Changes in the critical erosion velocity for sediment colonized by biofilm
In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume experiments using non‐uniform sediments, in which sediment entrainment was investigated for cases where the sediment was immersed in deionized water...
Saved in:
Published in | Sedimentology Vol. 61; no. 3; pp. 648 - 659 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Madrid
Blackwell Publishing Ltd
01.04.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0037-0746 1365-3091 |
DOI | 10.1111/sed.12065 |
Cover
Loading…
Abstract | In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume experiments using non‐uniform sediments, in which sediment entrainment was investigated for cases where the sediment was immersed in deionized water, so that no biofilm developed, and for cases where a bio‐sediment was cultivated by placing the sediment in a mixture of natural water and nutrient solution. Differences in entrainment and the velocity at incipient motion were measured over an eight week period, as biofilm grew. It was found that the incipient motion phenomena were quite distinct between the two kinds of sediment. Sediment with biofilm was more stable and, over time, incipient velocity increased to a threshold level, before declining. Biofilm development is clearly an important control on the stability of sediments, especially in eutrophic water bodies. Two incipient velocity formulas were derived for sliding and rolling conditions. Film water theory was utilized to describe the cohesive force between sediment particles and the adhesive force generated by biofilm was introduced into the formula derivation; the time variation characteristics of biofilm strength and the features of the substrate were also taken into consideration. Such analyses can help to predict sediment transport changes due to biofilm presence in nutrient‐rich water bodies. |
---|---|
AbstractList | In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume experiments using non‐uniform sediments, in which sediment entrainment was investigated for cases where the sediment was immersed in deionized water, so that no biofilm developed, and for cases where a bio‐sediment was cultivated by placing the sediment in a mixture of natural water and nutrient solution. Differences in entrainment and the velocity at incipient motion were measured over an eight week period, as biofilm grew. It was found that the incipient motion phenomena were quite distinct between the two kinds of sediment. Sediment with biofilm was more stable and, over time, incipient velocity increased to a threshold level, before declining. Biofilm development is clearly an important control on the stability of sediments, especially in eutrophic water bodies. Two incipient velocity formulas were derived for sliding and rolling conditions. Film water theory was utilized to describe the cohesive force between sediment particles and the adhesive force generated by biofilm was introduced into the formula derivation; the time variation characteristics of biofilm strength and the features of the substrate were also taken into consideration. Such analyses can help to predict sediment transport changes due to biofilm presence in nutrient‐rich water bodies. In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume experiments using non-uniform sediments, in which sediment entrainment was investigated for cases where the sediment was immersed in deionized water, so that no biofilm developed, and for cases where a bio-sediment was cultivated by placing the sediment in a mixture of natural water and nutrient solution. Differences in entrainment and the velocity at incipient motion were measured over an eight week period, as biofilm grew. It was found that the incipient motion phenomena were quite distinct between the two kinds of sediment. Sediment with biofilm was more stable and, over time, incipient velocity increased to a threshold level, before declining. Biofilm development is clearly an important control on the stability of sediments, especially in eutrophic water bodies. Two incipient velocity formulas were derived for sliding and rolling conditions. Film water theory was utilized to describe the cohesive force between sediment particles and the adhesive force generated by biofilm was introduced into the formula derivation; the time variation characteristics of biofilm strength and the features of the substrate were also taken into consideration. Such analyses can help to predict sediment transport changes due to biofilm presence in nutrient-rich water bodies. [PUBLICATION ABSTRACT] |
Author | Shang, Qianqian Fang, Hongwei Chen, Minghong He, Guojian |
Author_xml | – sequence: 1 givenname: Hongwei surname: Fang fullname: Fang, Hongwei email: fanghw@mail.tsinghua.edu.cn organization: Department of Hydraulic Engineering, State Key Laboratory of Hydro-science and Engineering, Tsinghua University, 100084, Beijing, China – sequence: 2 givenname: Qianqian surname: Shang fullname: Shang, Qianqian organization: Department of Hydraulic Engineering, State Key Laboratory of Hydro-science and Engineering, Tsinghua University, 100084, Beijing, China – sequence: 3 givenname: Minghong surname: Chen fullname: Chen, Minghong organization: College of Water Resources and Civil Engineering, China Agricultural University, 100083, Beijing, China – sequence: 4 givenname: Guojian surname: He fullname: He, Guojian organization: Department of Hydraulic Engineering, State Key Laboratory of Hydro-science and Engineering, Tsinghua University, 100084, Beijing, China |
BookMark | eNp1kEtPAjEQxxuDiYAe_AZNPHlYaLfdXXo0gKghesDHsekuUykuW2zXx_rpLYIejM5lksn_kd90UKuyFSB0TEmPhul7mPdoTNJkD7UpS5OIEUFbqE0IyyKS8fQAdbxfEkJTPhBtdDVcqOoRPDYVrheAC2dqU6gSg7Pe2Aq_QmkLUzdYW4dDullBVePClrYyHzDHeYNzY7UpV4doX6vSw9Fud9Hd-fh2eBFNbyaXw7NppJhgSZRCKKZK6zjhA6ViMhc6p4TRWIuYEjWgTGsCvFCZUKwId1BcUOAiBwKCsy462eaunX1-AV_LpX1xVaiUNAmIoYRsVP2tqggg3oGWgULVAal2ypSSErl5mAxI8uthwXH6y7F2ZqVc86d2l_5mSmj-F8rZePTtiLYO42t4_3Eo9yTTjGWJfLieyNn9iLApT2TCPgGS8IrC |
CODEN | SEDIAT |
CitedBy_id | crossref_primary_10_1002_esp_5712 crossref_primary_10_1080_16583655_2023_2197092 crossref_primary_10_1002_wat2_1144 crossref_primary_10_1016_j_oceaneng_2023_114375 crossref_primary_10_2166_wst_2017_076 crossref_primary_10_1016_j_epsl_2014_04_036 crossref_primary_10_1038_s41598_017_01446_4 crossref_primary_10_1016_j_chemosphere_2020_127550 crossref_primary_10_1016_j_earscirev_2021_103803 crossref_primary_10_1016_j_chemosphere_2015_05_009 crossref_primary_10_1007_s11368_017_1859_1 crossref_primary_10_1080_00221686_2016_1212938 crossref_primary_10_1007_s10035_014_0545_x crossref_primary_10_5194_esurf_10_1115_2022 crossref_primary_10_1016_j_scitotenv_2016_08_009 crossref_primary_10_1029_2019JF005441 crossref_primary_10_1016_j_ijsrc_2015_03_015 crossref_primary_10_1016_j_scitotenv_2023_166151 crossref_primary_10_1080_01431161_2022_2079963 crossref_primary_10_1002_lno_12368 crossref_primary_10_1016_j_scitotenv_2024_175676 crossref_primary_10_1016_j_scitotenv_2018_06_101 crossref_primary_10_1007_s11368_020_02807_9 crossref_primary_10_1016_j_earscirev_2024_104976 crossref_primary_10_1016_j_pocean_2018_12_011 crossref_primary_10_1002_2017WR020628 crossref_primary_10_1111_sed_13082 crossref_primary_10_1016_j_scitotenv_2018_10_287 crossref_primary_10_1016_j_sedgeo_2024_106630 crossref_primary_10_3390_d16080487 crossref_primary_10_1016_j_ijsrc_2018_04_003 crossref_primary_10_3389_feart_2022_886395 crossref_primary_10_1002_dep2_39 crossref_primary_10_1007_s11368_019_02356_w crossref_primary_10_1007_s10750_017_3224_1 crossref_primary_10_1371_journal_pone_0142673 crossref_primary_10_1016_j_ijsrc_2019_08_002 crossref_primary_10_1007_s11368_020_02851_5 crossref_primary_10_1016_j_catena_2021_105541 crossref_primary_10_1088_1755_1315_467_1_012057 crossref_primary_10_1007_s11356_020_07842_0 crossref_primary_10_1016_j_scitotenv_2024_175929 crossref_primary_10_1061__ASCE_HY_1943_7900_0001313 crossref_primary_10_1002_wat2_1390 |
Cites_doi | 10.1016/S0307-904X(98)10081-1 10.1007/s10750-007-9099-9 10.1061/(ASCE)0733-9372(2007)133:4(364) 10.1007/s11431-011-4730-4 10.1061/(ASCE)0733-9429(2004)130:8(755) 10.1002/rra.1296 10.6028/jres.021.039 10.1080/00221689909498522 10.1080/00221686.2010.507012 10.1111/j.1365-3091.1977.tb00136.x 10.1061/9780784404003.ch08 10.1128/AEM.69.9.5443-5452.2003 10.1006/ecss.2001.0790 10.1080/713851126 10.1038/330244a0 10.1016/S0043-1354(03)00083-6 10.1016/j.jmarsys.2007.06.010 10.1080/00221686.2009.9522003 10.1061/(ASCE)0733-9429(2000)126:8(578) 10.1016/S0272-7714(06)80010-7 10.1111/j.1472-4669.2007.00120.x 10.1016/j.jmarsys.2004.09.004 10.1128/AEM.00588-07 |
ContentType | Journal Article |
Copyright | 2013 The Authors. Journal compilation © 2013 International Association of Sedimentologists Journal compilation © 2014 International Association of Sedimentologists |
Copyright_xml | – notice: 2013 The Authors. Journal compilation © 2013 International Association of Sedimentologists – notice: Journal compilation © 2014 International Association of Sedimentologists |
DBID | BSCLL AAYXX CITATION 7ST 7TN 7UA C1K F1W H96 L.G SOI |
DOI | 10.1111/sed.12065 |
DatabaseName | Istex CrossRef Environment Abstracts Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1365-3091 |
Editor | Dey, Subhasish |
Editor_xml | – sequence: 5 givenname: Subhasish surname: Dey fullname: Dey, Subhasish |
EndPage | 659 |
ExternalDocumentID | 3246713411 10_1111_sed_12065 SED12065 ark_67375_WNG_SVD03L45_5 |
Genre | article |
GrantInformation_xml | – fundername: National Nature Science Foundation funderid: 51139003 – fundername: National Science and Technology Project funderid: 2012AA112508 |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPPZ ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TN5 UB1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XJT XOL Y6R ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABJIA ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7TN 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H96 L.G SOI |
ID | FETCH-LOGICAL-a3935-6e4891aff2548aa20d9fb10312f9210a813ff0e4ca79a3c312ea491e49be0e943 |
IEDL.DBID | DR2 |
ISSN | 0037-0746 |
IngestDate | Sun Jul 13 04:13:32 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Tue Jul 01 01:22:57 EDT 2025 Wed Jan 22 16:22:07 EST 2025 Wed Oct 30 09:54:52 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3935-6e4891aff2548aa20d9fb10312f9210a813ff0e4ca79a3c312ea491e49be0e943 |
Notes | ArticleID:SED12065 ark:/67375/WNG-SVD03L45-5 National Science and Technology Project - No. 2012AA112508 istex:F2C4DD891910EE867D0CFC49D8A624892AC08A83 National Nature Science Foundation - No. 51139003 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/sed.12065 |
PQID | 1507493504 |
PQPubID | 1106346 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1507493504 crossref_citationtrail_10_1111_sed_12065 crossref_primary_10_1111_sed_12065 wiley_primary_10_1111_sed_12065_SED12065 istex_primary_ark_67375_WNG_SVD03L45_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04 April 2014 2014-04-00 20140401 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04 |
PublicationDecade | 2010 |
PublicationPlace | Madrid |
PublicationPlace_xml | – name: Madrid |
PublicationTitle | Sedimentology |
PublicationTitleAlternate | Sedimentology |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Keulegan, G. H. (1938) Laws of turbulent flow in open channels. J. Res. Nat. Bur. Stan., 21(6), 707-741. Righetti, M. and Lucarelli, C. (2007) May the shields theory be extended to cohesive and adhesive benthic sediments? J. Geophys. Res., 112(C05039), 1-14. Andersen, T.J. (2001) Seasonal variation in erodibility of two temperate, microtidal mudflats. Estuar. Coast. Shelf Sci., 53(1), 1-12. Bobertz, B., Harff, J. and Bohling, B. (2009) Parameterisation of clastic sediments including benthic structures. J. Mar. Syst., 75(3-4), 371-381. Miller, M. C., Mccave, I. N. and Komar, P. D. (1977) Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4), 507-527. Andersen, T.J., Lund-Hansen, L.C., Pejrup, M., Jensen, K.T. and Mouritsen, K. N. (2005) Biologically induced differences in erodibility and aggregation of subtidal and intertidal sediments: a possible cause for seasonal changes in sediment deposition. J. Mar. Syst. 55(3/4), 123-138. Patel, P. L., Porey, P. D. and Patel, S. B. (2010) Computation of critical tractive stress of scaling sizes in non-uniform sediments. J. Hydraul. Res., 48(4), 531-537. Lick, W., Jin, L. and Gailani, J. (2004) Initiation of movement of quartz particles. J. Hydraul. Eng., ASCE, 130(8), 755-761. Israelachvili, J. (1997) Intermolecular and Surface Forces, 2nd edn. Elsevier, New York. Gerbersdorf, S. U., Jancke, T., Westrich, B. and Paterson, D. M. (2008) Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology, 6(1), 57-69. Dey, S. (1999) Sediment threshold. Appl. Math. Model., 23, 399-417. Dou, G.R. (1960) Incipient motion of sediment. J. Hydraul. Eng., 5(4), 44-60 (in Chinese). Fang, H. W., Chen, M.H. and Chen, Z. H. (2009) The Characteristics and Model of Environmental Sediment Surface. Science Press, Beijing. Cheng, N.S. and Chiew, Y.M (1999) Incipient sediment motion with upward seepage. J. Hydraul. Res., 37(5), 665-681. Guzman, K., La Motta, E. J., McCorquodale, J. A., Rojas, A. and Ermogenous, M. (2007) Effect of biofilm formation on roughness coefficient and solids deposition in small-diameter PVC sewer pipes. J. Environ. Eng., 133(4), 364-371. Graba, M., Moulin, F. Y., Bouletreau, S., Garabetian, F., Kettab, A., Eiff, O., Sanchez-Perez, J. M. and Sauvage, S. (2010) Effect of near-bed turbulence on chronic detachment of epilithic biofilm: experimental and modeling approaches. Water Resour. Res., 46(W11531), 1-15. Rao, A. R. and Sreenivasulu, G. (2009) Stream power criterion and design of sand bed channels at incipient motion. J. Hydraul. Res., 47(3), 319-328. Fang, H.W. and Wang, G. Q. (2000) Three-dimensional mathematical model for suspended sediment transport. J. Hydraul. Eng., ASCE 126(8), 578-592. Shields, A. (1936) Application of Similarity Principles and Turbulence Research to Bed-Load Movement, Report, Translated by Ott, W. P. and van Uchelen, J. C., California Institute of Technology, Pasadena, CA. Wu, Z. C., Huang, Y. Y., Chen, H. Q., Zhang, S. F. and Mai, S. H. (2005) The chemical species present and their effects on zeolite granules in zeolite-activated sludge system. Environ. Pollut. Control, 27(3), 177-180+156. Tolhurst, T. J., Consalvey, M. and Paterson, D. M. (2008) Changes in cohesive sediment properties associated with the growth of a diatom biofilm. Hydrobiologia, 596(1), 225-239. Kramer, H. (1935) Sand mixtures and sand movement in fluvial levels. Trans. ASCE, 100, 798-838. Tang, C. B. (1963) Study on laws of incipient motion. J. Hydraul. Eng. 7(2), 1-12 (in Chinese). Yallop, M. L., de Winder, B., Paterson, D. M. and Stal, L. J. (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar. Coast. Shelf Sci., 39(6), 565-582. Grant, J. and Gust, G. (1987) Prediction of coastal sediment stability from photopigment content of mats of purple sulfur bacteria. Nature, 330, 244-246. Besemer, K., Singer, G., Limberger, R., Chlup, A.K., Hochedlinger, G., Hoedl, I., Baranyi, C. and Battin, T. J. (2007) Biophysical controls on community succession in stream biofilms. Appl. Environ. Microbiol., 73(15), 4966-4974. Righetti, M. and Lucarelli, C. (2009) Resuspension phenomena of benthic sediment: the role of cohesion and biological adhesion. River Res. Appl., 26(4), 404-413. Stal, L. J. (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol J., 20(5), 463-478. Battin, T.J., Kaplan, L. A., Newbold, J.D., Cheng, X. H. and Hansen, C. (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol., 69(9), 5443-5452. Chen, G.H., Leung, D.H.W. and Hun, J.C. (2003) Biofilm in the sediment phase of a sanitary gravity sewer. Water Res., 37, 2784-2788. Huang, L., Fang, H. W. and Chen, M. H. (2012) Experiment on surface charge distribution of fine sediment. Sci. China - Technol. Sci., 55(4), 1146-1152. 2009; 47 1938; 21 1960; 5 2009 1999; 23 1997 2003; 37 2008; 6 2007; 73 1977; 24 2005; 27 2012; 55 1935; 100 1936 2009; 26 1999 2007; 112 2010; 48 1987; 330 2009; 75 2010; 46 2000; 126 1963; 7 2004; 130 2007; 133 1999; 37 2003; 69 1994; 39 2008; 596 2005; 55 2003; 20 2001; 53 e_1_2_8_29_1 Shields A. (e_1_2_8_28_1) 1936 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_3_1 Tang C. B. (e_1_2_8_30_1) 1963; 7 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 Dou G.R. (e_1_2_8_11_1) 1960; 5 e_1_2_8_8_1 e_1_2_8_20_1 Chien N. (e_1_2_8_9_1) 1999 e_1_2_8_22_1 Righetti M. (e_1_2_8_26_1) 2007; 112 e_1_2_8_23_1 Kramer H. (e_1_2_8_21_1) 1935; 100 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 Wu Z. C. (e_1_2_8_33_1) 2005; 27 Graba M. (e_1_2_8_15_1) 2010; 46 Fang H. W. (e_1_2_8_13_1) 2009 Israelachvili J (e_1_2_8_19_1) 1997 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 |
References_xml | – reference: Stal, L. J. (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol J., 20(5), 463-478. – reference: Battin, T.J., Kaplan, L. A., Newbold, J.D., Cheng, X. H. and Hansen, C. (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol., 69(9), 5443-5452. – reference: Righetti, M. and Lucarelli, C. (2007) May the shields theory be extended to cohesive and adhesive benthic sediments? J. Geophys. Res., 112(C05039), 1-14. – reference: Tolhurst, T. J., Consalvey, M. and Paterson, D. M. (2008) Changes in cohesive sediment properties associated with the growth of a diatom biofilm. Hydrobiologia, 596(1), 225-239. – reference: Besemer, K., Singer, G., Limberger, R., Chlup, A.K., Hochedlinger, G., Hoedl, I., Baranyi, C. and Battin, T. J. (2007) Biophysical controls on community succession in stream biofilms. Appl. Environ. Microbiol., 73(15), 4966-4974. – reference: Fang, H.W. and Wang, G. Q. (2000) Three-dimensional mathematical model for suspended sediment transport. J. Hydraul. Eng., ASCE 126(8), 578-592. – reference: Bobertz, B., Harff, J. and Bohling, B. (2009) Parameterisation of clastic sediments including benthic structures. J. Mar. Syst., 75(3-4), 371-381. – reference: Grant, J. and Gust, G. (1987) Prediction of coastal sediment stability from photopigment content of mats of purple sulfur bacteria. Nature, 330, 244-246. – reference: Andersen, T.J., Lund-Hansen, L.C., Pejrup, M., Jensen, K.T. and Mouritsen, K. N. (2005) Biologically induced differences in erodibility and aggregation of subtidal and intertidal sediments: a possible cause for seasonal changes in sediment deposition. J. Mar. Syst. 55(3/4), 123-138. – reference: Guzman, K., La Motta, E. J., McCorquodale, J. A., Rojas, A. and Ermogenous, M. (2007) Effect of biofilm formation on roughness coefficient and solids deposition in small-diameter PVC sewer pipes. J. Environ. Eng., 133(4), 364-371. – reference: Huang, L., Fang, H. W. and Chen, M. H. (2012) Experiment on surface charge distribution of fine sediment. Sci. China - Technol. Sci., 55(4), 1146-1152. – reference: Keulegan, G. H. (1938) Laws of turbulent flow in open channels. J. Res. Nat. Bur. Stan., 21(6), 707-741. – reference: Chen, G.H., Leung, D.H.W. and Hun, J.C. (2003) Biofilm in the sediment phase of a sanitary gravity sewer. Water Res., 37, 2784-2788. – reference: Andersen, T.J. (2001) Seasonal variation in erodibility of two temperate, microtidal mudflats. Estuar. Coast. Shelf Sci., 53(1), 1-12. – reference: Cheng, N.S. and Chiew, Y.M (1999) Incipient sediment motion with upward seepage. J. Hydraul. Res., 37(5), 665-681. – reference: Wu, Z. C., Huang, Y. Y., Chen, H. Q., Zhang, S. F. and Mai, S. H. (2005) The chemical species present and their effects on zeolite granules in zeolite-activated sludge system. Environ. Pollut. Control, 27(3), 177-180+156. – reference: Dey, S. (1999) Sediment threshold. Appl. Math. Model., 23, 399-417. – reference: Righetti, M. and Lucarelli, C. (2009) Resuspension phenomena of benthic sediment: the role of cohesion and biological adhesion. River Res. Appl., 26(4), 404-413. – reference: Shields, A. (1936) Application of Similarity Principles and Turbulence Research to Bed-Load Movement, Report, Translated by Ott, W. P. and van Uchelen, J. C., California Institute of Technology, Pasadena, CA. – reference: Tang, C. B. (1963) Study on laws of incipient motion. J. Hydraul. Eng. 7(2), 1-12 (in Chinese). – reference: Rao, A. R. and Sreenivasulu, G. (2009) Stream power criterion and design of sand bed channels at incipient motion. J. Hydraul. Res., 47(3), 319-328. – reference: Israelachvili, J. (1997) Intermolecular and Surface Forces, 2nd edn. Elsevier, New York. – reference: Dou, G.R. (1960) Incipient motion of sediment. J. Hydraul. Eng., 5(4), 44-60 (in Chinese). – reference: Gerbersdorf, S. U., Jancke, T., Westrich, B. and Paterson, D. M. (2008) Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology, 6(1), 57-69. – reference: Graba, M., Moulin, F. Y., Bouletreau, S., Garabetian, F., Kettab, A., Eiff, O., Sanchez-Perez, J. M. and Sauvage, S. (2010) Effect of near-bed turbulence on chronic detachment of epilithic biofilm: experimental and modeling approaches. Water Resour. Res., 46(W11531), 1-15. – reference: Yallop, M. L., de Winder, B., Paterson, D. M. and Stal, L. J. (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar. Coast. Shelf Sci., 39(6), 565-582. – reference: Kramer, H. (1935) Sand mixtures and sand movement in fluvial levels. Trans. ASCE, 100, 798-838. – reference: Patel, P. L., Porey, P. D. and Patel, S. B. (2010) Computation of critical tractive stress of scaling sizes in non-uniform sediments. J. Hydraul. Res., 48(4), 531-537. – reference: Lick, W., Jin, L. and Gailani, J. (2004) Initiation of movement of quartz particles. J. Hydraul. Eng., ASCE, 130(8), 755-761. – reference: Miller, M. C., Mccave, I. N. and Komar, P. D. (1977) Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4), 507-527. – reference: Fang, H. W., Chen, M.H. and Chen, Z. H. (2009) The Characteristics and Model of Environmental Sediment Surface. Science Press, Beijing. – start-page: 311 year: 1999 end-page: 351 – year: 2009 – volume: 37 start-page: 2784 year: 2003 end-page: 2788 article-title: Biofilm in the sediment phase of a sanitary gravity sewer publication-title: Water Res. – volume: 46 start-page: 1 issue: W11531 year: 2010 end-page: 15 article-title: Effect of near‐bed turbulence on chronic detachment of epilithic biofilm: experimental and modeling approaches publication-title: Water Resour. Res. – volume: 21 start-page: 707 issue: 6 year: 1938 end-page: 741 article-title: Laws of turbulent flow in open channels publication-title: J. Res. Nat. Bur. Stan. – volume: 48 start-page: 531 issue: 4 year: 2010 end-page: 537 article-title: Computation of critical tractive stress of scaling sizes in non‐uniform sediments publication-title: J. Hydraul. Res. – volume: 75 start-page: 371 issue: 3–4 year: 2009 end-page: 381 article-title: Parameterisation of clastic sediments including benthic structures publication-title: J. Mar. Syst. – volume: 27 start-page: 177 issue: 3 year: 2005 end-page: 180 article-title: The chemical species present and their effects on zeolite granules in zeolite‐activated sludge system publication-title: Environ. Pollut. Control – volume: 100 start-page: 798 year: 1935 end-page: 838 article-title: Sand mixtures and sand movement in fluvial levels publication-title: Trans. ASCE – start-page: 4878 year: 2009 end-page: 4885 – volume: 23 start-page: 399 year: 1999 end-page: 417 article-title: Sediment threshold publication-title: Appl. Math. Model. – volume: 330 start-page: 244 year: 1987 end-page: 246 article-title: Prediction of coastal sediment stability from photopigment content of mats of purple sulfur bacteria publication-title: Nature – volume: 53 start-page: 1 issue: 1 year: 2001 end-page: 12 article-title: Seasonal variation in erodibility of two temperate, microtidal mudflats publication-title: Estuar. Coast. Shelf Sci. – volume: 37 start-page: 665 issue: 5 year: 1999 end-page: 681 article-title: Incipient sediment motion with upward seepage publication-title: J. Hydraul. Res. – volume: 69 start-page: 5443 issue: 9 year: 2003 end-page: 5452 article-title: Effects of current velocity on the nascent architecture of stream microbial biofilms publication-title: Appl. Environ. Microbiol. – volume: 47 start-page: 319 issue: 3 year: 2009 end-page: 328 article-title: Stream power criterion and design of sand bed channels at incipient motion publication-title: J. Hydraul. Res. – volume: 39 start-page: 565 issue: 6 year: 1994 end-page: 582 article-title: Comparative structure, primary production and biogenic stabilization of cohesive and non‐cohesive marine sediments inhabited by microphytobenthos publication-title: Estuar. Coast. Shelf Sci. – volume: 24 start-page: 507 issue: 4 year: 1977 end-page: 527 article-title: Threshold of sediment motion under unidirectional currents publication-title: Sedimentology – year: 1936 – volume: 26 start-page: 404 issue: 4 year: 2009 end-page: 413 article-title: Resuspension phenomena of benthic sediment: the role of cohesion and biological adhesion publication-title: River Res. Appl. – volume: 596 start-page: 225 issue: 1 year: 2008 end-page: 239 article-title: Changes in cohesive sediment properties associated with the growth of a diatom biofilm publication-title: Hydrobiologia – volume: 73 start-page: 4966 issue: 15 year: 2007 end-page: 4974 article-title: Biophysical controls on community succession in stream biofilms publication-title: Appl. Environ. Microbiol. – start-page: 51 year: 2009 end-page: 58 – volume: 6 start-page: 57 issue: 1 year: 2008 end-page: 69 article-title: Microbial stabilization of riverine sediments by extracellular polymeric substances publication-title: Geobiology – volume: 130 start-page: 755 issue: 8 year: 2004 end-page: 761 article-title: Initiation of movement of quartz particles publication-title: J. Hydraul. Eng., ASCE – volume: 55 start-page: 1146 issue: 4 year: 2012 end-page: 1152 article-title: Experiment on surface charge distribution of fine sediment publication-title: Sci. China – Technol. Sci. – year: 1997 – volume: 20 start-page: 463 issue: 5 year: 2003 end-page: 478 article-title: Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments publication-title: Geomicrobiol J. – volume: 133 start-page: 364 issue: 4 year: 2007 end-page: 371 article-title: Effect of biofilm formation on roughness coefficient and solids deposition in small‐diameter PVC sewer pipes publication-title: J. Environ. Eng. – volume: 126 start-page: 578 issue: 8 year: 2000 end-page: 592 article-title: Three‐dimensional mathematical model for suspended sediment transport publication-title: J. Hydraul. Eng., ASCE – volume: 55 start-page: 123 issue: 3/4 year: 2005 end-page: 138 article-title: Biologically induced differences in erodibility and aggregation of subtidal and intertidal sediments: a possible cause for seasonal changes in sediment deposition publication-title: J. Mar. Syst. – volume: 5 start-page: 44 issue: 4 year: 1960 end-page: 60 article-title: Incipient motion of sediment publication-title: J. Hydraul. Eng. – volume: 7 start-page: 1 issue: 2 year: 1963 end-page: 12 article-title: Study on laws of incipient motion publication-title: J. Hydraul. Eng. – volume: 112 start-page: 1 issue: C05039 year: 2007 end-page: 14 article-title: May the shields theory be extended to cohesive and adhesive benthic sediments? publication-title: J. Geophys. Res. – ident: e_1_2_8_10_1 doi: 10.1016/S0307-904X(98)10081-1 – ident: e_1_2_8_31_1 doi: 10.1007/s10750-007-9099-9 – ident: e_1_2_8_17_1 doi: 10.1061/(ASCE)0733-9372(2007)133:4(364) – ident: e_1_2_8_18_1 doi: 10.1007/s11431-011-4730-4 – ident: e_1_2_8_22_1 doi: 10.1061/(ASCE)0733-9429(2004)130:8(755) – volume: 100 start-page: 798 year: 1935 ident: e_1_2_8_21_1 article-title: Sand mixtures and sand movement in fluvial levels publication-title: Trans. ASCE – ident: e_1_2_8_27_1 doi: 10.1002/rra.1296 – volume-title: The Characteristics and Model of Environmental Sediment Surface year: 2009 ident: e_1_2_8_13_1 – ident: e_1_2_8_20_1 doi: 10.6028/jres.021.039 – ident: e_1_2_8_8_1 doi: 10.1080/00221689909498522 – volume: 7 start-page: 1 issue: 2 year: 1963 ident: e_1_2_8_30_1 article-title: Study on laws of incipient motion publication-title: J. Hydraul. Eng. – ident: e_1_2_8_24_1 doi: 10.1080/00221686.2010.507012 – ident: e_1_2_8_32_1 – ident: e_1_2_8_23_1 doi: 10.1111/j.1365-3091.1977.tb00136.x – start-page: 311 volume-title: Mechanics of Sediment Transport year: 1999 ident: e_1_2_8_9_1 doi: 10.1061/9780784404003.ch08 – ident: e_1_2_8_4_1 doi: 10.1128/AEM.69.9.5443-5452.2003 – ident: e_1_2_8_2_1 doi: 10.1006/ecss.2001.0790 – volume-title: Intermolecular and Surface Forces year: 1997 ident: e_1_2_8_19_1 – volume: 27 start-page: 177 issue: 3 year: 2005 ident: e_1_2_8_33_1 article-title: The chemical species present and their effects on zeolite granules in zeolite‐activated sludge system publication-title: Environ. Pollut. Control – volume: 46 start-page: 1 issue: 11531 year: 2010 ident: e_1_2_8_15_1 article-title: Effect of near‐bed turbulence on chronic detachment of epilithic biofilm: experimental and modeling approaches publication-title: Water Resour. Res. – ident: e_1_2_8_29_1 doi: 10.1080/713851126 – ident: e_1_2_8_16_1 doi: 10.1038/330244a0 – ident: e_1_2_8_7_1 doi: 10.1016/S0043-1354(03)00083-6 – volume: 5 start-page: 44 issue: 4 year: 1960 ident: e_1_2_8_11_1 article-title: Incipient motion of sediment publication-title: J. Hydraul. Eng. – ident: e_1_2_8_35_1 – ident: e_1_2_8_6_1 doi: 10.1016/j.jmarsys.2007.06.010 – ident: e_1_2_8_25_1 doi: 10.1080/00221686.2009.9522003 – volume-title: Application of Similarity Principles and Turbulence Research to Bed‐Load Movement, Report, Translated by Ott, W. P. and van Uchelen, J. C year: 1936 ident: e_1_2_8_28_1 – ident: e_1_2_8_12_1 doi: 10.1061/(ASCE)0733-9429(2000)126:8(578) – volume: 112 start-page: 1 issue: 05039 year: 2007 ident: e_1_2_8_26_1 article-title: May the shields theory be extended to cohesive and adhesive benthic sediments? publication-title: J. Geophys. Res. – ident: e_1_2_8_34_1 doi: 10.1016/S0272-7714(06)80010-7 – ident: e_1_2_8_14_1 doi: 10.1111/j.1472-4669.2007.00120.x – ident: e_1_2_8_3_1 doi: 10.1016/j.jmarsys.2004.09.004 – ident: e_1_2_8_5_1 doi: 10.1128/AEM.00588-07 |
SSID | ssj0016489 |
Score | 2.314734 |
Snippet | In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 648 |
SubjectTerms | Adhesive force biofilm cohesive force film water theory incipient velocity |
Title | Changes in the critical erosion velocity for sediment colonized by biofilm |
URI | https://api.istex.fr/ark:/67375/WNG-SVD03L45-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsed.12065 https://www.proquest.com/docview/1507493504 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SEbz4FqtVgoh42bKPbLvBk1itFO3B-joIIdmdQKmu4law_fVOsg-qKIi3ZZl9ZCaTfBNm5iPkIAlk6Gl0wHaiwGHgM4e3XXAU4IIMnGvQphr5qt-6uGW9h_BhjhyXtTB5f4jqwM14hl2vjYNLlc04eQZJ0_NxB8X11-RqGUB0XbWOwiggyqFvYI7iWKvoKmSyeKonv-xF80atH1-A5ixctfvN-TJ5LP80TzMZNd_HqhlPvzVx_OdQVshSgUPpST5xVskcpGtkoWt5fifrpJdXHWR0mFKEiDQuGBEo4EjQlNSkGsWI4CmCXopvtiQB1LTATodTSKiaUDU0dODPG-T2_Ozm9MIpaBccaep0nRag6jypNcaOkZS-m3CtDBuErzkGiDLyAq1dYLFscxnEeB8k4x4wrsAFzoJNUktfUtgiVIcJSOlGSiYxxuGejMIoaCk3ijES0iysk6PSACIuepIbaownUcYmOABhVVMn-5Xoa96I4yehQ2vFSkK-jUzmWjsU9_2uGNx13OCShQIFG6WZReG0mTDYmKEGXIb_Ze31-5fE4KxjL7b_LrpDFhFuFXk_DVIbv73DLkKasdqzc_cTu23xZA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48EH3xFm-DiPjSpd2muw34Il6rrvvg_SIhaSewqFXcFdRf7yQ9UFEQ30qZHpnJJN-EmfkANtJQRYEhB2ymGj2Ode6Jpo-eRlqQUQiDxlYjn3YarUt-fBPdDMB2WQuT94eoDtysZ7j12jq4PZD-5OU9TGtBnbbQQRi2jN4uoDqrmkdRHBDn4De0h3G8UfQVsnk81aNfdqNhq9jXL1DzM2B1O87BBNyW_5onmtzVXvq6lrx_a-P438FMwngBRdlOPnemYACzaRg5dFS_bzNwnBce9Fg3Y4QSWVKQIjCkoZA1mc02SgjEM8K9jN7seAKY7YKddd8xZfqN6a5lBH-YhcuD_YvdllcwL3jKlup6DSTdBcoYCh9jpep-Koy2hBB1IyhGVHEQGuMjT1RTqDCh-6i4CJALjT4KHs7BUPaY4TwwE6WolB9rlSYUigcqjuKwof04oWDI8GgBtkoLyKRoS27ZMe5lGZ7QAKRTzQKsV6JPeS-On4Q2nRkrCfV8Z5PXmpG87hzK86s9P2zzSJLgcmlnWfhtT1p4zEkDPqf_cgb7_UvyfH_PXSz-XXQNRlsXp23ZPuqcLMEYoa8iDWgZhvrPL7hCCKevV91E_gDSoPV_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB-sYvHFzxa1foQi4sse2dvs3oY-iedp1R6itfWhEJLdCRynq3gnqH-9k-wHWixI35Zl9iMzmeQ3YWZ-AFt5pOPQkgN2coOBwLYIZIdjYJAWZJTSonXVyD_6yeGFOLqMLyfgW10LU_aHaA7cnGf49do5-G1uXzj5CPNW2KYd9ANMiYSnbkp3z5reURQGpCX2jdxZnEiqtkIujad59NVmNOX0-vAKab7Eq37D6c3Bn_pXyzyTYet-bFrZ019dHP9zLPMwWwFRtlvOnAWYwGIRpg880e_jEhyVZQcjNigYYUSWVZQIDGkkZEvmco0ygvCMUC-jN3uWAOZ6YBeDJ8yZeWRm4PjArz_BRW__595hUPEuBNoV6gYJkupCbS0Fj6nWbZ5LaxwdRNtKihB1GkbWchSZ7kgdZXQftZAhCmmQoxTRZ5gsbgpcBmbjHLXmqdF5RoF4qNM4jRLD04xCISviFdipDaCyqim548a4UnVwQgNQXjUr8LURvS07cbwltO2t2Ejou6FLXevE6nf_QJ3_6vLoRMSKBNdqM6vKa0fKgWNBGuCC_svb699fUuf7XX-x-n7RTfh42u2pk-_94y8wQ9CrygFag8nx3T2uE7wZmw0_jZ8BFoj0Nw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+the+critical+erosion+velocity+for+sediment+colonized+by+biofilm&rft.jtitle=Sedimentology&rft.au=Fang%2C+Hongwei&rft.au=Shang%2C+Qianqian&rft.au=Chen%2C+Minghong&rft.au=He%2C+Guojian&rft.date=2014-04-01&rft.issn=0037-0746&rft.eissn=1365-3091&rft.volume=61&rft.issue=3&rft.spage=648&rft.epage=659&rft_id=info:doi/10.1111%2Fsed.12065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_sed_12065 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-0746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-0746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-0746&client=summon |