Sequence Characterization and Molecular Modeling of Clinically Relevant Variants of the SARS-CoV‑2 Main Protease

The SARS-CoV-2 main protease (M pro ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new M pro mutations arisi...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 59; no. 39; pp. 3741 - 3756
Main Authors Cross, Thomas J, Takahashi, Gemma R, Diessner, Elizabeth M, Crosby, Marquise G, Farahmand, Vesta, Zhuang, Shannon, Butts, Carter T, Martin, Rachel W
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The SARS-CoV-2 main protease (M pro ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new M pro mutations arising over time. Identification and structural characterization of M pro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine M pro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.
AbstractList The SARS-CoV-2 main protease (Mpro) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new Mpro mutations arising over time. Identification and structural characterization of Mpro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine Mpro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.The SARS-CoV-2 main protease (Mpro) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new Mpro mutations arising over time. Identification and structural characterization of Mpro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine Mpro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.
The SARS-CoV-2 main protease (M ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new M mutations arising over time. Identification and structural characterization of M variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine M variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.
The SARS-CoV-2 main protease (Mᵖʳᵒ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new Mᵖʳᵒ mutations arising over time. Identification and structural characterization of Mᵖʳᵒ variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine Mᵖʳᵒ variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.
The SARS-CoV-2 main protease (M pro ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new M pro mutations arising over time. Identification and structural characterization of M pro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine M pro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.
The SARS-CoV-2 main protease (M pro ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new M pro mutations arising over time. Identification and structural characterization of M pro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine M pro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.
Author Farahmand, Vesta
Takahashi, Gemma R
Zhuang, Shannon
Diessner, Elizabeth M
Crosby, Marquise G
Cross, Thomas J
Martin, Rachel W
Butts, Carter T
AuthorAffiliation Department of Chemistry
California Institute for Telecommunications and Information Technology
Departments of Sociology, Statistics, Computer Science, and Electrical Engineering and Computer Science
Department of Molecular Biology and Biochemistry
AuthorAffiliation_xml – name: Department of Molecular Biology and Biochemistry
– name: California Institute for Telecommunications and Information Technology
– name: Department of Chemistry
– name: Departments of Sociology, Statistics, Computer Science, and Electrical Engineering and Computer Science
– name: ǁ California Institute for Telecommunications and Information Technology, UC Irvine
– name: Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
– name: Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
Author_xml – sequence: 1
  givenname: Thomas J
  surname: Cross
  fullname: Cross, Thomas J
  organization: Department of Chemistry
– sequence: 2
  givenname: Gemma R
  surname: Takahashi
  fullname: Takahashi, Gemma R
  organization: Department of Molecular Biology and Biochemistry
– sequence: 3
  givenname: Elizabeth M
  surname: Diessner
  fullname: Diessner, Elizabeth M
  organization: California Institute for Telecommunications and Information Technology
– sequence: 4
  givenname: Marquise G
  surname: Crosby
  fullname: Crosby, Marquise G
  organization: Department of Molecular Biology and Biochemistry
– sequence: 5
  givenname: Vesta
  surname: Farahmand
  fullname: Farahmand, Vesta
  organization: Department of Chemistry
– sequence: 6
  givenname: Shannon
  surname: Zhuang
  fullname: Zhuang, Shannon
  organization: Department of Chemistry
– sequence: 7
  givenname: Carter T
  surname: Butts
  fullname: Butts, Carter T
  email: buttsc@uci.edu
  organization: Departments of Sociology, Statistics, Computer Science, and Electrical Engineering and Computer Science
– sequence: 8
  givenname: Rachel W
  orcidid: 0000-0001-9996-7411
  surname: Martin
  fullname: Martin, Rachel W
  email: rwmartin@uci.edu
  organization: Department of Molecular Biology and Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32931703$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuFDEQRS2UiEwGvgAJecmmJ370c4MUjXhJiYIykK1VdldnHHnsYHdHCit-gV_kS_AwQwQsyKrKqnuvynWOyYEPHgl5wdmCM8FPwKSFtsGscbNghrGyFk_IjFeCFWXXVQdkxhirC9HV7Igcp3STnyVryqfkSIpO8obJGYkr_DKhN0iXa4hgRoz2K4w2eAq-p-fBoZkcxNz16Ky_pmGgy9xYA87d00t0eAd-pFcQba5pOx_XSFenl6tiGa5-fPsu6DlYTz_GMCIkfEYOB3AJn-_rnHx---bT8n1xdvHuw_L0rADZSVH0bW24bFoDUva1bnGooGkbVrbtUPNmYBpAlxpQaN1WErHluhmMbrjpjZBGzsnrXe7tpDfYG_RjBKduo91AvFcBrPp74u1aXYc71VS8FVWdA17tA2LIR0qj2thk0DnwGKakRMU5b8pSlo9Lsyqn1vnmc_Lyz7Ue9vnNJAvkTmBiSCni8CDhTG3Jq0xe7cmrPfns6v5xGTv-Apn_Zt0j3pOddzu8CVP0mct_HT8BK1rKPA
CitedBy_id crossref_primary_10_1016_j_ejmech_2021_113530
crossref_primary_10_1002_prot_26318
crossref_primary_10_1016_j_ijbiomac_2024_135899
crossref_primary_10_1038_s41598_023_27649_6
crossref_primary_10_7717_peerj_13374
crossref_primary_10_1016_j_jmgm_2023_108443
crossref_primary_10_12688_f1000research_143633_3
crossref_primary_10_1016_j_matt_2021_03_016
crossref_primary_10_1039_D1MD00247C
crossref_primary_10_12688_f1000research_143633_2
crossref_primary_10_1021_acs_jpcb_2c07672
crossref_primary_10_1002_iub_2465
crossref_primary_10_3389_fmolb_2021_653148
crossref_primary_10_1016_j_compbiomed_2024_109344
crossref_primary_10_1371_journal_pone_0273039
crossref_primary_10_3390_ijms24054401
crossref_primary_10_3390_v14092075
crossref_primary_10_1039_D3ME00013C
crossref_primary_10_3390_biom11121788
crossref_primary_10_1002_cmdc_202100375
crossref_primary_10_1039_D1CP04159B
crossref_primary_10_1039_D1ME00124H
crossref_primary_10_1016_j_csbj_2022_03_009
crossref_primary_10_1016_j_compbiomed_2021_104362
crossref_primary_10_1016_j_csbj_2021_11_016
crossref_primary_10_3389_fchem_2021_819165
crossref_primary_10_3390_ijms23073507
crossref_primary_10_1016_j_pep_2023_106414
crossref_primary_10_1021_acs_biochem_2c00479
crossref_primary_10_2174_1570180820666230111141203
crossref_primary_10_3390_molecules27206861
Cites_doi 10.1007/978-1-4899-4541-9
10.1038/s41586-020-2313-x
10.1016/j.abb.2008.01.023
10.1111/j.1558-5646.1985.tb00420.x
10.1093/bioinformatics/btl461
10.1093/nar/gkh340
10.1101/2020.05.29.123190
10.1101/2020.05.15.097493
10.1039/c3dt50599e
10.1016/j.cell.2020.06.043
10.1063/1.445869
10.18637/jss.v024.i01
10.1093/bioinformatics/9.5.523
10.1093/bioinformatics/bty407
10.1002/gch2.1018
10.1017/CBO9780511815478
10.1126/sciadv.abb9153
10.1128/AAC.42.12.3218
10.2147/TCRM.S3285
10.1111/ijcp.13525
10.1074/jbc.M510745200
10.1021/ct300400x
10.1002/prot.20417
10.1056/NEJMoa2001282
10.1074/jbc.M408211200
10.1142/S0219720012500084
10.1093/molbev/msy096
10.1093/nar/13.9.3021
10.1016/S0022-2836(03)00865-9
10.3390/v11010059
10.1021/jp902377q
10.1001/jama.277.2.145
10.1101/2020.06.02.130955
10.1063/1.470648
10.18637/jss.v024.i02
10.1073/pnas.1835675100
10.1074/jbc.M311744200
10.1128/JVI.02612-07
10.1371/journal.pone.0113488
10.1074/jbc.M705240200
10.1063/1.467468
10.1039/C4MB00253A
10.1016/0022-2836(82)90515-0
10.1039/C8IB00140E
10.1142/S0219720006002016
10.1016/j.gheart.2017.01.009
10.1186/s13104-018-3221-0
10.1073/pnas.96.17.9459
10.1021/bi0490237
10.1093/nar/30.11.2515
10.1021/acs.jcim.0c00634
10.1016/j.cub.2020.03.022
10.1038/s41586-020-2012-7
10.1002/jmv.25762
10.1074/jbc.M310875200
10.1101/2020.05.04.075911
10.1002/pro.5560040109
10.1128/JVI.02680-07
10.1515/bchm3.1992.373.2.393
10.1002/jcc.20289
10.3389/fmolb.2019.00042
10.1021/ct100578z
10.3390/v11110979
10.1126/science.abb3405
10.1038/s41586-020-2008-3
10.1002/cpbi.3
10.1016/j.bbagen.2016.12.007
10.1038/s41591-020-0820-9
10.1074/jbc.M502577200
10.1101/2020.05.29.124610
10.7551/mitpress/4175.001.0001
10.1016/0378-8733(83)90028-X
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acs.biochem.0c00462
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 3756
ExternalDocumentID PMC7518256
32931703
10_1021_acs_biochem_0c00462
b109696378
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY021514
GroupedDBID -
.K2
02
23N
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
4.4
53G
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a3932-d86c1378ca33d6b8ef5a7870488f617f0baab4bae2bb853ee81b7fcb71cdc23c3
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
IngestDate Thu Aug 21 18:34:27 EDT 2025
Fri Jul 11 07:26:42 EDT 2025
Fri Jul 11 08:12:21 EDT 2025
Thu Apr 03 07:04:09 EDT 2025
Thu Apr 24 23:11:48 EDT 2025
Tue Jul 01 04:09:34 EDT 2025
Tue Nov 17 11:53:52 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
License https://doi.org/10.15223/policy-017
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3932-d86c1378ca33d6b8ef5a7870488f617f0baab4bae2bb853ee81b7fcb71cdc23c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9996-7411
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acs.biochem.0c00462
PMID 32931703
PQID 2443518670
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7518256
proquest_miscellaneous_2511174434
proquest_miscellaneous_2443518670
pubmed_primary_32931703
crossref_primary_10_1021_acs_biochem_0c00462
crossref_citationtrail_10_1021_acs_biochem_0c00462
acs_journals_10_1021_acs_biochem_0c00462
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-06
PublicationDateYYYYMMDD 2020-10-06
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
Kowalczyk A. (ref58/cit58) 2001
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
Efron B. (ref56/cit56) 1993
ref77/cit77
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
Scholkopf B. (ref57/cit57) 2001
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
Eddelbuettel D. (ref60/cit60) 2017; 5
ref42/cit42
ref46/cit46
ref13/cit13
Idé J. (ref47/cit47) 2017
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
Van Rossum G. (ref29/cit29) 1995; 620
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
Saitou N. (ref34/cit34) 1987; 4
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
Wright E. S. (ref22/cit22) 2020
ref26/cit26
ref55/cit55
ref73/cit73
Roser M. (ref66/cit66) 2020
ref69/cit69
ref12/cit12
ref15/cit15
Kwok J. T. (ref59/cit59) 2003
ref62/cit62
ref41/cit41
Wasserman S. (ref54/cit54) 1994; 8
R Core Team (ref49/cit49) 2020
ref33/cit33
ref4/cit4
ref30/cit30
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
32511408 - bioRxiv. 2020 May 15
References_xml – volume-title: An Introduction to the Bootstrap
  year: 1993
  ident: ref56/cit56
  doi: 10.1007/978-1-4899-4541-9
– ident: ref65/cit65
  doi: 10.1038/s41586-020-2313-x
– ident: ref16/cit16
  doi: 10.1016/j.abb.2008.01.023
– ident: ref31/cit31
– ident: ref35/cit35
  doi: 10.1111/j.1558-5646.1985.tb00420.x
– ident: ref48/cit48
  doi: 10.1093/bioinformatics/btl461
– ident: ref32/cit32
  doi: 10.1093/nar/gkh340
– ident: ref78/cit78
  doi: 10.1101/2020.05.29.123190
– ident: ref77/cit77
  doi: 10.1101/2020.05.15.097493
– ident: ref51/cit51
  doi: 10.1039/c3dt50599e
– ident: ref24/cit24
  doi: 10.1016/j.cell.2020.06.043
– ident: ref41/cit41
  doi: 10.1063/1.445869
– ident: ref44/cit44
  doi: 10.18637/jss.v024.i01
– volume-title: Rpdb: Read, Write, Visualize and Manipulate PDB Files
  year: 2017
  ident: ref47/cit47
– year: 2020
  ident: ref22/cit22
  publication-title: bioRxiv
– ident: ref80/cit80
  doi: 10.1093/bioinformatics/9.5.523
– ident: ref63/cit63
  doi: 10.1093/bioinformatics/bty407
– ident: ref28/cit28
  doi: 10.1002/gch2.1018
– volume: 8
  volume-title: Social network analysis: methods and applications
  year: 1994
  ident: ref54/cit54
  doi: 10.1017/CBO9780511815478
– ident: ref6/cit6
  doi: 10.1126/sciadv.abb9153
– ident: ref9/cit9
  doi: 10.1128/AAC.42.12.3218
– ident: ref10/cit10
  doi: 10.2147/TCRM.S3285
– volume: 4
  start-page: 406
  year: 1987
  ident: ref34/cit34
  publication-title: Mol. Biol. Evol.
– ident: ref26/cit26
  doi: 10.1111/ijcp.13525
– ident: ref20/cit20
  doi: 10.1074/jbc.M510745200
– ident: ref40/cit40
  doi: 10.1021/ct300400x
– ident: ref72/cit72
  doi: 10.1002/prot.20417
– ident: ref11/cit11
  doi: 10.1056/NEJMoa2001282
– ident: ref19/cit19
  doi: 10.1074/jbc.M408211200
– ident: ref50/cit50
  doi: 10.1142/S0219720012500084
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2020
  ident: ref49/cit49
– ident: ref33/cit33
  doi: 10.1093/molbev/msy096
– ident: ref30/cit30
  doi: 10.1093/nar/13.9.3021
– ident: ref12/cit12
  doi: 10.1016/S0022-2836(03)00865-9
– ident: ref7/cit7
  doi: 10.3390/v11010059
– ident: ref73/cit73
  doi: 10.1021/jp902377q
– ident: ref8/cit8
  doi: 10.1001/jama.277.2.145
– ident: ref23/cit23
  doi: 10.1101/2020.06.02.130955
– ident: ref43/cit43
  doi: 10.1063/1.470648
– ident: ref45/cit45
  doi: 10.18637/jss.v024.i02
– ident: ref18/cit18
  doi: 10.1073/pnas.1835675100
– ident: ref46/cit46
  doi: 10.18637/jss.v024.i02
– ident: ref13/cit13
  doi: 10.1074/jbc.M311744200
– year: 2020
  ident: ref66/cit66
  publication-title: Our World in Data
– ident: ref17/cit17
  doi: 10.1128/JVI.02612-07
– start-page: 439
  volume-title: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic
  year: 2001
  ident: ref58/cit58
– ident: ref81/cit81
  doi: 10.1371/journal.pone.0113488
– volume: 5
  start-page: e3188v1
  year: 2017
  ident: ref60/cit60
  publication-title: PeerJ. Preprints
– ident: ref21/cit21
  doi: 10.1074/jbc.M705240200
– ident: ref42/cit42
  doi: 10.1063/1.467468
– ident: ref82/cit82
  doi: 10.1039/C4MB00253A
– ident: ref67/cit67
  doi: 10.1016/0022-2836(82)90515-0
– ident: ref52/cit52
  doi: 10.1039/C8IB00140E
– ident: ref62/cit62
  doi: 10.1142/S0219720006002016
– ident: ref83/cit83
  doi: 10.1016/j.gheart.2017.01.009
– ident: ref68/cit68
  doi: 10.1186/s13104-018-3221-0
– ident: ref71/cit71
  doi: 10.1073/pnas.96.17.9459
– ident: ref14/cit14
  doi: 10.1021/bi0490237
– ident: ref69/cit69
  doi: 10.1093/nar/30.11.2515
– ident: ref79/cit79
  doi: 10.1021/acs.jcim.0c00634
– ident: ref5/cit5
  doi: 10.1016/j.cub.2020.03.022
– ident: ref3/cit3
  doi: 10.1038/s41586-020-2012-7
– ident: ref61/cit61
  doi: 10.1002/jmv.25762
– ident: ref15/cit15
  doi: 10.1074/jbc.M310875200
– ident: ref25/cit25
  doi: 10.1101/2020.05.04.075911
– ident: ref70/cit70
  doi: 10.1002/pro.5560040109
– ident: ref76/cit76
  doi: 10.1128/JVI.02680-07
– ident: ref75/cit75
  doi: 10.1515/bchm3.1992.373.2.393
– ident: ref39/cit39
  doi: 10.1002/jcc.20289
– ident: ref84/cit84
  doi: 10.3389/fmolb.2019.00042
– ident: ref38/cit38
  doi: 10.1021/ct100578z
– ident: ref4/cit4
  doi: 10.3390/v11110979
– ident: ref36/cit36
  doi: 10.1126/science.abb3405
– ident: ref1/cit1
  doi: 10.1038/s41586-020-2008-3
– ident: ref37/cit37
  doi: 10.1002/cpbi.3
– ident: ref55/cit55
  doi: 10.1016/j.bbagen.2016.12.007
– ident: ref2/cit2
  doi: 10.1038/s41591-020-0820-9
– ident: ref64/cit64
  doi: 10.1038/s41586-020-2008-3
– volume: 620
  volume-title: Python tutorial
  year: 1995
  ident: ref29/cit29
– ident: ref74/cit74
  doi: 10.1074/jbc.M502577200
– ident: ref27/cit27
  doi: 10.1101/2020.05.29.124610
– volume-title: Learning with Kernels: Support Vector Machines Regularization, Optimization, and Beyond
  year: 2001
  ident: ref57/cit57
  doi: 10.7551/mitpress/4175.001.0001
– ident: ref53/cit53
  doi: 10.1016/0378-8733(83)90028-X
– volume-title: Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003)
  year: 2003
  ident: ref59/cit59
– reference: 32511408 - bioRxiv. 2020 May 15;:
SSID ssj0004074
Score 2.4850984
Snippet The SARS-CoV-2 main protease (M pro ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for...
The SARS-CoV-2 main protease (M ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor...
The SARS-CoV-2 main protease (Mpro) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for...
The SARS-CoV-2 main protease (Mᵖʳᵒ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for...
The SARS-CoV-2 main protease (M pro ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3741
SubjectTerms active sites
Betacoronavirus - enzymology
Betacoronavirus - genetics
Catalytic Domain
cohesion
design
Drug Discovery
drugs
Evolution, Molecular
Humans
hydrophobicity
Models, Molecular
molecular models
Molecular Structure
Mutation
Phylogeny
prediction
Protease Inhibitors - chemistry
protein structure
proteinases
SARS-CoV-2
selection pressure
sequence analysis
Sequence Analysis, Protein
Viral Nonstructural Proteins - antagonists & inhibitors
Viral Nonstructural Proteins - genetics
virus replication
viruses
Title Sequence Characterization and Molecular Modeling of Clinically Relevant Variants of the SARS-CoV‑2 Main Protease
URI http://dx.doi.org/10.1021/acs.biochem.0c00462
https://www.ncbi.nlm.nih.gov/pubmed/32931703
https://www.proquest.com/docview/2443518670
https://www.proquest.com/docview/2511174434
https://pubmed.ncbi.nlm.nih.gov/PMC7518256
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLSXlkdLtw_kSqjqodnGdl57XEUghASqWEDcItux1RVLFrG7Bzj1L_Qv9pd0JnEWFqoV19hOlPHY84098w3ALums1joNrC5tEPHMBkpGWaB5YiLOTeZsHeV7nBycRYcX8cWDZPVHN_iC_1Bm0tVDKh911Q1NnUz5AtZEgsuYkFA-uE-DDD3pMjrJApF5SzL0_5eQOTKTRXP0BGM-DpV8YHv238Bxm8HThJxcdmdT3TV3Twkdn_db6_Dao1DWb9RmA1ZstQlb_Qo98Ktb9pXVcaH1gfsmvMzbmnBbcDPwkdcsnxM9N3mcTFUlO2pr7TIqsUaJ7mzsmKceHY1u2Qlls-NcsnN00SkCh9oRgrJB_2QQ5OPzv7__CHakhhX7SQQSaGLfwtn-3ml-EPiqDTjJCAaDMksMl2lmlJRlojPrYkW7Au4UDuGSC7VSOtLKCq0RK1iLwDl1RqfclEZII9_BajWu7Htg2NVZ50ojMxv1dKxdz4WmF2cqLBHJyA58QzEWftVNivpCXfCCHnrZFl62HRDtPBfGs59TEY7R8kHf54OuG_KP5d2_tApU4LzQzYuq7Hg2KRBDyZioA8MlfRD6onsYyagD243SzT8qEZRx3Js7kC6o47wDkYQvtlTDXzVZOF2rIaz98HxRfYRXgg4VKEoi-QSr05uZ_YzIa6p36vX2D77oLtE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB5BOZRLgRZooICREOLAht31_uUYragCNBVqmqq3le21RUS6Qd3kUE68Ql-xT9IZx7slBUVw9d967bH9jT3zDcAbklkpZeppWWovCjLtCR5lngwSFQWByoy2Vr6HyWAcfT6NT51TGPnCYCdqbKm2j_g37ALBB0qTE4oiddb1lfWpvAv3EI6EJNf9fHTjDek77mXUlUME6A3X0N8boVNJ1aun0h9Q87bF5G9H0P4DGLedt5Yn37uLueyqn7d4Hf_37x7ClsOkrL8UokdwR1fbsNOvUB8_u2BvmbUStdfv27CZNxHiduB85OywWd7SPi-9OpmoSjZsIu8yCrhGbu9sZpgjIp1OL9gR-bbjzLITVNjJHofyEZCyUf9o5OWzk6tflyEbiknFvhKdBB64j2G8__E4H3guhgNOOUJDr8wSFfA0U4LzMpGZNrGgPQL3DYPgyfhSCBlJoUMpETlojTA6NUqmgSpVyBV_AhvVrNK7wLCo0caUimc66slYmp7xVS_OhF8iruEdeIfDWLg1WBf2eT0MCkp0Y1u4se1A2Ex3oRwXOoXkmK6v9L6t9GNJBbK--OtGjgqcF3qHEZWeLeoCERWPiUjQX1MGgTAqixGPOvB0KXvtRzlCtAB36g6kK1LZFiDK8NWcavLNUofTIxuC3Gf_PlSvYHNwPDwoDj4dfnkO90O6biD7iWQPNubnC_0CMdlcvrRL8BqGVjcy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2P5WkkhDiQJYnz8B5XgVV5tKq6tCqnyHZssWKbrZrdQznxF_iL_BJmvE5gC1ohrn4ltsf2Z8_MNwDPSGaVUnlgVGWCJBImkDwRgYoynUSRFtY4K9-9bOcweXecHm-AaH1h8CcabKlxSnxa1aeV9QwD0StKVxOKJHXSD7Xzq7wEl0lxR7I9LMa_PCJDz7-M9-UYQXrLN_T3Ruhk0s3qyfQH3LxoNfnbMTS6AZ-6Djjrky_9xVz19dcL3I7_08ObcN1jUzZcCtMt2DD1FmwPa7yXn5yz58xZi7pn-C24WrSR4rbhbOztsVnR0T8vvTuZrCu220bgZRR4jdzf2cwyT0g6nZ6zA_JxxxlmR3hxJ7scykdgysbDg3FQzI5-fPses105qdk-0UrgwXsbDkdvPhY7gY_lgFOPEDGoRKYjngstOa8yJYxNJe0VuH9YBFE2VFKqREkTK4UIwhiE07nVKo90pWOu-R3YrGe1uQcMi1pjbaW5MMlApcoObKgHqZBhhfiG9-AFDmPp12JTOjV7HJWU6Me29GPbg7id8lJ7TnQKzTFdX-llV-l0SQmyvvjTVpZKnBfSx8jazBZNiciKp0QoGK4pg4AYL40JT3pwdyl_3Uc5QrUId-we5CuS2RUg6vDVnHry2VGIk7INwe79fx-qJ3Bl__Wo_PB27_0DuBbTqwOZUWQPYXN-tjCPEJrN1WO3Cn8CReg5tQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence+Characterization+and+Molecular+Modeling+of+Clinically+Relevant+Variants+of+the+SARS-CoV-2+Main+Protease&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Cross%2C+Thomas+J&rft.au=Takahashi%2C+Gemma+R&rft.au=Diessner%2C+Elizabeth+M&rft.au=Crosby%2C+Marquise+G&rft.date=2020-10-06&rft.issn=1520-4995&rft.eissn=1520-4995&rft.volume=59&rft.issue=39&rft.spage=3741&rft_id=info:doi/10.1021%2Facs.biochem.0c00462&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon