Fine Design of Photoredox Systems for Catalytic Fluoromethylation of Carbon–Carbon Multiple Bonds

Trifluoromethyl (CF3) and difluoromethyl (CF2H) groups are versatile structural motifs, especially in the fields of pharmaceuticals and agrochemicals. Thus, the development of new protocols for tri- and difluoromethylation of various skeletons has become a vital subject to be studied in the field of...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 49; no. 9; pp. 1937 - 1945
Main Authors Koike, Takashi, Akita, Munetaka
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.09.2016
Online AccessGet full text

Cover

Loading…
Abstract Trifluoromethyl (CF3) and difluoromethyl (CF2H) groups are versatile structural motifs, especially in the fields of pharmaceuticals and agrochemicals. Thus, the development of new protocols for tri- and difluoromethylation of various skeletons has become a vital subject to be studied in the field of synthetic organic chemistry. For the past decades, a variety of fluoromethylating reagents have been developed. In particular, bench-stable and easy-to-use electrophilic fluoromethylating reagents such as the Umemoto, Yagupolskii–Umemoto, Togni, and Hu reagents serve as excellent fluoromethyl sources for ionic and carbenoid reactions. Importantly, the action of catalysis has become a promising strategy for developing new fluoromethylations. For the past several years, photoredox catalysis has emerged as a useful tool for radical reactions through visible-light-induced single-electron-transfer (SET) processes. Commonly used photocatalysts such as [Ru­(bpy)3]2+ and fac-[Ir­(ppy)3] (bpy = 2,2′-bipyridine; ppy = 2-pyridylphenyl) have potential as one-electron reductants strong enough to reduce those fluoromethylating reagents, resulting in facile generation of the corresponding fluoromethyl radicals. Therefore, if we can design proper reaction systems, efficient and selective radical fluoromethylation would proceed without any sacrificial redox agents, i.e., via a redox-neutral process under mild reaction conditions: irradiation with visible light, including sunlight, below room temperature. It should be noted that examples of catalytic fluoromethylation of compounds with carbon–carbon multiple bonds have been limited until recent years. In this Account, we will focus on our recent research on photoredox-catalyzed fluoromethylation of carbon–carbon multiple bonds. First, choices of the photocatalyst and the fluoromethylating reagent and the basic concept involving a redox-neutral oxidative quenching cycle are explained. Then photocatalytic trifluoromethylation of olefins is discussed mainly. Trifluoromethylative difunctionalization reactions, i.e., simultaneous introduction of the CF3 group and a different functional group across carbon–carbon double bonds, are in the middle of the discussion. Oxy-, amino-, and ketotrifluoromethylation allow us to synthesize various organofluorine compounds bearing C­(sp3)–CF3 bonds. In addition, the synthesis of valuable trifluoromethylated alkenes is also viable when the olefins have an appropriate leaving group or undergo deprotonation. The present reaction system features high functional group compatibility and high regioselectivity. Furthermore, future prospects, especially trifluoromethylative difunctionalization of alkynes and difluoromethylation of alkenes, are also discussed.
AbstractList Trifluoromethyl (CF3) and difluoromethyl (CF2H) groups are versatile structural motifs, especially in the fields of pharmaceuticals and agrochemicals. Thus, the development of new protocols for tri- and difluoromethylation of various skeletons has become a vital subject to be studied in the field of synthetic organic chemistry. For the past decades, a variety of fluoromethylating reagents have been developed. In particular, bench-stable and easy-to-use electrophilic fluoromethylating reagents such as the Umemoto, Yagupolskii-Umemoto, Togni, and Hu reagents serve as excellent fluoromethyl sources for ionic and carbenoid reactions. Importantly, the action of catalysis has become a promising strategy for developing new fluoromethylations. For the past several years, photoredox catalysis has emerged as a useful tool for radical reactions through visible-light-induced single-electron-transfer (SET) processes. Commonly used photocatalysts such as [Ru(bpy)3](2+) and fac-[Ir(ppy)3] (bpy = 2,2'-bipyridine; ppy = 2-pyridylphenyl) have potential as one-electron reductants strong enough to reduce those fluoromethylating reagents, resulting in facile generation of the corresponding fluoromethyl radicals. Therefore, if we can design proper reaction systems, efficient and selective radical fluoromethylation would proceed without any sacrificial redox agents, i.e., via a redox-neutral process under mild reaction conditions: irradiation with visible light, including sunlight, below room temperature. It should be noted that examples of catalytic fluoromethylation of compounds with carbon-carbon multiple bonds have been limited until recent years. In this Account, we will focus on our recent research on photoredox-catalyzed fluoromethylation of carbon-carbon multiple bonds. First, choices of the photocatalyst and the fluoromethylating reagent and the basic concept involving a redox-neutral oxidative quenching cycle are explained. Then photocatalytic trifluoromethylation of olefins is discussed mainly. Trifluoromethylative difunctionalization reactions, i.e., simultaneous introduction of the CF3 group and a different functional group across carbon-carbon double bonds, are in the middle of the discussion. Oxy-, amino-, and ketotrifluoromethylation allow us to synthesize various organofluorine compounds bearing C(sp(3))-CF3 bonds. In addition, the synthesis of valuable trifluoromethylated alkenes is also viable when the olefins have an appropriate leaving group or undergo deprotonation. The present reaction system features high functional group compatibility and high regioselectivity. Furthermore, future prospects, especially trifluoromethylative difunctionalization of alkynes and difluoromethylation of alkenes, are also discussed.
Trifluoromethyl (CF3) and difluoromethyl (CF2H) groups are versatile structural motifs, especially in the fields of pharmaceuticals and agrochemicals. Thus, the development of new protocols for tri- and difluoromethylation of various skeletons has become a vital subject to be studied in the field of synthetic organic chemistry. For the past decades, a variety of fluoromethylating reagents have been developed. In particular, bench-stable and easy-to-use electrophilic fluoromethylating reagents such as the Umemoto, Yagupolskii–Umemoto, Togni, and Hu reagents serve as excellent fluoromethyl sources for ionic and carbenoid reactions. Importantly, the action of catalysis has become a promising strategy for developing new fluoromethylations. For the past several years, photoredox catalysis has emerged as a useful tool for radical reactions through visible-light-induced single-electron-transfer (SET) processes. Commonly used photocatalysts such as [Ru­(bpy)3]2+ and fac-[Ir­(ppy)3] (bpy = 2,2′-bipyridine; ppy = 2-pyridylphenyl) have potential as one-electron reductants strong enough to reduce those fluoromethylating reagents, resulting in facile generation of the corresponding fluoromethyl radicals. Therefore, if we can design proper reaction systems, efficient and selective radical fluoromethylation would proceed without any sacrificial redox agents, i.e., via a redox-neutral process under mild reaction conditions: irradiation with visible light, including sunlight, below room temperature. It should be noted that examples of catalytic fluoromethylation of compounds with carbon–carbon multiple bonds have been limited until recent years. In this Account, we will focus on our recent research on photoredox-catalyzed fluoromethylation of carbon–carbon multiple bonds. First, choices of the photocatalyst and the fluoromethylating reagent and the basic concept involving a redox-neutral oxidative quenching cycle are explained. Then photocatalytic trifluoromethylation of olefins is discussed mainly. Trifluoromethylative difunctionalization reactions, i.e., simultaneous introduction of the CF3 group and a different functional group across carbon–carbon double bonds, are in the middle of the discussion. Oxy-, amino-, and ketotrifluoromethylation allow us to synthesize various organofluorine compounds bearing C­(sp3)–CF3 bonds. In addition, the synthesis of valuable trifluoromethylated alkenes is also viable when the olefins have an appropriate leaving group or undergo deprotonation. The present reaction system features high functional group compatibility and high regioselectivity. Furthermore, future prospects, especially trifluoromethylative difunctionalization of alkynes and difluoromethylation of alkenes, are also discussed.
Author Koike, Takashi
Akita, Munetaka
AuthorAffiliation Tokyo Institute of Technology
Laboratory for Chemistry and Life Science, Institute of Innovative Research
AuthorAffiliation_xml – name: Laboratory for Chemistry and Life Science, Institute of Innovative Research
– name: Tokyo Institute of Technology
Author_xml – sequence: 1
  givenname: Takashi
  surname: Koike
  fullname: Koike, Takashi
  email: koike.t.ad@m.titech.ac.jp
– sequence: 2
  givenname: Munetaka
  surname: Akita
  fullname: Akita, Munetaka
  email: makita@res.titech.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27564676$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOAzEQRS0URMLjDxBySZNgO_ukg0AAKQgkoF55nTEYee1geyXS8Q_8IV-C86KggGruaO6Z4uyijrEGEDqkZEAJoydc-AEXwrYm-EFWE8KyYgv1aMpIPynKooN6hBAac8K6aNf717iyJMt3UJflaRZT1kNirAzgC_Dq2WAr8f2LDdbB1L7jh7kP0HgsrcMjHrieByXwWLfW2QbCy1zzoOySGnFXW_P18bkK-LbVQc004HNrpn4fbUuuPRys5x56Gl8-jq77k7urm9HZpM-HJQv9rGCZ4GUioWSU1kBYzikXdV6nwNNMFjQvh4SxkklB0wQKIZmoIaW5mMphUg730PHq78zZtxZ8qBrlBWjNDdjWV7Rg8THLSR6rR-tqWzcwrWZONdzNq42YWEhWBeGs9w7kT4WSauG_iv6rjf9q7T9ip78wocJSU3Bc6f9gsoIX11fbOhNt_Y18A3PpopY
CitedBy_id crossref_primary_10_1021_acs_orglett_0c01163
crossref_primary_10_1002_chem_202302353
crossref_primary_10_1021_acs_joc_0c02739
crossref_primary_10_1002_adsc_202200934
crossref_primary_10_1021_acs_orglett_7b02601
crossref_primary_10_1002_cctc_202401622
crossref_primary_10_1021_acscatal_9b01312
crossref_primary_10_1002_anie_201702940
crossref_primary_10_1002_anie_201903496
crossref_primary_10_1021_acscatal_2c02052
crossref_primary_10_1039_D0CC00601G
crossref_primary_10_1002_ange_202012263
crossref_primary_10_1002_ange_201706263
crossref_primary_10_1021_acs_orglett_4c00793
crossref_primary_10_1039_D0CC07502G
crossref_primary_10_1002_cptc_201700077
crossref_primary_10_1021_acscatal_8b04188
crossref_primary_10_1038_s41467_021_24716_2
crossref_primary_10_1055_a_1787_1159
crossref_primary_10_3390_catal7110337
crossref_primary_10_1002_slct_201900110
crossref_primary_10_1002_slct_201702184
crossref_primary_10_1039_C7SC02556D
crossref_primary_10_1016_j_tetlet_2018_02_039
crossref_primary_10_5059_yukigoseikyokaishi_77_414
crossref_primary_10_1002_ejoc_201901672
crossref_primary_10_1021_acscatal_9b00473
crossref_primary_10_1038_s42004_019_0219_z
crossref_primary_10_1002_adsc_201901104
crossref_primary_10_1002_anie_202405678
crossref_primary_10_1021_acs_joc_0c00417
crossref_primary_10_1021_acs_orglett_0c01147
crossref_primary_10_1002_anie_202004439
crossref_primary_10_1039_D4OB01950D
crossref_primary_10_1002_ange_202109953
crossref_primary_10_1039_D3OB00588G
crossref_primary_10_1002_adsc_202001434
crossref_primary_10_1002_ejoc_202300868
crossref_primary_10_1021_acs_orglett_7b01971
crossref_primary_10_1021_acs_orglett_8b03485
crossref_primary_10_1021_acs_joc_3c02102
crossref_primary_10_1039_C8OB02239A
crossref_primary_10_1039_C7CC03520A
crossref_primary_10_1021_acscatal_7b01120
crossref_primary_10_1021_acs_joc_8b00650
crossref_primary_10_1021_jacs_8b08547
crossref_primary_10_1021_acs_joc_8b01861
crossref_primary_10_1016_j_tetlet_2019_151538
crossref_primary_10_1021_acs_joc_6b02344
crossref_primary_10_1021_acs_orglett_9b01714
crossref_primary_10_1002_adsc_201901324
crossref_primary_10_1002_adsc_202401489
crossref_primary_10_1021_acs_orglett_8b03596
crossref_primary_10_1039_D5OB00056D
crossref_primary_10_1002_adsc_202300337
crossref_primary_10_1021_acs_orglett_7b00894
crossref_primary_10_1002_anie_202219027
crossref_primary_10_1021_acs_accounts_9b00393
crossref_primary_10_1021_jacs_2c05356
crossref_primary_10_1021_acscatal_3c03832
crossref_primary_10_1021_acs_accounts_3c00505
crossref_primary_10_1039_C8CC07344A
crossref_primary_10_1002_ange_202319158
crossref_primary_10_1055_a_1677_5971
crossref_primary_10_1002_adsc_202101016
crossref_primary_10_1002_ange_202004439
crossref_primary_10_1039_D3OB00239J
crossref_primary_10_1002_ajoc_201600539
crossref_primary_10_1002_ange_202405678
crossref_primary_10_1002_chem_201701830
crossref_primary_10_1021_acs_orglett_9b00655
crossref_primary_10_1021_acscatal_7b00094
crossref_primary_10_1021_acs_joc_8b00887
crossref_primary_10_1021_acs_orglett_9b01629
crossref_primary_10_1021_acs_joc_9b02478
crossref_primary_10_1002_chem_201804708
crossref_primary_10_1021_acs_joc_9b01033
crossref_primary_10_1039_D2RA06679C
crossref_primary_10_1002_ajoc_202200047
crossref_primary_10_1021_acs_orglett_7b03987
crossref_primary_10_1039_C8QO00834E
crossref_primary_10_1002_chem_201802766
crossref_primary_10_1002_cjoc_201900221
crossref_primary_10_1039_D3QO01376F
crossref_primary_10_1002_anie_202012263
crossref_primary_10_1002_chem_201804946
crossref_primary_10_1002_ange_202109723
crossref_primary_10_1002_ange_202319030
crossref_primary_10_1002_anie_202109953
crossref_primary_10_1002_ejoc_201900274
crossref_primary_10_1021_acs_orglett_8b03012
crossref_primary_10_1039_D2CS01055K
crossref_primary_10_1021_acs_joc_7b00609
crossref_primary_10_1002_anie_201706263
crossref_primary_10_1093_bulcsj_uoae080
crossref_primary_10_1002_cjoc_202100464
crossref_primary_10_1002_anie_202001262
crossref_primary_10_1002_anie_202214633
crossref_primary_10_1021_acs_joc_0c02637
crossref_primary_10_1002_chem_201803409
crossref_primary_10_1002_chem_201903058
crossref_primary_10_3390_molecules26123525
crossref_primary_10_1021_acsami_1c19655
crossref_primary_10_1002_adsc_201800740
crossref_primary_10_1002_anie_201813425
crossref_primary_10_1016_j_chempr_2017_11_004
crossref_primary_10_1002_anie_202109723
crossref_primary_10_1039_D1RA03043D
crossref_primary_10_1002_anie_201709766
crossref_primary_10_1002_adsc_202101393
crossref_primary_10_1021_acs_orglett_4c00457
crossref_primary_10_1039_D3QO01366A
crossref_primary_10_1246_bcsj_20190080
crossref_primary_10_1039_C9CC01737B
crossref_primary_10_1002_ange_202001262
crossref_primary_10_1021_acs_orglett_0c03891
crossref_primary_10_1002_ange_201611058
crossref_primary_10_1021_acs_orglett_0c00024
crossref_primary_10_1002_ange_201813425
crossref_primary_10_1039_D4QO01203H
crossref_primary_10_1016_j_tetlet_2024_155218
crossref_primary_10_1039_D2CC04707A
crossref_primary_10_1055_a_1647_7292
crossref_primary_10_1002_adsc_202301229
crossref_primary_10_1002_ange_201709766
crossref_primary_10_1039_D1CC01609A
crossref_primary_10_1002_ajoc_201600562
crossref_primary_10_1021_acs_orglett_4c00462
crossref_primary_10_1021_acscatal_9b01718
crossref_primary_10_1039_C9OB01331H
crossref_primary_10_1039_D0CS00493F
crossref_primary_10_1021_acs_orglett_0c00593
crossref_primary_10_1002_ange_202008040
crossref_primary_10_1021_acs_joc_9b03087
crossref_primary_10_1021_acs_orglett_0c01566
crossref_primary_10_1002_ejoc_202400405
crossref_primary_10_1021_acs_joc_7b02133
crossref_primary_10_1021_acs_joc_7b01041
crossref_primary_10_1021_acssuschemeng_0c03745
crossref_primary_10_1039_C9OB00278B
crossref_primary_10_1002_ajoc_202300638
crossref_primary_10_1016_j_gresc_2023_08_002
crossref_primary_10_1021_acs_joc_4c00889
crossref_primary_10_1021_acscatal_3c06111
crossref_primary_10_1021_jacs_9b03024
crossref_primary_10_1039_C9CC06075H
crossref_primary_10_1021_acs_orglett_6b03441
crossref_primary_10_1038_s41929_019_0311_x
crossref_primary_10_1039_D1DT01853A
crossref_primary_10_3762_bjoc_16_126
crossref_primary_10_1021_acs_orglett_2c00425
crossref_primary_10_1002_anie_201612516
crossref_primary_10_1002_ijch_201900166
crossref_primary_10_1021_acs_orglett_0c02300
crossref_primary_10_1246_cl_170321
crossref_primary_10_1002_adsc_202300275
crossref_primary_10_1039_C6GC03558B
crossref_primary_10_1039_C9QO00206E
crossref_primary_10_1002_chem_201702311
crossref_primary_10_1021_acs_orglett_8b00586
crossref_primary_10_1002_cptc_201700128
crossref_primary_10_1021_jacs_2c01735
crossref_primary_10_1039_D0QO00893A
crossref_primary_10_1021_acs_orglett_9b00443
crossref_primary_10_1021_acs_orglett_7b01366
crossref_primary_10_1002_cjoc_202000132
crossref_primary_10_1002_asia_202400909
crossref_primary_10_1002_cptc_201700008
crossref_primary_10_1039_C7OB01266G
crossref_primary_10_6023_cjoc202101042
crossref_primary_10_1002_chem_201704619
crossref_primary_10_1002_adsc_202100828
crossref_primary_10_1002_anie_201915619
crossref_primary_10_1002_anie_202008630
crossref_primary_10_1002_cssc_202101963
crossref_primary_10_1039_D2QO00985D
crossref_primary_10_1002_anie_202007548
crossref_primary_10_1002_anie_202009844
crossref_primary_10_1021_jacs_7b02569
crossref_primary_10_1039_C8SC02547A
crossref_primary_10_5059_yukigoseikyokaishi_80_782
crossref_primary_10_1002_adsc_202001272
crossref_primary_10_1021_acs_joc_3c00448
crossref_primary_10_1021_acs_orglett_8b01585
crossref_primary_10_1002_adsc_202400322
crossref_primary_10_1021_acs_joc_2c02415
crossref_primary_10_1039_D1QO01073E
crossref_primary_10_1002_ejoc_201700077
crossref_primary_10_1126_sciadv_adt2715
crossref_primary_10_1002_ange_202301168
crossref_primary_10_1039_D1QO01653A
crossref_primary_10_1002_ange_201803566
crossref_primary_10_1016_j_chempr_2019_02_006
crossref_primary_10_1021_acs_joc_2c01682
crossref_primary_10_1021_acs_orglett_0c03730
crossref_primary_10_1021_acs_orglett_1c03608
crossref_primary_10_1002_adsc_202001381
crossref_primary_10_1021_acs_orglett_1c00457
crossref_primary_10_1021_jacsau_4c01158
crossref_primary_10_1016_j_tetlet_2018_05_086
crossref_primary_10_1002_ejoc_201900651
crossref_primary_10_1039_D0OB01692F
crossref_primary_10_1021_acs_orglett_9b03855
crossref_primary_10_1039_D1CC03288G
crossref_primary_10_1002_cctc_201801625
crossref_primary_10_1038_s41467_019_11528_8
crossref_primary_10_2174_1570193X19666220929114415
crossref_primary_10_1002_ejoc_201701106
crossref_primary_10_1016_j_tet_2018_05_073
crossref_primary_10_1002_anie_202110304
crossref_primary_10_1002_chem_201805526
crossref_primary_10_5059_yukigoseikyokaishi_80_489
crossref_primary_10_1039_D0OB01322F
crossref_primary_10_1039_D3QO01934A
crossref_primary_10_1021_acs_joc_8b00927
crossref_primary_10_1002_ange_202219027
crossref_primary_10_1021_acs_orglett_8b02451
crossref_primary_10_1002_chem_201902811
crossref_primary_10_1002_ange_201912746
crossref_primary_10_1016_j_catcom_2018_06_009
crossref_primary_10_1002_ange_202108802
crossref_primary_10_1021_acscatal_3c01922
crossref_primary_10_1002_anie_202006440
crossref_primary_10_1055_a_2126_1897
crossref_primary_10_1039_D1SC00998B
crossref_primary_10_1002_anie_202010801
crossref_primary_10_1002_ange_201702940
crossref_primary_10_1016_j_tetlet_2019_151479
crossref_primary_10_1002_adsc_202300078
crossref_primary_10_1016_j_jcat_2023_06_040
crossref_primary_10_1021_acs_orglett_8b03534
crossref_primary_10_1002_ajoc_202300329
crossref_primary_10_1021_acs_orglett_8b03651
crossref_primary_10_1021_acs_joc_4c02519
crossref_primary_10_1021_acs_joc_9b00901
crossref_primary_10_1021_acs_orglett_1c00639
crossref_primary_10_1021_acscatal_3c01812
crossref_primary_10_1002_cctc_202200260
crossref_primary_10_1021_acs_orglett_0c01982
crossref_primary_10_1021_acs_orglett_2c03900
crossref_primary_10_1039_D1QO00559F
crossref_primary_10_1021_acs_orglett_9b01366
crossref_primary_10_1021_acscatal_9b01530
crossref_primary_10_1021_acssuschemeng_9b02178
crossref_primary_10_1039_D0QO01218A
crossref_primary_10_1002_anie_201609274
crossref_primary_10_1039_D4SC07728H
crossref_primary_10_1021_acscatal_4c06100
crossref_primary_10_1021_acs_orglett_7b02223
crossref_primary_10_1039_D0CC04617E
crossref_primary_10_1002_cssc_202402004
crossref_primary_10_1021_acscatal_7b02533
crossref_primary_10_1039_D2OB01539K
crossref_primary_10_1021_acs_orglett_0c00789
crossref_primary_10_1021_acs_orglett_1c01988
crossref_primary_10_1039_D1GC02807C
crossref_primary_10_1039_C8CC00245B
crossref_primary_10_1021_acscatal_8b02885
crossref_primary_10_1039_D2QO00843B
crossref_primary_10_1021_jacs_7b07944
crossref_primary_10_1134_S002315842002007X
crossref_primary_10_1002_adsc_201900559
crossref_primary_10_1021_acs_orglett_7b02353
crossref_primary_10_1016_j_tetlet_2020_152623
crossref_primary_10_1021_acs_orglett_7b03446
crossref_primary_10_1039_D1CC00996F
crossref_primary_10_1039_C8OB00805A
crossref_primary_10_1002_ange_202300166
crossref_primary_10_1021_acscatal_7b03990
crossref_primary_10_1021_acs_joc_8b03155
crossref_primary_10_1021_acs_orglett_1c03319
crossref_primary_10_1039_C8GC00078F
crossref_primary_10_1248_cpb_c23_00323
crossref_primary_10_1002_anie_202116725
crossref_primary_10_1021_acscatal_0c00498
crossref_primary_10_1039_C7QO00808B
crossref_primary_10_1039_C8SC05539D
crossref_primary_10_1039_D0QO01182G
crossref_primary_10_1039_C7CC01759F
crossref_primary_10_1039_C9OB00509A
crossref_primary_10_1021_acs_joc_6b03085
crossref_primary_10_1002_ange_202011738
crossref_primary_10_1002_anie_201704690
crossref_primary_10_1021_acs_orglett_3c00464
crossref_primary_10_1021_acs_orglett_7b03371
crossref_primary_10_1021_acscatal_3c03367
crossref_primary_10_1016_j_mencom_2019_09_012
crossref_primary_10_1039_C8OB02749H
crossref_primary_10_1039_D3QO01603J
crossref_primary_10_1002_ajoc_202000058
crossref_primary_10_1021_acs_chemrev_9b00111
crossref_primary_10_1021_acs_joc_0c02294
crossref_primary_10_1021_acs_orglett_9b01015
crossref_primary_10_1002_anie_201701058
crossref_primary_10_1002_ejoc_201701652
crossref_primary_10_1016_j_tetlet_2017_12_034
crossref_primary_10_1002_anie_202215008
crossref_primary_10_1002_anie_201912746
crossref_primary_10_1021_acs_chemrev_1c00384
crossref_primary_10_1002_ange_201612516
crossref_primary_10_1021_acscatal_4c01805
crossref_primary_10_1002_adsc_201801198
crossref_primary_10_1002_anie_201706724
crossref_primary_10_1002_cctc_201801332
crossref_primary_10_1039_D0GC02667K
crossref_primary_10_1021_acs_orglett_9b03468
crossref_primary_10_1055_a_1733_6254
crossref_primary_10_1016_j_jfluchem_2025_110422
crossref_primary_10_1002_ajoc_202300234
crossref_primary_10_1021_acs_orglett_8b00648
crossref_primary_10_1002_ange_201706724
crossref_primary_10_1002_chem_201702385
crossref_primary_10_1016_j_cclet_2024_109954
crossref_primary_10_1002_chem_202402768
crossref_primary_10_3390_molecules29061191
crossref_primary_10_1016_j_gresc_2024_01_002
crossref_primary_10_1039_D3CC00495C
crossref_primary_10_1021_acs_joc_9b00766
crossref_primary_10_1021_acs_orglett_3c01521
crossref_primary_10_3390_molecules29040790
crossref_primary_10_1002_adsc_202201268
crossref_primary_10_1039_C8GC02782J
crossref_primary_10_1002_anie_201611058
crossref_primary_10_1039_C9QO00427K
crossref_primary_10_1039_C7CC09953C
crossref_primary_10_1039_C9QO00536F
crossref_primary_10_1021_acs_orglett_8b02735
crossref_primary_10_1021_acs_orglett_9b02152
crossref_primary_10_1016_j_jfluchem_2018_08_003
crossref_primary_10_1021_acs_joc_3c00988
crossref_primary_10_1039_C8CC09385G
crossref_primary_10_1039_D0CC01353F
crossref_primary_10_1002_ange_202305426
crossref_primary_10_1039_D3GC00143A
crossref_primary_10_1021_acs_orglett_1c00476
crossref_primary_10_1002_ejoc_201900957
crossref_primary_10_1002_ange_202116725
crossref_primary_10_1021_acs_orglett_8b02968
crossref_primary_10_1002_adsc_201801482
crossref_primary_10_1021_acs_joc_7b02467
crossref_primary_10_1002_adsc_201800037
crossref_primary_10_1021_acs_orglett_4c00806
crossref_primary_10_1021_acs_orglett_9b03594
crossref_primary_10_1021_acs_organomet_0c00261
crossref_primary_10_1002_anie_202309460
crossref_primary_10_1039_D4QO00824C
crossref_primary_10_1021_acs_orglett_6b03870
crossref_primary_10_1002_anie_202011738
crossref_primary_10_1002_adsc_201700423
crossref_primary_10_1002_ejoc_201700678
crossref_primary_10_1021_acsomega_7b00383
crossref_primary_10_1039_C9OB00717B
crossref_primary_10_1039_D2DT03494H
crossref_primary_10_1039_C7SC01703K
crossref_primary_10_1039_C8CC00938D
crossref_primary_10_1002_anie_202319158
crossref_primary_10_1248_cpb_c19_00856
crossref_primary_10_1002_mrc_5513
crossref_primary_10_1039_D3CC04985J
crossref_primary_10_1021_jacs_7b09394
crossref_primary_10_1039_D0CC04318D
crossref_primary_10_1002_chem_202000856
crossref_primary_10_1039_C9CC06465F
crossref_primary_10_1002_anie_202319030
crossref_primary_10_1021_acs_orglett_1c00390
crossref_primary_10_1002_ange_202214633
crossref_primary_10_1002_adsc_201700534
crossref_primary_10_1002_ejoc_202100537
crossref_primary_10_1039_D3GC03291D
crossref_primary_10_1039_D2QO00762B
crossref_primary_10_1021_acs_orglett_8b01658
crossref_primary_10_1007_s11426_023_1937_4
crossref_primary_10_1021_acs_joc_7b01279
crossref_primary_10_1021_acs_orglett_8b01899
crossref_primary_10_5059_yukigoseikyokaishi_74_1036
crossref_primary_10_1021_acs_joc_9b00842
crossref_primary_10_1021_acs_orglett_0c03187
crossref_primary_10_1002_ajoc_202200356
crossref_primary_10_1021_acs_orglett_0c04039
crossref_primary_10_1055_a_1674_6564
crossref_primary_10_1002_ajoc_201700450
crossref_primary_10_1021_acs_orglett_8b04039
crossref_primary_10_1039_D2QO00045H
crossref_primary_10_1021_acscatal_0c03127
crossref_primary_10_1039_D3OB02103C
crossref_primary_10_1002_ange_202010801
crossref_primary_10_5059_yukigoseikyokaishi_81_930
crossref_primary_10_1039_D1GC00454A
crossref_primary_10_1007_s11426_022_1438_0
crossref_primary_10_3390_molecules23081879
crossref_primary_10_1039_D0QO00282H
crossref_primary_10_1021_acs_orglett_9b03035
crossref_primary_10_1039_C9SC01463B
crossref_primary_10_1021_jacs_0c03144
crossref_primary_10_1002_tcr_202300202
crossref_primary_10_1039_D2OB00488G
crossref_primary_10_1016_j_jfluchem_2021_109823
crossref_primary_10_3389_fchem_2020_551159
crossref_primary_10_1055_a_1702_4445
crossref_primary_10_1002_anie_202305426
crossref_primary_10_1002_ejoc_202300253
crossref_primary_10_1021_acs_orglett_4c01372
crossref_primary_10_1021_acsomega_3c09911
crossref_primary_10_1039_D1GC00027F
crossref_primary_10_1039_D0CC02550J
crossref_primary_10_1002_ajoc_201600509
crossref_primary_10_1002_adsc_202101234
crossref_primary_10_1002_tcr_201800095
crossref_primary_10_1039_C8CC01096J
crossref_primary_10_1002_ange_202110304
crossref_primary_10_1002_asia_202300723
crossref_primary_10_1016_j_tetlet_2017_10_018
crossref_primary_10_1021_acs_joc_3c02068
crossref_primary_10_1002_ange_202215008
crossref_primary_10_1021_acs_orglett_0c04021
crossref_primary_10_1021_acs_orglett_8b03081
crossref_primary_10_1021_acs_orglett_4c02792
crossref_primary_10_2174_0113852728306541240409034052
crossref_primary_10_1039_C7SC04509C
crossref_primary_10_1002_ange_202309460
crossref_primary_10_1002_ange_201915619
crossref_primary_10_1002_ajoc_201900121
crossref_primary_10_1002_ange_201903496
crossref_primary_10_1002_cjoc_202200142
crossref_primary_10_1016_j_arabjc_2024_106027
crossref_primary_10_1002_anie_202301168
crossref_primary_10_1002_adsc_202200088
crossref_primary_10_1039_C7RA08086G
crossref_primary_10_1021_acs_orglett_3c03786
crossref_primary_10_1021_acs_orglett_1c01059
crossref_primary_10_1021_acs_orglett_0c03022
crossref_primary_10_1002_cjoc_201900075
crossref_primary_10_3390_chemistry4030068
crossref_primary_10_1002_ange_202007548
crossref_primary_10_1002_ange_202009844
crossref_primary_10_1002_ange_202008630
crossref_primary_10_1021_acs_orglett_1c04319
crossref_primary_10_1039_D4QO00996G
crossref_primary_10_1039_D3CY01418E
crossref_primary_10_1002_ange_201701058
crossref_primary_10_1021_acs_joc_7b01771
crossref_primary_10_1039_D0QO01607A
crossref_primary_10_1002_ange_201704690
crossref_primary_10_1039_D1CC05730H
crossref_primary_10_1002_cjoc_202400149
crossref_primary_10_1038_s41467_024_50081_x
crossref_primary_10_1039_C8SC05237A
crossref_primary_10_1021_acs_orglett_0c03043
crossref_primary_10_5059_yukigoseikyokaishi_80_1028
crossref_primary_10_1002_anie_201803566
crossref_primary_10_1002_ange_202006440
crossref_primary_10_1039_C7CS00619E
crossref_primary_10_1021_acs_joc_8b00581
crossref_primary_10_1039_C8QO01192C
crossref_primary_10_1039_D2QO01101H
crossref_primary_10_1021_jacs_7b06044
crossref_primary_10_1021_acs_orglett_2c03348
crossref_primary_10_1039_C7QO00784A
crossref_primary_10_1039_D1OB00296A
crossref_primary_10_1002_tcr_202300032
crossref_primary_10_1021_acs_orglett_8b00731
crossref_primary_10_1021_acs_orglett_9b01803
crossref_primary_10_1002_tcr_202300037
crossref_primary_10_1002_tcr_202300036
crossref_primary_10_1038_s41570_024_00663_6
crossref_primary_10_1021_acs_joc_2c00712
crossref_primary_10_1002_anie_202008040
crossref_primary_10_1021_acs_orglett_9b01804
crossref_primary_10_1002_anie_202300166
crossref_primary_10_1016_j_chempr_2017_02_006
crossref_primary_10_1002_ange_201609274
crossref_primary_10_1039_D4OB01426J
crossref_primary_10_1039_C9QO01030K
crossref_primary_10_1016_j_tet_2019_01_048
crossref_primary_10_1039_c7pp00179g
crossref_primary_10_1002_adsc_202101201
crossref_primary_10_1021_acs_orglett_8b00963
crossref_primary_10_1021_acscatal_1c05621
crossref_primary_10_1021_jacs_1c01083
crossref_primary_10_1039_C9OB00734B
crossref_primary_10_1002_anie_202108802
crossref_primary_10_1021_jacs_9b06141
crossref_primary_10_1021_acscatal_7b04160
crossref_primary_10_1002_chem_202102840
crossref_primary_10_1021_acs_orglett_4c03338
Cites_doi 10.1002/anie.201200223
10.1021/acs.orglett.5b01694
10.1039/jr9490002856
10.1126/science.1131943
10.1002/anie.201308735
10.1016/j.tetlet.2013.11.108
10.1002/chem.201504838
10.1002/anie.201509282
10.1002/anie.200900963
10.1002/anie.201505550
10.1021/cr500223h
10.1007/s11244-014-0259-7
10.1002/anie.201503210
10.1002/chem.201302407
10.1002/anie.200460441
10.1021/ol900567c
10.1021/jo972213l
10.1002/anie.201501880
10.1038/nchem.687
10.1021/ja100748y
10.1021/ol4006272
10.1021/cr5002386
10.1039/B913880N
10.1002/anie.201403590
10.1021/ja037566i
10.1039/b916463d
10.1021/cr300503r
10.1021/ja077212h
10.1002/ejoc.201101535
10.1016/0040-4039(91)80524-A
10.1039/C4QI00053F
10.1002/anie.201210276
10.1002/chem.201304823
10.1021/jm1013693
10.1021/ol403500y
10.1002/anie.201205071
10.1016/j.tet.2015.06.056
10.1002/chem.201404537
10.1021/jm800219f
10.1021/acs.joc.6b00953
10.1002/anie.201202624
10.1002/chem.201501475
10.1021/ja9053338
10.1021/ol502163f
10.1002/chem.201404005
10.1016/j.jfluchem.2015.07.020
10.1002/anie.201309260
10.1016/S0040-4039(00)94447-2
10.1002/anie.201101861
10.1039/C4OB00671B
10.3762/bjoc.10.108
10.1039/C4CS00025K
10.1016/j.jfluchem.2014.06.025
10.1002/anie.201412199
10.1039/c3cc39235j
10.1021/ja513166w
10.1002/9781444312096
10.1039/C4CC07066F
10.1002/9783527651351
10.1002/chem.201406432
10.1002/tcr.201500215
10.3762/bjoc.6.65
10.1002/anie.200461751
10.1021/cr500368h
10.1021/cr941142c
10.1021/ja01192a022
10.1021/ja108560e
10.1021/ja401840j
10.1002/chem.200501052
10.1021/ja401022x
10.1039/C5OB01486G
10.1007/978-3-662-04164-2
10.1021/ja00059a009
10.1021/cr941149u
10.1039/p19910000627
10.1021/ja01581a057
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.6b00268
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 1945
ExternalDocumentID 27564676
10_1021_acs_accounts_6b00268
b419036499
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
YIN
7X8
ID FETCH-LOGICAL-a392t-6826ca94fe9211be027a1acb7b5ea56f8179302292fc154e8cf2cbe517cdf3493
IEDL.DBID ACS
ISSN 0001-4842
IngestDate Fri Jul 11 10:49:03 EDT 2025
Wed Feb 19 02:42:18 EST 2025
Thu Apr 24 23:00:14 EDT 2025
Tue Jul 01 03:15:58 EDT 2025
Thu Aug 27 13:42:20 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a392t-6826ca94fe9211be027a1acb7b5ea56f8179302292fc154e8cf2cbe517cdf3493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27564676
PQID 1822112707
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1822112707
pubmed_primary_27564676
crossref_primary_10_1021_acs_accounts_6b00268
crossref_citationtrail_10_1021_acs_accounts_6b00268
acs_journals_10_1021_acs_accounts_6b00268
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-20
PublicationDateYYYYMMDD 2016-09-20
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
Ojima I. (ref2/cit2) 2009
Hiyama T. (ref1/cit1) 2000
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
Kirsch P. (ref3/cit3) 2013
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1002/anie.201200223
– ident: ref53/cit53
  doi: 10.1021/acs.orglett.5b01694
– ident: ref9/cit9
  doi: 10.1039/jr9490002856
– ident: ref4/cit4
  doi: 10.1126/science.1131943
– ident: ref44/cit44
  doi: 10.1002/anie.201308735
– ident: ref33/cit33
  doi: 10.1016/j.tetlet.2013.11.108
– ident: ref76/cit76
  doi: 10.1002/chem.201504838
– ident: ref50/cit50
  doi: 10.1002/anie.201509282
– ident: ref61/cit61
  doi: 10.1002/anie.200900963
– ident: ref66/cit66
  doi: 10.1002/anie.201505550
– ident: ref17/cit17
  doi: 10.1021/cr500223h
– ident: ref36/cit36
  doi: 10.1007/s11244-014-0259-7
– ident: ref48/cit48
  doi: 10.1002/anie.201503210
– ident: ref43/cit43
  doi: 10.1002/chem.201302407
– ident: ref59/cit59
  doi: 10.1002/anie.200460441
– ident: ref75/cit75
  doi: 10.1021/ol900567c
– ident: ref15/cit15
  doi: 10.1021/jo972213l
– ident: ref47/cit47
  doi: 10.1002/anie.201501880
– ident: ref24/cit24
  doi: 10.1038/nchem.687
– ident: ref35/cit35
  doi: 10.1021/ja100748y
– ident: ref54/cit54
  doi: 10.1021/ol4006272
– ident: ref74/cit74
  doi: 10.1021/cr5002386
– ident: ref25/cit25
  doi: 10.1039/B913880N
– ident: ref55/cit55
  doi: 10.1002/anie.201403590
– ident: ref69/cit69
  doi: 10.1021/ja037566i
– ident: ref72/cit72
  doi: 10.1039/b916463d
– ident: ref27/cit27
  doi: 10.1021/cr300503r
– ident: ref67/cit67
  doi: 10.1021/ja077212h
– ident: ref19/cit19
  doi: 10.1002/ejoc.201101535
– ident: ref11/cit11
  doi: 10.1016/0040-4039(91)80524-A
– ident: ref30/cit30
  doi: 10.1039/C4QI00053F
– ident: ref28/cit28
  doi: 10.1002/anie.201210276
– ident: ref29/cit29
  doi: 10.1002/chem.201304823
– ident: ref6/cit6
  doi: 10.1021/jm1013693
– ident: ref52/cit52
  doi: 10.1021/ol403500y
– ident: ref51/cit51
  doi: 10.1002/anie.201205071
– ident: ref23/cit23
  doi: 10.1016/j.tet.2015.06.056
– ident: ref62/cit62
  doi: 10.1002/chem.201404537
– ident: ref5/cit5
  doi: 10.1021/jm800219f
– ident: ref56/cit56
  doi: 10.1021/acs.joc.6b00953
– ident: ref8/cit8
  doi: 10.1002/anie.201202624
– ident: ref73/cit73
  doi: 10.1002/chem.201501475
– ident: ref39/cit39
  doi: 10.1021/ja9053338
– ident: ref46/cit46
  doi: 10.1021/ol502163f
– ident: ref20/cit20
  doi: 10.1002/chem.201404005
– ident: ref68/cit68
  doi: 10.1016/j.jfluchem.2015.07.020
– ident: ref31/cit31
  doi: 10.1002/anie.201309260
– ident: ref12/cit12
  doi: 10.1016/S0040-4039(00)94447-2
– ident: ref40/cit40
  doi: 10.1002/anie.201101861
– ident: ref21/cit21
  doi: 10.1039/C4OB00671B
– ident: ref65/cit65
  doi: 10.3762/bjoc.10.108
– ident: ref32/cit32
  doi: 10.1039/C4CS00025K
– ident: ref34/cit34
  doi: 10.1016/j.jfluchem.2014.06.025
– ident: ref49/cit49
  doi: 10.1002/anie.201412199
– ident: ref64/cit64
  doi: 10.1039/c3cc39235j
– ident: ref71/cit71
  doi: 10.1021/ja513166w
– volume-title: Fluorine in Medicinal Chemistry and Chemical Biology
  year: 2009
  ident: ref2/cit2
  doi: 10.1002/9781444312096
– ident: ref45/cit45
  doi: 10.1039/C4CC07066F
– volume-title: Modern Fluoroorganic Chemistry
  year: 2013
  ident: ref3/cit3
  doi: 10.1002/9783527651351
– ident: ref63/cit63
  doi: 10.1002/chem.201406432
– ident: ref38/cit38
  doi: 10.1002/tcr.201500215
– ident: ref18/cit18
  doi: 10.3762/bjoc.6.65
– ident: ref60/cit60
  doi: 10.1002/anie.200461751
– ident: ref22/cit22
  doi: 10.1021/cr500368h
– ident: ref7/cit7
  doi: 10.1021/cr941142c
– ident: ref57/cit57
  doi: 10.1021/ja01192a022
– ident: ref41/cit41
  doi: 10.1021/ja108560e
– ident: ref70/cit70
  doi: 10.1021/ja401840j
– ident: ref16/cit16
  doi: 10.1002/chem.200501052
– ident: ref42/cit42
  doi: 10.1021/ja401022x
– ident: ref37/cit37
  doi: 10.1039/C5OB01486G
– volume-title: Organofluorine Compounds: Chemistry and Applications
  year: 2000
  ident: ref1/cit1
  doi: 10.1007/978-3-662-04164-2
– ident: ref14/cit14
  doi: 10.1021/ja00059a009
– ident: ref13/cit13
  doi: 10.1021/cr941149u
– ident: ref10/cit10
  doi: 10.1039/p19910000627
– ident: ref58/cit58
  doi: 10.1021/ja01581a057
SSID ssj0002467
Score 2.6500592
Snippet Trifluoromethyl (CF3) and difluoromethyl (CF2H) groups are versatile structural motifs, especially in the fields of pharmaceuticals and agrochemicals. Thus,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1937
Title Fine Design of Photoredox Systems for Catalytic Fluoromethylation of Carbon–Carbon Multiple Bonds
URI http://dx.doi.org/10.1021/acs.accounts.6b00268
https://www.ncbi.nlm.nih.gov/pubmed/27564676
https://www.proquest.com/docview/1822112707
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTi-1FfrODFQ2rz2DyOJVqKUBW00FuY3ewiWBJpUlBP_gf_ob_E2TwqKqV6CSFkh-zuJPt9mdlvCDnl0FbIGpjBpA2GA740ABDICW5zVsTtpN4o3L92ewPnasiGX0TxZwTfMs9BZGi6qJyQtdyCNPiLZAmPnvboTng3_fJajltqZCJFdnzHqrfKzbCiFySRfV-QZqDMYrXprpGbes9OmWTy2JrkvCVef0s4_rEj62S1Ap60U3rKBlmQySZZDut6b1tEdBFw0osio4Omit4-pMjHZZw-00rWnCLApaH-3_OCRmh3NEm12AFOdZlQp1uFMOZp8vH2Xp7QfpWwSHX94mybDLqX92HPqEowGIDAKTdcZB8CAkfJAJkil0hiwQTBPc4kMFf5-v1GGBBYSiAYk75QluCSmZ6Ile0E9g5pJGki9wi1IQbOmBeYMWI08JG-SsQPPPZ5DEoFTXKGIxRVr1AWFdFxy4z0xXrYomrYmsSu5ywSlZa5LqkxmtPKmLZ6KrU85tx_UrtDhHOhIymQyHSCz4awytQxe69Jdks_mVrUevroh-7-P_pzQFYQiLk6D8VqH5JGPp7IIwQ7OT8uPPwTzTL-xA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOcCFfSmrkbhwSGkWp8mxClRlKUJiEbdo7NhCAiWItBJw4h_4Q76EcZYikBDiFlmx5WUcv5cZvwHYE9jWxBq4xZWLloeBshAJyEnhCl747ZS5KDw49_vX3sktv50AXt-FoU7k1FJeOPG_1AXsA1OGZQKFvOUX3CGYhCnCI44x7G50Of4AO55fSmUSU_YCz6lvzP3SijmXZP79XPoFbBaHTm8ObsbdLWJN7lujoWjJ1x9Kjv8ezzzMVjCUdUu7WYAJlS7CdFRnf1sC2SP4yQ6L-A6WaXZxlxE7V0n2zCqRc0Zwl0Xm788LNcJ6D6PMSB_QwpfhdaZWhE8iSz_e3ssHNqjCF5nJZpwvw3Xv6CrqW1VCBgsJRg0tn7iIxNDTKiTeKBRRWrRRio7gCrmvA7PbCRSEjpYEzVQgtSOF4nZHJtr1QncFGmmWqjVgLiYoOO-EdkKIDQMis4rQhEgCkaDWYRP2aYbiakPlceErd-zYFNbTFlfT1gS3XrpYVsrmJsHGwx-1rHGtx1LZ44_3d2uriGktjF8FU5WNqG8Esmzjwe80YbU0l3GLRl2fzNFf_8d4dmC6fzU4i8-Oz083YIYgmm8iVJz2JjSGTyO1RTBoKLYLo_8EWLMHNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS91AEB6qBfVFa7V6qtUt9KUPOT25bE7yKNHgpYqggvgSZje7CEoi5hxQn_wP_kN_SWdyOdSCSH0LS3bZy2z2-zKz3wD8UDiwxBqkI42PToCRcRAJyGnlK1n77QxfFD48CnfPgv1zef5Xqi_qREUtVbUTn3f1TW5bhQH3F5djk0Sh6oc1f4im4CN77ti4t5KTyUfYC8JGLpPYchAFXndr7pVW-GzS1cuz6RXAWR886QJcTLpcx5tc9ccj1dcP_6g5vmtMn2C-haNiq7GfRfhgis8wm3RZ4JZApwRDxXYd5yFKK44vS2LpJi_vRCt2Lgj2ioT_At1TIyK9HpcsgUAG0ITZca0Eb1VZPD8-NQ_isA1jFJzVuFqGs3TnNNl12sQMDhKcGjkhcRKNcWBNTPxRGaK26KJWQyUNytBGvOsJHMSe1QTRTKStp5WR7lDn1g9i_wtMF2VhVkH4mKOSchi7OSE3jIjUGkIVKo9UjtbGPfhJM5S1G6vKap-552Zc2E1b1k5bD_xu-TLdKpxzoo3rN2o5k1o3jcLHG-9_7ywjo7Vg_woWphxT3whsuezJH_ZgpTGZSYussk8mGX79j_Fswszxdpr93js6WIM5QmohB6p4g3WYHt2OzTdCQyO1Udv9H7V8Cbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+Design+of+Photoredox+Systems+for+Catalytic+Fluoromethylation+of+Carbon-Carbon+Multiple+Bonds&rft.jtitle=Accounts+of+chemical+research&rft.au=Koike%2C+Takashi&rft.au=Akita%2C+Munetaka&rft.date=2016-09-20&rft.eissn=1520-4898&rft.volume=49&rft.issue=9&rft.spage=1937&rft.epage=1945&rft_id=info:doi/10.1021%2Facs.accounts.6b00268&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon