical properties, especially for ESA-modified samples.
The research presented in this article discusses the subject of poly(lactic acid) (PLA) modification via reactive mixing with the poly(butylene adipate-co-terephthalate) (PBAT) copolymer for 3D printing applications. Filaments suitable for fused deposition modeling were prepared from blends of PLA containing 10, 20, and 30% by weight of PBAT. Mechanical testing clearly indicated that the blending with PBAT effectively increases the impact strength of PLA, from an initial value of approximately 30 J/m to more than 700 J/m for the optimized PLA/PBAT (30%) chain extender-modified blend. The addition of the multifunctional chain extender (ESA) also has a positive effect on the rheological profile of the PLA/PBAT materials, which facilitates both the production process of the extruded filament and the maintenance of a stable width of the printed material path. Despite the use of a significant PBAT content, the analysis of thermomechanical properties did not show any significant deterioration in the thermal resistance of the materials, while a detailed differential scanning calorimetry analysis indicates a small tendency to nucleate the PLA structure by PBAT inclusions. The structural analysis of scanning electron microscopy clearly indicates a change in the mechanism of deformation from a brittle fracture for pure PLA to a more favorable shear yielding for PBAT-rich blends. The comparison of the properties of printed and injected PLA/PBAT blends indicates the possibility of obtaining similar or in some respects better mechanical properties, especially for ESA-modified samples.
Author Mohanty, Amar K
Andrzejewski, Jacek
Anstey, Andrew
Misra, Manjusri
Cheng, Joyce
AuthorAffiliation Faculty of Mechanical Engineering, Polymer Processing Division
School of Engineering
Poznan University of Technology
Bioproduct Discovery and Development Centre, Department of Plant Agriculture
AuthorAffiliation_xml – name: School of Engineering
– name: Poznan University of Technology
– name: Faculty of Mechanical Engineering, Polymer Processing Division
– name: Bioproduct Discovery and Development Centre, Department of Plant Agriculture
Author_xml – sequence: 1
  givenname: Jacek
  surname: Andrzejewski
  fullname: Andrzejewski, Jacek
  organization: Poznan University of Technology
– sequence: 2
  givenname: Joyce
  surname: Cheng
  fullname: Cheng, Joyce
  organization: School of Engineering
– sequence: 3
  givenname: Andrew
  surname: Anstey
  fullname: Anstey, Andrew
  organization: Bioproduct Discovery and Development Centre, Department of Plant Agriculture
– sequence: 4
  givenname: Amar K
  orcidid: 0000-0002-1079-2481
  surname: Mohanty
  fullname: Mohanty, Amar K
  email: mohanty@uoguelph.ca
  organization: School of Engineering
– sequence: 5
  givenname: Manjusri
  orcidid: 0000-0003-2179-7699
  surname: Misra
  fullname: Misra, Manjusri
  email: mmisra@uoguelph.ca
  organization: School of Engineering
BookMark eNqFkc1u3CAUha0qlZqmeYRKLJOFE2P8R7tKJ0lbKVFnka6ta7iMiTC4gCNNnq0PV2Ymi7absAEdzncu4rzPjqyzmGUfaXFBi5JegghhCWLECe3mgg9Fxcv6TXZc0qbLi6qrj_46v8tOQ3gs0uKclR09zn5f4xMaNyc6EqfIg1s2I1qU5ItBK8NOWzuzPTMgohYEhJbnBKw8qMMSt8mHBKSeIWIuXB7R4zzGEUwSzolynrBrsvbaRm035GqejRYQtbPhE1m5KXF60EY_7zVyj3F0afBuxn1K8BoMWaNPORNYgeTmCcyy937I3iowAU9f9pPs5-3Nw-pbfvfj6_fV1V0OjFcxp7ziICgANhLqjg9Am7oTXaVUUruWCdXKVqEoukKiYm0zQKVkyzts2DAodpKdHXJn734tGGI_6SDQGLDoltCXFeOMF1VJk_XzwSq8C8Gj6oWO-8dGD9r0tOh3tfX_1Na_1Jbo-j969noCv32VowcuXfePbvE2fccrzB8HoLrV
CitedBy_id crossref_primary_10_1002_slct_202301769
crossref_primary_10_1016_j_polymer_2021_124269
crossref_primary_10_3390_polym13060890
crossref_primary_10_1016_j_ijbiomac_2022_12_193
crossref_primary_10_1016_j_polymertesting_2021_107205
crossref_primary_10_1021_acsapm_2c00715
crossref_primary_10_1016_j_matpr_2022_02_420
crossref_primary_10_3390_polym14091720
crossref_primary_10_1002_slct_202301046
crossref_primary_10_1021_acs_macromol_4c02051
crossref_primary_10_3390_polym15143025
crossref_primary_10_3390_ma15155205
crossref_primary_10_1002_pen_26821
crossref_primary_10_3390_jcs6040112
crossref_primary_10_3390_polym12112573
crossref_primary_10_1016_j_polymer_2024_127691
crossref_primary_10_1016_j_compstruct_2023_117379
crossref_primary_10_1039_D1GC02049H
crossref_primary_10_1016_j_progpolymsci_2022_101579
crossref_primary_10_3390_jcs5100253
crossref_primary_10_1016_j_ijbiomac_2020_10_181
crossref_primary_10_1021_acsapm_2c00600
crossref_primary_10_1016_j_polymer_2021_123927
crossref_primary_10_1016_j_polymertesting_2025_108748
crossref_primary_10_1016_j_tca_2024_179761
crossref_primary_10_1016_j_ijbiomac_2022_01_090
crossref_primary_10_1021_acssuschemeng_2c05613
crossref_primary_10_1002_app_56487
crossref_primary_10_1016_j_eurpolymj_2024_113289
crossref_primary_10_1016_j_mtsust_2022_100314
crossref_primary_10_1016_j_eurpolymj_2021_110317
crossref_primary_10_1088_1755_1315_1049_1_012026
crossref_primary_10_3390_polym13050740
crossref_primary_10_1515_psr_2022_0048
crossref_primary_10_1007_s11814_021_0809_1
crossref_primary_10_1016_j_ijbiomac_2022_09_253
crossref_primary_10_1016_j_ijbiomac_2024_129355
crossref_primary_10_1016_j_ijbiomac_2023_125017
crossref_primary_10_1002_app_54473
crossref_primary_10_3390_ma13092057
crossref_primary_10_1007_s10924_024_03447_7
crossref_primary_10_1016_j_jmrt_2023_01_221
crossref_primary_10_1016_j_ijbiomac_2024_139344
crossref_primary_10_1002_pen_25832
crossref_primary_10_1007_s10965_022_03227_8
crossref_primary_10_1016_j_surfin_2024_104908
crossref_primary_10_1021_acs_macromol_2c00674
crossref_primary_10_1021_acsapm_2c01273
crossref_primary_10_3390_polym13091381
crossref_primary_10_1007_s40964_024_00646_5
crossref_primary_10_1002_marc_202400661
crossref_primary_10_1021_acsomega_1c04486
crossref_primary_10_1021_acssuschemeng_4c07885
crossref_primary_10_1016_j_ijbiomac_2023_126231
crossref_primary_10_1002_app_50877
crossref_primary_10_1016_j_addma_2022_103166
crossref_primary_10_1016_j_ijbiomac_2022_07_232
crossref_primary_10_1016_j_matchemphys_2024_129306
crossref_primary_10_1021_acsapm_2c00603
crossref_primary_10_1021_acssuschemeng_0c09413
crossref_primary_10_1007_s10965_020_02337_5
crossref_primary_10_1002_pen_25948
crossref_primary_10_1007_s10965_022_03320_y
crossref_primary_10_3390_s22218107
crossref_primary_10_3390_polym13152489
crossref_primary_10_3390_polym15224463
crossref_primary_10_1016_j_polymer_2022_124590
crossref_primary_10_3390_polym16020267
crossref_primary_10_1038_s41428_024_00883_z
crossref_primary_10_1016_j_polymer_2021_124494
crossref_primary_10_1021_acs_macromol_3c01126
crossref_primary_10_1021_acs_macromol_1c00530
crossref_primary_10_1016_j_ijbiomac_2023_123419
crossref_primary_10_1016_j_jmrt_2025_01_092
crossref_primary_10_1016_j_giant_2024_100274
crossref_primary_10_1122_8_0000826
crossref_primary_10_3390_ma13245789
crossref_primary_10_1016_j_ijbiomac_2025_140530
crossref_primary_10_1002_adem_202300058
crossref_primary_10_1039_D4MA00233D
crossref_primary_10_1002_app_52469
crossref_primary_10_1021_acsapm_2c00898
Cites_doi 10.1016/j.addma.2017.07.006
10.1002/pen.24566
10.1007/s10853-018-3120-8
10.3144/expresspolymlett.2018.69
10.3390/su10072369
10.1108/RPJ-03-2016-0050
10.1021/acsami.6b00451
10.1515/polyeng-2016-0206
10.1016/j.matdes.2019.107884
10.1021/ie300526u
10.12691/ajme-7-2-1
10.1002/app.47322
10.1021/ie300524j
10.5539/jsd.v3n4p17
10.1016/j.resconrec.2017.09.001
10.1039/C7RA10745E
10.3390/polym7050939
10.1016/j.eurpolymj.2014.06.013
10.1016/j.polymertesting.2015.02.005
10.1016/j.compositesb.2019.107147
10.1039/C6RA21208E
10.1016/j.matdes.2014.02.038
10.1039/C5RA25438H
10.1021/acssuschemeng.9b01830
10.1002/mame.201600242
10.1002/anie.201805766
10.3390/polym11030549
10.1155/2013/951696
10.3993/jfbi03201308
10.1016/j.polymdegradstab.2018.04.024
10.1002/masy.201800133
10.1016/j.eurpolymj.2013.01.016
10.1080/10837450.2018.1492618
10.1016/j.lwt.2015.12.062
10.1016/j.energy.2006.03.026
10.1016/j.eurpolymj.2017.03.031
10.1016/j.polymdegradstab.2018.08.008
10.1080/14658011.2017.1399531
10.1557/jmr.2014.212
10.1016/j.egypro.2014.07.191
10.1007/s00397-014-0774-2
10.1016/j.eurpolymj.2015.05.001
10.1016/j.matlet.2017.01.063
10.1016/j.matdes.2019.108013
10.1016/j.polymdegradstab.2014.01.025
10.1122/1.4905714
10.1007/s10924-012-0448-z
10.1016/j.polymer.2017.03.011
10.1016/j.compositesb.2016.11.034
10.1021/am502337u
10.1021/acsomega.8b00823
10.1002/pat.4274
10.1007/s00397-011-0538-1
10.1177/0731684417750477
10.1016/j.polymdegradstab.2008.10.004
10.1021/acsomega.8b02549
10.1016/j.polymertesting.2017.03.008
10.1122/1.4953446
10.1007/BF01498927
10.1002/macp.201100437
10.3390/polym9070257
10.1016/j.eurpolymj.2018.07.035
10.1021/acsomega.8b00129
10.1023/A:1020200822435
10.3390/bioengineering5010002
10.1007/s00289-014-1148-8
10.1016/j.mtcomm.2017.12.016
10.3390/ijms141020189
10.1016/S0032-3861(00)00032-X
10.1016/j.matdes.2016.02.018
10.1002/pen.24927
10.1016/j.wasman.2018.04.030
10.1016/j.polymdegradstab.2012.06.028
10.1016/j.matdes.2011.11.036
10.1002/app.2018
10.1002/app.38912
10.1016/j.matdes.2017.03.065
10.3390/jcs1010008
10.1002/pen.24795
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acssuschemeng.9b04925
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-0485
EndPage 6589
ExternalDocumentID 10_1021_acssuschemeng_9b04925
d135103509
GroupedDBID 53G
55A
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
GNL
IH9
JG
JG~
ROL
UI2
VF5
VG9
W1F
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7S9
L.6
ID FETCH-LOGICAL-a394t-1949ac1aae6da589ba1658c84ffc1a873cf7d7fec080def376ba4fd798e63bbf3
IEDL.DBID ACS
ISSN 2168-0485
IngestDate Fri Jul 11 11:14:42 EDT 2025
Tue Jul 01 02:36:53 EDT 2025
Thu Apr 24 23:07:09 EDT 2025
Thu Aug 27 22:10:25 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords PBAT
PLA
FDM printing
polymer blends
impact toughness
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-1949ac1aae6da589ba1658c84ffc1a873cf7d7fec080def376ba4fd798e63bbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1079-2481
0000-0003-2179-7699
PQID 2439390421
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2439390421
crossref_citationtrail_10_1021_acssuschemeng_9b04925
crossref_primary_10_1021_acssuschemeng_9b04925
acs_journals_10_1021_acssuschemeng_9b04925
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-04
PublicationDateYYYYMMDD 2020-05-04
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-04
  day: 04
PublicationDecade 2020
PublicationTitle ACS sustainable chemistry & engineering
PublicationTitleAlternate ACS Sustainable Chem. Eng
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1016/j.addma.2017.07.006
– ident: ref50/cit50
  doi: 10.1002/pen.24566
– ident: ref67/cit67
  doi: 10.1007/s10853-018-3120-8
– ident: ref8/cit8
  doi: 10.3144/expresspolymlett.2018.69
– ident: ref34/cit34
  doi: 10.3390/su10072369
– ident: ref65/cit65
  doi: 10.1108/RPJ-03-2016-0050
– ident: ref13/cit13
  doi: 10.1021/acsami.6b00451
– ident: ref75/cit75
  doi: 10.1515/polyeng-2016-0206
– ident: ref23/cit23
  doi: 10.1016/j.matdes.2019.107884
– ident: ref77/cit77
  doi: 10.1021/ie300526u
– ident: ref59/cit59
  doi: 10.12691/ajme-7-2-1
– ident: ref68/cit68
  doi: 10.1002/app.47322
– ident: ref78/cit78
  doi: 10.1021/ie300524j
– ident: ref1/cit1
  doi: 10.5539/jsd.v3n4p17
– ident: ref32/cit32
  doi: 10.1016/j.resconrec.2017.09.001
– ident: ref39/cit39
  doi: 10.1039/C7RA10745E
– ident: ref44/cit44
  doi: 10.3390/polym7050939
– ident: ref69/cit69
  doi: 10.1016/j.eurpolymj.2014.06.013
– ident: ref35/cit35
  doi: 10.1016/j.polymertesting.2015.02.005
– ident: ref22/cit22
  doi: 10.1016/j.compositesb.2019.107147
– ident: ref49/cit49
  doi: 10.1039/C6RA21208E
– ident: ref2/cit2
  doi: 10.1016/j.matdes.2014.02.038
– ident: ref76/cit76
  doi: 10.1039/C5RA25438H
– ident: ref26/cit26
  doi: 10.1021/acssuschemeng.9b01830
– ident: ref64/cit64
  doi: 10.1002/mame.201600242
– ident: ref33/cit33
  doi: 10.1002/anie.201805766
– ident: ref16/cit16
  doi: 10.3390/polym11030549
– ident: ref12/cit12
  doi: 10.1155/2013/951696
– ident: ref9/cit9
  doi: 10.3993/jfbi03201308
– ident: ref28/cit28
  doi: 10.1016/j.polymdegradstab.2018.04.024
– ident: ref40/cit40
  doi: 10.1002/masy.201800133
– ident: ref11/cit11
  doi: 10.1016/j.eurpolymj.2013.01.016
– ident: ref66/cit66
  doi: 10.1080/10837450.2018.1492618
– ident: ref14/cit14
  doi: 10.1016/j.lwt.2015.12.062
– ident: ref41/cit41
  doi: 10.1016/j.energy.2006.03.026
– ident: ref6/cit6
  doi: 10.1016/j.eurpolymj.2017.03.031
– ident: ref27/cit27
  doi: 10.1016/j.polymdegradstab.2018.08.008
– ident: ref61/cit61
  doi: 10.1080/14658011.2017.1399531
– ident: ref4/cit4
  doi: 10.1557/jmr.2014.212
– ident: ref74/cit74
  doi: 10.1016/j.egypro.2014.07.191
– ident: ref53/cit53
  doi: 10.1007/s00397-014-0774-2
– ident: ref42/cit42
  doi: 10.1016/j.eurpolymj.2015.05.001
– ident: ref5/cit5
  doi: 10.1016/j.matlet.2017.01.063
– ident: ref18/cit18
  doi: 10.1016/j.matdes.2019.108013
– ident: ref31/cit31
  doi: 10.1016/j.polymdegradstab.2014.01.025
– ident: ref70/cit70
  doi: 10.1122/1.4905714
– ident: ref46/cit46
  doi: 10.1007/s10924-012-0448-z
– ident: ref79/cit79
  doi: 10.1016/j.polymer.2017.03.011
– ident: ref15/cit15
  doi: 10.1016/j.compositesb.2016.11.034
– ident: ref51/cit51
  doi: 10.1021/am502337u
– ident: ref54/cit54
  doi: 10.1021/acsomega.8b00823
– ident: ref48/cit48
  doi: 10.1002/pat.4274
– ident: ref52/cit52
  doi: 10.1007/s00397-011-0538-1
– ident: ref17/cit17
  doi: 10.1177/0731684417750477
– ident: ref57/cit57
  doi: 10.1016/j.polymdegradstab.2008.10.004
– ident: ref24/cit24
  doi: 10.1021/acsomega.8b02549
– ident: ref72/cit72
  doi: 10.1016/j.polymertesting.2017.03.008
– ident: ref71/cit71
  doi: 10.1122/1.4953446
– ident: ref63/cit63
  doi: 10.1007/BF01498927
– ident: ref56/cit56
  doi: 10.1002/macp.201100437
– ident: ref7/cit7
  doi: 10.3390/polym9070257
– ident: ref25/cit25
  doi: 10.1016/j.eurpolymj.2018.07.035
– ident: ref58/cit58
  doi: 10.1021/acsomega.8b00129
– ident: ref62/cit62
  doi: 10.1023/A:1020200822435
– ident: ref10/cit10
  doi: 10.3390/bioengineering5010002
– ident: ref43/cit43
  doi: 10.1007/s00289-014-1148-8
– ident: ref21/cit21
  doi: 10.1016/j.mtcomm.2017.12.016
– ident: ref30/cit30
  doi: 10.3390/ijms141020189
– ident: ref73/cit73
  doi: 10.1016/S0032-3861(00)00032-X
– ident: ref19/cit19
  doi: 10.1016/j.matdes.2016.02.018
– ident: ref37/cit37
  doi: 10.1002/pen.24927
– ident: ref29/cit29
  doi: 10.1016/j.wasman.2018.04.030
– ident: ref45/cit45
  doi: 10.1016/j.polymdegradstab.2012.06.028
– ident: ref55/cit55
  doi: 10.1016/j.matdes.2011.11.036
– ident: ref38/cit38
  doi: 10.1002/app.2018
– ident: ref36/cit36
  doi: 10.1002/app.38912
– ident: ref60/cit60
  doi: 10.1016/j.matdes.2017.03.065
– ident: ref20/cit20
  doi: 10.3390/jcs1010008
– ident: ref47/cit47
  doi: 10.1002/pen.24795
SSID ssj0000993281
Score 2.5162373
Snippet The research presented in this article discusses the subject of poly­(lactic acid) (PLA) modification via reactive mixing with the poly­(butylene...
The research presented in this article discusses the subject of poly(lactic acid) (PLA) modification via reactive mixing with the poly(butylene...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6576
SubjectTerms brittleness
composite polymers
deformation
differential scanning calorimetry
heat tolerance
impact strength
mechanical testing
mixing
polylactic acid
scanning electron microscopy
three-dimensional printing
Title Development of Toughened Blends of Poly(lactic acid) and Poly(butylene adipate-co-terephthalate) for 3D Printing Applications: Compatibilization Methods and Material Performance Evaluation
URI http://dx.doi.org/10.1021/acssuschemeng.9b04925
https://www.proquest.com/docview/2439390421
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9wwFBZpcmkPbbrRdAkq9NAUNKlsWZZ6y0ooTBloArmZp60pNXboeA7pb-uP65PsmcwQQlJ8e1iWbL3ls95GyAc02UrmTjPldcGEU5oZKTMGBo2xLQP3ED2642_y5Ex8PS_O18juLR78jO-CxQXgn148Lfsx0uZzLKf3gGxkEgU5YqGD74tDFYQ7eZYak2ZcKobcWcyzdm57UrRKdrpqlVaVcrI0x0_IZJ6v0weY_BrNOjOyf26Wb7zvS2ySxwPqpHs9mzwla755Rh4t1SJ8Tv4uhQ_RNtDT2L4HFaGj-3UMm420SVtffaxTWhUF-9PtUGhcTzWz7grv8xRcDNL2zLYMt8xfXnQXUCNhhyI8pvkhneB8Mdaa7i35zr_QpJi6FKvbZ4bScWpuPU1zjKFLokIn14kO9GhRqfwFOTs-Oj04YUNrBwa5Fh3jWmiwHMBLB4XSBjhCIatECEhVZW5D6crgYx105wNqQQMiuFIrL3NjQv6SrDdt418RagQiWGVNKUsvisIbhxegzfUFR2YLW-QTfv1qEM1plbzuGa9WtqQatmSLiDkfVHYokh57ddR3DRsthl32VULuGvB-zmQVynN00kDj29m0yhAh5hpVKX_9Pwt_Qx5m8SQghmKKt2S9-z3z7xAudWY7icg_Nz8aIA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOUAP5S3a8jASB4rkLU4cx-a2lFYLdKuV2IreIj9pRZRUJDm0v40fx9ib3e4ioarKbRQ7TjyveGa-QegtmGzBUyuJcDIjzApJNOcJURqMsck9dSpEdMfHfHTCvp5mp2uIz2thYBENzNTEIP41ugDdA1rTwQ9fODT7OZD6Q0DVu4PugkOSBM4e7n9fnK2A15MmsT9pQrkgwKTZvHjnfzMF42SaVeO0qpujwTl8gH4slhrzTH4NulYPzNU_KI63f5eHaLP3QfFwxjSP0JqrHqONJWTCJ-jPUjIRrj2ehmY-oBYt_lSGJNpAm9Tl5bsyFllhZc7tLlaVnVF1117CfQ4rG1K2HTE1gQ10F2ftmSqBsIvBWcbpZzyB54XMazxciqR_xFFNtTFzd1Ynisex1XUTnzFWbRQcPLkue8AHC9zyp-jk8GC6PyJ9oweiUslaQiWTylClHLcqE1IrCo6REcx7oIo8NT63uXcBFd06DzpRK-ZtLoXjqdY-fYbWq7pyzxHWDPxZYXTOc8eyzGkLlwIL7DIKrOe30Hv4-kUvqE0RY_AJLVa2pOi3ZAuxOTsUpodMD507ypuGDRbDLmaYITcNeDPntQKkO4RsVOXqrikS8BdTCYqVbt9m4a_RvdF0fFQcfTn-toPuJ-GMICRpshdovf3duZfgSLX6VZSav3KGIoE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOvBHlaSQOFMlbnDiJzW1puyqPrVailSpxiPykiChZkeRQfhs_jhlvdtlFQhUot1HsOPG84pn5hpAXYLJlnjrFpFcZE04qZvI8YdqAMbZF4F5jRHd6lB-eiPen2emQVYm1MLCIFmZqYxAfpXruwoAwwHeB3vbw04cHZ19GyrxGZL3L5AqG7pC7x3ufVucr4PmkSexRmvBcMmDUbFnA87eZ0EDZdtNAbernaHQmN8nn1XJjrsm3Ud-Zkf3xB5Lj_73PLXJj8EXpeME8t8klX98h19cQCu-Sn2tJRbQJ9Bib-oB6dPRthcm0SJs11fnLKhZbUW2_uh2qa7egmr47h_s81Q5Ttz2zDYON9POz7kxXQNih4DTTdJ_O4HmYgU3HaxH1NzSqqy5m8C7qRek0trxu4zOmuosCRGe_yx_owQq__B45mRwc7x2yoeED06kSHeNKKG251j53OpPKaA4OkpUiBKDKIrWhcEXwiI7ufADdaLQIrlDS56kxIb1Ptuqm9g8INQL8WmlNkRdeZJk3Di4NlthnHFgwbJNX8PXLQWDbMsbiE15ubEk5bMk2EUuWKO0AnY4dPKqLho1Ww-YL7JCLBjxf8lsJUo6hG137pm_LBPzGVIGC5Q__ZeHPyNXZ_qT8-O7owyNyLcGjAszVFI_JVve990_An-rM0yg4vwBwYyUE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Toughened+Blends+of+Poly%28lactic+acid%29+and+Poly%28butylene+adipate-co-terephthalate%29+for+3D+Printing+Applications%3A+Compatibilization+Methods+and+Material+Performance+Evaluation&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Andrzejewski%2C+Jacek&rft.au=Cheng%2C+Joyce&rft.au=Anstey%2C+Andrew&rft.au=Mohanty%2C+Amar+K&rft.date=2020-05-04&rft.pub=American+Chemical+Society&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=8&rft.issue=17&rft.spage=6576&rft.epage=6589&rft_id=info:doi/10.1021%2Facssuschemeng.9b04925&rft.externalDocID=d135103509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon