Speciation of Se and DOC in Soil Solution and Their Relation to Se Bioavailability

A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciat...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 45; no. 1; pp. 262 - 267
Main Authors Weng, Liping, Vega, Flora Alonso, Supriatin, Supriatin, Bussink, Wim, Riemsdijk, Willem H. Van
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.01.2011
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/es1016119

Cover

Loading…
Abstract A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl2 extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67−86%) in the extractions (15 samples) are colloidal-sized Se. Only 13−34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47−85% of DOC is colloidal-sized and 15−53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.
AbstractList A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.
A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl2 extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67−86%) in the extractions (15 samples) are colloidal-sized Se. Only 13−34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47−85% of DOC is colloidal-sized and 15−53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.
A 0.01 M CaCl... extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl... extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67...86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15...53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter. (ProQuest: ... denotes formulae/symbols omitted.)
A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.
A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl2 extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (
Author Weng, Liping
Supriatin, Supriatin
Bussink, Wim
Riemsdijk, Willem H. Van
Vega, Flora Alonso
Author_xml – sequence: 1
  givenname: Liping
  surname: Weng
  fullname: Weng, Liping
  email: liping.weng@wur.nl
– sequence: 2
  givenname: Flora Alonso
  surname: Vega
  fullname: Vega, Flora Alonso
– sequence: 3
  givenname: Supriatin
  surname: Supriatin
  fullname: Supriatin, Supriatin
– sequence: 4
  givenname: Wim
  surname: Bussink
  fullname: Bussink, Wim
– sequence: 5
  givenname: Willem H. Van
  surname: Riemsdijk
  fullname: Riemsdijk, Willem H. Van
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21141820$$D View this record in MEDLINE/PubMed
BookMark eNptkU1P3DAQhq2KqizQQ_9AFSFViEPA44_E7q3dlhYJCYmlUm-Wkzhg5LW3dlLEv8chlErAZeYwz-OPd3bQlg_eIPQB8BFgAscmAYYKQL5BC-AEl1xw2EILjIGWkla_t9FOSjcYY0KxeIe2CQADQfACXaw2prV6sMEXoS9WptC-K76dLwvri1WwLhc3PoynweW1sbG4MG42hjAZX23Qf7V1urHODnd76G2vXTLvH_su-nXy_XL5szw7_3G6_HJWairJUDa1aARljPaUddCYVvNOS94zIUnV9qSvCO04MEl43fR1JTkhRFRVRwyuJavpLvo8n3urr4y3PhfldWxtUkFb5WwTdbxTt2NU3k1tMzZJMci2yPLBLG9i-DOaNKi1Ta1xTnsTxqQEAS4rVkMm95-RN2GMPv9MCSZywozSDH18hMZmbTq1iXY9Xf4v6AwczkAbQ0rR9E8IYDUtUT0tMbPHz9jWDg-BDzHH_KrxaTZ0m_4_7yV3D0kXp24
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_scitotenv_2019_05_294
crossref_primary_10_1016_j_scitotenv_2014_01_079
crossref_primary_10_1016_j_chemosphere_2021_130767
crossref_primary_10_1071_EN11021
crossref_primary_10_1080_00223131_2013_816477
crossref_primary_10_1016_j_envpol_2023_121026
crossref_primary_10_2139_ssrn_4158279
crossref_primary_10_1016_j_scitotenv_2021_144962
crossref_primary_10_1186_s12917_017_1040_5
crossref_primary_10_1016_j_geoderma_2017_02_019
crossref_primary_10_1144_geochem2022_055
crossref_primary_10_3390_molecules26237084
crossref_primary_10_1093_hr_uhac270
crossref_primary_10_1007_s00216_013_7323_1
crossref_primary_10_1016_j_jenvrad_2017_06_004
crossref_primary_10_1016_j_chemosphere_2022_136690
crossref_primary_10_3390_nu7064199
crossref_primary_10_1016_j_teac_2015_01_001
crossref_primary_10_1007_s10967_021_07839_0
crossref_primary_10_1016_j_jenvman_2022_116397
crossref_primary_10_1016_j_scitotenv_2015_06_005
crossref_primary_10_1016_j_envpol_2017_12_019
crossref_primary_10_1016_j_chemosphere_2017_05_159
crossref_primary_10_1016_j_scitotenv_2019_134330
crossref_primary_10_1134_S0016702923070066
crossref_primary_10_1016_j_jfca_2020_103615
crossref_primary_10_1016_S1002_0160_17_60444_2
crossref_primary_10_2134_jeq2017_09_0352
crossref_primary_10_1016_j_geoderma_2015_04_021
crossref_primary_10_1007_s11104_016_2830_4
crossref_primary_10_1016_j_gexplo_2014_05_007
crossref_primary_10_1016_j_chemosphere_2017_06_034
crossref_primary_10_3390_agronomy13102508
crossref_primary_10_1007_s11104_016_2900_7
Cites_doi 10.1007/s00604-001-0899-8
10.1007/BF02492085
10.1016/S0048-9697(97)00269-6
10.1021/es010085j
10.1016/j.tplants.2009.06.006
10.1021/es9808649
10.1007/s11120-005-5222-9
10.1016/S0003-2670(00)00935-1
10.1016/S0265-931X(03)00125-5
10.1080/00380768.1998.10414460
10.2134/jeq1997.00472425002600060036x
10.1021/es00071a010
10.1111/j.1469-8137.2007.02343.x
10.1080/00103621003759387
10.1021/ac0485435
10.1111/j.1747-0765.2009.00397.x
10.1016/j.aca.2008.12.026
10.1111/j.1365-2389.2009.01127.x
10.1097/00010694-198708000-00008
10.1007/s10967-006-6951-8
10.1002/aoc.590080209
10.1016/S0883-2927(99)00051-7
10.1016/j.aca.2004.08.001
10.1021/ac9029339
10.1016/S0003-2670(01)01089-3
10.1016/j.jcis.2006.08.014
10.1046/j.1365-2389.2001.00416.x
10.1016/S0016-7037(99)00228-8
10.1080/00103620009370514
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright American Chemical Society Jan 1, 2011
Wageningen University & Research
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: Copyright American Chemical Society Jan 1, 2011
– notice: Wageningen University & Research
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
QVL
DOI 10.1021/es1016119
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Biotechnology Research Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 267
ExternalDocumentID oai_library_wur_nl_wurpubs_410798
2251942591
21141820
10_1021_es1016119
h90561426
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
08R
186
1WB
42X
8WZ
A
A6W
ABDEX
ACDCL
ACKIV
ADKFC
AETEA
AFDAS
AFMIJ
ANTXH
HR
IHE
K78
MVM
NHB
OHT
QVL
RNS
TAE
UBX
UBY
UQL
VJK
VOH
ZCG
ZY4
ID FETCH-LOGICAL-a392t-b78b83443f34d1beca5da95f48926cf2f623d5149257bf7695222866d2e079473
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Tue Jan 05 18:05:10 EST 2021
Fri Jul 11 10:17:22 EDT 2025
Fri Jul 25 03:50:11 EDT 2025
Wed Feb 19 01:47:26 EST 2025
Tue Jul 01 02:10:28 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Thu Aug 27 13:42:48 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a392t-b78b83443f34d1beca5da95f48926cf2f623d5149257bf7695222866d2e079473
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 21141820
PQID 848013433
PQPubID 45412
PageCount 6
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_410798
proquest_miscellaneous_821596471
proquest_journals_848013433
pubmed_primary_21141820
crossref_primary_10_1021_es1016119
crossref_citationtrail_10_1021_es1016119
acs_journals_10_1021_es1016119
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 20110101
2011-01-01
2011-Jan-01
2011
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 20110101
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Pyrzynska K. (ref1/cit1) 2002; 140
Hiemstra T. (ref5/cit5) 2007; 80
Sors T. G. (ref14/cit14) 2005; 86
Rietra R. (ref7/cit7) 1999; 63
ref25/cit25
Zhu Y. G. (ref3/cit3) 2009; 14
Masscheleyn P. H. (ref13/cit13) 1990; 24
Yamada H. (ref11/cit11) 1998; 44
Seby F. (ref19/cit19) 1997; 207
Houba V. J. G. (ref26/cit26) 2000; 31
Elrashidi M. A. (ref10/cit10) 1987; 144
Li H. F. (ref15/cit15) 2008; 178
Iserte L. O. (ref21/cit21) 2004; 527
Wojcik P. (ref20/cit20) 2003; 57
Vassileva E. (ref22/cit22) 2001; 441
Temminghoff E. J. M. (ref27/cit27) 2000; 417
Bregliani M. M. (ref31/cit31) 2010; 41
Kamei-Ishikawa N. (ref17/cit17) 2007; 274
Martens D. A. (ref29/cit29) 1997; 26
Duc M. (ref4/cit4) 2003; 70
Weng L. P. (ref23/cit23) 2001; 35
Pedrero Z. (ref18/cit18) 2009; 634
Gustafsson J. P. (ref16/cit16) 1994; 8
Zhang Y. Q. (ref12/cit12) 1999; 33
Yamada H. (ref9/cit9) 2009; 55
Keizer M. G. (ref30/cit30) 1994
Johnson C. C. (ref2/cit2) 2000; 15
Coppin F. (ref8/cit8) 2009; 60
Weng L. P. (ref28/cit28) 2005; 77
Peak D. (ref6/cit6) 2006; 303
Weng L. P. (ref24/cit24) 2001; 52
References_xml – volume: 140
  start-page: 55
  issue: 1
  year: 2002
  ident: ref1/cit1
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-001-0899-8
– volume: 57
  start-page: S67
  year: 2003
  ident: ref20/cit20
  publication-title: Chromatographia
  doi: 10.1007/BF02492085
– volume: 207
  start-page: 81
  issue: 2
  year: 1997
  ident: ref19/cit19
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(97)00269-6
– volume: 35
  start-page: 4436
  issue: 22
  year: 2001
  ident: ref23/cit23
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010085j
– volume: 14
  start-page: 436
  issue: 8
  year: 2009
  ident: ref3/cit3
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2009.06.006
– volume: 80
  start-page: 313
  issue: 3
  year: 2007
  ident: ref5/cit5
  publication-title: Croat. Chem. Acta
– volume: 33
  start-page: 1652
  issue: 10
  year: 1999
  ident: ref12/cit12
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9808649
– volume: 86
  start-page: 373
  issue: 3
  year: 2005
  ident: ref14/cit14
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-005-5222-9
– volume: 417
  start-page: 149
  issue: 2
  year: 2000
  ident: ref27/cit27
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)00935-1
– volume: 70
  start-page: 61
  issue: 1
  year: 2003
  ident: ref4/cit4
  publication-title: J. Environ. Radioact.
  doi: 10.1016/S0265-931X(03)00125-5
– volume: 44
  start-page: 385
  issue: 3
  year: 1998
  ident: ref11/cit11
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1998.10414460
– volume: 26
  start-page: 1711
  issue: 6
  year: 1997
  ident: ref29/cit29
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1997.00472425002600060036x
– volume: 24
  start-page: 91
  issue: 1
  year: 1990
  ident: ref13/cit13
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00071a010
– volume: 178
  start-page: 92
  issue: 1
  year: 2008
  ident: ref15/cit15
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02343.x
– volume: 41
  start-page: 1383
  issue: 11
  year: 2010
  ident: ref31/cit31
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103621003759387
– volume: 77
  start-page: 2852
  issue: 9
  year: 2005
  ident: ref28/cit28
  publication-title: Anal. Chem.
  doi: 10.1021/ac0485435
– volume: 55
  start-page: 616
  issue: 5
  year: 2009
  ident: ref9/cit9
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2009.00397.x
– volume: 634
  start-page: 135
  issue: 2
  year: 2009
  ident: ref18/cit18
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.12.026
– volume: 60
  start-page: 369
  issue: 3
  year: 2009
  ident: ref8/cit8
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2009.01127.x
– volume: 144
  start-page: 141
  issue: 2
  year: 1987
  ident: ref10/cit10
  publication-title: Soil Sci
  doi: 10.1097/00010694-198708000-00008
– volume-title: ECOSAT: Equilibrium Calculation of Speciation and Transport
  year: 1994
  ident: ref30/cit30
– volume: 274
  start-page: 555
  issue: 3
  year: 2007
  ident: ref17/cit17
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-006-6951-8
– volume: 8
  start-page: 141
  issue: 2
  year: 1994
  ident: ref16/cit16
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.590080209
– volume: 15
  start-page: 385
  issue: 3
  year: 2000
  ident: ref2/cit2
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(99)00051-7
– volume: 527
  start-page: 97
  issue: 1
  year: 2004
  ident: ref21/cit21
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2004.08.001
– ident: ref25/cit25
  doi: 10.1021/ac9029339
– volume: 441
  start-page: 135
  issue: 1
  year: 2001
  ident: ref22/cit22
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)01089-3
– volume: 303
  start-page: 337
  issue: 2
  year: 2006
  ident: ref6/cit6
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.08.014
– volume: 52
  start-page: 629
  issue: 4
  year: 2001
  ident: ref24/cit24
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2001.00416.x
– volume: 63
  start-page: 3009
  issue: 19
  year: 1999
  ident: ref7/cit7
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00228-8
– volume: 31
  start-page: 1299
  issue: 9
  year: 2000
  ident: ref26/cit26
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620009370514
SSID ssj0002308
Score 2.2061093
Snippet A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium...
A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium...
A 0.01 M CaCl... extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium...
SourceID wageningen
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 262
SubjectTerms adsorption
Analytical chemistry
Bioavailability
Carbon
Carbon - chemistry
Carbon - metabolism
Colloids - chemistry
Colloids - metabolism
donnan membrane technique
Environmental Processes
Extraction processes
extracts
ion-chromatography
Mineralization
Netherlands
Nutrients
Phosphates
Phosphorus - chemistry
Phosphorus - metabolism
Poaceae - metabolism
samples
Selenium
Selenium - chemistry
Selenium - metabolism
Selenium Compounds - chemistry
Selenium Compounds - metabolism
selenium uptake
Soil - chemistry
Soil sciences
Solutions - chemistry
Solutions - metabolism
sorption
spectrometry
Trace Elements - chemistry
Trace Elements - metabolism
trace-metals
translocation
Title Speciation of Se and DOC in Soil Solution and Their Relation to Se Bioavailability
URI http://dx.doi.org/10.1021/es1016119
https://www.ncbi.nlm.nih.gov/pubmed/21141820
https://www.proquest.com/docview/848013433
https://www.proquest.com/docview/821596471
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F410798
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB4heoFDHxRKoEVW6aGXAIkdJz62CwghUaQuSHuznMSWVqycimRB7a_vzOaxW0FbKVIOHtuRx5P5_JhvAD6hUyt5kcahFCYPhUVLV064MI0Kcg-FspKCk6--yYtbcTlJJmtw-JcT_Dg6tjUtMCOi9nwRS4TXhH9G4-F3ixg669MUKC4nPX3QalVyPUX9p-t5gic3YeMRbdgvgppWnMz5KzjtQ3XauyV3R_MmPyp-PWVu_Nf3v4aXHchkX9pZ8QbWrN-CzRXqwS3YOVtGuKFoZ-L1W_jeZqQnfbHKsbFlxpfs9HrEpp6NqynKdrN1UXBDBw2sv1LHmopqfJ1W5sFMZy0H-M9tuD0_uxldhF3ihdAgXGrCPM1yyr_BHRdlhFo2SWlU4kSmYlm42CFmKhFpKbT33KVSJbSPJGUZ2xO075TvwLqvvN0FZoXJiNJM8LIQSZpmJ1Zh_dxho4g0RAAHqBndGU6tF2ficaSHUQvgc680XXS05ZQ9Y_ac6MdB9EfL1fGc0H6v-WWvGZHocMF5AGwoRTujwxPjbTVHEcRGFLUbBfCunS9DH7iGFsSDHwBfTiDtKRdUrYm-u9uQ04_ze-1n9MIWai1w6a2yvf-NwD5stBvZ9LyH9eZ-bj8gEmryg4Ul_AbARf-Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hcqA9QCm0hD6wEAcuKU3sPHws21YLtEVit9LeLCexpRUrBzVZKvj1zOS1C1QCKVIOHseJPZP5_JhvAN6gUyt4noR-LHTmC4OWLq2wfhLk5B5yaWIKTr66jsc34uMsmnU0ORQLgy9R4ZOqZhN_xS4QvDMVzTMDYvh8iCAkpON7p6PJ8NdFKJ322Qokj2c9i9B6VfJAefW7B_oLVm7B5h2asmtim9Z8zcWTNmlR85bNEZOvx8s6O85__kHg-H-fsQ2PO8jJTlsdeQoPjNuBrTUiwh3YPV_Fu6FoZ_DVM_jS5qen0WOlZRPDtCvY2ecRmzs2Keco2-luUzClbQfWH7BjdUk13s9L_V3PFy0j-I_ncHNxPh2N_S4Ng68RPNV-lqQZZePglosiwDHXUaFlZEUqwzi3oUUEVSDukmj9mU1iGdGqUhwXoTlBa0_4Lmy40pkXwIzQKRGcCV7kIkqS9MRIrJ9ZfCjiDuHBEXaa6syoUs0OeRioodc8eNuPnco7EnPKpbG4T_T1IPqtZe64T2i_V4BVqylR6nDBuQdsKEWro60U7Uy5RBFEShTDG3iw16rN0AbOqAWx4nvAV3qkHGWGqhSReXfLc-pueavcgm6kLUrgRFymL__VA6_g0Xh6dakuP1x_2ofNdombrgPYqG-X5hAxUp0dNcbxC-fOCAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5VVKrg0ActkNJSq-qhl1ASOw8f6cKKvqDqgrQ3y0lsacUqQSRb1P76ziROdqFIrRQph4zzsGcynz2ebwDeoVMreJ6Efix05guDli6tsH4S5OQecmliSk7-dhqfXIjP02jqJoqUC4MvUeOd6jaIT1Z9VVjHMBB8MDXNNQNi-XxI4Trawnc4mgx_XoTTaV-xQPJ42jMJrTYlL5TXt73QX9ByA9Zv0JzLNr9pxd-Mn8DZ8KbtNpPL_UWT7ee_75A4_v-nPIXHDnqyw05XnsEDU27Cxgoh4SZsHS_z3lDUGX79HH50deppFFll2cQwXRbs6GzEZiWbVDOUdTrcXjin8APrN9qxpqIWH2eV_qln844Z_NcLuBgfn49OfFeOwdcIoho_S9KMqnJwy0UR4NjrqNAysiKVYZzb0CKSKhB_SfwLZDaJZUSrS3FchOYArT7hW7BWVqXZAWaETonoTPAiF1GSpAdGYvvM4k0RfwgP9rDjlDOnWrWR8jBQQ6958L4fP5U7MnOqqTG_T_TtIHrVMXjcJ7TbK8HyqSlR63DBuQdsuIrWRyEVXZpqgSKImCiXN_Bgu1Od4Rk4sxbEju8BX-qSKqlCVK2I1Nst06mbxbUq53QijVECJ-QyffmvHngDj74fjdXXT6dfdmG9W-mm4xWsNdcL8xqhUpPttfbxB47jCoM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speciation+of+Se+and+DOC+in+soil+solution+and+their+relation+to+Se+bioavailability&rft.jtitle=Environmental+science+%26+technology&rft.au=Weng%2C+L.P&rft.au=Vega%2C+F.A&rft.au=Supriatin%2C+S&rft.au=Bussink%2C+W&rft.date=2011&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=45&rft.issue=1&rft_id=info:doi/10.1021%2Fes1016119&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_410798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon