Development of Toughened Blends of Poly(lactic acid) and Poly(butylene adipate-co-terephthalate) for 3D Printing Applications: Compatibilization Methods and Material Performance Evaluation
The research presented in this article discusses the subject of poly(lactic acid) (PLA) modification via reactive mixing with the poly(butylene adipate-co-terephthalate) (PBAT) copolymer for 3D printing applications. Filaments suitable for fused deposition modeling were prepared from blends of PLA...
Saved in:
Published in | ACS sustainable chemistry & engineering Vol. 8; no. 17; pp. 6576 - 6589 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
04.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The research presented in this article discusses the subject of poly(lactic acid) (PLA) modification via reactive mixing with the poly(butylene adipate-co-terephthalate) (PBAT) copolymer for 3D printing applications. Filaments suitable for fused deposition modeling were prepared from blends of PLA containing 10, 20, and 30% by weight of PBAT. Mechanical testing clearly indicated that the blending with PBAT effectively increases the impact strength of PLA, from an initial value of approximately 30 J/m to more than 700 J/m for the optimized PLA/PBAT (30%) chain extender-modified blend. The addition of the multifunctional chain extender (ESA) also has a positive effect on the rheological profile of the PLA/PBAT materials, which facilitates both the production process of the extruded filament and the maintenance of a stable width of the printed material path. Despite the use of a significant PBAT content, the analysis of thermomechanical properties did not show any significant deterioration in the thermal resistance of the materials, while a detailed differential scanning calorimetry analysis indicates a small tendency to nucleate the PLA structure by PBAT inclusions. The structural analysis of scanning electron microscopy clearly indicates a change in the mechanism of deformation from a brittle fracture for pure PLA to a more favorable shear yielding for PBAT-rich blends. The comparison of the properties of printed and injected PLA/PBAT blends indicates the possibility of obtaining similar or in some respects better mechanical properties, especially for ESA-modified samples. |
---|---|
AbstractList | The research presented in this article discusses the subject of poly(lactic acid) (PLA) modification via reactive mixing with the poly(butylene adipate-co-terephthalate) (PBAT) copolymer for 3D printing applications. Filaments suitable for fused deposition modeling were prepared from blends of PLA containing 10, 20, and 30% by weight of PBAT. Mechanical testing clearly indicated that the blending with PBAT effectively increases the impact strength of PLA, from an initial value of approximately 30 J/m to more than 700 J/m for the optimized PLA/PBAT (30%) chain extender-modified blend. The addition of the multifunctional chain extender (ESA) also has a positive effect on the rheological profile of the PLA/PBAT materials, which facilitates both the production process of the extruded filament and the maintenance of a stable width of the printed material path. Despite the use of a significant PBAT content, the analysis of thermomechanical properties did not show any significant deterioration in the thermal resistance of the materials, while a detailed differential scanning calorimetry analysis indicates a small tendency to nucleate the PLA structure by PBAT inclusions. The structural analysis of scanning electron microscopy clearly indicates a change in the mechanism of deformation from a brittle fracture for pure PLA to a more favorable shear yielding for PBAT-rich blends. The comparison of the properties of printed and injected PLA/PBAT blends indicates the possibility of obtaining similar or in some respects better mechanical properties, especially for ESA-modified samples. The research presented in this article discusses the subject of poly(lactic acid) (PLA) modification via reactive mixing with the poly(butylene adipate-co-terephthalate) (PBAT) copolymer for 3D printing applications. Filaments suitable for fused deposition modeling were prepared from blends of PLA containing 10, 20, and 30% by weight of PBAT. Mechanical testing clearly indicated that the blending with PBAT effectively increases the impact strength of PLA, from an initial value of approximately 30 J/m to more than 700 J/m for the optimized PLA/PBAT (30%) chain extender-modified blend. The addition of the multifunctional chain extender (ESA) also has a positive effect on the rheological profile of the PLA/PBAT materials, which facilitates both the production process of the extruded filament and the maintenance of a stable width of the printed material path. Despite the use of a significant PBAT content, the analysis of thermomechanical properties did not show any significant deterioration in the thermal resistance of the materials, while a detailed differential scanning calorimetry analysis indicates a small tendency to nucleate the PLA structure by PBAT inclusions. The structural analysis of scanning electron microscopy clearly indicates a change in the mechanism of deformation from a brittle fracture for pure PLA to a more favorable shear yielding for PBAT-rich blends. The comparison of the properties of printed and injected PLA/PBAT blends indicates the possibility of obtaining similar or in some respects better mechanical properties, especially for ESA-modified samples. |
Author | Mohanty, Amar K Andrzejewski, Jacek Anstey, Andrew Misra, Manjusri Cheng, Joyce |
AuthorAffiliation | Faculty of Mechanical Engineering, Polymer Processing Division School of Engineering Poznan University of Technology Bioproduct Discovery and Development Centre, Department of Plant Agriculture |
AuthorAffiliation_xml | – name: School of Engineering – name: Poznan University of Technology – name: Faculty of Mechanical Engineering, Polymer Processing Division – name: Bioproduct Discovery and Development Centre, Department of Plant Agriculture |
Author_xml | – sequence: 1 givenname: Jacek surname: Andrzejewski fullname: Andrzejewski, Jacek organization: Poznan University of Technology – sequence: 2 givenname: Joyce surname: Cheng fullname: Cheng, Joyce organization: School of Engineering – sequence: 3 givenname: Andrew surname: Anstey fullname: Anstey, Andrew organization: Bioproduct Discovery and Development Centre, Department of Plant Agriculture – sequence: 4 givenname: Amar K orcidid: 0000-0002-1079-2481 surname: Mohanty fullname: Mohanty, Amar K email: mohanty@uoguelph.ca organization: School of Engineering – sequence: 5 givenname: Manjusri orcidid: 0000-0003-2179-7699 surname: Misra fullname: Misra, Manjusri email: mmisra@uoguelph.ca organization: School of Engineering |
BookMark | eNqFkc1u3CAUha0qlZqmeYRKLJOFE2P8R7tKJ0lbKVFnka6ta7iMiTC4gCNNnq0PV2Ymi7absAEdzncu4rzPjqyzmGUfaXFBi5JegghhCWLECe3mgg9Fxcv6TXZc0qbLi6qrj_46v8tOQ3gs0uKclR09zn5f4xMaNyc6EqfIg1s2I1qU5ItBK8NOWzuzPTMgohYEhJbnBKw8qMMSt8mHBKSeIWIuXB7R4zzGEUwSzolynrBrsvbaRm035GqejRYQtbPhE1m5KXF60EY_7zVyj3F0afBuxn1K8BoMWaNPORNYgeTmCcyy937I3iowAU9f9pPs5-3Nw-pbfvfj6_fV1V0OjFcxp7ziICgANhLqjg9Am7oTXaVUUruWCdXKVqEoukKiYm0zQKVkyzts2DAodpKdHXJn734tGGI_6SDQGLDoltCXFeOMF1VJk_XzwSq8C8Gj6oWO-8dGD9r0tOh3tfX_1Na_1Jbo-j969noCv32VowcuXfePbvE2fccrzB8HoLrV |
CitedBy_id | crossref_primary_10_1002_slct_202301769 crossref_primary_10_1016_j_polymer_2021_124269 crossref_primary_10_3390_polym13060890 crossref_primary_10_1016_j_ijbiomac_2022_12_193 crossref_primary_10_1016_j_polymertesting_2021_107205 crossref_primary_10_1021_acsapm_2c00715 crossref_primary_10_1016_j_matpr_2022_02_420 crossref_primary_10_3390_polym14091720 crossref_primary_10_1002_slct_202301046 crossref_primary_10_1021_acs_macromol_4c02051 crossref_primary_10_3390_polym15143025 crossref_primary_10_3390_ma15155205 crossref_primary_10_1002_pen_26821 crossref_primary_10_3390_jcs6040112 crossref_primary_10_3390_polym12112573 crossref_primary_10_1016_j_polymer_2024_127691 crossref_primary_10_1016_j_compstruct_2023_117379 crossref_primary_10_1039_D1GC02049H crossref_primary_10_1016_j_progpolymsci_2022_101579 crossref_primary_10_3390_jcs5100253 crossref_primary_10_1016_j_ijbiomac_2020_10_181 crossref_primary_10_1021_acsapm_2c00600 crossref_primary_10_1016_j_polymer_2021_123927 crossref_primary_10_1016_j_polymertesting_2025_108748 crossref_primary_10_1016_j_tca_2024_179761 crossref_primary_10_1016_j_ijbiomac_2022_01_090 crossref_primary_10_1021_acssuschemeng_2c05613 crossref_primary_10_1002_app_56487 crossref_primary_10_1016_j_eurpolymj_2024_113289 crossref_primary_10_1016_j_mtsust_2022_100314 crossref_primary_10_1016_j_eurpolymj_2021_110317 crossref_primary_10_1088_1755_1315_1049_1_012026 crossref_primary_10_3390_polym13050740 crossref_primary_10_1515_psr_2022_0048 crossref_primary_10_1007_s11814_021_0809_1 crossref_primary_10_1016_j_ijbiomac_2022_09_253 crossref_primary_10_1016_j_ijbiomac_2024_129355 crossref_primary_10_1016_j_ijbiomac_2023_125017 crossref_primary_10_1002_app_54473 crossref_primary_10_3390_ma13092057 crossref_primary_10_1007_s10924_024_03447_7 crossref_primary_10_1016_j_jmrt_2023_01_221 crossref_primary_10_1016_j_ijbiomac_2024_139344 crossref_primary_10_1002_pen_25832 crossref_primary_10_1007_s10965_022_03227_8 crossref_primary_10_1016_j_surfin_2024_104908 crossref_primary_10_1021_acs_macromol_2c00674 crossref_primary_10_1021_acsapm_2c01273 crossref_primary_10_3390_polym13091381 crossref_primary_10_1007_s40964_024_00646_5 crossref_primary_10_1002_marc_202400661 crossref_primary_10_1021_acsomega_1c04486 crossref_primary_10_1021_acssuschemeng_4c07885 crossref_primary_10_1016_j_ijbiomac_2023_126231 crossref_primary_10_1002_app_50877 crossref_primary_10_1016_j_addma_2022_103166 crossref_primary_10_1016_j_ijbiomac_2022_07_232 crossref_primary_10_1016_j_matchemphys_2024_129306 crossref_primary_10_1021_acsapm_2c00603 crossref_primary_10_1021_acssuschemeng_0c09413 crossref_primary_10_1007_s10965_020_02337_5 crossref_primary_10_1002_pen_25948 crossref_primary_10_1007_s10965_022_03320_y crossref_primary_10_3390_s22218107 crossref_primary_10_3390_polym13152489 crossref_primary_10_3390_polym15224463 crossref_primary_10_1016_j_polymer_2022_124590 crossref_primary_10_3390_polym16020267 crossref_primary_10_1038_s41428_024_00883_z crossref_primary_10_1016_j_polymer_2021_124494 crossref_primary_10_1021_acs_macromol_3c01126 crossref_primary_10_1021_acs_macromol_1c00530 crossref_primary_10_1016_j_ijbiomac_2023_123419 crossref_primary_10_1016_j_jmrt_2025_01_092 crossref_primary_10_1016_j_giant_2024_100274 crossref_primary_10_1122_8_0000826 crossref_primary_10_3390_ma13245789 crossref_primary_10_1016_j_ijbiomac_2025_140530 crossref_primary_10_1002_adem_202300058 crossref_primary_10_1039_D4MA00233D crossref_primary_10_1002_app_52469 crossref_primary_10_1021_acsapm_2c00898 |
Cites_doi | 10.1016/j.addma.2017.07.006 10.1002/pen.24566 10.1007/s10853-018-3120-8 10.3144/expresspolymlett.2018.69 10.3390/su10072369 10.1108/RPJ-03-2016-0050 10.1021/acsami.6b00451 10.1515/polyeng-2016-0206 10.1016/j.matdes.2019.107884 10.1021/ie300526u 10.12691/ajme-7-2-1 10.1002/app.47322 10.1021/ie300524j 10.5539/jsd.v3n4p17 10.1016/j.resconrec.2017.09.001 10.1039/C7RA10745E 10.3390/polym7050939 10.1016/j.eurpolymj.2014.06.013 10.1016/j.polymertesting.2015.02.005 10.1016/j.compositesb.2019.107147 10.1039/C6RA21208E 10.1016/j.matdes.2014.02.038 10.1039/C5RA25438H 10.1021/acssuschemeng.9b01830 10.1002/mame.201600242 10.1002/anie.201805766 10.3390/polym11030549 10.1155/2013/951696 10.3993/jfbi03201308 10.1016/j.polymdegradstab.2018.04.024 10.1002/masy.201800133 10.1016/j.eurpolymj.2013.01.016 10.1080/10837450.2018.1492618 10.1016/j.lwt.2015.12.062 10.1016/j.energy.2006.03.026 10.1016/j.eurpolymj.2017.03.031 10.1016/j.polymdegradstab.2018.08.008 10.1080/14658011.2017.1399531 10.1557/jmr.2014.212 10.1016/j.egypro.2014.07.191 10.1007/s00397-014-0774-2 10.1016/j.eurpolymj.2015.05.001 10.1016/j.matlet.2017.01.063 10.1016/j.matdes.2019.108013 10.1016/j.polymdegradstab.2014.01.025 10.1122/1.4905714 10.1007/s10924-012-0448-z 10.1016/j.polymer.2017.03.011 10.1016/j.compositesb.2016.11.034 10.1021/am502337u 10.1021/acsomega.8b00823 10.1002/pat.4274 10.1007/s00397-011-0538-1 10.1177/0731684417750477 10.1016/j.polymdegradstab.2008.10.004 10.1021/acsomega.8b02549 10.1016/j.polymertesting.2017.03.008 10.1122/1.4953446 10.1007/BF01498927 10.1002/macp.201100437 10.3390/polym9070257 10.1016/j.eurpolymj.2018.07.035 10.1021/acsomega.8b00129 10.1023/A:1020200822435 10.3390/bioengineering5010002 10.1007/s00289-014-1148-8 10.1016/j.mtcomm.2017.12.016 10.3390/ijms141020189 10.1016/S0032-3861(00)00032-X 10.1016/j.matdes.2016.02.018 10.1002/pen.24927 10.1016/j.wasman.2018.04.030 10.1016/j.polymdegradstab.2012.06.028 10.1016/j.matdes.2011.11.036 10.1002/app.2018 10.1002/app.38912 10.1016/j.matdes.2017.03.065 10.3390/jcs1010008 10.1002/pen.24795 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acssuschemeng.9b04925 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-0485 |
EndPage | 6589 |
ExternalDocumentID | 10_1021_acssuschemeng_9b04925 d135103509 |
GroupedDBID | 53G 55A AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ GNL IH9 JG JG~ ROL UI2 VF5 VG9 W1F AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7S9 L.6 |
ID | FETCH-LOGICAL-a394t-1949ac1aae6da589ba1658c84ffc1a873cf7d7fec080def376ba4fd798e63bbf3 |
IEDL.DBID | ACS |
ISSN | 2168-0485 |
IngestDate | Fri Jul 11 11:14:42 EDT 2025 Tue Jul 01 02:36:53 EDT 2025 Thu Apr 24 23:07:09 EDT 2025 Thu Aug 27 22:10:25 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | PBAT PLA FDM printing polymer blends impact toughness |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a394t-1949ac1aae6da589ba1658c84ffc1a873cf7d7fec080def376ba4fd798e63bbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1079-2481 0000-0003-2179-7699 |
PQID | 2439390421 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2439390421 crossref_citationtrail_10_1021_acssuschemeng_9b04925 crossref_primary_10_1021_acssuschemeng_9b04925 acs_journals_10_1021_acssuschemeng_9b04925 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-04 |
PublicationDateYYYYMMDD | 2020-05-04 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | ACS sustainable chemistry & engineering |
PublicationTitleAlternate | ACS Sustainable Chem. Eng |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1016/j.addma.2017.07.006 – ident: ref50/cit50 doi: 10.1002/pen.24566 – ident: ref67/cit67 doi: 10.1007/s10853-018-3120-8 – ident: ref8/cit8 doi: 10.3144/expresspolymlett.2018.69 – ident: ref34/cit34 doi: 10.3390/su10072369 – ident: ref65/cit65 doi: 10.1108/RPJ-03-2016-0050 – ident: ref13/cit13 doi: 10.1021/acsami.6b00451 – ident: ref75/cit75 doi: 10.1515/polyeng-2016-0206 – ident: ref23/cit23 doi: 10.1016/j.matdes.2019.107884 – ident: ref77/cit77 doi: 10.1021/ie300526u – ident: ref59/cit59 doi: 10.12691/ajme-7-2-1 – ident: ref68/cit68 doi: 10.1002/app.47322 – ident: ref78/cit78 doi: 10.1021/ie300524j – ident: ref1/cit1 doi: 10.5539/jsd.v3n4p17 – ident: ref32/cit32 doi: 10.1016/j.resconrec.2017.09.001 – ident: ref39/cit39 doi: 10.1039/C7RA10745E – ident: ref44/cit44 doi: 10.3390/polym7050939 – ident: ref69/cit69 doi: 10.1016/j.eurpolymj.2014.06.013 – ident: ref35/cit35 doi: 10.1016/j.polymertesting.2015.02.005 – ident: ref22/cit22 doi: 10.1016/j.compositesb.2019.107147 – ident: ref49/cit49 doi: 10.1039/C6RA21208E – ident: ref2/cit2 doi: 10.1016/j.matdes.2014.02.038 – ident: ref76/cit76 doi: 10.1039/C5RA25438H – ident: ref26/cit26 doi: 10.1021/acssuschemeng.9b01830 – ident: ref64/cit64 doi: 10.1002/mame.201600242 – ident: ref33/cit33 doi: 10.1002/anie.201805766 – ident: ref16/cit16 doi: 10.3390/polym11030549 – ident: ref12/cit12 doi: 10.1155/2013/951696 – ident: ref9/cit9 doi: 10.3993/jfbi03201308 – ident: ref28/cit28 doi: 10.1016/j.polymdegradstab.2018.04.024 – ident: ref40/cit40 doi: 10.1002/masy.201800133 – ident: ref11/cit11 doi: 10.1016/j.eurpolymj.2013.01.016 – ident: ref66/cit66 doi: 10.1080/10837450.2018.1492618 – ident: ref14/cit14 doi: 10.1016/j.lwt.2015.12.062 – ident: ref41/cit41 doi: 10.1016/j.energy.2006.03.026 – ident: ref6/cit6 doi: 10.1016/j.eurpolymj.2017.03.031 – ident: ref27/cit27 doi: 10.1016/j.polymdegradstab.2018.08.008 – ident: ref61/cit61 doi: 10.1080/14658011.2017.1399531 – ident: ref4/cit4 doi: 10.1557/jmr.2014.212 – ident: ref74/cit74 doi: 10.1016/j.egypro.2014.07.191 – ident: ref53/cit53 doi: 10.1007/s00397-014-0774-2 – ident: ref42/cit42 doi: 10.1016/j.eurpolymj.2015.05.001 – ident: ref5/cit5 doi: 10.1016/j.matlet.2017.01.063 – ident: ref18/cit18 doi: 10.1016/j.matdes.2019.108013 – ident: ref31/cit31 doi: 10.1016/j.polymdegradstab.2014.01.025 – ident: ref70/cit70 doi: 10.1122/1.4905714 – ident: ref46/cit46 doi: 10.1007/s10924-012-0448-z – ident: ref79/cit79 doi: 10.1016/j.polymer.2017.03.011 – ident: ref15/cit15 doi: 10.1016/j.compositesb.2016.11.034 – ident: ref51/cit51 doi: 10.1021/am502337u – ident: ref54/cit54 doi: 10.1021/acsomega.8b00823 – ident: ref48/cit48 doi: 10.1002/pat.4274 – ident: ref52/cit52 doi: 10.1007/s00397-011-0538-1 – ident: ref17/cit17 doi: 10.1177/0731684417750477 – ident: ref57/cit57 doi: 10.1016/j.polymdegradstab.2008.10.004 – ident: ref24/cit24 doi: 10.1021/acsomega.8b02549 – ident: ref72/cit72 doi: 10.1016/j.polymertesting.2017.03.008 – ident: ref71/cit71 doi: 10.1122/1.4953446 – ident: ref63/cit63 doi: 10.1007/BF01498927 – ident: ref56/cit56 doi: 10.1002/macp.201100437 – ident: ref7/cit7 doi: 10.3390/polym9070257 – ident: ref25/cit25 doi: 10.1016/j.eurpolymj.2018.07.035 – ident: ref58/cit58 doi: 10.1021/acsomega.8b00129 – ident: ref62/cit62 doi: 10.1023/A:1020200822435 – ident: ref10/cit10 doi: 10.3390/bioengineering5010002 – ident: ref43/cit43 doi: 10.1007/s00289-014-1148-8 – ident: ref21/cit21 doi: 10.1016/j.mtcomm.2017.12.016 – ident: ref30/cit30 doi: 10.3390/ijms141020189 – ident: ref73/cit73 doi: 10.1016/S0032-3861(00)00032-X – ident: ref19/cit19 doi: 10.1016/j.matdes.2016.02.018 – ident: ref37/cit37 doi: 10.1002/pen.24927 – ident: ref29/cit29 doi: 10.1016/j.wasman.2018.04.030 – ident: ref45/cit45 doi: 10.1016/j.polymdegradstab.2012.06.028 – ident: ref55/cit55 doi: 10.1016/j.matdes.2011.11.036 – ident: ref38/cit38 doi: 10.1002/app.2018 – ident: ref36/cit36 doi: 10.1002/app.38912 – ident: ref60/cit60 doi: 10.1016/j.matdes.2017.03.065 – ident: ref20/cit20 doi: 10.3390/jcs1010008 – ident: ref47/cit47 doi: 10.1002/pen.24795 |
SSID | ssj0000993281 |
Score | 2.5162373 |
Snippet | The research presented in this article discusses the subject of poly(lactic acid) (PLA) modification via reactive mixing with the poly(butylene... The research presented in this article discusses the subject of poly(lactic acid) (PLA) modification via reactive mixing with the poly(butylene... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6576 |
SubjectTerms | brittleness composite polymers deformation differential scanning calorimetry heat tolerance impact strength mechanical testing mixing polylactic acid scanning electron microscopy three-dimensional printing |
Title | Development of Toughened Blends of Poly(lactic acid) and Poly(butylene adipate-co-terephthalate) for 3D Printing Applications: Compatibilization Methods and Material Performance Evaluation |
URI | http://dx.doi.org/10.1021/acssuschemeng.9b04925 https://www.proquest.com/docview/2439390421 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9wwFBZpcmkPbbrRdAkq9NAUNKlsWZZ6y0ooTBloArmZp60pNXboeA7pb-uP65PsmcwQQlJ8e1iWbL3ls95GyAc02UrmTjPldcGEU5oZKTMGBo2xLQP3ED2642_y5Ex8PS_O18juLR78jO-CxQXgn148Lfsx0uZzLKf3gGxkEgU5YqGD74tDFYQ7eZYak2ZcKobcWcyzdm57UrRKdrpqlVaVcrI0x0_IZJ6v0weY_BrNOjOyf26Wb7zvS2ySxwPqpHs9mzwla755Rh4t1SJ8Tv4uhQ_RNtDT2L4HFaGj-3UMm420SVtffaxTWhUF-9PtUGhcTzWz7grv8xRcDNL2zLYMt8xfXnQXUCNhhyI8pvkhneB8Mdaa7i35zr_QpJi6FKvbZ4bScWpuPU1zjKFLokIn14kO9GhRqfwFOTs-Oj04YUNrBwa5Fh3jWmiwHMBLB4XSBjhCIatECEhVZW5D6crgYx105wNqQQMiuFIrL3NjQv6SrDdt418RagQiWGVNKUsvisIbhxegzfUFR2YLW-QTfv1qEM1plbzuGa9WtqQatmSLiDkfVHYokh57ddR3DRsthl32VULuGvB-zmQVynN00kDj29m0yhAh5hpVKX_9Pwt_Qx5m8SQghmKKt2S9-z3z7xAudWY7icg_Nz8aIA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOUAP5S3a8jASB4rkLU4cx-a2lFYLdKuV2IreIj9pRZRUJDm0v40fx9ib3e4ioarKbRQ7TjyveGa-QegtmGzBUyuJcDIjzApJNOcJURqMsck9dSpEdMfHfHTCvp5mp2uIz2thYBENzNTEIP41ugDdA1rTwQ9fODT7OZD6Q0DVu4PugkOSBM4e7n9fnK2A15MmsT9pQrkgwKTZvHjnfzMF42SaVeO0qpujwTl8gH4slhrzTH4NulYPzNU_KI63f5eHaLP3QfFwxjSP0JqrHqONJWTCJ-jPUjIRrj2ehmY-oBYt_lSGJNpAm9Tl5bsyFllhZc7tLlaVnVF1117CfQ4rG1K2HTE1gQ10F2ftmSqBsIvBWcbpZzyB54XMazxciqR_xFFNtTFzd1Ynisex1XUTnzFWbRQcPLkue8AHC9zyp-jk8GC6PyJ9oweiUslaQiWTylClHLcqE1IrCo6REcx7oIo8NT63uXcBFd06DzpRK-ZtLoXjqdY-fYbWq7pyzxHWDPxZYXTOc8eyzGkLlwIL7DIKrOe30Hv4-kUvqE0RY_AJLVa2pOi3ZAuxOTsUpodMD507ypuGDRbDLmaYITcNeDPntQKkO4RsVOXqrikS8BdTCYqVbt9m4a_RvdF0fFQcfTn-toPuJ-GMICRpshdovf3duZfgSLX6VZSav3KGIoE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOvBHlaSQOFMlbnDiJzW1puyqPrVailSpxiPykiChZkeRQfhs_jhlvdtlFQhUot1HsOPG84pn5hpAXYLJlnjrFpFcZE04qZvI8YdqAMbZF4F5jRHd6lB-eiPen2emQVYm1MLCIFmZqYxAfpXruwoAwwHeB3vbw04cHZ19GyrxGZL3L5AqG7pC7x3ufVucr4PmkSexRmvBcMmDUbFnA87eZ0EDZdtNAbernaHQmN8nn1XJjrsm3Ud-Zkf3xB5Lj_73PLXJj8EXpeME8t8klX98h19cQCu-Sn2tJRbQJ9Bib-oB6dPRthcm0SJs11fnLKhZbUW2_uh2qa7egmr47h_s81Q5Ttz2zDYON9POz7kxXQNih4DTTdJ_O4HmYgU3HaxH1NzSqqy5m8C7qRek0trxu4zOmuosCRGe_yx_owQq__B45mRwc7x2yoeED06kSHeNKKG251j53OpPKaA4OkpUiBKDKIrWhcEXwiI7ufADdaLQIrlDS56kxIb1Ptuqm9g8INQL8WmlNkRdeZJk3Di4NlthnHFgwbJNX8PXLQWDbMsbiE15ubEk5bMk2EUuWKO0AnY4dPKqLho1Ww-YL7JCLBjxf8lsJUo6hG137pm_LBPzGVIGC5Q__ZeHPyNXZ_qT8-O7owyNyLcGjAszVFI_JVve990_An-rM0yg4vwBwYyUE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Toughened+Blends+of+Poly%28lactic+acid%29+and+Poly%28butylene+adipate-co-terephthalate%29+for+3D+Printing+Applications%3A+Compatibilization+Methods+and+Material+Performance+Evaluation&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Andrzejewski%2C+Jacek&rft.au=Cheng%2C+Joyce&rft.au=Anstey%2C+Andrew&rft.au=Mohanty%2C+Amar+K&rft.date=2020-05-04&rft.pub=American+Chemical+Society&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=8&rft.issue=17&rft.spage=6576&rft.epage=6589&rft_id=info:doi/10.1021%2Facssuschemeng.9b04925&rft.externalDocID=d135103509 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon |