2‑(Pyridin-2-yl)isopropyl (PIP) Amine: An Enabling Directing Group for Divergent and Asymmetric Functionalization of Unactivated Methylene C(sp3)–H Bonds

Conspectus Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C­(sp3)–H activation. However, the activation of unbiased methylene C­(sp3)–H bonds remains challenging due to the high heterolytic bond dissociatio...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 54; no. 12; pp. 2750 - 2763
Main Authors Zhang, Qi, Shi, Bing-Feng
Format Journal Article
LanguageEnglish
Published American Chemical Society 15.06.2021
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C­(sp3)–H activation. However, the activation of unbiased methylene C­(sp3)–H bonds remains challenging due to the high heterolytic bond dissociation energy and substantial steric hindrance. Two main strategies have been developed thus far, that is, use of a strongly coordinating bidentate DG pioneered by Daugulis and use of a weakly coordinating monodentate DG accelerated by pyridine-type ligands, as disclosed by Yu. The seminal work by Daugulis sparked significant interest in the application of the monoanionic bidentate auxiliary in aliphatic C–H activation reactions. Our research has focused on enabling the divergent functionalization and enantiotopic differentiation of unactivated methylene C–H bonds. Inspired by the structure of bidentate 8-aminoquinoline and the accelerating effect of the gem-dimethyl moiety in cyclometalations, we developed a strongly coordinating bidentate 2-(pyridine-yl)­isopropyl (PIP) amine DG consisting of a pyridyl group, a gem-dimethyl moiety, and an amino group, which enabled the divergent functionalization of unactivated β-methylene C­(sp3)–H bonds to forge C–O, C–N, C–C, and C–F bonds with palladium catalysts. The exclusive β-selectivity was ascribed to the preferential formation of kinetically favored [5,5]-bicyclic palladacycle intermediates. DFT calculations revealed that the well-designed gem-dimethyl group was responsible for the lowered energy and compressed bite angle of the key transition state related to C–H cleavage. More recently, the combination of PIP amine with axially chiral ligands was found to promote asymmetric functionalization of unbiased methylene C­(sp3)–H bonds, a challenging research topic in the area of C–H activation that remains to be addressed. Two different types of axially chiral ligands, namely, non-C 2-symmetric chiral phosphoric acids (CPAs) and 3,3′-disubstituted BINOLs, have been developed. The former enabled Pd­(II)-catalyzed inter- and intramolecular arylation of unbiased methylene C­(sp3)–H bonds with high enantioselectivity, whereas the latter promoted a series of asymmetric functionalization reactions, such as alkynylation, arylation, alkenylation/aza-Wacker cyclization, and intramolecular amidation. The unexpectedly high stereocontrol compared with other bidentate DGs might be attributable to steric communication between the ligand and gem-dimethyl moiety of PIP amine. Thus far, the combination of PIP amine DG with 3,3′-disubstituted BINOL ligands is arguably the most general strategy for asymmetric functionalization of unbiased methylene C­(sp3)–H bonds. Finally, the ease of installation and removal of PIP under mild conditions and synthetic applications are described.
AbstractList Conspectus Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C­(sp3)–H activation. However, the activation of unbiased methylene C­(sp3)–H bonds remains challenging due to the high heterolytic bond dissociation energy and substantial steric hindrance. Two main strategies have been developed thus far, that is, use of a strongly coordinating bidentate DG pioneered by Daugulis and use of a weakly coordinating monodentate DG accelerated by pyridine-type ligands, as disclosed by Yu. The seminal work by Daugulis sparked significant interest in the application of the monoanionic bidentate auxiliary in aliphatic C–H activation reactions. Our research has focused on enabling the divergent functionalization and enantiotopic differentiation of unactivated methylene C–H bonds. Inspired by the structure of bidentate 8-aminoquinoline and the accelerating effect of the gem-dimethyl moiety in cyclometalations, we developed a strongly coordinating bidentate 2-(pyridine-yl)­isopropyl (PIP) amine DG consisting of a pyridyl group, a gem-dimethyl moiety, and an amino group, which enabled the divergent functionalization of unactivated β-methylene C­(sp3)–H bonds to forge C–O, C–N, C–C, and C–F bonds with palladium catalysts. The exclusive β-selectivity was ascribed to the preferential formation of kinetically favored [5,5]-bicyclic palladacycle intermediates. DFT calculations revealed that the well-designed gem-dimethyl group was responsible for the lowered energy and compressed bite angle of the key transition state related to C–H cleavage. More recently, the combination of PIP amine with axially chiral ligands was found to promote asymmetric functionalization of unbiased methylene C­(sp3)–H bonds, a challenging research topic in the area of C–H activation that remains to be addressed. Two different types of axially chiral ligands, namely, non-C 2-symmetric chiral phosphoric acids (CPAs) and 3,3′-disubstituted BINOLs, have been developed. The former enabled Pd­(II)-catalyzed inter- and intramolecular arylation of unbiased methylene C­(sp3)–H bonds with high enantioselectivity, whereas the latter promoted a series of asymmetric functionalization reactions, such as alkynylation, arylation, alkenylation/aza-Wacker cyclization, and intramolecular amidation. The unexpectedly high stereocontrol compared with other bidentate DGs might be attributable to steric communication between the ligand and gem-dimethyl moiety of PIP amine. Thus far, the combination of PIP amine DG with 3,3′-disubstituted BINOL ligands is arguably the most general strategy for asymmetric functionalization of unbiased methylene C­(sp3)–H bonds. Finally, the ease of installation and removal of PIP under mild conditions and synthetic applications are described.
Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C(sp3)-H activation. However, the activation of unbiased methylene C(sp3)-H bonds remains challenging due to the high heterolytic bond dissociation energy and substantial steric hindrance. Two main strategies have been developed thus far, that is, use of a strongly coordinating bidentate DG pioneered by Daugulis and use of a weakly coordinating monodentate DG accelerated by pyridine-type ligands, as disclosed by Yu. The seminal work by Daugulis sparked significant interest in the application of the monoanionic bidentate auxiliary in aliphatic C-H activation reactions. Our research has focused on enabling the divergent functionalization and enantiotopic differentiation of unactivated methylene C-H bonds. Inspired by the structure of bidentate 8-aminoquinoline and the accelerating effect of the gem-dimethyl moiety in cyclometalations, we developed a strongly coordinating bidentate 2-(pyridine-yl)isopropyl (PIP) amine DG consisting of a pyridyl group, a gem-dimethyl moiety, and an amino group, which enabled the divergent functionalization of unactivated β-methylene C(sp3)-H bonds to forge C-O, C-N, C-C, and C-F bonds with palladium catalysts. The exclusive β-selectivity was ascribed to the preferential formation of kinetically favored [5,5]-bicyclic palladacycle intermediates. DFT calculations revealed that the well-designed gem-dimethyl group was responsible for the lowered energy and compressed bite angle of the key transition state related to C-H cleavage.More recently, the combination of PIP amine with axially chiral ligands was found to promote asymmetric functionalization of unbiased methylene C(sp3)-H bonds, a challenging research topic in the area of C-H activation that remains to be addressed. Two different types of axially chiral ligands, namely, non-C2-symmetric chiral phosphoric acids (CPAs) and 3,3'-disubstituted BINOLs, have been developed. The former enabled Pd(II)-catalyzed inter- and intramolecular arylation of unbiased methylene C(sp3)-H bonds with high enantioselectivity, whereas the latter promoted a series of asymmetric functionalization reactions, such as alkynylation, arylation, alkenylation/aza-Wacker cyclization, and intramolecular amidation. The unexpectedly high stereocontrol compared with other bidentate DGs might be attributable to steric communication between the ligand and gem-dimethyl moiety of PIP amine. Thus far, the combination of PIP amine DG with 3,3'-disubstituted BINOL ligands is arguably the most general strategy for asymmetric functionalization of unbiased methylene C(sp3)-H bonds. Finally, the ease of installation and removal of PIP under mild conditions and synthetic applications are described.Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C(sp3)-H activation. However, the activation of unbiased methylene C(sp3)-H bonds remains challenging due to the high heterolytic bond dissociation energy and substantial steric hindrance. Two main strategies have been developed thus far, that is, use of a strongly coordinating bidentate DG pioneered by Daugulis and use of a weakly coordinating monodentate DG accelerated by pyridine-type ligands, as disclosed by Yu. The seminal work by Daugulis sparked significant interest in the application of the monoanionic bidentate auxiliary in aliphatic C-H activation reactions. Our research has focused on enabling the divergent functionalization and enantiotopic differentiation of unactivated methylene C-H bonds. Inspired by the structure of bidentate 8-aminoquinoline and the accelerating effect of the gem-dimethyl moiety in cyclometalations, we developed a strongly coordinating bidentate 2-(pyridine-yl)isopropyl (PIP) amine DG consisting of a pyridyl group, a gem-dimethyl moiety, and an amino group, which enabled the divergent functionalization of unactivated β-methylene C(sp3)-H bonds to forge C-O, C-N, C-C, and C-F bonds with palladium catalysts. The exclusive β-selectivity was ascribed to the preferential formation of kinetically favored [5,5]-bicyclic palladacycle intermediates. DFT calculations revealed that the well-designed gem-dimethyl group was responsible for the lowered energy and compressed bite angle of the key transition state related to C-H cleavage.More recently, the combination of PIP amine with axially chiral ligands was found to promote asymmetric functionalization of unbiased methylene C(sp3)-H bonds, a challenging research topic in the area of C-H activation that remains to be addressed. Two different types of axially chiral ligands, namely, non-C2-symmetric chiral phosphoric acids (CPAs) and 3,3'-disubstituted BINOLs, have been developed. The former enabled Pd(II)-catalyzed inter- and intramolecular arylation of unbiased methylene C(sp3)-H bonds with high enantioselectivity, whereas the latter promoted a series of asymmetric functionalization reactions, such as alkynylation, arylation, alkenylation/aza-Wacker cyclization, and intramolecular amidation. The unexpectedly high stereocontrol compared with other bidentate DGs might be attributable to steric communication between the ligand and gem-dimethyl moiety of PIP amine. Thus far, the combination of PIP amine DG with 3,3'-disubstituted BINOL ligands is arguably the most general strategy for asymmetric functionalization of unbiased methylene C(sp3)-H bonds. Finally, the ease of installation and removal of PIP under mild conditions and synthetic applications are described.
Author Shi, Bing-Feng
Zhang, Qi
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 2
  givenname: Bing-Feng
  orcidid: 0000-0003-0375-955X
  surname: Shi
  fullname: Shi, Bing-Feng
  email: bfshi@zju.edu.cn
BookMark eNqFkb1OHDEUha2ISFlI3iCFy91iFtvzT7csvxIoW4R65LXvgJHHHmwP0lDxClFqXo4niScLTQrixsfH57N0ffbRnrEGEPpOyZISRg-58EsuhB1M8EsqCKFF9QnNaM5IklV1tYdmJJpRZ-wL2vf-Ph5ZVpQz9MJen3_NN6NTUpmEJaNeKG97Z_tR4_nmcrPAq04ZOMIrg08N32plbvGJciDCpM6dHXrcWhe9R3C3YALmRuKVH7sOglMCnw0mZq3hWj3xSWDb4hvDo_nIA0h8DeFu1GAAr-e-Txevz78v8LE10n9Fn1uuPXx72w_Qzdnpz_VFcvXj_HK9ukp4WtOQtKksIC-zikmyreLK63pbyJIRCaQVtOLplpcFyynntWwlK6iAtCR5W1LISJ0eoPnu3Tj4wwA-NJ3yArTmBuzgG5anlNG0LKfo0S4qnPXeQdsIFf6OFRxXuqGkmTppYifNeyfNWycRzv6Be6c67sb_YWSHTbf3dnDxL_3HyB-_NKqW
CitedBy_id crossref_primary_10_1039_D1CC05649B
crossref_primary_10_1039_D4OB01693A
crossref_primary_10_1021_acs_joc_4c00120
crossref_primary_10_1055_a_2167_8298
crossref_primary_10_1021_acscatal_3c03112
crossref_primary_10_6023_cjoc202204058
crossref_primary_10_1002_anie_202214153
crossref_primary_10_1016_j_tetlet_2024_154951
crossref_primary_10_1002_chem_202302759
crossref_primary_10_1002_vjch_202200119
crossref_primary_10_1002_anie_202310112
crossref_primary_10_1021_acscatal_2c02691
crossref_primary_10_1002_adsc_202300426
crossref_primary_10_1021_acs_joc_3c01911
crossref_primary_10_1039_D1OB01683K
crossref_primary_10_6023_cjoc202406002
crossref_primary_10_1002_ange_202218533
crossref_primary_10_3762_bjoc_17_165
crossref_primary_10_1021_acs_orglett_4c00710
crossref_primary_10_1002_anie_202302964
crossref_primary_10_1021_jacs_2c06578
crossref_primary_10_1002_adsc_202400381
crossref_primary_10_1016_j_cclet_2024_110310
crossref_primary_10_1021_acs_orglett_4c02692
crossref_primary_10_1002_anie_202115221
crossref_primary_10_1039_D3CC03592A
crossref_primary_10_1021_acscatal_2c03531
crossref_primary_10_1021_acscatal_3c01980
crossref_primary_10_1002_anie_202318803
crossref_primary_10_1021_jacs_1c06236
crossref_primary_10_1002_asia_202400064
crossref_primary_10_1021_jacs_4c04623
crossref_primary_10_1016_j_jcat_2024_115351
crossref_primary_10_1002_ange_202319871
crossref_primary_10_6023_cjoc202406012
crossref_primary_10_1021_acs_joc_4c02318
crossref_primary_10_1002_ange_202304706
crossref_primary_10_1002_anie_202209099
crossref_primary_10_1021_acs_joc_3c02730
crossref_primary_10_1021_acs_orglett_4c01656
crossref_primary_10_1039_D1QO01636A
crossref_primary_10_1021_acscatal_4c07549
crossref_primary_10_1021_acs_orglett_3c03688
crossref_primary_10_1002_ejoc_202400749
crossref_primary_10_1021_acs_joc_4c02680
crossref_primary_10_1039_D2QO00848C
crossref_primary_10_1021_acscentsci_4c00660
crossref_primary_10_3390_catal13020438
crossref_primary_10_1016_j_tet_2021_132513
crossref_primary_10_1021_acs_orglett_2c03823
crossref_primary_10_1039_D3OB00916E
crossref_primary_10_1039_D3QO01943H
crossref_primary_10_1021_acs_orglett_3c04123
crossref_primary_10_1002_anie_202319871
crossref_primary_10_1002_ange_202209099
crossref_primary_10_1002_ange_202214153
crossref_primary_10_1021_acs_accounts_3c00493
crossref_primary_10_1039_D1QO01827B
crossref_primary_10_1039_D4CC01651C
crossref_primary_10_1039_D1QO01344K
crossref_primary_10_1021_jacs_2c03565
crossref_primary_10_1021_acs_orglett_4c02392
crossref_primary_10_1021_acs_orglett_1c03967
crossref_primary_10_1039_D3CC05052A
crossref_primary_10_1021_acs_orglett_2c00285
crossref_primary_10_1021_acs_joc_4c02735
crossref_primary_10_1002_cjoc_202200020
crossref_primary_10_1016_j_trechm_2021_12_005
crossref_primary_10_1021_acscentsci_2c01389
crossref_primary_10_1039_D3CS00762F
crossref_primary_10_1039_D3QO00751K
crossref_primary_10_1039_D3CC04425D
crossref_primary_10_1021_acs_joc_3c02994
crossref_primary_10_1002_ange_202108853
crossref_primary_10_1021_acscatal_3c04661
crossref_primary_10_1021_acs_orglett_1c02918
crossref_primary_10_1021_acs_joc_2c00226
crossref_primary_10_1039_D2OB00688J
crossref_primary_10_1039_D1QO01884A
crossref_primary_10_1055_a_1802_6793
crossref_primary_10_1002_ange_202115221
crossref_primary_10_1002_ejoc_202400607
crossref_primary_10_1021_acs_joc_4c03031
crossref_primary_10_3390_catal13010016
crossref_primary_10_1002_slct_202300153
crossref_primary_10_1016_j_checat_2022_03_027
crossref_primary_10_1039_D4QO00493K
crossref_primary_10_1016_j_cclet_2024_109647
crossref_primary_10_1021_acs_orglett_4c01322
crossref_primary_10_1002_anie_202304706
crossref_primary_10_1002_anie_202108853
crossref_primary_10_1021_acs_joc_2c01625
crossref_primary_10_1021_acs_joc_4c00329
crossref_primary_10_1002_adsc_202401398
crossref_primary_10_1002_anie_202213659
crossref_primary_10_6023_cjoc202105053
crossref_primary_10_1039_D1GC02570H
crossref_primary_10_1002_chem_202301595
crossref_primary_10_1021_acsomega_2c03073
crossref_primary_10_1021_jacs_3c10714
crossref_primary_10_1055_a_2412_9407
crossref_primary_10_1021_jacs_4c18255
crossref_primary_10_1021_acs_joc_4c00059
crossref_primary_10_1002_anie_202208912
crossref_primary_10_1002_cjoc_202300529
crossref_primary_10_1021_acs_joc_4c00850
crossref_primary_10_1021_acs_orglett_4c01214
crossref_primary_10_1021_acs_joc_3c02139
crossref_primary_10_1002_ange_202302964
crossref_primary_10_1002_ejoc_202400272
crossref_primary_10_1002_asia_202300815
crossref_primary_10_1021_acs_orglett_3c01865
crossref_primary_10_1039_D2QO01876D
crossref_primary_10_1021_acs_joc_5c00007
crossref_primary_10_6023_cjoc202404038
crossref_primary_10_1016_j_tet_2021_132279
crossref_primary_10_1002_ange_202318803
crossref_primary_10_1055_a_1662_7096
crossref_primary_10_1016_j_chempr_2021_11_015
crossref_primary_10_1021_acscatal_2c02193
crossref_primary_10_1002_ange_202208912
crossref_primary_10_1021_acs_joc_4c00102
crossref_primary_10_1021_acs_joc_3c02823
crossref_primary_10_1021_acs_orglett_4c04535
crossref_primary_10_1055_a_2005_5006
crossref_primary_10_1021_acs_joc_4c01956
crossref_primary_10_1038_s41467_022_29554_4
crossref_primary_10_1039_D1SC05296A
crossref_primary_10_1021_acscatal_4c01212
crossref_primary_10_1039_D1CC06097J
crossref_primary_10_1021_acs_orglett_4c01540
crossref_primary_10_1002_ange_202310112
crossref_primary_10_1002_ajoc_202200589
crossref_primary_10_1021_acs_orglett_2c02824
crossref_primary_10_1039_D4RE00140K
crossref_primary_10_1021_acscatal_2c00962
crossref_primary_10_6023_cjoc202211039
crossref_primary_10_1021_acs_joc_4c00116
crossref_primary_10_1021_acs_orglett_1c04215
crossref_primary_10_6023_cjoc202406033
crossref_primary_10_1039_D2NJ00175F
crossref_primary_10_1002_ange_202213659
crossref_primary_10_6023_cjoc202100059
crossref_primary_10_1039_D2CC02896D
crossref_primary_10_1002_anie_202218533
crossref_primary_10_6023_A23070336
crossref_primary_10_1021_jacs_3c00095
crossref_primary_10_1021_acscatal_3c05955
Cites_doi 10.1021/ar5004626
10.1139/v01-150
10.1021/ja3023972
10.1039/c3sc51993g
10.1038/nature16957
10.1021/jacs.5b03989
10.1021/ja206002m
10.1002/ajoc.201800276
10.1002/chem.201406528
10.1002/anie.201500066
10.1021/acs.orglett.5b01710
10.1002/anie.202004504
10.1039/C9CS00086K
10.1021/ja054549f
10.1021/acs.orglett.5b00968
10.1002/chem.201501370
10.1021/acs.chemrev.9b00495
10.1021/jacs.9b01124
10.1021/ol061389j
10.1039/C7SC04768A
10.1039/D1QO00302J
10.1021/acscatal.6b03621
10.1039/D0SC05944G
10.1039/C4CC03615H
10.1021/ja00846a072
10.1002/chem.201902046
10.1002/anie.202008952
10.1002/anie.201306625
10.1021/acs.chemrev.6b00622
10.1039/c1cs15058h
10.1002/anie.201311024
10.1021/jacs.7b09761
10.1021/ja061943k
10.1016/j.trechm.2020.11.009
10.1039/c3ra46996d
10.1021/ja309325e
10.1002/cjoc.201900533
10.1021/acs.chemrev.6b00692
10.1002/anie.201804197
10.1016/j.tetlet.2016.08.086
10.1021/acscatal.9b04768
10.1002/anie.200905134
10.1021/om200515f
10.1016/j.chempr.2018.12.017
10.1126/science.aaf4434
10.1002/anie.202008437
10.1021/ol403364k
10.1071/CH10033
10.1021/ja910900p
10.1021/acs.orglett.0c03775
10.1021/acs.orglett.0c03794
10.1021/acs.accounts.6b00022
10.1021/cr940337h
10.1021/ol400498a
10.1055/s-0035-1562508
10.1021/acs.orglett.1c00204
10.1039/CT9150701080
10.1039/D0SC04676K
10.1055/s-0033-1338645
10.1126/science.aao4798
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.accounts.1c00168
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 2763
ExternalDocumentID 10_1021_acs_accounts_1c00168
b292282193
GroupedDBID -
.K2
02
23M
3RI
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GGK
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
53G
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
CITATION
CUPRZ
XSW
ZCA
~02
7X8
ID FETCH-LOGICAL-a391t-f3d6e57482d0b8888599b6d720de0fc18a3ba76251aa9dfd261ce3705f71e4093
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 02:24:16 EDT 2025
Thu Apr 24 22:59:01 EDT 2025
Tue Jul 01 03:16:07 EDT 2025
Thu Jun 17 03:24:55 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a391t-f3d6e57482d0b8888599b6d720de0fc18a3ba76251aa9dfd261ce3705f71e4093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0375-955X
PQID 2531213779
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2531213779
crossref_citationtrail_10_1021_acs_accounts_1c00168
crossref_primary_10_1021_acs_accounts_1c00168
acs_journals_10_1021_acs_accounts_1c00168
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
3RI
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref5/cit5b
ref17/cit17
ref5/cit5c
ref5/cit5a
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref13/cit13
ref5/cit5j
ref5/cit5k
ref5/cit5h
ref24/cit24
ref38/cit38
ref5/cit5i
ref5/cit5f
ref5/cit5g
ref5/cit5d
ref5/cit5e
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref8/cit8a
ref10/cit10a
ref8/cit8c
ref10/cit10b
ref8/cit8b
ref8/cit8e
ref8/cit8d
ref32/cit32
ref39/cit39
ref14/cit14
ref43/cit43
ref40/cit40
ref26/cit26
ref28/cit28a
ref12/cit12
ref15/cit15
ref28/cit28d
ref28/cit28b
ref28/cit28c
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref5/cit5b
  doi: 10.1021/ar5004626
– ident: ref44/cit44
  doi: 10.1139/v01-150
– ident: ref17/cit17
  doi: 10.1021/ja3023972
– ident: ref12/cit12
  doi: 10.1039/c3sc51993g
– ident: ref15/cit15
  doi: 10.1038/nature16957
– ident: ref24/cit24
  doi: 10.1021/jacs.5b03989
– ident: ref8/cit8c
  doi: 10.1021/ja206002m
– ident: ref9/cit9
  doi: 10.1002/ajoc.201800276
– ident: ref14/cit14
  doi: 10.1002/chem.201406528
– ident: ref43/cit43
  doi: 10.1002/anie.201500066
– ident: ref27/cit27
  doi: 10.1021/acs.orglett.5b01710
– ident: ref34/cit34
  doi: 10.1002/anie.202004504
– ident: ref5/cit5f
  doi: 10.1039/C9CS00086K
– ident: ref6/cit6
  doi: 10.1021/ja054549f
– ident: ref30/cit30
  doi: 10.1021/acs.orglett.5b00968
– ident: ref45/cit45
  doi: 10.1002/chem.201501370
– ident: ref5/cit5h
  doi: 10.1021/acs.chemrev.9b00495
– ident: ref33/cit33
  doi: 10.1021/jacs.9b01124
– ident: ref8/cit8a
  doi: 10.1021/ol061389j
– ident: ref5/cit5e
  doi: 10.1039/C7SC04768A
– ident: ref37/cit37
  doi: 10.1039/D1QO00302J
– ident: ref22/cit22
  doi: 10.1021/acscatal.6b03621
– ident: ref5/cit5j
  doi: 10.1039/D0SC05944G
– ident: ref23/cit23
  doi: 10.1039/C4CC03615H
– ident: ref11/cit11
  doi: 10.1021/ja00846a072
– ident: ref40/cit40
  doi: 10.1002/chem.201902046
– ident: ref35/cit35
  doi: 10.1002/anie.202008952
– ident: ref1/cit1
  doi: 10.1002/anie.201306625
– ident: ref5/cit5d
  doi: 10.1021/acs.chemrev.6b00622
– ident: ref5/cit5a
  doi: 10.1039/c1cs15058h
– ident: ref13/cit13
  doi: 10.1002/anie.201311024
– ident: ref16/cit16
  doi: 10.1021/jacs.7b09761
– ident: ref25/cit25
  doi: 10.1021/ja061943k
– ident: ref5/cit5i
  doi: 10.1016/j.trechm.2020.11.009
– ident: ref28/cit28a
  doi: 10.1039/c3ra46996d
– ident: ref7/cit7
  doi: 10.1021/ja309325e
– ident: ref38/cit38
  doi: 10.1002/cjoc.201900533
– ident: ref28/cit28b
  doi: 10.1021/acs.chemrev.6b00692
– ident: ref31/cit31
  doi: 10.1002/anie.201804197
– ident: ref19/cit19
  doi: 10.1016/j.tetlet.2016.08.086
– ident: ref42/cit42
  doi: 10.1021/acscatal.9b04768
– ident: ref4/cit4
  doi: 10.1002/anie.202008952
– ident: ref8/cit8d
  doi: 10.1002/anie.200905134
– ident: ref2/cit2
  doi: 10.1002/anie.201804197
– ident: ref26/cit26
  doi: 10.1021/om200515f
– ident: ref5/cit5g
  doi: 10.1016/j.chempr.2018.12.017
– ident: ref29/cit29
  doi: 10.1126/science.aaf4434
– ident: ref28/cit28d
  doi: 10.1002/anie.202008437
– ident: ref41/cit41
  doi: 10.1021/ol403364k
– ident: ref8/cit8e
  doi: 10.1071/CH10033
– ident: ref8/cit8b
  doi: 10.1021/ja910900p
– ident: ref32/cit32
  doi: 10.1021/acs.orglett.0c03775
– ident: ref20/cit20
  doi: 10.1021/acs.orglett.0c03794
– ident: ref3/cit3
  doi: 10.1021/jacs.9b01124
– ident: ref5/cit5c
  doi: 10.1021/acs.accounts.6b00022
– ident: ref10/cit10b
  doi: 10.1021/cr940337h
– ident: ref39/cit39
  doi: 10.1021/ol400498a
– ident: ref18/cit18
  doi: 10.1055/s-0035-1562508
– ident: ref36/cit36
  doi: 10.1021/acs.orglett.1c00204
– ident: ref10/cit10a
  doi: 10.1039/CT9150701080
– ident: ref5/cit5k
  doi: 10.1039/D0SC04676K
– ident: ref21/cit21
  doi: 10.1055/s-0033-1338645
– ident: ref28/cit28c
  doi: 10.1126/science.aao4798
SSID ssj0002467
Score 2.6504226
Snippet Conspectus Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in...
Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C(sp3)-H...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2750
Title 2‑(Pyridin-2-yl)isopropyl (PIP) Amine: An Enabling Directing Group for Divergent and Asymmetric Functionalization of Unactivated Methylene C(sp3)–H Bonds
URI http://dx.doi.org/10.1021/acs.accounts.1c00168
https://www.proquest.com/docview/2531213779
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFBdbd-guW9cP1nUdGuyQHNTakmVLu5nQkA26BdpAb0aWZAhNnFA7geyUf6Hs3H-uf0mf_NHRldHuZoQl6-P5_X5P0nsPoS-A6MJmKScizEIShFwT6RlBXCQRqzNPa-kcnE9_hINR8P2CX_wxFP8-waf-sdIFNF1lTnDXhBxHES_RK_hG5CQ67p3da14ahHWMTDCRAxHQ1lXuH604QNLFQ0B6qI8rkOm_RT9bV536bsnl0aJMj_Svx5Ebn9n_LfSm4Zs4rgXkHXph82202WvTvO2gG3q7vu4MV1djQDFCyWrSHRcz6MF8NcGd4bdhF8dToKJfcZzjE-dpBWCHG00JT9XmFQbqC2XLypWzxCo3OC5W06lL16VxH7Cz3nJsnD7xLMOj3LlULIHqGnxqQVwA_izudYo5696ufw-wS3hc7KJR_-S8NyBNzgaimPRLkjETWh4FghovBetacCnT0ETUM9bLtC8USxUoYO4rJU1mwIDTlkUezyLfgq3J9tBGPsvte4SZtJJy5inOw8D3jQJqaJmywFkUjYzYR12Y26T554qkOk6nfuIK2wlPmgnfR6xd5EQ3wc9dDo7JE7XIfa15Hfzjifc_t_KTwCq6oxeV29miSGAcLnZeFMkP_9HrA_Sauis0LlUS_4g2yquFPQQOVKafKsG_A30IBm8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBZpekgvTZ8kfarQg31QuiutdqXeFhPjtHEwNC65LVpJC6H22kTrgHPKXyg998_ll3S0D5cUSshtESsxkkbzfXrMDEIfAdGFLXJORFzEJIq5JjIwgvhIIlYXgdbSOziPT-LRNPpyxs-2EO98YUAIBy25-hL_b3SB8JMvU00CBf9ayFMV8QA9BD5CvWKng28bA0yjuAmVCTvlSES085j7Tysel7S7jUu3zXKNNcNd9H0jZf3E5MfBqsoP9NU_ARzv3Y0n6HHLPnHaqMtTtGXLZ2hn0CV9e45-05vrn73J-uIcMI1Qsp71z90CBFmuZ7g3OZr0cToHYvoZpyU-9H5XAH24tZvwVR9lYSDCUHZZO3ZWWJUGp249n_vkXRoPAUmbA8jWBRQvCjwtvYPFJRBfg8cWlAfA0OJBzy1Z_-b61wj79MfuBZoOD08HI9JmcCCKybAiBTOx5UkkqAly2GsLLmUem4QGxgaFDoViuQJzzEOlpCkMbOe0ZUnAiyS0sPNkL9F2uSjtHsJMWkk5CxTncRSGRgFRtExZYDCKJkbsoz6MbdauQJfVl-s0zHxhN-BZO-D7iHVznek2FLrPyDG7oxbZ1Fo2oUDu-P9Dp0YZzKK_iFGlXaxcBv3wkfSSRL66h9Tv0c7odHycHR-dfH2NHlH_uMYnUeJv0HZ1sbJvgR1V-bt6LfwB5RYO0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtCm0v6TM06UuFHnYPSmzJsq3czDbLpm3CQrsQejGyJEPIrneJvYHtKX-h9Jw_l1_SGT-WplBCezPCEiNpNPONRjNDyHvQ6LHLM8niMA9ZEErDlGdjhplEnMk9YxQGOB8dh6NJ8PFEnvxW6guIKGGksnbi46le2LzNMODvYbtuiijgiyGEK_Fdcg89d8jcyeDLWgjzIGzSZYK1HMQB76Lm_jIK6iZT3tRNN0VzrW-Gj8i3NaX1M5Oz3WWV7ZrvfyRx_K-pPCabLQqlScM2T8gdVzwlDwZd8bdn5IpfX_7ojVfnp6DbGGeraf-0nAMxi9WU9saH4z5NZgBQ92lS0AOMvwIVSFv5CV_1lRYFQAxtF3WAZ0V1YWlSrmYzLOJl6BA0anMR2YaC0nlOJwUGWlwAALb0yAETgVJ0dNArF6J_fflzRLEMcvmcTIYHXwcj1lZyYFoov2K5sKGTURBz62Vgc8dSqSy0Efes83Ljx1pkGsSy9LVWNrdg1hknIk_mke_AAhVbZKOYF-4FoUI5xaXwtJRh4PtWA2B0QjtAMppHNt4mfVjbtD2JZVo72bmfYmO34Gm74NtEdPudmjYlOlbmmN7Si617LZqUILf8_65jpRR2ER0yunDzZZnCPDCjXhSpnX-g-i25P_4wTD8fHn96SR5yfGODtZTkK7JRnS_dawBJVfamPg6_AH0FEVM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2%E2%80%91%28Pyridin-2-yl%29isopropyl+%28PIP%29+Amine%3A+An+Enabling+Directing+Group+for+Divergent+and+Asymmetric+Functionalization+of+Unactivated+Methylene+C%28sp3%29%E2%80%93H+Bonds&rft.jtitle=Accounts+of+chemical+research&rft.au=Zhang%2C+Qi&rft.au=Shi%2C+Bing-Feng&rft.date=2021-06-15&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=54&rft.issue=12&rft.spage=2750&rft.epage=2763&rft_id=info:doi/10.1021%2Facs.accounts.1c00168&rft.externalDocID=b292282193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon