2‑(Pyridin-2-yl)isopropyl (PIP) Amine: An Enabling Directing Group for Divergent and Asymmetric Functionalization of Unactivated Methylene C(sp3)–H Bonds
Conspectus Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C(sp3)–H activation. However, the activation of unbiased methylene C(sp3)–H bonds remains challenging due to the high heterolytic bond dissociatio...
Saved in:
Published in | Accounts of chemical research Vol. 54; no. 12; pp. 2750 - 2763 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
15.06.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C(sp3)–H activation. However, the activation of unbiased methylene C(sp3)–H bonds remains challenging due to the high heterolytic bond dissociation energy and substantial steric hindrance. Two main strategies have been developed thus far, that is, use of a strongly coordinating bidentate DG pioneered by Daugulis and use of a weakly coordinating monodentate DG accelerated by pyridine-type ligands, as disclosed by Yu. The seminal work by Daugulis sparked significant interest in the application of the monoanionic bidentate auxiliary in aliphatic C–H activation reactions. Our research has focused on enabling the divergent functionalization and enantiotopic differentiation of unactivated methylene C–H bonds. Inspired by the structure of bidentate 8-aminoquinoline and the accelerating effect of the gem-dimethyl moiety in cyclometalations, we developed a strongly coordinating bidentate 2-(pyridine-yl)isopropyl (PIP) amine DG consisting of a pyridyl group, a gem-dimethyl moiety, and an amino group, which enabled the divergent functionalization of unactivated β-methylene C(sp3)–H bonds to forge C–O, C–N, C–C, and C–F bonds with palladium catalysts. The exclusive β-selectivity was ascribed to the preferential formation of kinetically favored [5,5]-bicyclic palladacycle intermediates. DFT calculations revealed that the well-designed gem-dimethyl group was responsible for the lowered energy and compressed bite angle of the key transition state related to C–H cleavage. More recently, the combination of PIP amine with axially chiral ligands was found to promote asymmetric functionalization of unbiased methylene C(sp3)–H bonds, a challenging research topic in the area of C–H activation that remains to be addressed. Two different types of axially chiral ligands, namely, non-C 2-symmetric chiral phosphoric acids (CPAs) and 3,3′-disubstituted BINOLs, have been developed. The former enabled Pd(II)-catalyzed inter- and intramolecular arylation of unbiased methylene C(sp3)–H bonds with high enantioselectivity, whereas the latter promoted a series of asymmetric functionalization reactions, such as alkynylation, arylation, alkenylation/aza-Wacker cyclization, and intramolecular amidation. The unexpectedly high stereocontrol compared with other bidentate DGs might be attributable to steric communication between the ligand and gem-dimethyl moiety of PIP amine. Thus far, the combination of PIP amine DG with 3,3′-disubstituted BINOL ligands is arguably the most general strategy for asymmetric functionalization of unbiased methylene C(sp3)–H bonds. Finally, the ease of installation and removal of PIP under mild conditions and synthetic applications are described. |
---|---|
AbstractList | Conspectus Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C(sp3)–H activation. However, the activation of unbiased methylene C(sp3)–H bonds remains challenging due to the high heterolytic bond dissociation energy and substantial steric hindrance. Two main strategies have been developed thus far, that is, use of a strongly coordinating bidentate DG pioneered by Daugulis and use of a weakly coordinating monodentate DG accelerated by pyridine-type ligands, as disclosed by Yu. The seminal work by Daugulis sparked significant interest in the application of the monoanionic bidentate auxiliary in aliphatic C–H activation reactions. Our research has focused on enabling the divergent functionalization and enantiotopic differentiation of unactivated methylene C–H bonds. Inspired by the structure of bidentate 8-aminoquinoline and the accelerating effect of the gem-dimethyl moiety in cyclometalations, we developed a strongly coordinating bidentate 2-(pyridine-yl)isopropyl (PIP) amine DG consisting of a pyridyl group, a gem-dimethyl moiety, and an amino group, which enabled the divergent functionalization of unactivated β-methylene C(sp3)–H bonds to forge C–O, C–N, C–C, and C–F bonds with palladium catalysts. The exclusive β-selectivity was ascribed to the preferential formation of kinetically favored [5,5]-bicyclic palladacycle intermediates. DFT calculations revealed that the well-designed gem-dimethyl group was responsible for the lowered energy and compressed bite angle of the key transition state related to C–H cleavage. More recently, the combination of PIP amine with axially chiral ligands was found to promote asymmetric functionalization of unbiased methylene C(sp3)–H bonds, a challenging research topic in the area of C–H activation that remains to be addressed. Two different types of axially chiral ligands, namely, non-C 2-symmetric chiral phosphoric acids (CPAs) and 3,3′-disubstituted BINOLs, have been developed. The former enabled Pd(II)-catalyzed inter- and intramolecular arylation of unbiased methylene C(sp3)–H bonds with high enantioselectivity, whereas the latter promoted a series of asymmetric functionalization reactions, such as alkynylation, arylation, alkenylation/aza-Wacker cyclization, and intramolecular amidation. The unexpectedly high stereocontrol compared with other bidentate DGs might be attributable to steric communication between the ligand and gem-dimethyl moiety of PIP amine. Thus far, the combination of PIP amine DG with 3,3′-disubstituted BINOL ligands is arguably the most general strategy for asymmetric functionalization of unbiased methylene C(sp3)–H bonds. Finally, the ease of installation and removal of PIP under mild conditions and synthetic applications are described. Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C(sp3)-H activation. However, the activation of unbiased methylene C(sp3)-H bonds remains challenging due to the high heterolytic bond dissociation energy and substantial steric hindrance. Two main strategies have been developed thus far, that is, use of a strongly coordinating bidentate DG pioneered by Daugulis and use of a weakly coordinating monodentate DG accelerated by pyridine-type ligands, as disclosed by Yu. The seminal work by Daugulis sparked significant interest in the application of the monoanionic bidentate auxiliary in aliphatic C-H activation reactions. Our research has focused on enabling the divergent functionalization and enantiotopic differentiation of unactivated methylene C-H bonds. Inspired by the structure of bidentate 8-aminoquinoline and the accelerating effect of the gem-dimethyl moiety in cyclometalations, we developed a strongly coordinating bidentate 2-(pyridine-yl)isopropyl (PIP) amine DG consisting of a pyridyl group, a gem-dimethyl moiety, and an amino group, which enabled the divergent functionalization of unactivated β-methylene C(sp3)-H bonds to forge C-O, C-N, C-C, and C-F bonds with palladium catalysts. The exclusive β-selectivity was ascribed to the preferential formation of kinetically favored [5,5]-bicyclic palladacycle intermediates. DFT calculations revealed that the well-designed gem-dimethyl group was responsible for the lowered energy and compressed bite angle of the key transition state related to C-H cleavage.More recently, the combination of PIP amine with axially chiral ligands was found to promote asymmetric functionalization of unbiased methylene C(sp3)-H bonds, a challenging research topic in the area of C-H activation that remains to be addressed. Two different types of axially chiral ligands, namely, non-C2-symmetric chiral phosphoric acids (CPAs) and 3,3'-disubstituted BINOLs, have been developed. The former enabled Pd(II)-catalyzed inter- and intramolecular arylation of unbiased methylene C(sp3)-H bonds with high enantioselectivity, whereas the latter promoted a series of asymmetric functionalization reactions, such as alkynylation, arylation, alkenylation/aza-Wacker cyclization, and intramolecular amidation. The unexpectedly high stereocontrol compared with other bidentate DGs might be attributable to steric communication between the ligand and gem-dimethyl moiety of PIP amine. Thus far, the combination of PIP amine DG with 3,3'-disubstituted BINOL ligands is arguably the most general strategy for asymmetric functionalization of unbiased methylene C(sp3)-H bonds. Finally, the ease of installation and removal of PIP under mild conditions and synthetic applications are described.Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C(sp3)-H activation. However, the activation of unbiased methylene C(sp3)-H bonds remains challenging due to the high heterolytic bond dissociation energy and substantial steric hindrance. Two main strategies have been developed thus far, that is, use of a strongly coordinating bidentate DG pioneered by Daugulis and use of a weakly coordinating monodentate DG accelerated by pyridine-type ligands, as disclosed by Yu. The seminal work by Daugulis sparked significant interest in the application of the monoanionic bidentate auxiliary in aliphatic C-H activation reactions. Our research has focused on enabling the divergent functionalization and enantiotopic differentiation of unactivated methylene C-H bonds. Inspired by the structure of bidentate 8-aminoquinoline and the accelerating effect of the gem-dimethyl moiety in cyclometalations, we developed a strongly coordinating bidentate 2-(pyridine-yl)isopropyl (PIP) amine DG consisting of a pyridyl group, a gem-dimethyl moiety, and an amino group, which enabled the divergent functionalization of unactivated β-methylene C(sp3)-H bonds to forge C-O, C-N, C-C, and C-F bonds with palladium catalysts. The exclusive β-selectivity was ascribed to the preferential formation of kinetically favored [5,5]-bicyclic palladacycle intermediates. DFT calculations revealed that the well-designed gem-dimethyl group was responsible for the lowered energy and compressed bite angle of the key transition state related to C-H cleavage.More recently, the combination of PIP amine with axially chiral ligands was found to promote asymmetric functionalization of unbiased methylene C(sp3)-H bonds, a challenging research topic in the area of C-H activation that remains to be addressed. Two different types of axially chiral ligands, namely, non-C2-symmetric chiral phosphoric acids (CPAs) and 3,3'-disubstituted BINOLs, have been developed. The former enabled Pd(II)-catalyzed inter- and intramolecular arylation of unbiased methylene C(sp3)-H bonds with high enantioselectivity, whereas the latter promoted a series of asymmetric functionalization reactions, such as alkynylation, arylation, alkenylation/aza-Wacker cyclization, and intramolecular amidation. The unexpectedly high stereocontrol compared with other bidentate DGs might be attributable to steric communication between the ligand and gem-dimethyl moiety of PIP amine. Thus far, the combination of PIP amine DG with 3,3'-disubstituted BINOL ligands is arguably the most general strategy for asymmetric functionalization of unbiased methylene C(sp3)-H bonds. Finally, the ease of installation and removal of PIP under mild conditions and synthetic applications are described. |
Author | Shi, Bing-Feng Zhang, Qi |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 2 givenname: Bing-Feng orcidid: 0000-0003-0375-955X surname: Shi fullname: Shi, Bing-Feng email: bfshi@zju.edu.cn |
BookMark | eNqFkb1OHDEUha2ISFlI3iCFy91iFtvzT7csvxIoW4R65LXvgJHHHmwP0lDxClFqXo4niScLTQrixsfH57N0ffbRnrEGEPpOyZISRg-58EsuhB1M8EsqCKFF9QnNaM5IklV1tYdmJJpRZ-wL2vf-Ph5ZVpQz9MJen3_NN6NTUpmEJaNeKG97Z_tR4_nmcrPAq04ZOMIrg08N32plbvGJciDCpM6dHXrcWhe9R3C3YALmRuKVH7sOglMCnw0mZq3hWj3xSWDb4hvDo_nIA0h8DeFu1GAAr-e-Txevz78v8LE10n9Fn1uuPXx72w_Qzdnpz_VFcvXj_HK9ukp4WtOQtKksIC-zikmyreLK63pbyJIRCaQVtOLplpcFyynntWwlK6iAtCR5W1LISJ0eoPnu3Tj4wwA-NJ3yArTmBuzgG5anlNG0LKfo0S4qnPXeQdsIFf6OFRxXuqGkmTppYifNeyfNWycRzv6Be6c67sb_YWSHTbf3dnDxL_3HyB-_NKqW |
CitedBy_id | crossref_primary_10_1039_D1CC05649B crossref_primary_10_1039_D4OB01693A crossref_primary_10_1021_acs_joc_4c00120 crossref_primary_10_1055_a_2167_8298 crossref_primary_10_1021_acscatal_3c03112 crossref_primary_10_6023_cjoc202204058 crossref_primary_10_1002_anie_202214153 crossref_primary_10_1016_j_tetlet_2024_154951 crossref_primary_10_1002_chem_202302759 crossref_primary_10_1002_vjch_202200119 crossref_primary_10_1002_anie_202310112 crossref_primary_10_1021_acscatal_2c02691 crossref_primary_10_1002_adsc_202300426 crossref_primary_10_1021_acs_joc_3c01911 crossref_primary_10_1039_D1OB01683K crossref_primary_10_6023_cjoc202406002 crossref_primary_10_1002_ange_202218533 crossref_primary_10_3762_bjoc_17_165 crossref_primary_10_1021_acs_orglett_4c00710 crossref_primary_10_1002_anie_202302964 crossref_primary_10_1021_jacs_2c06578 crossref_primary_10_1002_adsc_202400381 crossref_primary_10_1016_j_cclet_2024_110310 crossref_primary_10_1021_acs_orglett_4c02692 crossref_primary_10_1002_anie_202115221 crossref_primary_10_1039_D3CC03592A crossref_primary_10_1021_acscatal_2c03531 crossref_primary_10_1021_acscatal_3c01980 crossref_primary_10_1002_anie_202318803 crossref_primary_10_1021_jacs_1c06236 crossref_primary_10_1002_asia_202400064 crossref_primary_10_1021_jacs_4c04623 crossref_primary_10_1016_j_jcat_2024_115351 crossref_primary_10_1002_ange_202319871 crossref_primary_10_6023_cjoc202406012 crossref_primary_10_1021_acs_joc_4c02318 crossref_primary_10_1002_ange_202304706 crossref_primary_10_1002_anie_202209099 crossref_primary_10_1021_acs_joc_3c02730 crossref_primary_10_1021_acs_orglett_4c01656 crossref_primary_10_1039_D1QO01636A crossref_primary_10_1021_acscatal_4c07549 crossref_primary_10_1021_acs_orglett_3c03688 crossref_primary_10_1002_ejoc_202400749 crossref_primary_10_1021_acs_joc_4c02680 crossref_primary_10_1039_D2QO00848C crossref_primary_10_1021_acscentsci_4c00660 crossref_primary_10_3390_catal13020438 crossref_primary_10_1016_j_tet_2021_132513 crossref_primary_10_1021_acs_orglett_2c03823 crossref_primary_10_1039_D3OB00916E crossref_primary_10_1039_D3QO01943H crossref_primary_10_1021_acs_orglett_3c04123 crossref_primary_10_1002_anie_202319871 crossref_primary_10_1002_ange_202209099 crossref_primary_10_1002_ange_202214153 crossref_primary_10_1021_acs_accounts_3c00493 crossref_primary_10_1039_D1QO01827B crossref_primary_10_1039_D4CC01651C crossref_primary_10_1039_D1QO01344K crossref_primary_10_1021_jacs_2c03565 crossref_primary_10_1021_acs_orglett_4c02392 crossref_primary_10_1021_acs_orglett_1c03967 crossref_primary_10_1039_D3CC05052A crossref_primary_10_1021_acs_orglett_2c00285 crossref_primary_10_1021_acs_joc_4c02735 crossref_primary_10_1002_cjoc_202200020 crossref_primary_10_1016_j_trechm_2021_12_005 crossref_primary_10_1021_acscentsci_2c01389 crossref_primary_10_1039_D3CS00762F crossref_primary_10_1039_D3QO00751K crossref_primary_10_1039_D3CC04425D crossref_primary_10_1021_acs_joc_3c02994 crossref_primary_10_1002_ange_202108853 crossref_primary_10_1021_acscatal_3c04661 crossref_primary_10_1021_acs_orglett_1c02918 crossref_primary_10_1021_acs_joc_2c00226 crossref_primary_10_1039_D2OB00688J crossref_primary_10_1039_D1QO01884A crossref_primary_10_1055_a_1802_6793 crossref_primary_10_1002_ange_202115221 crossref_primary_10_1002_ejoc_202400607 crossref_primary_10_1021_acs_joc_4c03031 crossref_primary_10_3390_catal13010016 crossref_primary_10_1002_slct_202300153 crossref_primary_10_1016_j_checat_2022_03_027 crossref_primary_10_1039_D4QO00493K crossref_primary_10_1016_j_cclet_2024_109647 crossref_primary_10_1021_acs_orglett_4c01322 crossref_primary_10_1002_anie_202304706 crossref_primary_10_1002_anie_202108853 crossref_primary_10_1021_acs_joc_2c01625 crossref_primary_10_1021_acs_joc_4c00329 crossref_primary_10_1002_adsc_202401398 crossref_primary_10_1002_anie_202213659 crossref_primary_10_6023_cjoc202105053 crossref_primary_10_1039_D1GC02570H crossref_primary_10_1002_chem_202301595 crossref_primary_10_1021_acsomega_2c03073 crossref_primary_10_1021_jacs_3c10714 crossref_primary_10_1055_a_2412_9407 crossref_primary_10_1021_jacs_4c18255 crossref_primary_10_1021_acs_joc_4c00059 crossref_primary_10_1002_anie_202208912 crossref_primary_10_1002_cjoc_202300529 crossref_primary_10_1021_acs_joc_4c00850 crossref_primary_10_1021_acs_orglett_4c01214 crossref_primary_10_1021_acs_joc_3c02139 crossref_primary_10_1002_ange_202302964 crossref_primary_10_1002_ejoc_202400272 crossref_primary_10_1002_asia_202300815 crossref_primary_10_1021_acs_orglett_3c01865 crossref_primary_10_1039_D2QO01876D crossref_primary_10_1021_acs_joc_5c00007 crossref_primary_10_6023_cjoc202404038 crossref_primary_10_1016_j_tet_2021_132279 crossref_primary_10_1002_ange_202318803 crossref_primary_10_1055_a_1662_7096 crossref_primary_10_1016_j_chempr_2021_11_015 crossref_primary_10_1021_acscatal_2c02193 crossref_primary_10_1002_ange_202208912 crossref_primary_10_1021_acs_joc_4c00102 crossref_primary_10_1021_acs_joc_3c02823 crossref_primary_10_1021_acs_orglett_4c04535 crossref_primary_10_1055_a_2005_5006 crossref_primary_10_1021_acs_joc_4c01956 crossref_primary_10_1038_s41467_022_29554_4 crossref_primary_10_1039_D1SC05296A crossref_primary_10_1021_acscatal_4c01212 crossref_primary_10_1039_D1CC06097J crossref_primary_10_1021_acs_orglett_4c01540 crossref_primary_10_1002_ange_202310112 crossref_primary_10_1002_ajoc_202200589 crossref_primary_10_1021_acs_orglett_2c02824 crossref_primary_10_1039_D4RE00140K crossref_primary_10_1021_acscatal_2c00962 crossref_primary_10_6023_cjoc202211039 crossref_primary_10_1021_acs_joc_4c00116 crossref_primary_10_1021_acs_orglett_1c04215 crossref_primary_10_6023_cjoc202406033 crossref_primary_10_1039_D2NJ00175F crossref_primary_10_1002_ange_202213659 crossref_primary_10_6023_cjoc202100059 crossref_primary_10_1039_D2CC02896D crossref_primary_10_1002_anie_202218533 crossref_primary_10_6023_A23070336 crossref_primary_10_1021_jacs_3c00095 crossref_primary_10_1021_acscatal_3c05955 |
Cites_doi | 10.1021/ar5004626 10.1139/v01-150 10.1021/ja3023972 10.1039/c3sc51993g 10.1038/nature16957 10.1021/jacs.5b03989 10.1021/ja206002m 10.1002/ajoc.201800276 10.1002/chem.201406528 10.1002/anie.201500066 10.1021/acs.orglett.5b01710 10.1002/anie.202004504 10.1039/C9CS00086K 10.1021/ja054549f 10.1021/acs.orglett.5b00968 10.1002/chem.201501370 10.1021/acs.chemrev.9b00495 10.1021/jacs.9b01124 10.1021/ol061389j 10.1039/C7SC04768A 10.1039/D1QO00302J 10.1021/acscatal.6b03621 10.1039/D0SC05944G 10.1039/C4CC03615H 10.1021/ja00846a072 10.1002/chem.201902046 10.1002/anie.202008952 10.1002/anie.201306625 10.1021/acs.chemrev.6b00622 10.1039/c1cs15058h 10.1002/anie.201311024 10.1021/jacs.7b09761 10.1021/ja061943k 10.1016/j.trechm.2020.11.009 10.1039/c3ra46996d 10.1021/ja309325e 10.1002/cjoc.201900533 10.1021/acs.chemrev.6b00692 10.1002/anie.201804197 10.1016/j.tetlet.2016.08.086 10.1021/acscatal.9b04768 10.1002/anie.200905134 10.1021/om200515f 10.1016/j.chempr.2018.12.017 10.1126/science.aaf4434 10.1002/anie.202008437 10.1021/ol403364k 10.1071/CH10033 10.1021/ja910900p 10.1021/acs.orglett.0c03775 10.1021/acs.orglett.0c03794 10.1021/acs.accounts.6b00022 10.1021/cr940337h 10.1021/ol400498a 10.1055/s-0035-1562508 10.1021/acs.orglett.1c00204 10.1039/CT9150701080 10.1039/D0SC04676K 10.1055/s-0033-1338645 10.1126/science.aao4798 |
ContentType | Journal Article |
Copyright | 2021 American Chemical
Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.accounts.1c00168 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 2763 |
ExternalDocumentID | 10_1021_acs_accounts_1c00168 b292282193 |
GroupedDBID | - .K2 02 23M 3RI 4.4 55A 5GY 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ F5P GGK GNL IH2 IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 53G 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV CITATION CUPRZ XSW ZCA ~02 7X8 |
ID | FETCH-LOGICAL-a391t-f3d6e57482d0b8888599b6d720de0fc18a3ba76251aa9dfd261ce3705f71e4093 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 02:24:16 EDT 2025 Thu Apr 24 22:59:01 EDT 2025 Tue Jul 01 03:16:07 EDT 2025 Thu Jun 17 03:24:55 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a391t-f3d6e57482d0b8888599b6d720de0fc18a3ba76251aa9dfd261ce3705f71e4093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0375-955X |
PQID | 2531213779 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2531213779 crossref_citationtrail_10_1021_acs_accounts_1c00168 crossref_primary_10_1021_acs_accounts_1c00168 acs_journals_10_1021_acs_accounts_1c00168 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 3RI GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-15 |
PublicationDateYYYYMMDD | 2021-06-15 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref5/cit5b ref17/cit17 ref5/cit5c ref5/cit5a ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref13/cit13 ref5/cit5j ref5/cit5k ref5/cit5h ref24/cit24 ref38/cit38 ref5/cit5i ref5/cit5f ref5/cit5g ref5/cit5d ref5/cit5e ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref8/cit8a ref10/cit10a ref8/cit8c ref10/cit10b ref8/cit8b ref8/cit8e ref8/cit8d ref32/cit32 ref39/cit39 ref14/cit14 ref43/cit43 ref40/cit40 ref26/cit26 ref28/cit28a ref12/cit12 ref15/cit15 ref28/cit28d ref28/cit28b ref28/cit28c ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref5/cit5b doi: 10.1021/ar5004626 – ident: ref44/cit44 doi: 10.1139/v01-150 – ident: ref17/cit17 doi: 10.1021/ja3023972 – ident: ref12/cit12 doi: 10.1039/c3sc51993g – ident: ref15/cit15 doi: 10.1038/nature16957 – ident: ref24/cit24 doi: 10.1021/jacs.5b03989 – ident: ref8/cit8c doi: 10.1021/ja206002m – ident: ref9/cit9 doi: 10.1002/ajoc.201800276 – ident: ref14/cit14 doi: 10.1002/chem.201406528 – ident: ref43/cit43 doi: 10.1002/anie.201500066 – ident: ref27/cit27 doi: 10.1021/acs.orglett.5b01710 – ident: ref34/cit34 doi: 10.1002/anie.202004504 – ident: ref5/cit5f doi: 10.1039/C9CS00086K – ident: ref6/cit6 doi: 10.1021/ja054549f – ident: ref30/cit30 doi: 10.1021/acs.orglett.5b00968 – ident: ref45/cit45 doi: 10.1002/chem.201501370 – ident: ref5/cit5h doi: 10.1021/acs.chemrev.9b00495 – ident: ref33/cit33 doi: 10.1021/jacs.9b01124 – ident: ref8/cit8a doi: 10.1021/ol061389j – ident: ref5/cit5e doi: 10.1039/C7SC04768A – ident: ref37/cit37 doi: 10.1039/D1QO00302J – ident: ref22/cit22 doi: 10.1021/acscatal.6b03621 – ident: ref5/cit5j doi: 10.1039/D0SC05944G – ident: ref23/cit23 doi: 10.1039/C4CC03615H – ident: ref11/cit11 doi: 10.1021/ja00846a072 – ident: ref40/cit40 doi: 10.1002/chem.201902046 – ident: ref35/cit35 doi: 10.1002/anie.202008952 – ident: ref1/cit1 doi: 10.1002/anie.201306625 – ident: ref5/cit5d doi: 10.1021/acs.chemrev.6b00622 – ident: ref5/cit5a doi: 10.1039/c1cs15058h – ident: ref13/cit13 doi: 10.1002/anie.201311024 – ident: ref16/cit16 doi: 10.1021/jacs.7b09761 – ident: ref25/cit25 doi: 10.1021/ja061943k – ident: ref5/cit5i doi: 10.1016/j.trechm.2020.11.009 – ident: ref28/cit28a doi: 10.1039/c3ra46996d – ident: ref7/cit7 doi: 10.1021/ja309325e – ident: ref38/cit38 doi: 10.1002/cjoc.201900533 – ident: ref28/cit28b doi: 10.1021/acs.chemrev.6b00692 – ident: ref31/cit31 doi: 10.1002/anie.201804197 – ident: ref19/cit19 doi: 10.1016/j.tetlet.2016.08.086 – ident: ref42/cit42 doi: 10.1021/acscatal.9b04768 – ident: ref4/cit4 doi: 10.1002/anie.202008952 – ident: ref8/cit8d doi: 10.1002/anie.200905134 – ident: ref2/cit2 doi: 10.1002/anie.201804197 – ident: ref26/cit26 doi: 10.1021/om200515f – ident: ref5/cit5g doi: 10.1016/j.chempr.2018.12.017 – ident: ref29/cit29 doi: 10.1126/science.aaf4434 – ident: ref28/cit28d doi: 10.1002/anie.202008437 – ident: ref41/cit41 doi: 10.1021/ol403364k – ident: ref8/cit8e doi: 10.1071/CH10033 – ident: ref8/cit8b doi: 10.1021/ja910900p – ident: ref32/cit32 doi: 10.1021/acs.orglett.0c03775 – ident: ref20/cit20 doi: 10.1021/acs.orglett.0c03794 – ident: ref3/cit3 doi: 10.1021/jacs.9b01124 – ident: ref5/cit5c doi: 10.1021/acs.accounts.6b00022 – ident: ref10/cit10b doi: 10.1021/cr940337h – ident: ref39/cit39 doi: 10.1021/ol400498a – ident: ref18/cit18 doi: 10.1055/s-0035-1562508 – ident: ref36/cit36 doi: 10.1021/acs.orglett.1c00204 – ident: ref10/cit10a doi: 10.1039/CT9150701080 – ident: ref5/cit5k doi: 10.1039/D0SC04676K – ident: ref21/cit21 doi: 10.1055/s-0033-1338645 – ident: ref28/cit28c doi: 10.1126/science.aao4798 |
SSID | ssj0002467 |
Score | 2.6504226 |
Snippet | Conspectus Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in... Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C(sp3)-H... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2750 |
Title | 2‑(Pyridin-2-yl)isopropyl (PIP) Amine: An Enabling Directing Group for Divergent and Asymmetric Functionalization of Unactivated Methylene C(sp3)–H Bonds |
URI | http://dx.doi.org/10.1021/acs.accounts.1c00168 https://www.proquest.com/docview/2531213779 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFBdbd-guW9cP1nUdGuyQHNTakmVLu5nQkA26BdpAb0aWZAhNnFA7geyUf6Hs3H-uf0mf_NHRldHuZoQl6-P5_X5P0nsPoS-A6MJmKScizEIShFwT6RlBXCQRqzNPa-kcnE9_hINR8P2CX_wxFP8-waf-sdIFNF1lTnDXhBxHES_RK_hG5CQ67p3da14ahHWMTDCRAxHQ1lXuH604QNLFQ0B6qI8rkOm_RT9bV536bsnl0aJMj_Svx5Ebn9n_LfSm4Zs4rgXkHXph82202WvTvO2gG3q7vu4MV1djQDFCyWrSHRcz6MF8NcGd4bdhF8dToKJfcZzjE-dpBWCHG00JT9XmFQbqC2XLypWzxCo3OC5W06lL16VxH7Cz3nJsnD7xLMOj3LlULIHqGnxqQVwA_izudYo5696ufw-wS3hc7KJR_-S8NyBNzgaimPRLkjETWh4FghovBetacCnT0ETUM9bLtC8USxUoYO4rJU1mwIDTlkUezyLfgq3J9tBGPsvte4SZtJJy5inOw8D3jQJqaJmywFkUjYzYR12Y26T554qkOk6nfuIK2wlPmgnfR6xd5EQ3wc9dDo7JE7XIfa15Hfzjifc_t_KTwCq6oxeV29miSGAcLnZeFMkP_9HrA_Sauis0LlUS_4g2yquFPQQOVKafKsG_A30IBm8 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBZpekgvTZ8kfarQg31QuiutdqXeFhPjtHEwNC65LVpJC6H22kTrgHPKXyg998_ll3S0D5cUSshtESsxkkbzfXrMDEIfAdGFLXJORFzEJIq5JjIwgvhIIlYXgdbSOziPT-LRNPpyxs-2EO98YUAIBy25-hL_b3SB8JMvU00CBf9ayFMV8QA9BD5CvWKng28bA0yjuAmVCTvlSES085j7Tysel7S7jUu3zXKNNcNd9H0jZf3E5MfBqsoP9NU_ARzv3Y0n6HHLPnHaqMtTtGXLZ2hn0CV9e45-05vrn73J-uIcMI1Qsp71z90CBFmuZ7g3OZr0cToHYvoZpyU-9H5XAH24tZvwVR9lYSDCUHZZO3ZWWJUGp249n_vkXRoPAUmbA8jWBRQvCjwtvYPFJRBfg8cWlAfA0OJBzy1Z_-b61wj79MfuBZoOD08HI9JmcCCKybAiBTOx5UkkqAly2GsLLmUem4QGxgaFDoViuQJzzEOlpCkMbOe0ZUnAiyS0sPNkL9F2uSjtHsJMWkk5CxTncRSGRgFRtExZYDCKJkbsoz6MbdauQJfVl-s0zHxhN-BZO-D7iHVznek2FLrPyDG7oxbZ1Fo2oUDu-P9Dp0YZzKK_iFGlXaxcBv3wkfSSRL66h9Tv0c7odHycHR-dfH2NHlH_uMYnUeJv0HZ1sbJvgR1V-bt6LfwB5RYO0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtCm0v6TM06UuFHnYPSmzJsq3czDbLpm3CQrsQejGyJEPIrneJvYHtKX-h9Jw_l1_SGT-WplBCezPCEiNpNPONRjNDyHvQ6LHLM8niMA9ZEErDlGdjhplEnMk9YxQGOB8dh6NJ8PFEnvxW6guIKGGksnbi46le2LzNMODvYbtuiijgiyGEK_Fdcg89d8jcyeDLWgjzIGzSZYK1HMQB76Lm_jIK6iZT3tRNN0VzrW-Gj8i3NaX1M5Oz3WWV7ZrvfyRx_K-pPCabLQqlScM2T8gdVzwlDwZd8bdn5IpfX_7ojVfnp6DbGGeraf-0nAMxi9WU9saH4z5NZgBQ92lS0AOMvwIVSFv5CV_1lRYFQAxtF3WAZ0V1YWlSrmYzLOJl6BA0anMR2YaC0nlOJwUGWlwAALb0yAETgVJ0dNArF6J_fflzRLEMcvmcTIYHXwcj1lZyYFoov2K5sKGTURBz62Vgc8dSqSy0Efes83Ljx1pkGsSy9LVWNrdg1hknIk_mke_AAhVbZKOYF-4FoUI5xaXwtJRh4PtWA2B0QjtAMppHNt4mfVjbtD2JZVo72bmfYmO34Gm74NtEdPudmjYlOlbmmN7Si617LZqUILf8_65jpRR2ER0yunDzZZnCPDCjXhSpnX-g-i25P_4wTD8fHn96SR5yfGODtZTkK7JRnS_dawBJVfamPg6_AH0FEVM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2%E2%80%91%28Pyridin-2-yl%29isopropyl+%28PIP%29+Amine%3A+An+Enabling+Directing+Group+for+Divergent+and+Asymmetric+Functionalization+of+Unactivated+Methylene+C%28sp3%29%E2%80%93H+Bonds&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhang%2C+Qi&rft.au=Shi%2C+Bing-Feng&rft.date=2021-06-15&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=54&rft.issue=12&rft.spage=2750&rft.epage=2763&rft_id=info:doi/10.1021%2Facs.accounts.1c00168&rft.externalDocID=b292282193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |