Fine Design of Photoredox Systems for Catalytic Fluoromethylation of Carbon–Carbon Multiple Bonds
Trifluoromethyl (CF3) and difluoromethyl (CF2H) groups are versatile structural motifs, especially in the fields of pharmaceuticals and agrochemicals. Thus, the development of new protocols for tri- and difluoromethylation of various skeletons has become a vital subject to be studied in the field of...
Saved in:
Published in | Accounts of chemical research Vol. 49; no. 9; pp. 1937 - 1945 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.09.2016
|
Online Access | Get full text |
Cover
Loading…
Abstract | Trifluoromethyl (CF3) and difluoromethyl (CF2H) groups are versatile structural motifs, especially in the fields of pharmaceuticals and agrochemicals. Thus, the development of new protocols for tri- and difluoromethylation of various skeletons has become a vital subject to be studied in the field of synthetic organic chemistry. For the past decades, a variety of fluoromethylating reagents have been developed. In particular, bench-stable and easy-to-use electrophilic fluoromethylating reagents such as the Umemoto, Yagupolskii–Umemoto, Togni, and Hu reagents serve as excellent fluoromethyl sources for ionic and carbenoid reactions. Importantly, the action of catalysis has become a promising strategy for developing new fluoromethylations. For the past several years, photoredox catalysis has emerged as a useful tool for radical reactions through visible-light-induced single-electron-transfer (SET) processes. Commonly used photocatalysts such as [Ru(bpy)3]2+ and fac-[Ir(ppy)3] (bpy = 2,2′-bipyridine; ppy = 2-pyridylphenyl) have potential as one-electron reductants strong enough to reduce those fluoromethylating reagents, resulting in facile generation of the corresponding fluoromethyl radicals. Therefore, if we can design proper reaction systems, efficient and selective radical fluoromethylation would proceed without any sacrificial redox agents, i.e., via a redox-neutral process under mild reaction conditions: irradiation with visible light, including sunlight, below room temperature. It should be noted that examples of catalytic fluoromethylation of compounds with carbon–carbon multiple bonds have been limited until recent years. In this Account, we will focus on our recent research on photoredox-catalyzed fluoromethylation of carbon–carbon multiple bonds. First, choices of the photocatalyst and the fluoromethylating reagent and the basic concept involving a redox-neutral oxidative quenching cycle are explained. Then photocatalytic trifluoromethylation of olefins is discussed mainly. Trifluoromethylative difunctionalization reactions, i.e., simultaneous introduction of the CF3 group and a different functional group across carbon–carbon double bonds, are in the middle of the discussion. Oxy-, amino-, and ketotrifluoromethylation allow us to synthesize various organofluorine compounds bearing C(sp3)–CF3 bonds. In addition, the synthesis of valuable trifluoromethylated alkenes is also viable when the olefins have an appropriate leaving group or undergo deprotonation. The present reaction system features high functional group compatibility and high regioselectivity. Furthermore, future prospects, especially trifluoromethylative difunctionalization of alkynes and difluoromethylation of alkenes, are also discussed. |
---|---|
AbstractList | Trifluoromethyl (CF3) and difluoromethyl (CF2H) groups are versatile structural motifs, especially in the fields of pharmaceuticals and agrochemicals. Thus, the development of new protocols for tri- and difluoromethylation of various skeletons has become a vital subject to be studied in the field of synthetic organic chemistry. For the past decades, a variety of fluoromethylating reagents have been developed. In particular, bench-stable and easy-to-use electrophilic fluoromethylating reagents such as the Umemoto, Yagupolskii-Umemoto, Togni, and Hu reagents serve as excellent fluoromethyl sources for ionic and carbenoid reactions. Importantly, the action of catalysis has become a promising strategy for developing new fluoromethylations. For the past several years, photoredox catalysis has emerged as a useful tool for radical reactions through visible-light-induced single-electron-transfer (SET) processes. Commonly used photocatalysts such as [Ru(bpy)3](2+) and fac-[Ir(ppy)3] (bpy = 2,2'-bipyridine; ppy = 2-pyridylphenyl) have potential as one-electron reductants strong enough to reduce those fluoromethylating reagents, resulting in facile generation of the corresponding fluoromethyl radicals. Therefore, if we can design proper reaction systems, efficient and selective radical fluoromethylation would proceed without any sacrificial redox agents, i.e., via a redox-neutral process under mild reaction conditions: irradiation with visible light, including sunlight, below room temperature. It should be noted that examples of catalytic fluoromethylation of compounds with carbon-carbon multiple bonds have been limited until recent years. In this Account, we will focus on our recent research on photoredox-catalyzed fluoromethylation of carbon-carbon multiple bonds. First, choices of the photocatalyst and the fluoromethylating reagent and the basic concept involving a redox-neutral oxidative quenching cycle are explained. Then photocatalytic trifluoromethylation of olefins is discussed mainly. Trifluoromethylative difunctionalization reactions, i.e., simultaneous introduction of the CF3 group and a different functional group across carbon-carbon double bonds, are in the middle of the discussion. Oxy-, amino-, and ketotrifluoromethylation allow us to synthesize various organofluorine compounds bearing C(sp(3))-CF3 bonds. In addition, the synthesis of valuable trifluoromethylated alkenes is also viable when the olefins have an appropriate leaving group or undergo deprotonation. The present reaction system features high functional group compatibility and high regioselectivity. Furthermore, future prospects, especially trifluoromethylative difunctionalization of alkynes and difluoromethylation of alkenes, are also discussed. Trifluoromethyl (CF3) and difluoromethyl (CF2H) groups are versatile structural motifs, especially in the fields of pharmaceuticals and agrochemicals. Thus, the development of new protocols for tri- and difluoromethylation of various skeletons has become a vital subject to be studied in the field of synthetic organic chemistry. For the past decades, a variety of fluoromethylating reagents have been developed. In particular, bench-stable and easy-to-use electrophilic fluoromethylating reagents such as the Umemoto, Yagupolskii–Umemoto, Togni, and Hu reagents serve as excellent fluoromethyl sources for ionic and carbenoid reactions. Importantly, the action of catalysis has become a promising strategy for developing new fluoromethylations. For the past several years, photoredox catalysis has emerged as a useful tool for radical reactions through visible-light-induced single-electron-transfer (SET) processes. Commonly used photocatalysts such as [Ru(bpy)3]2+ and fac-[Ir(ppy)3] (bpy = 2,2′-bipyridine; ppy = 2-pyridylphenyl) have potential as one-electron reductants strong enough to reduce those fluoromethylating reagents, resulting in facile generation of the corresponding fluoromethyl radicals. Therefore, if we can design proper reaction systems, efficient and selective radical fluoromethylation would proceed without any sacrificial redox agents, i.e., via a redox-neutral process under mild reaction conditions: irradiation with visible light, including sunlight, below room temperature. It should be noted that examples of catalytic fluoromethylation of compounds with carbon–carbon multiple bonds have been limited until recent years. In this Account, we will focus on our recent research on photoredox-catalyzed fluoromethylation of carbon–carbon multiple bonds. First, choices of the photocatalyst and the fluoromethylating reagent and the basic concept involving a redox-neutral oxidative quenching cycle are explained. Then photocatalytic trifluoromethylation of olefins is discussed mainly. Trifluoromethylative difunctionalization reactions, i.e., simultaneous introduction of the CF3 group and a different functional group across carbon–carbon double bonds, are in the middle of the discussion. Oxy-, amino-, and ketotrifluoromethylation allow us to synthesize various organofluorine compounds bearing C(sp3)–CF3 bonds. In addition, the synthesis of valuable trifluoromethylated alkenes is also viable when the olefins have an appropriate leaving group or undergo deprotonation. The present reaction system features high functional group compatibility and high regioselectivity. Furthermore, future prospects, especially trifluoromethylative difunctionalization of alkynes and difluoromethylation of alkenes, are also discussed. |
Author | Koike, Takashi Akita, Munetaka |
AuthorAffiliation | Tokyo Institute of Technology Laboratory for Chemistry and Life Science, Institute of Innovative Research |
AuthorAffiliation_xml | – name: Laboratory for Chemistry and Life Science, Institute of Innovative Research – name: Tokyo Institute of Technology |
Author_xml | – sequence: 1 givenname: Takashi surname: Koike fullname: Koike, Takashi email: koike.t.ad@m.titech.ac.jp – sequence: 2 givenname: Munetaka surname: Akita fullname: Akita, Munetaka email: makita@res.titech.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27564676$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtOAzEQRS0URMLjDxBySZNgO_ukg0AAKQgkoF55nTEYee1geyXS8Q_8IV-C86KggGruaO6Z4uyijrEGEDqkZEAJoydc-AEXwrYm-EFWE8KyYgv1aMpIPynKooN6hBAac8K6aNf717iyJMt3UJflaRZT1kNirAzgC_Dq2WAr8f2LDdbB1L7jh7kP0HgsrcMjHrieByXwWLfW2QbCy1zzoOySGnFXW_P18bkK-LbVQc004HNrpn4fbUuuPRys5x56Gl8-jq77k7urm9HZpM-HJQv9rGCZ4GUioWSU1kBYzikXdV6nwNNMFjQvh4SxkklB0wQKIZmoIaW5mMphUg730PHq78zZtxZ8qBrlBWjNDdjWV7Rg8THLSR6rR-tqWzcwrWZONdzNq42YWEhWBeGs9w7kT4WSauG_iv6rjf9q7T9ip78wocJSU3Bc6f9gsoIX11fbOhNt_Y18A3PpopY |
CitedBy_id | crossref_primary_10_1021_acs_orglett_0c01163 crossref_primary_10_1002_chem_202302353 crossref_primary_10_1021_acs_joc_0c02739 crossref_primary_10_1002_adsc_202200934 crossref_primary_10_1021_acs_orglett_7b02601 crossref_primary_10_1002_cctc_202401622 crossref_primary_10_1021_acscatal_9b01312 crossref_primary_10_1002_anie_201702940 crossref_primary_10_1002_anie_201903496 crossref_primary_10_1021_acscatal_2c02052 crossref_primary_10_1039_D0CC00601G crossref_primary_10_1002_ange_202012263 crossref_primary_10_1002_ange_201706263 crossref_primary_10_1021_acs_orglett_4c00793 crossref_primary_10_1039_D0CC07502G crossref_primary_10_1002_cptc_201700077 crossref_primary_10_1021_acscatal_8b04188 crossref_primary_10_1038_s41467_021_24716_2 crossref_primary_10_1055_a_1787_1159 crossref_primary_10_3390_catal7110337 crossref_primary_10_1002_slct_201900110 crossref_primary_10_1002_slct_201702184 crossref_primary_10_1039_C7SC02556D crossref_primary_10_1016_j_tetlet_2018_02_039 crossref_primary_10_5059_yukigoseikyokaishi_77_414 crossref_primary_10_1002_ejoc_201901672 crossref_primary_10_1021_acscatal_9b00473 crossref_primary_10_1038_s42004_019_0219_z crossref_primary_10_1002_adsc_201901104 crossref_primary_10_1002_anie_202405678 crossref_primary_10_1021_acs_joc_0c00417 crossref_primary_10_1021_acs_orglett_0c01147 crossref_primary_10_1002_anie_202004439 crossref_primary_10_1039_D4OB01950D crossref_primary_10_1002_ange_202109953 crossref_primary_10_1039_D3OB00588G crossref_primary_10_1002_adsc_202001434 crossref_primary_10_1002_ejoc_202300868 crossref_primary_10_1021_acs_orglett_7b01971 crossref_primary_10_1021_acs_orglett_8b03485 crossref_primary_10_1021_acs_joc_3c02102 crossref_primary_10_1039_C8OB02239A crossref_primary_10_1039_C7CC03520A crossref_primary_10_1021_acscatal_7b01120 crossref_primary_10_1021_acs_joc_8b00650 crossref_primary_10_1021_jacs_8b08547 crossref_primary_10_1021_acs_joc_8b01861 crossref_primary_10_1016_j_tetlet_2019_151538 crossref_primary_10_1021_acs_joc_6b02344 crossref_primary_10_1021_acs_orglett_9b01714 crossref_primary_10_1002_adsc_201901324 crossref_primary_10_1002_adsc_202401489 crossref_primary_10_1021_acs_orglett_8b03596 crossref_primary_10_1039_D5OB00056D crossref_primary_10_1002_adsc_202300337 crossref_primary_10_1021_acs_orglett_7b00894 crossref_primary_10_1002_anie_202219027 crossref_primary_10_1021_acs_accounts_9b00393 crossref_primary_10_1021_jacs_2c05356 crossref_primary_10_1021_acscatal_3c03832 crossref_primary_10_1021_acs_accounts_3c00505 crossref_primary_10_1039_C8CC07344A crossref_primary_10_1002_ange_202319158 crossref_primary_10_1055_a_1677_5971 crossref_primary_10_1002_adsc_202101016 crossref_primary_10_1002_ange_202004439 crossref_primary_10_1039_D3OB00239J crossref_primary_10_1002_ajoc_201600539 crossref_primary_10_1002_ange_202405678 crossref_primary_10_1002_chem_201701830 crossref_primary_10_1021_acs_orglett_9b00655 crossref_primary_10_1021_acscatal_7b00094 crossref_primary_10_1021_acs_joc_8b00887 crossref_primary_10_1021_acs_orglett_9b01629 crossref_primary_10_1021_acs_joc_9b02478 crossref_primary_10_1002_chem_201804708 crossref_primary_10_1021_acs_joc_9b01033 crossref_primary_10_1039_D2RA06679C crossref_primary_10_1002_ajoc_202200047 crossref_primary_10_1021_acs_orglett_7b03987 crossref_primary_10_1039_C8QO00834E crossref_primary_10_1002_chem_201802766 crossref_primary_10_1002_cjoc_201900221 crossref_primary_10_1039_D3QO01376F crossref_primary_10_1002_anie_202012263 crossref_primary_10_1002_chem_201804946 crossref_primary_10_1002_ange_202109723 crossref_primary_10_1002_ange_202319030 crossref_primary_10_1002_anie_202109953 crossref_primary_10_1002_ejoc_201900274 crossref_primary_10_1021_acs_orglett_8b03012 crossref_primary_10_1039_D2CS01055K crossref_primary_10_1021_acs_joc_7b00609 crossref_primary_10_1002_anie_201706263 crossref_primary_10_1093_bulcsj_uoae080 crossref_primary_10_1002_cjoc_202100464 crossref_primary_10_1002_anie_202001262 crossref_primary_10_1002_anie_202214633 crossref_primary_10_1021_acs_joc_0c02637 crossref_primary_10_1002_chem_201803409 crossref_primary_10_1002_chem_201903058 crossref_primary_10_3390_molecules26123525 crossref_primary_10_1021_acsami_1c19655 crossref_primary_10_1002_adsc_201800740 crossref_primary_10_1002_anie_201813425 crossref_primary_10_1016_j_chempr_2017_11_004 crossref_primary_10_1002_anie_202109723 crossref_primary_10_1039_D1RA03043D crossref_primary_10_1002_anie_201709766 crossref_primary_10_1002_adsc_202101393 crossref_primary_10_1021_acs_orglett_4c00457 crossref_primary_10_1039_D3QO01366A crossref_primary_10_1246_bcsj_20190080 crossref_primary_10_1039_C9CC01737B crossref_primary_10_1002_ange_202001262 crossref_primary_10_1021_acs_orglett_0c03891 crossref_primary_10_1002_ange_201611058 crossref_primary_10_1021_acs_orglett_0c00024 crossref_primary_10_1002_ange_201813425 crossref_primary_10_1039_D4QO01203H crossref_primary_10_1016_j_tetlet_2024_155218 crossref_primary_10_1039_D2CC04707A crossref_primary_10_1055_a_1647_7292 crossref_primary_10_1002_adsc_202301229 crossref_primary_10_1002_ange_201709766 crossref_primary_10_1039_D1CC01609A crossref_primary_10_1002_ajoc_201600562 crossref_primary_10_1021_acs_orglett_4c00462 crossref_primary_10_1021_acscatal_9b01718 crossref_primary_10_1039_C9OB01331H crossref_primary_10_1039_D0CS00493F crossref_primary_10_1021_acs_orglett_0c00593 crossref_primary_10_1002_ange_202008040 crossref_primary_10_1021_acs_joc_9b03087 crossref_primary_10_1021_acs_orglett_0c01566 crossref_primary_10_1002_ejoc_202400405 crossref_primary_10_1021_acs_joc_7b02133 crossref_primary_10_1021_acs_joc_7b01041 crossref_primary_10_1021_acssuschemeng_0c03745 crossref_primary_10_1039_C9OB00278B crossref_primary_10_1002_ajoc_202300638 crossref_primary_10_1016_j_gresc_2023_08_002 crossref_primary_10_1021_acs_joc_4c00889 crossref_primary_10_1021_acscatal_3c06111 crossref_primary_10_1021_jacs_9b03024 crossref_primary_10_1039_C9CC06075H crossref_primary_10_1021_acs_orglett_6b03441 crossref_primary_10_1038_s41929_019_0311_x crossref_primary_10_1039_D1DT01853A crossref_primary_10_3762_bjoc_16_126 crossref_primary_10_1021_acs_orglett_2c00425 crossref_primary_10_1002_anie_201612516 crossref_primary_10_1002_ijch_201900166 crossref_primary_10_1021_acs_orglett_0c02300 crossref_primary_10_1246_cl_170321 crossref_primary_10_1002_adsc_202300275 crossref_primary_10_1039_C6GC03558B crossref_primary_10_1039_C9QO00206E crossref_primary_10_1002_chem_201702311 crossref_primary_10_1021_acs_orglett_8b00586 crossref_primary_10_1002_cptc_201700128 crossref_primary_10_1021_jacs_2c01735 crossref_primary_10_1039_D0QO00893A crossref_primary_10_1021_acs_orglett_9b00443 crossref_primary_10_1021_acs_orglett_7b01366 crossref_primary_10_1002_cjoc_202000132 crossref_primary_10_1002_asia_202400909 crossref_primary_10_1002_cptc_201700008 crossref_primary_10_1039_C7OB01266G crossref_primary_10_6023_cjoc202101042 crossref_primary_10_1002_chem_201704619 crossref_primary_10_1002_adsc_202100828 crossref_primary_10_1002_anie_201915619 crossref_primary_10_1002_anie_202008630 crossref_primary_10_1002_cssc_202101963 crossref_primary_10_1039_D2QO00985D crossref_primary_10_1002_anie_202007548 crossref_primary_10_1002_anie_202009844 crossref_primary_10_1021_jacs_7b02569 crossref_primary_10_1039_C8SC02547A crossref_primary_10_5059_yukigoseikyokaishi_80_782 crossref_primary_10_1002_adsc_202001272 crossref_primary_10_1021_acs_joc_3c00448 crossref_primary_10_1021_acs_orglett_8b01585 crossref_primary_10_1002_adsc_202400322 crossref_primary_10_1021_acs_joc_2c02415 crossref_primary_10_1039_D1QO01073E crossref_primary_10_1002_ejoc_201700077 crossref_primary_10_1126_sciadv_adt2715 crossref_primary_10_1002_ange_202301168 crossref_primary_10_1039_D1QO01653A crossref_primary_10_1002_ange_201803566 crossref_primary_10_1016_j_chempr_2019_02_006 crossref_primary_10_1021_acs_joc_2c01682 crossref_primary_10_1021_acs_orglett_0c03730 crossref_primary_10_1021_acs_orglett_1c03608 crossref_primary_10_1002_adsc_202001381 crossref_primary_10_1021_acs_orglett_1c00457 crossref_primary_10_1021_jacsau_4c01158 crossref_primary_10_1016_j_tetlet_2018_05_086 crossref_primary_10_1002_ejoc_201900651 crossref_primary_10_1039_D0OB01692F crossref_primary_10_1021_acs_orglett_9b03855 crossref_primary_10_1039_D1CC03288G crossref_primary_10_1002_cctc_201801625 crossref_primary_10_1038_s41467_019_11528_8 crossref_primary_10_2174_1570193X19666220929114415 crossref_primary_10_1002_ejoc_201701106 crossref_primary_10_1016_j_tet_2018_05_073 crossref_primary_10_1002_anie_202110304 crossref_primary_10_1002_chem_201805526 crossref_primary_10_5059_yukigoseikyokaishi_80_489 crossref_primary_10_1039_D0OB01322F crossref_primary_10_1039_D3QO01934A crossref_primary_10_1021_acs_joc_8b00927 crossref_primary_10_1002_ange_202219027 crossref_primary_10_1021_acs_orglett_8b02451 crossref_primary_10_1002_chem_201902811 crossref_primary_10_1002_ange_201912746 crossref_primary_10_1016_j_catcom_2018_06_009 crossref_primary_10_1002_ange_202108802 crossref_primary_10_1021_acscatal_3c01922 crossref_primary_10_1002_anie_202006440 crossref_primary_10_1055_a_2126_1897 crossref_primary_10_1039_D1SC00998B crossref_primary_10_1002_anie_202010801 crossref_primary_10_1002_ange_201702940 crossref_primary_10_1016_j_tetlet_2019_151479 crossref_primary_10_1002_adsc_202300078 crossref_primary_10_1016_j_jcat_2023_06_040 crossref_primary_10_1021_acs_orglett_8b03534 crossref_primary_10_1002_ajoc_202300329 crossref_primary_10_1021_acs_orglett_8b03651 crossref_primary_10_1021_acs_joc_4c02519 crossref_primary_10_1021_acs_joc_9b00901 crossref_primary_10_1021_acs_orglett_1c00639 crossref_primary_10_1021_acscatal_3c01812 crossref_primary_10_1002_cctc_202200260 crossref_primary_10_1021_acs_orglett_0c01982 crossref_primary_10_1021_acs_orglett_2c03900 crossref_primary_10_1039_D1QO00559F crossref_primary_10_1021_acs_orglett_9b01366 crossref_primary_10_1021_acscatal_9b01530 crossref_primary_10_1021_acssuschemeng_9b02178 crossref_primary_10_1039_D0QO01218A crossref_primary_10_1002_anie_201609274 crossref_primary_10_1039_D4SC07728H crossref_primary_10_1021_acscatal_4c06100 crossref_primary_10_1021_acs_orglett_7b02223 crossref_primary_10_1039_D0CC04617E crossref_primary_10_1002_cssc_202402004 crossref_primary_10_1021_acscatal_7b02533 crossref_primary_10_1039_D2OB01539K crossref_primary_10_1021_acs_orglett_0c00789 crossref_primary_10_1021_acs_orglett_1c01988 crossref_primary_10_1039_D1GC02807C crossref_primary_10_1039_C8CC00245B crossref_primary_10_1021_acscatal_8b02885 crossref_primary_10_1039_D2QO00843B crossref_primary_10_1021_jacs_7b07944 crossref_primary_10_1134_S002315842002007X crossref_primary_10_1002_adsc_201900559 crossref_primary_10_1021_acs_orglett_7b02353 crossref_primary_10_1016_j_tetlet_2020_152623 crossref_primary_10_1021_acs_orglett_7b03446 crossref_primary_10_1039_D1CC00996F crossref_primary_10_1039_C8OB00805A crossref_primary_10_1002_ange_202300166 crossref_primary_10_1021_acscatal_7b03990 crossref_primary_10_1021_acs_joc_8b03155 crossref_primary_10_1021_acs_orglett_1c03319 crossref_primary_10_1039_C8GC00078F crossref_primary_10_1248_cpb_c23_00323 crossref_primary_10_1002_anie_202116725 crossref_primary_10_1021_acscatal_0c00498 crossref_primary_10_1039_C7QO00808B crossref_primary_10_1039_C8SC05539D crossref_primary_10_1039_D0QO01182G crossref_primary_10_1039_C7CC01759F crossref_primary_10_1039_C9OB00509A crossref_primary_10_1021_acs_joc_6b03085 crossref_primary_10_1002_ange_202011738 crossref_primary_10_1002_anie_201704690 crossref_primary_10_1021_acs_orglett_3c00464 crossref_primary_10_1021_acs_orglett_7b03371 crossref_primary_10_1021_acscatal_3c03367 crossref_primary_10_1016_j_mencom_2019_09_012 crossref_primary_10_1039_C8OB02749H crossref_primary_10_1039_D3QO01603J crossref_primary_10_1002_ajoc_202000058 crossref_primary_10_1021_acs_chemrev_9b00111 crossref_primary_10_1021_acs_joc_0c02294 crossref_primary_10_1021_acs_orglett_9b01015 crossref_primary_10_1002_anie_201701058 crossref_primary_10_1002_ejoc_201701652 crossref_primary_10_1016_j_tetlet_2017_12_034 crossref_primary_10_1002_anie_202215008 crossref_primary_10_1002_anie_201912746 crossref_primary_10_1021_acs_chemrev_1c00384 crossref_primary_10_1002_ange_201612516 crossref_primary_10_1021_acscatal_4c01805 crossref_primary_10_1002_adsc_201801198 crossref_primary_10_1002_anie_201706724 crossref_primary_10_1002_cctc_201801332 crossref_primary_10_1039_D0GC02667K crossref_primary_10_1021_acs_orglett_9b03468 crossref_primary_10_1055_a_1733_6254 crossref_primary_10_1016_j_jfluchem_2025_110422 crossref_primary_10_1002_ajoc_202300234 crossref_primary_10_1021_acs_orglett_8b00648 crossref_primary_10_1002_ange_201706724 crossref_primary_10_1002_chem_201702385 crossref_primary_10_1016_j_cclet_2024_109954 crossref_primary_10_1002_chem_202402768 crossref_primary_10_3390_molecules29061191 crossref_primary_10_1016_j_gresc_2024_01_002 crossref_primary_10_1039_D3CC00495C crossref_primary_10_1021_acs_joc_9b00766 crossref_primary_10_1021_acs_orglett_3c01521 crossref_primary_10_3390_molecules29040790 crossref_primary_10_1002_adsc_202201268 crossref_primary_10_1039_C8GC02782J crossref_primary_10_1002_anie_201611058 crossref_primary_10_1039_C9QO00427K crossref_primary_10_1039_C7CC09953C crossref_primary_10_1039_C9QO00536F crossref_primary_10_1021_acs_orglett_8b02735 crossref_primary_10_1021_acs_orglett_9b02152 crossref_primary_10_1016_j_jfluchem_2018_08_003 crossref_primary_10_1021_acs_joc_3c00988 crossref_primary_10_1039_C8CC09385G crossref_primary_10_1039_D0CC01353F crossref_primary_10_1002_ange_202305426 crossref_primary_10_1039_D3GC00143A crossref_primary_10_1021_acs_orglett_1c00476 crossref_primary_10_1002_ejoc_201900957 crossref_primary_10_1002_ange_202116725 crossref_primary_10_1021_acs_orglett_8b02968 crossref_primary_10_1002_adsc_201801482 crossref_primary_10_1021_acs_joc_7b02467 crossref_primary_10_1002_adsc_201800037 crossref_primary_10_1021_acs_orglett_4c00806 crossref_primary_10_1021_acs_orglett_9b03594 crossref_primary_10_1021_acs_organomet_0c00261 crossref_primary_10_1002_anie_202309460 crossref_primary_10_1039_D4QO00824C crossref_primary_10_1021_acs_orglett_6b03870 crossref_primary_10_1002_anie_202011738 crossref_primary_10_1002_adsc_201700423 crossref_primary_10_1002_ejoc_201700678 crossref_primary_10_1021_acsomega_7b00383 crossref_primary_10_1039_C9OB00717B crossref_primary_10_1039_D2DT03494H crossref_primary_10_1039_C7SC01703K crossref_primary_10_1039_C8CC00938D crossref_primary_10_1002_anie_202319158 crossref_primary_10_1248_cpb_c19_00856 crossref_primary_10_1002_mrc_5513 crossref_primary_10_1039_D3CC04985J crossref_primary_10_1021_jacs_7b09394 crossref_primary_10_1039_D0CC04318D crossref_primary_10_1002_chem_202000856 crossref_primary_10_1039_C9CC06465F crossref_primary_10_1002_anie_202319030 crossref_primary_10_1021_acs_orglett_1c00390 crossref_primary_10_1002_ange_202214633 crossref_primary_10_1002_adsc_201700534 crossref_primary_10_1002_ejoc_202100537 crossref_primary_10_1039_D3GC03291D crossref_primary_10_1039_D2QO00762B crossref_primary_10_1021_acs_orglett_8b01658 crossref_primary_10_1007_s11426_023_1937_4 crossref_primary_10_1021_acs_joc_7b01279 crossref_primary_10_1021_acs_orglett_8b01899 crossref_primary_10_5059_yukigoseikyokaishi_74_1036 crossref_primary_10_1021_acs_joc_9b00842 crossref_primary_10_1021_acs_orglett_0c03187 crossref_primary_10_1002_ajoc_202200356 crossref_primary_10_1021_acs_orglett_0c04039 crossref_primary_10_1055_a_1674_6564 crossref_primary_10_1002_ajoc_201700450 crossref_primary_10_1021_acs_orglett_8b04039 crossref_primary_10_1039_D2QO00045H crossref_primary_10_1021_acscatal_0c03127 crossref_primary_10_1039_D3OB02103C crossref_primary_10_1002_ange_202010801 crossref_primary_10_5059_yukigoseikyokaishi_81_930 crossref_primary_10_1039_D1GC00454A crossref_primary_10_1007_s11426_022_1438_0 crossref_primary_10_3390_molecules23081879 crossref_primary_10_1039_D0QO00282H crossref_primary_10_1021_acs_orglett_9b03035 crossref_primary_10_1039_C9SC01463B crossref_primary_10_1021_jacs_0c03144 crossref_primary_10_1002_tcr_202300202 crossref_primary_10_1039_D2OB00488G crossref_primary_10_1016_j_jfluchem_2021_109823 crossref_primary_10_3389_fchem_2020_551159 crossref_primary_10_1055_a_1702_4445 crossref_primary_10_1002_anie_202305426 crossref_primary_10_1002_ejoc_202300253 crossref_primary_10_1021_acs_orglett_4c01372 crossref_primary_10_1021_acsomega_3c09911 crossref_primary_10_1039_D1GC00027F crossref_primary_10_1039_D0CC02550J crossref_primary_10_1002_ajoc_201600509 crossref_primary_10_1002_adsc_202101234 crossref_primary_10_1002_tcr_201800095 crossref_primary_10_1039_C8CC01096J crossref_primary_10_1002_ange_202110304 crossref_primary_10_1002_asia_202300723 crossref_primary_10_1016_j_tetlet_2017_10_018 crossref_primary_10_1021_acs_joc_3c02068 crossref_primary_10_1002_ange_202215008 crossref_primary_10_1021_acs_orglett_0c04021 crossref_primary_10_1021_acs_orglett_8b03081 crossref_primary_10_1021_acs_orglett_4c02792 crossref_primary_10_2174_0113852728306541240409034052 crossref_primary_10_1039_C7SC04509C crossref_primary_10_1002_ange_202309460 crossref_primary_10_1002_ange_201915619 crossref_primary_10_1002_ajoc_201900121 crossref_primary_10_1002_ange_201903496 crossref_primary_10_1002_cjoc_202200142 crossref_primary_10_1016_j_arabjc_2024_106027 crossref_primary_10_1002_anie_202301168 crossref_primary_10_1002_adsc_202200088 crossref_primary_10_1039_C7RA08086G crossref_primary_10_1021_acs_orglett_3c03786 crossref_primary_10_1021_acs_orglett_1c01059 crossref_primary_10_1021_acs_orglett_0c03022 crossref_primary_10_1002_cjoc_201900075 crossref_primary_10_3390_chemistry4030068 crossref_primary_10_1002_ange_202007548 crossref_primary_10_1002_ange_202009844 crossref_primary_10_1002_ange_202008630 crossref_primary_10_1021_acs_orglett_1c04319 crossref_primary_10_1039_D4QO00996G crossref_primary_10_1039_D3CY01418E crossref_primary_10_1002_ange_201701058 crossref_primary_10_1021_acs_joc_7b01771 crossref_primary_10_1039_D0QO01607A crossref_primary_10_1002_ange_201704690 crossref_primary_10_1039_D1CC05730H crossref_primary_10_1002_cjoc_202400149 crossref_primary_10_1038_s41467_024_50081_x crossref_primary_10_1039_C8SC05237A crossref_primary_10_1021_acs_orglett_0c03043 crossref_primary_10_5059_yukigoseikyokaishi_80_1028 crossref_primary_10_1002_anie_201803566 crossref_primary_10_1002_ange_202006440 crossref_primary_10_1039_C7CS00619E crossref_primary_10_1021_acs_joc_8b00581 crossref_primary_10_1039_C8QO01192C crossref_primary_10_1039_D2QO01101H crossref_primary_10_1021_jacs_7b06044 crossref_primary_10_1021_acs_orglett_2c03348 crossref_primary_10_1039_C7QO00784A crossref_primary_10_1039_D1OB00296A crossref_primary_10_1002_tcr_202300032 crossref_primary_10_1021_acs_orglett_8b00731 crossref_primary_10_1021_acs_orglett_9b01803 crossref_primary_10_1002_tcr_202300037 crossref_primary_10_1002_tcr_202300036 crossref_primary_10_1038_s41570_024_00663_6 crossref_primary_10_1021_acs_joc_2c00712 crossref_primary_10_1002_anie_202008040 crossref_primary_10_1021_acs_orglett_9b01804 crossref_primary_10_1002_anie_202300166 crossref_primary_10_1016_j_chempr_2017_02_006 crossref_primary_10_1002_ange_201609274 crossref_primary_10_1039_D4OB01426J crossref_primary_10_1039_C9QO01030K crossref_primary_10_1016_j_tet_2019_01_048 crossref_primary_10_1039_c7pp00179g crossref_primary_10_1002_adsc_202101201 crossref_primary_10_1021_acs_orglett_8b00963 crossref_primary_10_1021_acscatal_1c05621 crossref_primary_10_1021_jacs_1c01083 crossref_primary_10_1039_C9OB00734B crossref_primary_10_1002_anie_202108802 crossref_primary_10_1021_jacs_9b06141 crossref_primary_10_1021_acscatal_7b04160 crossref_primary_10_1002_chem_202102840 crossref_primary_10_1021_acs_orglett_4c03338 |
Cites_doi | 10.1002/anie.201200223 10.1021/acs.orglett.5b01694 10.1039/jr9490002856 10.1126/science.1131943 10.1002/anie.201308735 10.1016/j.tetlet.2013.11.108 10.1002/chem.201504838 10.1002/anie.201509282 10.1002/anie.200900963 10.1002/anie.201505550 10.1021/cr500223h 10.1007/s11244-014-0259-7 10.1002/anie.201503210 10.1002/chem.201302407 10.1002/anie.200460441 10.1021/ol900567c 10.1021/jo972213l 10.1002/anie.201501880 10.1038/nchem.687 10.1021/ja100748y 10.1021/ol4006272 10.1021/cr5002386 10.1039/B913880N 10.1002/anie.201403590 10.1021/ja037566i 10.1039/b916463d 10.1021/cr300503r 10.1021/ja077212h 10.1002/ejoc.201101535 10.1016/0040-4039(91)80524-A 10.1039/C4QI00053F 10.1002/anie.201210276 10.1002/chem.201304823 10.1021/jm1013693 10.1021/ol403500y 10.1002/anie.201205071 10.1016/j.tet.2015.06.056 10.1002/chem.201404537 10.1021/jm800219f 10.1021/acs.joc.6b00953 10.1002/anie.201202624 10.1002/chem.201501475 10.1021/ja9053338 10.1021/ol502163f 10.1002/chem.201404005 10.1016/j.jfluchem.2015.07.020 10.1002/anie.201309260 10.1016/S0040-4039(00)94447-2 10.1002/anie.201101861 10.1039/C4OB00671B 10.3762/bjoc.10.108 10.1039/C4CS00025K 10.1016/j.jfluchem.2014.06.025 10.1002/anie.201412199 10.1039/c3cc39235j 10.1021/ja513166w 10.1002/9781444312096 10.1039/C4CC07066F 10.1002/9783527651351 10.1002/chem.201406432 10.1002/tcr.201500215 10.3762/bjoc.6.65 10.1002/anie.200461751 10.1021/cr500368h 10.1021/cr941142c 10.1021/ja01192a022 10.1021/ja108560e 10.1021/ja401840j 10.1002/chem.200501052 10.1021/ja401022x 10.1039/C5OB01486G 10.1007/978-3-662-04164-2 10.1021/ja00059a009 10.1021/cr941149u 10.1039/p19910000627 10.1021/ja01581a057 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.accounts.6b00268 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 1945 |
ExternalDocumentID | 27564676 10_1021_acs_accounts_6b00268 b419036499 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM YIN 7X8 |
ID | FETCH-LOGICAL-a392t-6826ca94fe9211be027a1acb7b5ea56f8179302292fc154e8cf2cbe517cdf3493 |
IEDL.DBID | ACS |
ISSN | 0001-4842 |
IngestDate | Fri Jul 11 10:49:03 EDT 2025 Wed Feb 19 02:42:18 EST 2025 Thu Apr 24 23:00:14 EDT 2025 Tue Jul 01 03:15:58 EDT 2025 Thu Aug 27 13:42:20 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a392t-6826ca94fe9211be027a1acb7b5ea56f8179302292fc154e8cf2cbe517cdf3493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27564676 |
PQID | 1822112707 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1822112707 pubmed_primary_27564676 crossref_primary_10_1021_acs_accounts_6b00268 crossref_citationtrail_10_1021_acs_accounts_6b00268 acs_journals_10_1021_acs_accounts_6b00268 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-20 |
PublicationDateYYYYMMDD | 2016-09-20 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 Ojima I. (ref2/cit2) 2009 Hiyama T. (ref1/cit1) 2000 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 Kirsch P. (ref3/cit3) 2013 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.1002/anie.201200223 – ident: ref53/cit53 doi: 10.1021/acs.orglett.5b01694 – ident: ref9/cit9 doi: 10.1039/jr9490002856 – ident: ref4/cit4 doi: 10.1126/science.1131943 – ident: ref44/cit44 doi: 10.1002/anie.201308735 – ident: ref33/cit33 doi: 10.1016/j.tetlet.2013.11.108 – ident: ref76/cit76 doi: 10.1002/chem.201504838 – ident: ref50/cit50 doi: 10.1002/anie.201509282 – ident: ref61/cit61 doi: 10.1002/anie.200900963 – ident: ref66/cit66 doi: 10.1002/anie.201505550 – ident: ref17/cit17 doi: 10.1021/cr500223h – ident: ref36/cit36 doi: 10.1007/s11244-014-0259-7 – ident: ref48/cit48 doi: 10.1002/anie.201503210 – ident: ref43/cit43 doi: 10.1002/chem.201302407 – ident: ref59/cit59 doi: 10.1002/anie.200460441 – ident: ref75/cit75 doi: 10.1021/ol900567c – ident: ref15/cit15 doi: 10.1021/jo972213l – ident: ref47/cit47 doi: 10.1002/anie.201501880 – ident: ref24/cit24 doi: 10.1038/nchem.687 – ident: ref35/cit35 doi: 10.1021/ja100748y – ident: ref54/cit54 doi: 10.1021/ol4006272 – ident: ref74/cit74 doi: 10.1021/cr5002386 – ident: ref25/cit25 doi: 10.1039/B913880N – ident: ref55/cit55 doi: 10.1002/anie.201403590 – ident: ref69/cit69 doi: 10.1021/ja037566i – ident: ref72/cit72 doi: 10.1039/b916463d – ident: ref27/cit27 doi: 10.1021/cr300503r – ident: ref67/cit67 doi: 10.1021/ja077212h – ident: ref19/cit19 doi: 10.1002/ejoc.201101535 – ident: ref11/cit11 doi: 10.1016/0040-4039(91)80524-A – ident: ref30/cit30 doi: 10.1039/C4QI00053F – ident: ref28/cit28 doi: 10.1002/anie.201210276 – ident: ref29/cit29 doi: 10.1002/chem.201304823 – ident: ref6/cit6 doi: 10.1021/jm1013693 – ident: ref52/cit52 doi: 10.1021/ol403500y – ident: ref51/cit51 doi: 10.1002/anie.201205071 – ident: ref23/cit23 doi: 10.1016/j.tet.2015.06.056 – ident: ref62/cit62 doi: 10.1002/chem.201404537 – ident: ref5/cit5 doi: 10.1021/jm800219f – ident: ref56/cit56 doi: 10.1021/acs.joc.6b00953 – ident: ref8/cit8 doi: 10.1002/anie.201202624 – ident: ref73/cit73 doi: 10.1002/chem.201501475 – ident: ref39/cit39 doi: 10.1021/ja9053338 – ident: ref46/cit46 doi: 10.1021/ol502163f – ident: ref20/cit20 doi: 10.1002/chem.201404005 – ident: ref68/cit68 doi: 10.1016/j.jfluchem.2015.07.020 – ident: ref31/cit31 doi: 10.1002/anie.201309260 – ident: ref12/cit12 doi: 10.1016/S0040-4039(00)94447-2 – ident: ref40/cit40 doi: 10.1002/anie.201101861 – ident: ref21/cit21 doi: 10.1039/C4OB00671B – ident: ref65/cit65 doi: 10.3762/bjoc.10.108 – ident: ref32/cit32 doi: 10.1039/C4CS00025K – ident: ref34/cit34 doi: 10.1016/j.jfluchem.2014.06.025 – ident: ref49/cit49 doi: 10.1002/anie.201412199 – ident: ref64/cit64 doi: 10.1039/c3cc39235j – ident: ref71/cit71 doi: 10.1021/ja513166w – volume-title: Fluorine in Medicinal Chemistry and Chemical Biology year: 2009 ident: ref2/cit2 doi: 10.1002/9781444312096 – ident: ref45/cit45 doi: 10.1039/C4CC07066F – volume-title: Modern Fluoroorganic Chemistry year: 2013 ident: ref3/cit3 doi: 10.1002/9783527651351 – ident: ref63/cit63 doi: 10.1002/chem.201406432 – ident: ref38/cit38 doi: 10.1002/tcr.201500215 – ident: ref18/cit18 doi: 10.3762/bjoc.6.65 – ident: ref60/cit60 doi: 10.1002/anie.200461751 – ident: ref22/cit22 doi: 10.1021/cr500368h – ident: ref7/cit7 doi: 10.1021/cr941142c – ident: ref57/cit57 doi: 10.1021/ja01192a022 – ident: ref41/cit41 doi: 10.1021/ja108560e – ident: ref70/cit70 doi: 10.1021/ja401840j – ident: ref16/cit16 doi: 10.1002/chem.200501052 – ident: ref42/cit42 doi: 10.1021/ja401022x – ident: ref37/cit37 doi: 10.1039/C5OB01486G – volume-title: Organofluorine Compounds: Chemistry and Applications year: 2000 ident: ref1/cit1 doi: 10.1007/978-3-662-04164-2 – ident: ref14/cit14 doi: 10.1021/ja00059a009 – ident: ref13/cit13 doi: 10.1021/cr941149u – ident: ref10/cit10 doi: 10.1039/p19910000627 – ident: ref58/cit58 doi: 10.1021/ja01581a057 |
SSID | ssj0002467 |
Score | 2.6500592 |
Snippet | Trifluoromethyl (CF3) and difluoromethyl (CF2H) groups are versatile structural motifs, especially in the fields of pharmaceuticals and agrochemicals. Thus,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1937 |
Title | Fine Design of Photoredox Systems for Catalytic Fluoromethylation of Carbon–Carbon Multiple Bonds |
URI | http://dx.doi.org/10.1021/acs.accounts.6b00268 https://www.ncbi.nlm.nih.gov/pubmed/27564676 https://www.proquest.com/docview/1822112707 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTi-1FfrODFQ2rz2DyOJVqKUBW00FuY3ewiWBJpUlBP_gf_ob_E2TwqKqV6CSFkh-zuJPt9mdlvCDnl0FbIGpjBpA2GA740ABDICW5zVsTtpN4o3L92ewPnasiGX0TxZwTfMs9BZGi6qJyQtdyCNPiLZAmPnvboTng3_fJajltqZCJFdnzHqrfKzbCiFySRfV-QZqDMYrXprpGbes9OmWTy2JrkvCVef0s4_rEj62S1Ap60U3rKBlmQySZZDut6b1tEdBFw0osio4Omit4-pMjHZZw-00rWnCLApaH-3_OCRmh3NEm12AFOdZlQp1uFMOZp8vH2Xp7QfpWwSHX94mybDLqX92HPqEowGIDAKTdcZB8CAkfJAJkil0hiwQTBPc4kMFf5-v1GGBBYSiAYk75QluCSmZ6Ile0E9g5pJGki9wi1IQbOmBeYMWI08JG-SsQPPPZ5DEoFTXKGIxRVr1AWFdFxy4z0xXrYomrYmsSu5ywSlZa5LqkxmtPKmLZ6KrU85tx_UrtDhHOhIymQyHSCz4awytQxe69Jdks_mVrUevroh-7-P_pzQFYQiLk6D8VqH5JGPp7IIwQ7OT8uPPwTzTL-xA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOcCFfSmrkbhwSGkWp8mxClRlKUJiEbdo7NhCAiWItBJw4h_4Q76EcZYikBDiFlmx5WUcv5cZvwHYE9jWxBq4xZWLloeBshAJyEnhCl747ZS5KDw49_vX3sktv50AXt-FoU7k1FJeOPG_1AXsA1OGZQKFvOUX3CGYhCnCI44x7G50Of4AO55fSmUSU_YCz6lvzP3SijmXZP79XPoFbBaHTm8ObsbdLWJN7lujoWjJ1x9Kjv8ezzzMVjCUdUu7WYAJlS7CdFRnf1sC2SP4yQ6L-A6WaXZxlxE7V0n2zCqRc0Zwl0Xm788LNcJ6D6PMSB_QwpfhdaZWhE8iSz_e3ssHNqjCF5nJZpwvw3Xv6CrqW1VCBgsJRg0tn7iIxNDTKiTeKBRRWrRRio7gCrmvA7PbCRSEjpYEzVQgtSOF4nZHJtr1QncFGmmWqjVgLiYoOO-EdkKIDQMis4rQhEgCkaDWYRP2aYbiakPlceErd-zYFNbTFlfT1gS3XrpYVsrmJsHGwx-1rHGtx1LZ44_3d2uriGktjF8FU5WNqG8Esmzjwe80YbU0l3GLRl2fzNFf_8d4dmC6fzU4i8-Oz083YIYgmm8iVJz2JjSGTyO1RTBoKLYLo_8EWLMHNA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS91AEB6qBfVFa7V6qtUt9KUPOT25bE7yKNHgpYqggvgSZje7CEoi5hxQn_wP_kN_SWdyOdSCSH0LS3bZy2z2-zKz3wD8UDiwxBqkI42PToCRcRAJyGnlK1n77QxfFD48CnfPgv1zef5Xqi_qREUtVbUTn3f1TW5bhQH3F5djk0Sh6oc1f4im4CN77ti4t5KTyUfYC8JGLpPYchAFXndr7pVW-GzS1cuz6RXAWR886QJcTLpcx5tc9ccj1dcP_6g5vmtMn2C-haNiq7GfRfhgis8wm3RZ4JZApwRDxXYd5yFKK44vS2LpJi_vRCt2Lgj2ioT_At1TIyK9HpcsgUAG0ITZca0Eb1VZPD8-NQ_isA1jFJzVuFqGs3TnNNl12sQMDhKcGjkhcRKNcWBNTPxRGaK26KJWQyUNytBGvOsJHMSe1QTRTKStp5WR7lDn1g9i_wtMF2VhVkH4mKOSchi7OSE3jIjUGkIVKo9UjtbGPfhJM5S1G6vKap-552Zc2E1b1k5bD_xu-TLdKpxzoo3rN2o5k1o3jcLHG-9_7ywjo7Vg_woWphxT3whsuezJH_ZgpTGZSYussk8mGX79j_Fswszxdpr93js6WIM5QmohB6p4g3WYHt2OzTdCQyO1Udv9H7V8Cbc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+Design+of+Photoredox+Systems+for+Catalytic+Fluoromethylation+of+Carbon-Carbon+Multiple+Bonds&rft.jtitle=Accounts+of+chemical+research&rft.au=Koike%2C+Takashi&rft.au=Akita%2C+Munetaka&rft.date=2016-09-20&rft.eissn=1520-4898&rft.volume=49&rft.issue=9&rft.spage=1937&rft.epage=1945&rft_id=info:doi/10.1021%2Facs.accounts.6b00268&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |