Speciation of Se and DOC in Soil Solution and Their Relation to Se Bioavailability
A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciat...
Saved in:
Published in | Environmental science & technology Vol. 45; no. 1; pp. 262 - 267 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.01.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 1520-5851 |
DOI | 10.1021/es1016119 |
Cover
Loading…
Abstract | A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl2 extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67−86%) in the extractions (15 samples) are colloidal-sized Se. Only 13−34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47−85% of DOC is colloidal-sized and 15−53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter. |
---|---|
AbstractList | A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter. A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl2 extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67−86%) in the extractions (15 samples) are colloidal-sized Se. Only 13−34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47−85% of DOC is colloidal-sized and 15−53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter. A 0.01 M CaCl... extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl... extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67...86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15...53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter. (ProQuest: ... denotes formulae/symbols omitted.) A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter. A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl2 extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se ( |
Author | Weng, Liping Supriatin, Supriatin Bussink, Wim Riemsdijk, Willem H. Van Vega, Flora Alonso |
Author_xml | – sequence: 1 givenname: Liping surname: Weng fullname: Weng, Liping email: liping.weng@wur.nl – sequence: 2 givenname: Flora Alonso surname: Vega fullname: Vega, Flora Alonso – sequence: 3 givenname: Supriatin surname: Supriatin fullname: Supriatin, Supriatin – sequence: 4 givenname: Wim surname: Bussink fullname: Bussink, Wim – sequence: 5 givenname: Willem H. Van surname: Riemsdijk fullname: Riemsdijk, Willem H. Van |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21141820$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1P3DAQhq2KqizQQ_9AFSFViEPA44_E7q3dlhYJCYmlUm-Wkzhg5LW3dlLEv8chlErAZeYwz-OPd3bQlg_eIPQB8BFgAscmAYYKQL5BC-AEl1xw2EILjIGWkla_t9FOSjcYY0KxeIe2CQADQfACXaw2prV6sMEXoS9WptC-K76dLwvri1WwLhc3PoynweW1sbG4MG42hjAZX23Qf7V1urHODnd76G2vXTLvH_su-nXy_XL5szw7_3G6_HJWairJUDa1aARljPaUddCYVvNOS94zIUnV9qSvCO04MEl43fR1JTkhRFRVRwyuJavpLvo8n3urr4y3PhfldWxtUkFb5WwTdbxTt2NU3k1tMzZJMci2yPLBLG9i-DOaNKi1Ta1xTnsTxqQEAS4rVkMm95-RN2GMPv9MCSZywozSDH18hMZmbTq1iXY9Xf4v6AwczkAbQ0rR9E8IYDUtUT0tMbPHz9jWDg-BDzHH_KrxaTZ0m_4_7yV3D0kXp24 |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2019_05_294 crossref_primary_10_1016_j_scitotenv_2014_01_079 crossref_primary_10_1016_j_chemosphere_2021_130767 crossref_primary_10_1071_EN11021 crossref_primary_10_1080_00223131_2013_816477 crossref_primary_10_1016_j_envpol_2023_121026 crossref_primary_10_2139_ssrn_4158279 crossref_primary_10_1016_j_scitotenv_2021_144962 crossref_primary_10_1186_s12917_017_1040_5 crossref_primary_10_1016_j_geoderma_2017_02_019 crossref_primary_10_1144_geochem2022_055 crossref_primary_10_3390_molecules26237084 crossref_primary_10_1093_hr_uhac270 crossref_primary_10_1007_s00216_013_7323_1 crossref_primary_10_1016_j_jenvrad_2017_06_004 crossref_primary_10_1016_j_chemosphere_2022_136690 crossref_primary_10_3390_nu7064199 crossref_primary_10_1016_j_teac_2015_01_001 crossref_primary_10_1007_s10967_021_07839_0 crossref_primary_10_1016_j_jenvman_2022_116397 crossref_primary_10_1016_j_scitotenv_2015_06_005 crossref_primary_10_1016_j_envpol_2017_12_019 crossref_primary_10_1016_j_chemosphere_2017_05_159 crossref_primary_10_1016_j_scitotenv_2019_134330 crossref_primary_10_1134_S0016702923070066 crossref_primary_10_1016_j_jfca_2020_103615 crossref_primary_10_1016_S1002_0160_17_60444_2 crossref_primary_10_2134_jeq2017_09_0352 crossref_primary_10_1016_j_geoderma_2015_04_021 crossref_primary_10_1007_s11104_016_2830_4 crossref_primary_10_1016_j_gexplo_2014_05_007 crossref_primary_10_1016_j_chemosphere_2017_06_034 crossref_primary_10_3390_agronomy13102508 crossref_primary_10_1007_s11104_016_2900_7 |
Cites_doi | 10.1007/s00604-001-0899-8 10.1007/BF02492085 10.1016/S0048-9697(97)00269-6 10.1021/es010085j 10.1016/j.tplants.2009.06.006 10.1021/es9808649 10.1007/s11120-005-5222-9 10.1016/S0003-2670(00)00935-1 10.1016/S0265-931X(03)00125-5 10.1080/00380768.1998.10414460 10.2134/jeq1997.00472425002600060036x 10.1021/es00071a010 10.1111/j.1469-8137.2007.02343.x 10.1080/00103621003759387 10.1021/ac0485435 10.1111/j.1747-0765.2009.00397.x 10.1016/j.aca.2008.12.026 10.1111/j.1365-2389.2009.01127.x 10.1097/00010694-198708000-00008 10.1007/s10967-006-6951-8 10.1002/aoc.590080209 10.1016/S0883-2927(99)00051-7 10.1016/j.aca.2004.08.001 10.1021/ac9029339 10.1016/S0003-2670(01)01089-3 10.1016/j.jcis.2006.08.014 10.1046/j.1365-2389.2001.00416.x 10.1016/S0016-7037(99)00228-8 10.1080/00103620009370514 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society Copyright American Chemical Society Jan 1, 2011 Wageningen University & Research |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: Copyright American Chemical Society Jan 1, 2011 – notice: Wageningen University & Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 QVL |
DOI | 10.1021/es1016119 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biotechnology Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 267 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_410798 2251942591 21141820 10_1021_es1016119 h90561426 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 08R 186 1WB 42X 8WZ A A6W ABDEX ACDCL ACKIV ADKFC AETEA AFDAS AFMIJ ANTXH HR IHE K78 MVM NHB OHT QVL RNS TAE UBX UBY UQL VJK VOH ZCG ZY4 |
ID | FETCH-LOGICAL-a392t-b78b83443f34d1beca5da95f48926cf2f623d5149257bf7695222866d2e079473 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Tue Jan 05 18:05:10 EST 2021 Fri Jul 11 10:17:22 EDT 2025 Fri Jul 25 03:50:11 EDT 2025 Wed Feb 19 01:47:26 EST 2025 Tue Jul 01 02:10:28 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Thu Aug 27 13:42:48 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a392t-b78b83443f34d1beca5da95f48926cf2f623d5149257bf7695222866d2e079473 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 21141820 |
PQID | 848013433 |
PQPubID | 45412 |
PageCount | 6 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_410798 proquest_miscellaneous_821596471 proquest_journals_848013433 pubmed_primary_21141820 crossref_primary_10_1021_es1016119 crossref_citationtrail_10_1021_es1016119 acs_journals_10_1021_es1016119 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 20110101 2011-01-01 2011-Jan-01 2011 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 20110101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Pyrzynska K. (ref1/cit1) 2002; 140 Hiemstra T. (ref5/cit5) 2007; 80 Sors T. G. (ref14/cit14) 2005; 86 Rietra R. (ref7/cit7) 1999; 63 ref25/cit25 Zhu Y. G. (ref3/cit3) 2009; 14 Masscheleyn P. H. (ref13/cit13) 1990; 24 Yamada H. (ref11/cit11) 1998; 44 Seby F. (ref19/cit19) 1997; 207 Houba V. J. G. (ref26/cit26) 2000; 31 Elrashidi M. A. (ref10/cit10) 1987; 144 Li H. F. (ref15/cit15) 2008; 178 Iserte L. O. (ref21/cit21) 2004; 527 Wojcik P. (ref20/cit20) 2003; 57 Vassileva E. (ref22/cit22) 2001; 441 Temminghoff E. J. M. (ref27/cit27) 2000; 417 Bregliani M. M. (ref31/cit31) 2010; 41 Kamei-Ishikawa N. (ref17/cit17) 2007; 274 Martens D. A. (ref29/cit29) 1997; 26 Duc M. (ref4/cit4) 2003; 70 Weng L. P. (ref23/cit23) 2001; 35 Pedrero Z. (ref18/cit18) 2009; 634 Gustafsson J. P. (ref16/cit16) 1994; 8 Zhang Y. Q. (ref12/cit12) 1999; 33 Yamada H. (ref9/cit9) 2009; 55 Keizer M. G. (ref30/cit30) 1994 Johnson C. C. (ref2/cit2) 2000; 15 Coppin F. (ref8/cit8) 2009; 60 Weng L. P. (ref28/cit28) 2005; 77 Peak D. (ref6/cit6) 2006; 303 Weng L. P. (ref24/cit24) 2001; 52 |
References_xml | – volume: 140 start-page: 55 issue: 1 year: 2002 ident: ref1/cit1 publication-title: Microchim. Acta doi: 10.1007/s00604-001-0899-8 – volume: 57 start-page: S67 year: 2003 ident: ref20/cit20 publication-title: Chromatographia doi: 10.1007/BF02492085 – volume: 207 start-page: 81 issue: 2 year: 1997 ident: ref19/cit19 publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(97)00269-6 – volume: 35 start-page: 4436 issue: 22 year: 2001 ident: ref23/cit23 publication-title: Environ. Sci. Technol. doi: 10.1021/es010085j – volume: 14 start-page: 436 issue: 8 year: 2009 ident: ref3/cit3 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2009.06.006 – volume: 80 start-page: 313 issue: 3 year: 2007 ident: ref5/cit5 publication-title: Croat. Chem. Acta – volume: 33 start-page: 1652 issue: 10 year: 1999 ident: ref12/cit12 publication-title: Environ. Sci. Technol. doi: 10.1021/es9808649 – volume: 86 start-page: 373 issue: 3 year: 2005 ident: ref14/cit14 publication-title: Photosynth. Res. doi: 10.1007/s11120-005-5222-9 – volume: 417 start-page: 149 issue: 2 year: 2000 ident: ref27/cit27 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)00935-1 – volume: 70 start-page: 61 issue: 1 year: 2003 ident: ref4/cit4 publication-title: J. Environ. Radioact. doi: 10.1016/S0265-931X(03)00125-5 – volume: 44 start-page: 385 issue: 3 year: 1998 ident: ref11/cit11 publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.1998.10414460 – volume: 26 start-page: 1711 issue: 6 year: 1997 ident: ref29/cit29 publication-title: J. Environ. Qual. doi: 10.2134/jeq1997.00472425002600060036x – volume: 24 start-page: 91 issue: 1 year: 1990 ident: ref13/cit13 publication-title: Environ. Sci. Technol. doi: 10.1021/es00071a010 – volume: 178 start-page: 92 issue: 1 year: 2008 ident: ref15/cit15 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02343.x – volume: 41 start-page: 1383 issue: 11 year: 2010 ident: ref31/cit31 publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103621003759387 – volume: 77 start-page: 2852 issue: 9 year: 2005 ident: ref28/cit28 publication-title: Anal. Chem. doi: 10.1021/ac0485435 – volume: 55 start-page: 616 issue: 5 year: 2009 ident: ref9/cit9 publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2009.00397.x – volume: 634 start-page: 135 issue: 2 year: 2009 ident: ref18/cit18 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2008.12.026 – volume: 60 start-page: 369 issue: 3 year: 2009 ident: ref8/cit8 publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01127.x – volume: 144 start-page: 141 issue: 2 year: 1987 ident: ref10/cit10 publication-title: Soil Sci doi: 10.1097/00010694-198708000-00008 – volume-title: ECOSAT: Equilibrium Calculation of Speciation and Transport year: 1994 ident: ref30/cit30 – volume: 274 start-page: 555 issue: 3 year: 2007 ident: ref17/cit17 publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-006-6951-8 – volume: 8 start-page: 141 issue: 2 year: 1994 ident: ref16/cit16 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.590080209 – volume: 15 start-page: 385 issue: 3 year: 2000 ident: ref2/cit2 publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(99)00051-7 – volume: 527 start-page: 97 issue: 1 year: 2004 ident: ref21/cit21 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2004.08.001 – ident: ref25/cit25 doi: 10.1021/ac9029339 – volume: 441 start-page: 135 issue: 1 year: 2001 ident: ref22/cit22 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)01089-3 – volume: 303 start-page: 337 issue: 2 year: 2006 ident: ref6/cit6 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.08.014 – volume: 52 start-page: 629 issue: 4 year: 2001 ident: ref24/cit24 publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2001.00416.x – volume: 63 start-page: 3009 issue: 19 year: 1999 ident: ref7/cit7 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00228-8 – volume: 31 start-page: 1299 issue: 9 year: 2000 ident: ref26/cit26 publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620009370514 |
SSID | ssj0002308 |
Score | 2.2061093 |
Snippet | A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium... A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium... A 0.01 M CaCl... extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium... |
SourceID | wageningen proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 262 |
SubjectTerms | adsorption Analytical chemistry Bioavailability Carbon Carbon - chemistry Carbon - metabolism Colloids - chemistry Colloids - metabolism donnan membrane technique Environmental Processes Extraction processes extracts ion-chromatography Mineralization Netherlands Nutrients Phosphates Phosphorus - chemistry Phosphorus - metabolism Poaceae - metabolism samples Selenium Selenium - chemistry Selenium - metabolism Selenium Compounds - chemistry Selenium Compounds - metabolism selenium uptake Soil - chemistry Soil sciences Solutions - chemistry Solutions - metabolism sorption spectrometry Trace Elements - chemistry Trace Elements - metabolism trace-metals translocation |
Title | Speciation of Se and DOC in Soil Solution and Their Relation to Se Bioavailability |
URI | http://dx.doi.org/10.1021/es1016119 https://www.ncbi.nlm.nih.gov/pubmed/21141820 https://www.proquest.com/docview/848013433 https://www.proquest.com/docview/821596471 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F410798 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB4heoFDHxRKoEVW6aGXAIkdJz62CwghUaQuSHuznMSWVqycimRB7a_vzOaxW0FbKVIOHtuRx5P5_JhvAD6hUyt5kcahFCYPhUVLV064MI0Kcg-FspKCk6--yYtbcTlJJmtw-JcT_Dg6tjUtMCOi9nwRS4TXhH9G4-F3ixg669MUKC4nPX3QalVyPUX9p-t5gic3YeMRbdgvgppWnMz5KzjtQ3XauyV3R_MmPyp-PWVu_Nf3v4aXHchkX9pZ8QbWrN-CzRXqwS3YOVtGuKFoZ-L1W_jeZqQnfbHKsbFlxpfs9HrEpp6NqynKdrN1UXBDBw2sv1LHmopqfJ1W5sFMZy0H-M9tuD0_uxldhF3ihdAgXGrCPM1yyr_BHRdlhFo2SWlU4kSmYlm42CFmKhFpKbT33KVSJbSPJGUZ2xO075TvwLqvvN0FZoXJiNJM8LIQSZpmJ1Zh_dxho4g0RAAHqBndGU6tF2ficaSHUQvgc680XXS05ZQ9Y_ac6MdB9EfL1fGc0H6v-WWvGZHocMF5AGwoRTujwxPjbTVHEcRGFLUbBfCunS9DH7iGFsSDHwBfTiDtKRdUrYm-u9uQ04_ze-1n9MIWai1w6a2yvf-NwD5stBvZ9LyH9eZ-bj8gEmryg4Ul_AbARf-Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hcqA9QCm0hD6wEAcuKU3sPHws21YLtEVit9LeLCexpRUrBzVZKvj1zOS1C1QCKVIOHseJPZP5_JhvAN6gUyt4noR-LHTmC4OWLq2wfhLk5B5yaWIKTr66jsc34uMsmnU0ORQLgy9R4ZOqZhN_xS4QvDMVzTMDYvh8iCAkpON7p6PJ8NdFKJ322Qokj2c9i9B6VfJAefW7B_oLVm7B5h2asmtim9Z8zcWTNmlR85bNEZOvx8s6O85__kHg-H-fsQ2PO8jJTlsdeQoPjNuBrTUiwh3YPV_Fu6FoZ_DVM_jS5qen0WOlZRPDtCvY2ecRmzs2Keco2-luUzClbQfWH7BjdUk13s9L_V3PFy0j-I_ncHNxPh2N_S4Ng68RPNV-lqQZZePglosiwDHXUaFlZEUqwzi3oUUEVSDukmj9mU1iGdGqUhwXoTlBa0_4Lmy40pkXwIzQKRGcCV7kIkqS9MRIrJ9ZfCjiDuHBEXaa6syoUs0OeRioodc8eNuPnco7EnPKpbG4T_T1IPqtZe64T2i_V4BVqylR6nDBuQdsKEWro60U7Uy5RBFEShTDG3iw16rN0AbOqAWx4nvAV3qkHGWGqhSReXfLc-pueavcgm6kLUrgRFymL__VA6_g0Xh6dakuP1x_2ofNdombrgPYqG-X5hAxUp0dNcbxC-fOCAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5VVKrg0ActkNJSq-qhl1ASOw8f6cKKvqDqgrQ3y0lsacUqQSRb1P76ziROdqFIrRQph4zzsGcynz2ebwDeoVMreJ6Efix05guDli6tsH4S5OQecmliSk7-dhqfXIjP02jqJoqUC4MvUeOd6jaIT1Z9VVjHMBB8MDXNNQNi-XxI4Trawnc4mgx_XoTTaV-xQPJ42jMJrTYlL5TXt73QX9ByA9Zv0JzLNr9pxd-Mn8DZ8KbtNpPL_UWT7ee_75A4_v-nPIXHDnqyw05XnsEDU27Cxgoh4SZsHS_z3lDUGX79HH50deppFFll2cQwXRbs6GzEZiWbVDOUdTrcXjin8APrN9qxpqIWH2eV_qln844Z_NcLuBgfn49OfFeOwdcIoho_S9KMqnJwy0UR4NjrqNAysiKVYZzb0CKSKhB_SfwLZDaJZUSrS3FchOYArT7hW7BWVqXZAWaETonoTPAiF1GSpAdGYvvM4k0RfwgP9rDjlDOnWrWR8jBQQ6958L4fP5U7MnOqqTG_T_TtIHrVMXjcJ7TbK8HyqSlR63DBuQdsuIrWRyEVXZpqgSKImCiXN_Bgu1Od4Rk4sxbEju8BX-qSKqlCVK2I1Nst06mbxbUq53QijVECJ-QyffmvHngDj74fjdXXT6dfdmG9W-mm4xWsNdcL8xqhUpPttfbxB47jCoM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speciation+of+Se+and+DOC+in+soil+solution+and+their+relation+to+Se+bioavailability&rft.jtitle=Environmental+science+%26+technology&rft.au=Weng%2C+L.P&rft.au=Vega%2C+F.A&rft.au=Supriatin%2C+S&rft.au=Bussink%2C+W&rft.date=2011&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=45&rft.issue=1&rft_id=info:doi/10.1021%2Fes1016119&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_410798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |