Changes in the critical erosion velocity for sediment colonized by biofilm

In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume experiments using non‐uniform sediments, in which sediment entrainment was investigated for cases where the sediment was immersed in deionized water...

Full description

Saved in:
Bibliographic Details
Published inSedimentology Vol. 61; no. 3; pp. 648 - 659
Main Authors Fang, Hongwei, Shang, Qianqian, Chen, Minghong, He, Guojian
Format Journal Article
LanguageEnglish
Published Madrid Blackwell Publishing Ltd 01.04.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0037-0746
1365-3091
DOI10.1111/sed.12065

Cover

Loading…
Abstract In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume experiments using non‐uniform sediments, in which sediment entrainment was investigated for cases where the sediment was immersed in deionized water, so that no biofilm developed, and for cases where a bio‐sediment was cultivated by placing the sediment in a mixture of natural water and nutrient solution. Differences in entrainment and the velocity at incipient motion were measured over an eight week period, as biofilm grew. It was found that the incipient motion phenomena were quite distinct between the two kinds of sediment. Sediment with biofilm was more stable and, over time, incipient velocity increased to a threshold level, before declining. Biofilm development is clearly an important control on the stability of sediments, especially in eutrophic water bodies. Two incipient velocity formulas were derived for sliding and rolling conditions. Film water theory was utilized to describe the cohesive force between sediment particles and the adhesive force generated by biofilm was introduced into the formula derivation; the time variation characteristics of biofilm strength and the features of the substrate were also taken into consideration. Such analyses can help to predict sediment transport changes due to biofilm presence in nutrient‐rich water bodies.
AbstractList In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume experiments using non‐uniform sediments, in which sediment entrainment was investigated for cases where the sediment was immersed in deionized water, so that no biofilm developed, and for cases where a bio‐sediment was cultivated by placing the sediment in a mixture of natural water and nutrient solution. Differences in entrainment and the velocity at incipient motion were measured over an eight week period, as biofilm grew. It was found that the incipient motion phenomena were quite distinct between the two kinds of sediment. Sediment with biofilm was more stable and, over time, incipient velocity increased to a threshold level, before declining. Biofilm development is clearly an important control on the stability of sediments, especially in eutrophic water bodies. Two incipient velocity formulas were derived for sliding and rolling conditions. Film water theory was utilized to describe the cohesive force between sediment particles and the adhesive force generated by biofilm was introduced into the formula derivation; the time variation characteristics of biofilm strength and the features of the substrate were also taken into consideration. Such analyses can help to predict sediment transport changes due to biofilm presence in nutrient‐rich water bodies.
In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume experiments using non-uniform sediments, in which sediment entrainment was investigated for cases where the sediment was immersed in deionized water, so that no biofilm developed, and for cases where a bio-sediment was cultivated by placing the sediment in a mixture of natural water and nutrient solution. Differences in entrainment and the velocity at incipient motion were measured over an eight week period, as biofilm grew. It was found that the incipient motion phenomena were quite distinct between the two kinds of sediment. Sediment with biofilm was more stable and, over time, incipient velocity increased to a threshold level, before declining. Biofilm development is clearly an important control on the stability of sediments, especially in eutrophic water bodies. Two incipient velocity formulas were derived for sliding and rolling conditions. Film water theory was utilized to describe the cohesive force between sediment particles and the adhesive force generated by biofilm was introduced into the formula derivation; the time variation characteristics of biofilm strength and the features of the substrate were also taken into consideration. Such analyses can help to predict sediment transport changes due to biofilm presence in nutrient-rich water bodies. [PUBLICATION ABSTRACT]
Author Shang, Qianqian
Fang, Hongwei
Chen, Minghong
He, Guojian
Author_xml – sequence: 1
  givenname: Hongwei
  surname: Fang
  fullname: Fang, Hongwei
  email: fanghw@mail.tsinghua.edu.cn
  organization: Department of Hydraulic Engineering, State Key Laboratory of Hydro-science and Engineering, Tsinghua University, 100084, Beijing, China
– sequence: 2
  givenname: Qianqian
  surname: Shang
  fullname: Shang, Qianqian
  organization: Department of Hydraulic Engineering, State Key Laboratory of Hydro-science and Engineering, Tsinghua University, 100084, Beijing, China
– sequence: 3
  givenname: Minghong
  surname: Chen
  fullname: Chen, Minghong
  organization: College of Water Resources and Civil Engineering, China Agricultural University, 100083, Beijing, China
– sequence: 4
  givenname: Guojian
  surname: He
  fullname: He, Guojian
  organization: Department of Hydraulic Engineering, State Key Laboratory of Hydro-science and Engineering, Tsinghua University, 100084, Beijing, China
BookMark eNp1kEtPAjEQxxuDiYAe_AZNPHlYaLfdXXo0gKghesDHsekuUykuW2zXx_rpLYIejM5lksn_kd90UKuyFSB0TEmPhul7mPdoTNJkD7UpS5OIEUFbqE0IyyKS8fQAdbxfEkJTPhBtdDVcqOoRPDYVrheAC2dqU6gSg7Pe2Aq_QmkLUzdYW4dDullBVePClrYyHzDHeYNzY7UpV4doX6vSw9Fud9Hd-fh2eBFNbyaXw7NppJhgSZRCKKZK6zjhA6ViMhc6p4TRWIuYEjWgTGsCvFCZUKwId1BcUOAiBwKCsy462eaunX1-AV_LpX1xVaiUNAmIoYRsVP2tqggg3oGWgULVAal2ypSSErl5mAxI8uthwXH6y7F2ZqVc86d2l_5mSmj-F8rZePTtiLYO42t4_3Eo9yTTjGWJfLieyNn9iLApT2TCPgGS8IrC
CODEN SEDIAT
CitedBy_id crossref_primary_10_1002_esp_5712
crossref_primary_10_1080_16583655_2023_2197092
crossref_primary_10_1002_wat2_1144
crossref_primary_10_1016_j_oceaneng_2023_114375
crossref_primary_10_2166_wst_2017_076
crossref_primary_10_1016_j_epsl_2014_04_036
crossref_primary_10_1038_s41598_017_01446_4
crossref_primary_10_1016_j_chemosphere_2020_127550
crossref_primary_10_1016_j_earscirev_2021_103803
crossref_primary_10_1016_j_chemosphere_2015_05_009
crossref_primary_10_1007_s11368_017_1859_1
crossref_primary_10_1080_00221686_2016_1212938
crossref_primary_10_1007_s10035_014_0545_x
crossref_primary_10_5194_esurf_10_1115_2022
crossref_primary_10_1016_j_scitotenv_2016_08_009
crossref_primary_10_1029_2019JF005441
crossref_primary_10_1016_j_ijsrc_2015_03_015
crossref_primary_10_1016_j_scitotenv_2023_166151
crossref_primary_10_1080_01431161_2022_2079963
crossref_primary_10_1002_lno_12368
crossref_primary_10_1016_j_scitotenv_2024_175676
crossref_primary_10_1016_j_scitotenv_2018_06_101
crossref_primary_10_1007_s11368_020_02807_9
crossref_primary_10_1016_j_earscirev_2024_104976
crossref_primary_10_1016_j_pocean_2018_12_011
crossref_primary_10_1002_2017WR020628
crossref_primary_10_1111_sed_13082
crossref_primary_10_1016_j_scitotenv_2018_10_287
crossref_primary_10_1016_j_sedgeo_2024_106630
crossref_primary_10_3390_d16080487
crossref_primary_10_1016_j_ijsrc_2018_04_003
crossref_primary_10_3389_feart_2022_886395
crossref_primary_10_1002_dep2_39
crossref_primary_10_1007_s11368_019_02356_w
crossref_primary_10_1007_s10750_017_3224_1
crossref_primary_10_1371_journal_pone_0142673
crossref_primary_10_1016_j_ijsrc_2019_08_002
crossref_primary_10_1007_s11368_020_02851_5
crossref_primary_10_1016_j_catena_2021_105541
crossref_primary_10_1088_1755_1315_467_1_012057
crossref_primary_10_1007_s11356_020_07842_0
crossref_primary_10_1016_j_scitotenv_2024_175929
crossref_primary_10_1061__ASCE_HY_1943_7900_0001313
crossref_primary_10_1002_wat2_1390
Cites_doi 10.1016/S0307-904X(98)10081-1
10.1007/s10750-007-9099-9
10.1061/(ASCE)0733-9372(2007)133:4(364)
10.1007/s11431-011-4730-4
10.1061/(ASCE)0733-9429(2004)130:8(755)
10.1002/rra.1296
10.6028/jres.021.039
10.1080/00221689909498522
10.1080/00221686.2010.507012
10.1111/j.1365-3091.1977.tb00136.x
10.1061/9780784404003.ch08
10.1128/AEM.69.9.5443-5452.2003
10.1006/ecss.2001.0790
10.1080/713851126
10.1038/330244a0
10.1016/S0043-1354(03)00083-6
10.1016/j.jmarsys.2007.06.010
10.1080/00221686.2009.9522003
10.1061/(ASCE)0733-9429(2000)126:8(578)
10.1016/S0272-7714(06)80010-7
10.1111/j.1472-4669.2007.00120.x
10.1016/j.jmarsys.2004.09.004
10.1128/AEM.00588-07
ContentType Journal Article
Copyright 2013 The Authors. Journal compilation © 2013 International Association of Sedimentologists
Journal compilation © 2014 International Association of Sedimentologists
Copyright_xml – notice: 2013 The Authors. Journal compilation © 2013 International Association of Sedimentologists
– notice: Journal compilation © 2014 International Association of Sedimentologists
DBID BSCLL
AAYXX
CITATION
7ST
7TN
7UA
C1K
F1W
H96
L.G
SOI
DOI 10.1111/sed.12065
DatabaseName Istex
CrossRef
Environment Abstracts
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1365-3091
Editor Dey, Subhasish
Editor_xml – sequence: 5
  givenname: Subhasish
  surname: Dey
  fullname: Dey, Subhasish
EndPage 659
ExternalDocumentID 3246713411
10_1111_sed_12065
SED12065
ark_67375_WNG_SVD03L45_5
Genre article
GrantInformation_xml – fundername: National Nature Science Foundation
  funderid: 51139003
– fundername: National Science and Technology Project
  funderid: 2012AA112508
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPPZ
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TN5
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XJT
XOL
Y6R
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABJIA
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
7TN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H96
L.G
SOI
ID FETCH-LOGICAL-a3935-6e4891aff2548aa20d9fb10312f9210a813ff0e4ca79a3c312ea491e49be0e943
IEDL.DBID DR2
ISSN 0037-0746
IngestDate Sun Jul 13 04:13:32 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Tue Jul 01 01:22:57 EDT 2025
Wed Jan 22 16:22:07 EST 2025
Wed Oct 30 09:54:52 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3935-6e4891aff2548aa20d9fb10312f9210a813ff0e4ca79a3c312ea491e49be0e943
Notes ArticleID:SED12065
ark:/67375/WNG-SVD03L45-5
National Science and Technology Project - No. 2012AA112508
istex:F2C4DD891910EE867D0CFC49D8A624892AC08A83
National Nature Science Foundation - No. 51139003
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/sed.12065
PQID 1507493504
PQPubID 1106346
PageCount 12
ParticipantIDs proquest_journals_1507493504
crossref_citationtrail_10_1111_sed_12065
crossref_primary_10_1111_sed_12065
wiley_primary_10_1111_sed_12065_SED12065
istex_primary_ark_67375_WNG_SVD03L45_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04
April 2014
2014-04-00
20140401
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04
PublicationDecade 2010
PublicationPlace Madrid
PublicationPlace_xml – name: Madrid
PublicationTitle Sedimentology
PublicationTitleAlternate Sedimentology
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Keulegan, G. H. (1938) Laws of turbulent flow in open channels. J. Res. Nat. Bur. Stan., 21(6), 707-741.
Righetti, M. and Lucarelli, C. (2007) May the shields theory be extended to cohesive and adhesive benthic sediments? J. Geophys. Res., 112(C05039), 1-14.
Andersen, T.J. (2001) Seasonal variation in erodibility of two temperate, microtidal mudflats. Estuar. Coast. Shelf Sci., 53(1), 1-12.
Bobertz, B., Harff, J. and Bohling, B. (2009) Parameterisation of clastic sediments including benthic structures. J. Mar. Syst., 75(3-4), 371-381.
Miller, M. C., Mccave, I. N. and Komar, P. D. (1977) Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4), 507-527.
Andersen, T.J., Lund-Hansen, L.C., Pejrup, M., Jensen, K.T. and Mouritsen, K. N. (2005) Biologically induced differences in erodibility and aggregation of subtidal and intertidal sediments: a possible cause for seasonal changes in sediment deposition. J. Mar. Syst. 55(3/4), 123-138.
Patel, P. L., Porey, P. D. and Patel, S. B. (2010) Computation of critical tractive stress of scaling sizes in non-uniform sediments. J. Hydraul. Res., 48(4), 531-537.
Lick, W., Jin, L. and Gailani, J. (2004) Initiation of movement of quartz particles. J. Hydraul. Eng., ASCE, 130(8), 755-761.
Israelachvili, J. (1997) Intermolecular and Surface Forces, 2nd edn. Elsevier, New York.
Gerbersdorf, S. U., Jancke, T., Westrich, B. and Paterson, D. M. (2008) Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology, 6(1), 57-69.
Dey, S. (1999) Sediment threshold. Appl. Math. Model., 23, 399-417.
Dou, G.R. (1960) Incipient motion of sediment. J. Hydraul. Eng., 5(4), 44-60 (in Chinese).
Fang, H. W., Chen, M.H. and Chen, Z. H. (2009) The Characteristics and Model of Environmental Sediment Surface. Science Press, Beijing.
Cheng, N.S. and Chiew, Y.M (1999) Incipient sediment motion with upward seepage. J. Hydraul. Res., 37(5), 665-681.
Guzman, K., La Motta, E. J., McCorquodale, J. A., Rojas, A. and Ermogenous, M. (2007) Effect of biofilm formation on roughness coefficient and solids deposition in small-diameter PVC sewer pipes. J. Environ. Eng., 133(4), 364-371.
Graba, M., Moulin, F. Y., Bouletreau, S., Garabetian, F., Kettab, A., Eiff, O., Sanchez-Perez, J. M. and Sauvage, S. (2010) Effect of near-bed turbulence on chronic detachment of epilithic biofilm: experimental and modeling approaches. Water Resour. Res., 46(W11531), 1-15.
Rao, A. R. and Sreenivasulu, G. (2009) Stream power criterion and design of sand bed channels at incipient motion. J. Hydraul. Res., 47(3), 319-328.
Fang, H.W. and Wang, G. Q. (2000) Three-dimensional mathematical model for suspended sediment transport. J. Hydraul. Eng., ASCE 126(8), 578-592.
Shields, A. (1936) Application of Similarity Principles and Turbulence Research to Bed-Load Movement, Report, Translated by Ott, W. P. and van Uchelen, J. C., California Institute of Technology, Pasadena, CA.
Wu, Z. C., Huang, Y. Y., Chen, H. Q., Zhang, S. F. and Mai, S. H. (2005) The chemical species present and their effects on zeolite granules in zeolite-activated sludge system. Environ. Pollut. Control, 27(3), 177-180+156.
Tolhurst, T. J., Consalvey, M. and Paterson, D. M. (2008) Changes in cohesive sediment properties associated with the growth of a diatom biofilm. Hydrobiologia, 596(1), 225-239.
Kramer, H. (1935) Sand mixtures and sand movement in fluvial levels. Trans. ASCE, 100, 798-838.
Tang, C. B. (1963) Study on laws of incipient motion. J. Hydraul. Eng. 7(2), 1-12 (in Chinese).
Yallop, M. L., de Winder, B., Paterson, D. M. and Stal, L. J. (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar. Coast. Shelf Sci., 39(6), 565-582.
Grant, J. and Gust, G. (1987) Prediction of coastal sediment stability from photopigment content of mats of purple sulfur bacteria. Nature, 330, 244-246.
Besemer, K., Singer, G., Limberger, R., Chlup, A.K., Hochedlinger, G., Hoedl, I., Baranyi, C. and Battin, T. J. (2007) Biophysical controls on community succession in stream biofilms. Appl. Environ. Microbiol., 73(15), 4966-4974.
Righetti, M. and Lucarelli, C. (2009) Resuspension phenomena of benthic sediment: the role of cohesion and biological adhesion. River Res. Appl., 26(4), 404-413.
Stal, L. J. (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol J., 20(5), 463-478.
Battin, T.J., Kaplan, L. A., Newbold, J.D., Cheng, X. H. and Hansen, C. (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol., 69(9), 5443-5452.
Chen, G.H., Leung, D.H.W. and Hun, J.C. (2003) Biofilm in the sediment phase of a sanitary gravity sewer. Water Res., 37, 2784-2788.
Huang, L., Fang, H. W. and Chen, M. H. (2012) Experiment on surface charge distribution of fine sediment. Sci. China - Technol. Sci., 55(4), 1146-1152.
2009; 47
1938; 21
1960; 5
2009
1999; 23
1997
2003; 37
2008; 6
2007; 73
1977; 24
2005; 27
2012; 55
1935; 100
1936
2009; 26
1999
2007; 112
2010; 48
1987; 330
2009; 75
2010; 46
2000; 126
1963; 7
2004; 130
2007; 133
1999; 37
2003; 69
1994; 39
2008; 596
2005; 55
2003; 20
2001; 53
e_1_2_8_29_1
Shields A. (e_1_2_8_28_1) 1936
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_3_1
Tang C. B. (e_1_2_8_30_1) 1963; 7
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
Dou G.R. (e_1_2_8_11_1) 1960; 5
e_1_2_8_8_1
e_1_2_8_20_1
Chien N. (e_1_2_8_9_1) 1999
e_1_2_8_22_1
Righetti M. (e_1_2_8_26_1) 2007; 112
e_1_2_8_23_1
Kramer H. (e_1_2_8_21_1) 1935; 100
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
Wu Z. C. (e_1_2_8_33_1) 2005; 27
Graba M. (e_1_2_8_15_1) 2010; 46
Fang H. W. (e_1_2_8_13_1) 2009
Israelachvili J (e_1_2_8_19_1) 1997
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
References_xml – reference: Stal, L. J. (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol J., 20(5), 463-478.
– reference: Battin, T.J., Kaplan, L. A., Newbold, J.D., Cheng, X. H. and Hansen, C. (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol., 69(9), 5443-5452.
– reference: Righetti, M. and Lucarelli, C. (2007) May the shields theory be extended to cohesive and adhesive benthic sediments? J. Geophys. Res., 112(C05039), 1-14.
– reference: Tolhurst, T. J., Consalvey, M. and Paterson, D. M. (2008) Changes in cohesive sediment properties associated with the growth of a diatom biofilm. Hydrobiologia, 596(1), 225-239.
– reference: Besemer, K., Singer, G., Limberger, R., Chlup, A.K., Hochedlinger, G., Hoedl, I., Baranyi, C. and Battin, T. J. (2007) Biophysical controls on community succession in stream biofilms. Appl. Environ. Microbiol., 73(15), 4966-4974.
– reference: Fang, H.W. and Wang, G. Q. (2000) Three-dimensional mathematical model for suspended sediment transport. J. Hydraul. Eng., ASCE 126(8), 578-592.
– reference: Bobertz, B., Harff, J. and Bohling, B. (2009) Parameterisation of clastic sediments including benthic structures. J. Mar. Syst., 75(3-4), 371-381.
– reference: Grant, J. and Gust, G. (1987) Prediction of coastal sediment stability from photopigment content of mats of purple sulfur bacteria. Nature, 330, 244-246.
– reference: Andersen, T.J., Lund-Hansen, L.C., Pejrup, M., Jensen, K.T. and Mouritsen, K. N. (2005) Biologically induced differences in erodibility and aggregation of subtidal and intertidal sediments: a possible cause for seasonal changes in sediment deposition. J. Mar. Syst. 55(3/4), 123-138.
– reference: Guzman, K., La Motta, E. J., McCorquodale, J. A., Rojas, A. and Ermogenous, M. (2007) Effect of biofilm formation on roughness coefficient and solids deposition in small-diameter PVC sewer pipes. J. Environ. Eng., 133(4), 364-371.
– reference: Huang, L., Fang, H. W. and Chen, M. H. (2012) Experiment on surface charge distribution of fine sediment. Sci. China - Technol. Sci., 55(4), 1146-1152.
– reference: Keulegan, G. H. (1938) Laws of turbulent flow in open channels. J. Res. Nat. Bur. Stan., 21(6), 707-741.
– reference: Chen, G.H., Leung, D.H.W. and Hun, J.C. (2003) Biofilm in the sediment phase of a sanitary gravity sewer. Water Res., 37, 2784-2788.
– reference: Andersen, T.J. (2001) Seasonal variation in erodibility of two temperate, microtidal mudflats. Estuar. Coast. Shelf Sci., 53(1), 1-12.
– reference: Cheng, N.S. and Chiew, Y.M (1999) Incipient sediment motion with upward seepage. J. Hydraul. Res., 37(5), 665-681.
– reference: Wu, Z. C., Huang, Y. Y., Chen, H. Q., Zhang, S. F. and Mai, S. H. (2005) The chemical species present and their effects on zeolite granules in zeolite-activated sludge system. Environ. Pollut. Control, 27(3), 177-180+156.
– reference: Dey, S. (1999) Sediment threshold. Appl. Math. Model., 23, 399-417.
– reference: Righetti, M. and Lucarelli, C. (2009) Resuspension phenomena of benthic sediment: the role of cohesion and biological adhesion. River Res. Appl., 26(4), 404-413.
– reference: Shields, A. (1936) Application of Similarity Principles and Turbulence Research to Bed-Load Movement, Report, Translated by Ott, W. P. and van Uchelen, J. C., California Institute of Technology, Pasadena, CA.
– reference: Tang, C. B. (1963) Study on laws of incipient motion. J. Hydraul. Eng. 7(2), 1-12 (in Chinese).
– reference: Rao, A. R. and Sreenivasulu, G. (2009) Stream power criterion and design of sand bed channels at incipient motion. J. Hydraul. Res., 47(3), 319-328.
– reference: Israelachvili, J. (1997) Intermolecular and Surface Forces, 2nd edn. Elsevier, New York.
– reference: Dou, G.R. (1960) Incipient motion of sediment. J. Hydraul. Eng., 5(4), 44-60 (in Chinese).
– reference: Gerbersdorf, S. U., Jancke, T., Westrich, B. and Paterson, D. M. (2008) Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology, 6(1), 57-69.
– reference: Graba, M., Moulin, F. Y., Bouletreau, S., Garabetian, F., Kettab, A., Eiff, O., Sanchez-Perez, J. M. and Sauvage, S. (2010) Effect of near-bed turbulence on chronic detachment of epilithic biofilm: experimental and modeling approaches. Water Resour. Res., 46(W11531), 1-15.
– reference: Yallop, M. L., de Winder, B., Paterson, D. M. and Stal, L. J. (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar. Coast. Shelf Sci., 39(6), 565-582.
– reference: Kramer, H. (1935) Sand mixtures and sand movement in fluvial levels. Trans. ASCE, 100, 798-838.
– reference: Patel, P. L., Porey, P. D. and Patel, S. B. (2010) Computation of critical tractive stress of scaling sizes in non-uniform sediments. J. Hydraul. Res., 48(4), 531-537.
– reference: Lick, W., Jin, L. and Gailani, J. (2004) Initiation of movement of quartz particles. J. Hydraul. Eng., ASCE, 130(8), 755-761.
– reference: Miller, M. C., Mccave, I. N. and Komar, P. D. (1977) Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4), 507-527.
– reference: Fang, H. W., Chen, M.H. and Chen, Z. H. (2009) The Characteristics and Model of Environmental Sediment Surface. Science Press, Beijing.
– start-page: 311
  year: 1999
  end-page: 351
– year: 2009
– volume: 37
  start-page: 2784
  year: 2003
  end-page: 2788
  article-title: Biofilm in the sediment phase of a sanitary gravity sewer
  publication-title: Water Res.
– volume: 46
  start-page: 1
  issue: W11531
  year: 2010
  end-page: 15
  article-title: Effect of near‐bed turbulence on chronic detachment of epilithic biofilm: experimental and modeling approaches
  publication-title: Water Resour. Res.
– volume: 21
  start-page: 707
  issue: 6
  year: 1938
  end-page: 741
  article-title: Laws of turbulent flow in open channels
  publication-title: J. Res. Nat. Bur. Stan.
– volume: 48
  start-page: 531
  issue: 4
  year: 2010
  end-page: 537
  article-title: Computation of critical tractive stress of scaling sizes in non‐uniform sediments
  publication-title: J. Hydraul. Res.
– volume: 75
  start-page: 371
  issue: 3–4
  year: 2009
  end-page: 381
  article-title: Parameterisation of clastic sediments including benthic structures
  publication-title: J. Mar. Syst.
– volume: 27
  start-page: 177
  issue: 3
  year: 2005
  end-page: 180
  article-title: The chemical species present and their effects on zeolite granules in zeolite‐activated sludge system
  publication-title: Environ. Pollut. Control
– volume: 100
  start-page: 798
  year: 1935
  end-page: 838
  article-title: Sand mixtures and sand movement in fluvial levels
  publication-title: Trans. ASCE
– start-page: 4878
  year: 2009
  end-page: 4885
– volume: 23
  start-page: 399
  year: 1999
  end-page: 417
  article-title: Sediment threshold
  publication-title: Appl. Math. Model.
– volume: 330
  start-page: 244
  year: 1987
  end-page: 246
  article-title: Prediction of coastal sediment stability from photopigment content of mats of purple sulfur bacteria
  publication-title: Nature
– volume: 53
  start-page: 1
  issue: 1
  year: 2001
  end-page: 12
  article-title: Seasonal variation in erodibility of two temperate, microtidal mudflats
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 37
  start-page: 665
  issue: 5
  year: 1999
  end-page: 681
  article-title: Incipient sediment motion with upward seepage
  publication-title: J. Hydraul. Res.
– volume: 69
  start-page: 5443
  issue: 9
  year: 2003
  end-page: 5452
  article-title: Effects of current velocity on the nascent architecture of stream microbial biofilms
  publication-title: Appl. Environ. Microbiol.
– volume: 47
  start-page: 319
  issue: 3
  year: 2009
  end-page: 328
  article-title: Stream power criterion and design of sand bed channels at incipient motion
  publication-title: J. Hydraul. Res.
– volume: 39
  start-page: 565
  issue: 6
  year: 1994
  end-page: 582
  article-title: Comparative structure, primary production and biogenic stabilization of cohesive and non‐cohesive marine sediments inhabited by microphytobenthos
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 24
  start-page: 507
  issue: 4
  year: 1977
  end-page: 527
  article-title: Threshold of sediment motion under unidirectional currents
  publication-title: Sedimentology
– year: 1936
– volume: 26
  start-page: 404
  issue: 4
  year: 2009
  end-page: 413
  article-title: Resuspension phenomena of benthic sediment: the role of cohesion and biological adhesion
  publication-title: River Res. Appl.
– volume: 596
  start-page: 225
  issue: 1
  year: 2008
  end-page: 239
  article-title: Changes in cohesive sediment properties associated with the growth of a diatom biofilm
  publication-title: Hydrobiologia
– volume: 73
  start-page: 4966
  issue: 15
  year: 2007
  end-page: 4974
  article-title: Biophysical controls on community succession in stream biofilms
  publication-title: Appl. Environ. Microbiol.
– start-page: 51
  year: 2009
  end-page: 58
– volume: 6
  start-page: 57
  issue: 1
  year: 2008
  end-page: 69
  article-title: Microbial stabilization of riverine sediments by extracellular polymeric substances
  publication-title: Geobiology
– volume: 130
  start-page: 755
  issue: 8
  year: 2004
  end-page: 761
  article-title: Initiation of movement of quartz particles
  publication-title: J. Hydraul. Eng., ASCE
– volume: 55
  start-page: 1146
  issue: 4
  year: 2012
  end-page: 1152
  article-title: Experiment on surface charge distribution of fine sediment
  publication-title: Sci. China – Technol. Sci.
– year: 1997
– volume: 20
  start-page: 463
  issue: 5
  year: 2003
  end-page: 478
  article-title: Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments
  publication-title: Geomicrobiol J.
– volume: 133
  start-page: 364
  issue: 4
  year: 2007
  end-page: 371
  article-title: Effect of biofilm formation on roughness coefficient and solids deposition in small‐diameter PVC sewer pipes
  publication-title: J. Environ. Eng.
– volume: 126
  start-page: 578
  issue: 8
  year: 2000
  end-page: 592
  article-title: Three‐dimensional mathematical model for suspended sediment transport
  publication-title: J. Hydraul. Eng., ASCE
– volume: 55
  start-page: 123
  issue: 3/4
  year: 2005
  end-page: 138
  article-title: Biologically induced differences in erodibility and aggregation of subtidal and intertidal sediments: a possible cause for seasonal changes in sediment deposition
  publication-title: J. Mar. Syst.
– volume: 5
  start-page: 44
  issue: 4
  year: 1960
  end-page: 60
  article-title: Incipient motion of sediment
  publication-title: J. Hydraul. Eng.
– volume: 7
  start-page: 1
  issue: 2
  year: 1963
  end-page: 12
  article-title: Study on laws of incipient motion
  publication-title: J. Hydraul. Eng.
– volume: 112
  start-page: 1
  issue: C05039
  year: 2007
  end-page: 14
  article-title: May the shields theory be extended to cohesive and adhesive benthic sediments?
  publication-title: J. Geophys. Res.
– ident: e_1_2_8_10_1
  doi: 10.1016/S0307-904X(98)10081-1
– ident: e_1_2_8_31_1
  doi: 10.1007/s10750-007-9099-9
– ident: e_1_2_8_17_1
  doi: 10.1061/(ASCE)0733-9372(2007)133:4(364)
– ident: e_1_2_8_18_1
  doi: 10.1007/s11431-011-4730-4
– ident: e_1_2_8_22_1
  doi: 10.1061/(ASCE)0733-9429(2004)130:8(755)
– volume: 100
  start-page: 798
  year: 1935
  ident: e_1_2_8_21_1
  article-title: Sand mixtures and sand movement in fluvial levels
  publication-title: Trans. ASCE
– ident: e_1_2_8_27_1
  doi: 10.1002/rra.1296
– volume-title: The Characteristics and Model of Environmental Sediment Surface
  year: 2009
  ident: e_1_2_8_13_1
– ident: e_1_2_8_20_1
  doi: 10.6028/jres.021.039
– ident: e_1_2_8_8_1
  doi: 10.1080/00221689909498522
– volume: 7
  start-page: 1
  issue: 2
  year: 1963
  ident: e_1_2_8_30_1
  article-title: Study on laws of incipient motion
  publication-title: J. Hydraul. Eng.
– ident: e_1_2_8_24_1
  doi: 10.1080/00221686.2010.507012
– ident: e_1_2_8_32_1
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1365-3091.1977.tb00136.x
– start-page: 311
  volume-title: Mechanics of Sediment Transport
  year: 1999
  ident: e_1_2_8_9_1
  doi: 10.1061/9780784404003.ch08
– ident: e_1_2_8_4_1
  doi: 10.1128/AEM.69.9.5443-5452.2003
– ident: e_1_2_8_2_1
  doi: 10.1006/ecss.2001.0790
– volume-title: Intermolecular and Surface Forces
  year: 1997
  ident: e_1_2_8_19_1
– volume: 27
  start-page: 177
  issue: 3
  year: 2005
  ident: e_1_2_8_33_1
  article-title: The chemical species present and their effects on zeolite granules in zeolite‐activated sludge system
  publication-title: Environ. Pollut. Control
– volume: 46
  start-page: 1
  issue: 11531
  year: 2010
  ident: e_1_2_8_15_1
  article-title: Effect of near‐bed turbulence on chronic detachment of epilithic biofilm: experimental and modeling approaches
  publication-title: Water Resour. Res.
– ident: e_1_2_8_29_1
  doi: 10.1080/713851126
– ident: e_1_2_8_16_1
  doi: 10.1038/330244a0
– ident: e_1_2_8_7_1
  doi: 10.1016/S0043-1354(03)00083-6
– volume: 5
  start-page: 44
  issue: 4
  year: 1960
  ident: e_1_2_8_11_1
  article-title: Incipient motion of sediment
  publication-title: J. Hydraul. Eng.
– ident: e_1_2_8_35_1
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jmarsys.2007.06.010
– ident: e_1_2_8_25_1
  doi: 10.1080/00221686.2009.9522003
– volume-title: Application of Similarity Principles and Turbulence Research to Bed‐Load Movement, Report, Translated by Ott, W. P. and van Uchelen, J. C
  year: 1936
  ident: e_1_2_8_28_1
– ident: e_1_2_8_12_1
  doi: 10.1061/(ASCE)0733-9429(2000)126:8(578)
– volume: 112
  start-page: 1
  issue: 05039
  year: 2007
  ident: e_1_2_8_26_1
  article-title: May the shields theory be extended to cohesive and adhesive benthic sediments?
  publication-title: J. Geophys. Res.
– ident: e_1_2_8_34_1
  doi: 10.1016/S0272-7714(06)80010-7
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1472-4669.2007.00120.x
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jmarsys.2004.09.004
– ident: e_1_2_8_5_1
  doi: 10.1128/AEM.00588-07
SSID ssj0016489
Score 2.314734
Snippet In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 648
SubjectTerms Adhesive force
biofilm
cohesive force
film water theory
incipient velocity
Title Changes in the critical erosion velocity for sediment colonized by biofilm
URI https://api.istex.fr/ark:/67375/WNG-SVD03L45-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsed.12065
https://www.proquest.com/docview/1507493504
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SEbz4FqtVgoh42bKPbLvBk1itFO3B-joIIdmdQKmu4law_fVOsg-qKIi3ZZl9ZCaTfBNm5iPkIAlk6Gl0wHaiwGHgM4e3XXAU4IIMnGvQphr5qt-6uGW9h_BhjhyXtTB5f4jqwM14hl2vjYNLlc04eQZJ0_NxB8X11-RqGUB0XbWOwiggyqFvYI7iWKvoKmSyeKonv-xF80atH1-A5ixctfvN-TJ5LP80TzMZNd_HqhlPvzVx_OdQVshSgUPpST5xVskcpGtkoWt5fifrpJdXHWR0mFKEiDQuGBEo4EjQlNSkGsWI4CmCXopvtiQB1LTATodTSKiaUDU0dODPG-T2_Ozm9MIpaBccaep0nRag6jypNcaOkZS-m3CtDBuErzkGiDLyAq1dYLFscxnEeB8k4x4wrsAFzoJNUktfUtgiVIcJSOlGSiYxxuGejMIoaCk3ijES0iysk6PSACIuepIbaownUcYmOABhVVMn-5Xoa96I4yehQ2vFSkK-jUzmWjsU9_2uGNx13OCShQIFG6WZReG0mTDYmKEGXIb_Ze31-5fE4KxjL7b_LrpDFhFuFXk_DVIbv73DLkKasdqzc_cTu23xZA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48EH3xFm-DiPjSpd2muw34Il6rrvvg_SIhaSewqFXcFdRf7yQ9UFEQ30qZHpnJJN-EmfkANtJQRYEhB2ymGj2Ode6Jpo-eRlqQUQiDxlYjn3YarUt-fBPdDMB2WQuT94eoDtysZ7j12jq4PZD-5OU9TGtBnbbQQRi2jN4uoDqrmkdRHBDn4De0h3G8UfQVsnk81aNfdqNhq9jXL1DzM2B1O87BBNyW_5onmtzVXvq6lrx_a-P438FMwngBRdlOPnemYACzaRg5dFS_bzNwnBce9Fg3Y4QSWVKQIjCkoZA1mc02SgjEM8K9jN7seAKY7YKddd8xZfqN6a5lBH-YhcuD_YvdllcwL3jKlup6DSTdBcoYCh9jpep-Koy2hBB1IyhGVHEQGuMjT1RTqDCh-6i4CJALjT4KHs7BUPaY4TwwE6WolB9rlSYUigcqjuKwof04oWDI8GgBtkoLyKRoS27ZMe5lGZ7QAKRTzQKsV6JPeS-On4Q2nRkrCfV8Z5PXmpG87hzK86s9P2zzSJLgcmlnWfhtT1p4zEkDPqf_cgb7_UvyfH_PXSz-XXQNRlsXp23ZPuqcLMEYoa8iDWgZhvrPL7hCCKevV91E_gDSoPV_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB-sYvHFzxa1foQi4sse2dvs3oY-iedp1R6itfWhEJLdCRynq3gnqH-9k-wHWixI35Zl9iMzmeQ3YWZ-AFt5pOPQkgN2coOBwLYIZIdjYJAWZJTSonXVyD_6yeGFOLqMLyfgW10LU_aHaA7cnGf49do5-G1uXzj5CPNW2KYd9ANMiYSnbkp3z5reURQGpCX2jdxZnEiqtkIujad59NVmNOX0-vAKab7Eq37D6c3Bn_pXyzyTYet-bFrZ019dHP9zLPMwWwFRtlvOnAWYwGIRpg880e_jEhyVZQcjNigYYUSWVZQIDGkkZEvmco0ygvCMUC-jN3uWAOZ6YBeDJ8yZeWRm4PjArz_BRW__595hUPEuBNoV6gYJkupCbS0Fj6nWbZ5LaxwdRNtKihB1GkbWchSZ7kgdZXQftZAhCmmQoxTRZ5gsbgpcBmbjHLXmqdF5RoF4qNM4jRLD04xCISviFdipDaCyqim548a4UnVwQgNQXjUr8LURvS07cbwltO2t2Ejou6FLXevE6nf_QJ3_6vLoRMSKBNdqM6vKa0fKgWNBGuCC_svb699fUuf7XX-x-n7RTfh42u2pk-_94y8wQ9CrygFag8nx3T2uE7wZmw0_jZ8BFoj0Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+the+critical+erosion+velocity+for+sediment+colonized+by+biofilm&rft.jtitle=Sedimentology&rft.au=Fang%2C+Hongwei&rft.au=Shang%2C+Qianqian&rft.au=Chen%2C+Minghong&rft.au=He%2C+Guojian&rft.date=2014-04-01&rft.issn=0037-0746&rft.eissn=1365-3091&rft.volume=61&rft.issue=3&rft.spage=648&rft.epage=659&rft_id=info:doi/10.1111%2Fsed.12065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_sed_12065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-0746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-0746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-0746&client=summon