Achieving Efficient n‑Doping of Conjugated Polymers by Molecular Dopants
Conspectus Molecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Ther...
Saved in:
Published in | Accounts of chemical research Vol. 54; no. 13; pp. 2871 - 2883 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
06.07.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Molecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Therefore, the complex noncovalent interactions between two components often cause the molecular dopant to destroy the orderly stacking of the host organic materials and reduce the original properties of the material, such as carrier mobility, which here we call the “doping dilemma.” Recently, many studies focus on improving p-doping efficiency and electrical conductivity of doped conjugated polymers; however, the development of n-type molecular doping currently lags far behind that of its p-counterpart. It is well-known that both efficient p- and n-type molecular doping are indispensable in various organic electronic devices, including light-emitting diodes, photovoltaics, field-effect transistors, and thermoelectrics. It is thus an urgent requirement to achieve efficient n-doping in conjugated polymers. In this Account, we give a brief overview of our efforts to improve the n-doping efficiency in conjugated polymers with several strategies from the aspects of the polymer/dopant molecular design and the exploration of the n-type molecular doping mechanism and charge transport mechanism in n-doped organic materials. For the conjugated polymer engineering, we first demonstrate that increasing the electron affinity of the host polymer through halogen substitution can boost the n-doping efficiency. Still, the rigid coplanar backbones of conjugated polymers play a crucial role in the polaron delocalization and final electrical performance. In addition, we emphasize the importance of morphology control in the doped polymers to address the “doping dilemma.” For n-dopants designing, we summarize some basic guidelines from molecular sizes and shapes, the interaction between dopants (or dopant cations) and polymers, and the effects of dopants on morphology to design high-efficacy n-type molecular dopants. We propose that the polymers and the dopants need to be treated as a whole system; while enhancing the ionization efficiency, more attention should be paid to the carrierization (free-carrier generation) efficiency of these binary systems. In the end, we adopt the n-type polymer thermoelectric material as an example to discuss the grand challenges encountered in practical applications of n-doped conjugated polymers. The air stability and micrometer-thick thermo-leg processing of n-doped polymers are highlighted for thermoelectric applications. It is our hope that this Account showcases a blueprint for rational approaches and a deep understanding toward the design and development of efficient n-doping in conjugated polymers, bringing n-doped organic materials into the next era. |
---|---|
AbstractList | Conspectus Molecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Therefore, the complex noncovalent interactions between two components often cause the molecular dopant to destroy the orderly stacking of the host organic materials and reduce the original properties of the material, such as carrier mobility, which here we call the “doping dilemma.” Recently, many studies focus on improving p-doping efficiency and electrical conductivity of doped conjugated polymers; however, the development of n-type molecular doping currently lags far behind that of its p-counterpart. It is well-known that both efficient p- and n-type molecular doping are indispensable in various organic electronic devices, including light-emitting diodes, photovoltaics, field-effect transistors, and thermoelectrics. It is thus an urgent requirement to achieve efficient n-doping in conjugated polymers. In this Account, we give a brief overview of our efforts to improve the n-doping efficiency in conjugated polymers with several strategies from the aspects of the polymer/dopant molecular design and the exploration of the n-type molecular doping mechanism and charge transport mechanism in n-doped organic materials. For the conjugated polymer engineering, we first demonstrate that increasing the electron affinity of the host polymer through halogen substitution can boost the n-doping efficiency. Still, the rigid coplanar backbones of conjugated polymers play a crucial role in the polaron delocalization and final electrical performance. In addition, we emphasize the importance of morphology control in the doped polymers to address the “doping dilemma.” For n-dopants designing, we summarize some basic guidelines from molecular sizes and shapes, the interaction between dopants (or dopant cations) and polymers, and the effects of dopants on morphology to design high-efficacy n-type molecular dopants. We propose that the polymers and the dopants need to be treated as a whole system; while enhancing the ionization efficiency, more attention should be paid to the carrierization (free-carrier generation) efficiency of these binary systems. In the end, we adopt the n-type polymer thermoelectric material as an example to discuss the grand challenges encountered in practical applications of n-doped conjugated polymers. The air stability and micrometer-thick thermo-leg processing of n-doped polymers are highlighted for thermoelectric applications. It is our hope that this Account showcases a blueprint for rational approaches and a deep understanding toward the design and development of efficient n-doping in conjugated polymers, bringing n-doped organic materials into the next era. ConspectusMolecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Therefore, the complex noncovalent interactions between two components often cause the molecular dopant to destroy the orderly stacking of the host organic materials and reduce the original properties of the material, such as carrier mobility, which here we call the "doping dilemma." Recently, many studies focus on improving p-doping efficiency and electrical conductivity of doped conjugated polymers; however, the development of n-type molecular doping currently lags far behind that of its p-counterpart. It is well-known that both efficient p- and n-type molecular doping are indispensable in various organic electronic devices, including light-emitting diodes, photovoltaics, field-effect transistors, and thermoelectrics. It is thus an urgent requirement to achieve efficient n-doping in conjugated polymers.In this Account, we give a brief overview of our efforts to improve the n-doping efficiency in conjugated polymers with several strategies from the aspects of the polymer/dopant molecular design and the exploration of the n-type molecular doping mechanism and charge transport mechanism in n-doped organic materials. For the conjugated polymer engineering, we first demonstrate that increasing the electron affinity of the host polymer through halogen substitution can boost the n-doping efficiency. Still, the rigid coplanar backbones of conjugated polymers play a crucial role in the polaron delocalization and final electrical performance. In addition, we emphasize the importance of morphology control in the doped polymers to address the "doping dilemma." For n-dopants designing, we summarize some basic guidelines from molecular sizes and shapes, the interaction between dopants (or dopant cations) and polymers, and the effects of dopants on morphology to design high-efficacy n-type molecular dopants. We propose that the polymers and the dopants need to be treated as a whole system; while enhancing the ionization efficiency, more attention should be paid to the carrierization (free-carrier generation) efficiency of these binary systems. In the end, we adopt the n-type polymer thermoelectric material as an example to discuss the grand challenges encountered in practical applications of n-doped conjugated polymers. The air stability and micrometer-thick thermo-leg processing of n-doped polymers are highlighted for thermoelectric applications. It is our hope that this Account showcases a blueprint for rational approaches and a deep understanding toward the design and development of efficient n-doping in conjugated polymers, bringing n-doped organic materials into the next era.ConspectusMolecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Therefore, the complex noncovalent interactions between two components often cause the molecular dopant to destroy the orderly stacking of the host organic materials and reduce the original properties of the material, such as carrier mobility, which here we call the "doping dilemma." Recently, many studies focus on improving p-doping efficiency and electrical conductivity of doped conjugated polymers; however, the development of n-type molecular doping currently lags far behind that of its p-counterpart. It is well-known that both efficient p- and n-type molecular doping are indispensable in various organic electronic devices, including light-emitting diodes, photovoltaics, field-effect transistors, and thermoelectrics. It is thus an urgent requirement to achieve efficient n-doping in conjugated polymers.In this Account, we give a brief overview of our efforts to improve the n-doping efficiency in conjugated polymers with several strategies from the aspects of the polymer/dopant molecular design and the exploration of the n-type molecular doping mechanism and charge transport mechanism in n-doped organic materials. For the conjugated polymer engineering, we first demonstrate that increasing the electron affinity of the host polymer through halogen substitution can boost the n-doping efficiency. Still, the rigid coplanar backbones of conjugated polymers play a crucial role in the polaron delocalization and final electrical performance. In addition, we emphasize the importance of morphology control in the doped polymers to address the "doping dilemma." For n-dopants designing, we summarize some basic guidelines from molecular sizes and shapes, the interaction between dopants (or dopant cations) and polymers, and the effects of dopants on morphology to design high-efficacy n-type molecular dopants. We propose that the polymers and the dopants need to be treated as a whole system; while enhancing the ionization efficiency, more attention should be paid to the carrierization (free-carrier generation) efficiency of these binary systems. In the end, we adopt the n-type polymer thermoelectric material as an example to discuss the grand challenges encountered in practical applications of n-doped conjugated polymers. The air stability and micrometer-thick thermo-leg processing of n-doped polymers are highlighted for thermoelectric applications. It is our hope that this Account showcases a blueprint for rational approaches and a deep understanding toward the design and development of efficient n-doping in conjugated polymers, bringing n-doped organic materials into the next era. |
Author | Wang, Jie-Yu Lu, Yang Pei, Jian |
AuthorAffiliation | Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering |
AuthorAffiliation_xml | – name: Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0001-9416-2198 surname: Lu fullname: Lu, Yang – sequence: 2 givenname: Jie-Yu orcidid: 0000-0002-1903-8928 surname: Wang fullname: Wang, Jie-Yu – sequence: 3 givenname: Jian orcidid: 0000-0002-2222-5361 surname: Pei fullname: Pei, Jian email: jianpei@pku.edu.cn |
BookMark | eNqFkDtOAzEQhi0UJELgBhRb0mzwa190UQgvBUEB9WrWOxscbexg7yKl4wpckZPgKKGhgMpjz__NyN8xGRhrkJAzRseMcnYByo9BKdubzo-ZopRzcUCGLOE0lnmRD8iQUspCLfkROfZ-Ga5cptmQ3E_Uq8Z3bRbRrGm00mi6yHx9fF7Z9fbRNtHUmmW_gA7r6Mm2mxU6H1Wb6MG2qPoWXBSiEDafkMMGWo-n-3NEXq5nz9PbeP54czedzGMQBetiJVIlZVrTDJDXgDWrm1yotKoAKkFVzpNc1iBljViJLK9SLFKRyKLiAiEtxIic7-aunX3r0XflSnuFbQsGbe9LnkiR0fA7HqKXu6hy1nuHTal0B522pnOg25LRciuwDALLH4HlXmCA5S947fQK3OY_jO6wbXdpe2eCjL-Rb2VIjeo |
CitedBy_id | crossref_primary_10_1016_j_trac_2024_118062 crossref_primary_10_1002_anie_202214192 crossref_primary_10_1021_acsaelm_2c00940 crossref_primary_10_1039_D2TC03574J crossref_primary_10_1016_j_mtadv_2023_100360 crossref_primary_10_1039_D2CS00720G crossref_primary_10_1002_adfm_202111351 crossref_primary_10_1126_sciadv_adr1758 crossref_primary_10_1021_acsaelm_3c01241 crossref_primary_10_1002_anie_202402375 crossref_primary_10_1021_acs_macromol_2c01029 crossref_primary_10_1108_EC_05_2023_0216 crossref_primary_10_5059_yukigoseikyokaishi_82_1001 crossref_primary_10_1039_D4TA03920C crossref_primary_10_1063_5_0205666 crossref_primary_10_1016_j_jpowsour_2022_232516 crossref_primary_10_1021_acs_chemrev_2c00720 crossref_primary_10_1093_nsr_nwae009 crossref_primary_10_1063_5_0129861 crossref_primary_10_1002_adfm_202213911 crossref_primary_10_1126_sciadv_adf3495 crossref_primary_10_1557_s43578_024_01513_3 crossref_primary_10_1021_accountsmr_4c00134 crossref_primary_10_1021_acs_chemmater_3c00688 crossref_primary_10_1021_acsomega_3c05602 crossref_primary_10_1021_accountsmr_4c00054 crossref_primary_10_1002_ange_202219262 crossref_primary_10_1002_anie_202319658 crossref_primary_10_1002_ange_202402375 crossref_primary_10_1016_j_electacta_2021_139325 crossref_primary_10_1039_D4NR03982C crossref_primary_10_1002_advs_202410046 crossref_primary_10_1039_D4CS00504J crossref_primary_10_1021_acsaelm_4c01876 crossref_primary_10_1039_D3TA00231D crossref_primary_10_1246_cl_230072 crossref_primary_10_1002_cjoc_202300650 crossref_primary_10_1039_D2CS01027E crossref_primary_10_1021_acsmaterialslett_4c00624 crossref_primary_10_3390_bios13060586 crossref_primary_10_1002_ange_202307856 crossref_primary_10_3390_polym17010072 crossref_primary_10_1021_acs_chemmater_3c01936 crossref_primary_10_1021_acs_chemrev_2c00696 crossref_primary_10_1002_adma_202412811 crossref_primary_10_1039_D4QO00961D crossref_primary_10_1002_adfm_202400982 crossref_primary_10_20517_microstructures_2024_56 crossref_primary_10_1021_acsaem_4c03246 crossref_primary_10_1039_D2TC00761D crossref_primary_10_1002_anie_202219262 crossref_primary_10_1016_j_dyepig_2024_112201 crossref_primary_10_1002_ange_202319658 crossref_primary_10_1039_D3CC00891F crossref_primary_10_1016_j_surfin_2022_101887 crossref_primary_10_1016_j_jocs_2023_102122 crossref_primary_10_54097_75bzbv14 crossref_primary_10_1002_adfm_202400469 crossref_primary_10_1039_D2TA04691A crossref_primary_10_7209_carbon_020303 crossref_primary_10_1002_adma_202313863 crossref_primary_10_1002_adma_202201062 crossref_primary_10_3390_polym16172467 crossref_primary_10_1021_acsapm_4c01013 crossref_primary_10_1002_anie_202408537 crossref_primary_10_1002_adfm_202412647 crossref_primary_10_1002_adfm_202415715 crossref_primary_10_1039_D4TA00032C crossref_primary_10_1021_acs_accounts_3c00091 crossref_primary_10_1021_jacs_2c07888 crossref_primary_10_1021_acs_macromol_3c01680 crossref_primary_10_1093_chemle_upad054 crossref_primary_10_1002_adfm_202400774 crossref_primary_10_1002_asia_202400329 crossref_primary_10_1021_jacs_4c17140 crossref_primary_10_1002_admi_202202416 crossref_primary_10_1002_anie_202307856 crossref_primary_10_1021_acsmaterialslett_2c00223 crossref_primary_10_1016_j_synthmet_2022_117277 crossref_primary_10_1002_slct_202204021 crossref_primary_10_1002_ange_202214192 crossref_primary_10_1039_D3TA02943C crossref_primary_10_3390_polym17060746 crossref_primary_10_1016_j_polymer_2023_126159 crossref_primary_10_1021_acs_jpcc_4c03020 crossref_primary_10_1039_D4TC00374H crossref_primary_10_1021_accountsmr_1c00149 crossref_primary_10_1021_acsmaterialslett_4c00128 crossref_primary_10_1002_ange_202408537 crossref_primary_10_1016_j_progpolymsci_2022_101626 crossref_primary_10_1021_acsaelm_1c00801 crossref_primary_10_1021_acsaelm_4c00407 crossref_primary_10_1177_00405175231167602 crossref_primary_10_1002_adfm_202300809 crossref_primary_10_1002_cplu_202400286 |
Cites_doi | 10.1038/nature07727 10.1039/c2ee22777k 10.1002/adma.201805647 10.1002/aelm.201700164 10.1002/adma.201603731 10.1021/acs.jpclett.5b02332 10.1038/s41563-020-00859-3 10.1021/ja208824d 10.1021/acs.chemmater.7b03516 10.1002/adfm.202010695 10.1038/nmat4634 10.1038/nmat1612 10.1021/ja075523m 10.1002/anie.201905835 10.1038/s41467-020-17063-1 10.1039/D0PY00456A 10.1016/S0379-6779(97)80097-5 10.1103/PhysRevB.93.235203 10.1002/adfm.202005901 10.1021/acscentsci.6b00073 10.1002/anie.202007589 10.1021/ja403624a 10.1038/s41563-020-0778-5 10.1021/ja403906d 10.1021/jacs.5b00945 10.1039/D0TA01087A 10.1039/D0TC02828B 10.1002/aenm.201900817 10.1016/j.sna.2006.04.024 10.1016/j.chempr.2021.01.020 10.1002/anie.201408067 10.1038/s41467-018-03302-z 10.1002/pssa.201228310 10.1038/ncomms3238 10.1021/acs.accounts.5b00438 10.1039/C8TA05922E 10.1002/adma.202005946 10.1002/adma.201606928 10.1039/C5TC04207K 10.1038/s41563-018-0263-6 10.1002/anie.201713415 10.1002/anie.202011537 10.1021/jacs.0c05699 10.1038/s41563-020-0618-7 10.1021/acs.chemmater.9b01422 10.1021/ja00471a081 10.1002/aelm.201600004 10.1021/ja412533d 10.1021/ja103173m 10.1002/adma.201304866 10.1038/s41586-019-1504-9 10.1039/D0CS00204F 10.1002/aelm.201700581 10.1021/cr3001109 10.1039/D0PY01491E 10.1063/1.3689760 10.1002/adma.201305981 10.1002/adma.201103238 10.1002/adma.200903628 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.accounts.1c00223 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 2883 |
ExternalDocumentID | 10_1021_acs_accounts_1c00223 a554090715 |
GroupedDBID | - .K2 02 23M 3RI 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ F5P GGK GNL IH2 IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV CITATION CUPRZ XSW ZCA ~02 7X8 |
ID | FETCH-LOGICAL-a391t-c36c446d07ae2daed1df83c6bbaab30c82584da44deeb378b6e963549b23ea693 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 12:06:48 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Tue Jul 01 03:16:07 EDT 2025 Thu Jul 08 14:26:01 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a391t-c36c446d07ae2daed1df83c6bbaab30c82584da44deeb378b6e963549b23ea693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9416-2198 0000-0002-1903-8928 0000-0002-2222-5361 |
PQID | 2543704672 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2543704672 crossref_citationtrail_10_1021_acs_accounts_1c00223 crossref_primary_10_1021_acs_accounts_1c00223 acs_journals_10_1021_acs_accounts_1c00223 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 3RI GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-06 |
PublicationDateYYYYMMDD | 2021-07-06 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 Heeger A. J. (ref5/cit5) 2010 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.1038/nature07727 – ident: ref18/cit18 doi: 10.1039/c2ee22777k – ident: ref49/cit49 doi: 10.1002/adma.201805647 – ident: ref45/cit45 doi: 10.1002/aelm.201700164 – ident: ref31/cit31 doi: 10.1002/adma.201603731 – ident: ref11/cit11 doi: 10.1021/acs.jpclett.5b02332 – ident: ref58/cit58 doi: 10.1038/s41563-020-00859-3 – ident: ref32/cit32 doi: 10.1021/ja208824d – ident: ref39/cit39 doi: 10.1021/acs.chemmater.7b03516 – ident: ref51/cit51 doi: 10.1002/adfm.202010695 – ident: ref13/cit13 doi: 10.1038/nmat4634 – ident: ref34/cit34 doi: 10.1038/nmat1612 – ident: ref44/cit44 doi: 10.1021/ja075523m – ident: ref33/cit33 doi: 10.1002/anie.201905835 – ident: ref2/cit2 doi: 10.1038/s41467-020-17063-1 – ident: ref38/cit38 doi: 10.1039/D0PY00456A – ident: ref53/cit53 doi: 10.1016/S0379-6779(97)80097-5 – ident: ref50/cit50 doi: 10.1103/PhysRevB.93.235203 – ident: ref55/cit55 doi: 10.1002/adfm.202005901 – ident: ref10/cit10 doi: 10.1021/acscentsci.6b00073 – ident: ref60/cit60 doi: 10.1002/anie.202007589 – ident: ref28/cit28 doi: 10.1021/ja403624a – ident: ref7/cit7 doi: 10.1038/s41563-020-0778-5 – ident: ref21/cit21 doi: 10.1021/ja403906d – ident: ref1/cit1 doi: 10.1021/jacs.5b00945 – ident: ref22/cit22 doi: 10.1039/D0TA01087A – ident: ref16/cit16 doi: 10.1039/D0TC02828B – ident: ref23/cit23 doi: 10.1002/aenm.201900817 – ident: ref56/cit56 doi: 10.1016/j.sna.2006.04.024 – ident: ref57/cit57 doi: 10.1016/j.chempr.2021.01.020 – ident: ref46/cit46 doi: 10.1002/anie.201408067 – ident: ref19/cit19 doi: 10.1038/s41467-018-03302-z – ident: ref8/cit8 doi: 10.1002/pssa.201228310 – ident: ref41/cit41 doi: 10.1038/ncomms3238 – ident: ref9/cit9 doi: 10.1021/acs.accounts.5b00438 – ident: ref24/cit24 doi: 10.1039/C8TA05922E – ident: ref4/cit4 doi: 10.1002/adma.202005946 – ident: ref54/cit54 doi: 10.1002/adma.201606928 – ident: ref12/cit12 doi: 10.1039/C5TC04207K – ident: ref14/cit14 doi: 10.1038/s41563-018-0263-6 – ident: ref47/cit47 doi: 10.1002/anie.201713415 – ident: ref48/cit48 doi: 10.1002/anie.202011537 – ident: ref3/cit3 doi: 10.1021/jacs.0c05699 – ident: ref59/cit59 doi: 10.1038/s41563-020-0618-7 – ident: ref6/cit6 doi: 10.1021/acs.chemmater.9b01422 – volume-title: Semiconducting and Metallic Polymers year: 2010 ident: ref5/cit5 – ident: ref25/cit25 doi: 10.1021/ja00471a081 – ident: ref30/cit30 doi: 10.1002/aelm.201600004 – ident: ref29/cit29 doi: 10.1021/ja412533d – ident: ref42/cit42 doi: 10.1021/ja103173m – ident: ref36/cit36 doi: 10.1002/adma.201304866 – ident: ref15/cit15 doi: 10.1038/s41586-019-1504-9 – ident: ref52/cit52 doi: 10.1039/D0CS00204F – ident: ref40/cit40 doi: 10.1002/aelm.201700581 – ident: ref35/cit35 doi: 10.1021/cr3001109 – ident: ref37/cit37 doi: 10.1039/D0PY01491E – ident: ref43/cit43 doi: 10.1063/1.3689760 – ident: ref27/cit27 doi: 10.1002/adma.201305981 – ident: ref20/cit20 doi: 10.1002/adma.201103238 – ident: ref17/cit17 doi: 10.1002/adma.200903628 |
SSID | ssj0002467 |
Score | 2.616046 |
Snippet | Conspectus Molecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by... ConspectusMolecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2871 |
Title | Achieving Efficient n‑Doping of Conjugated Polymers by Molecular Dopants |
URI | http://dx.doi.org/10.1021/acs.accounts.1c00223 https://www.proquest.com/docview/2543704672 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3rxLdYXEbx42LqbZF_HsraUQlXQQm9LXouPsit2e6gn_4J_0V_iZLtbqSLVa0hCmEwy8yUz3yB0prkbUpcCUrV9YTEZBhaXTFoy0D4ljhSq4O7sXXmdPusO3MEXUPz-g0-cCy5HMHVROcGECRmjQ5fRCvHgHBtXKLqd3byEeVOOTIDILGCkSpX7ZRZjkORo3iDN38eFkWlvoOsqVWcaW_LUGOeiIV9_Mjf-cf2baL30N3FzqiBbaEmn22g1qsq87aBuU94_aPOsgFsFnQRYIZx-vL1fFqlUOEtwlKWPY_PcpvBNNpyYl24sJrhXVdbF0NWE0-yifrt1F3WsssCCxWno5JakngQ4qGyfa6K4Vo5KAio9ITgX1JaAHgOmOGNKA-b2A-FpOK-AKAWhmnsh3UO1NEv1PsKuSuDyAHUIbMH8hHFQAhmwxFWhVuCk1dE5CCIuD8goLv6-iRObxko6cSmdOqLVjsSyZCo3BTOGC0ZZs1HPU6aOBf1Pq82OQeTmn4SnOhuPYsMP4NugS-TgH6s-RGvExLsU4YRHqJa_jPUxOCy5OCm09BNWFuq1 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSgQxEC1cDnpxF3cjePHQ2p2kt-MwKuMyIrjgrcnWuNEt9sxBT_6Cv-iXWMl0jyiIeA1JqFQqtSSVVwDbRoQpCxlGqn4sPa7SxBOKK08lJmY0UFI77M7uWdS54sc34c0IhM1fGCSiwpkq94j_hS4Q7Nk2MSigYLOFrO1hozCO_gi1gt1qXwwVMOXRACoTI2WecNr8mPtlFmuXVPXdLn1Xy87WHE7D9ZBKl2LysNvvyV31-gPA8d_LmIGp2vskrYG4zMKIKeZgot0UfZuH45a6vTP2koEcOHAJtEmk-Hh733cfq0iZk3ZZ3Pft5Zsm5-Xji733JvKFdJs6uwS72uSaBbg6PLhsd7y63IInWBr0PMUihcGh9mNhqBZGBzpPmIqkFEIyX2EsmXAtONcGI_A4kZHB04vxpaTMiChlizBWlIVZAhLqHFUJCkfiSx7nXKBIqITnoU6NRpdtGXaQEVl9XKrMvYTTILONDXeymjvLwJqNyVSNW27LZzz-Mcobjnoa4Hb80X-r2fMMWW5fTURhyn6VWbSA2EeRoiv_oHoTJjqX3dPs9OjsZBUmqc2EcYmGazDWe-6bdXRlenLDCe4nqkzzFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aQb34Ft9G8OJhdXeTfR1LH9RqS0EF8bLktfgou-K2h3ryL_gX_SVO0t1iBRG9hiRMJpPMTGbyDULHinkR8Qh4qnbALSqi0GKCCkuEKiCuI7g02J2drt-6oe1b7_ZLqS8gIoeZchPE16f6WSYFwoBzptvZuIiCzhjS-ofMojkdudPCXa1dTS5hl_pjuEzwlmlI3fLX3A-zaN0k8mndNH01G33TXEZ3E0pNmsnT6XDAT8XrNxDHfy1lBS0VViiujsVmFc2odA0t1Mrib-uoXRX3D0o_NuCGAZkA3YTTj7f3uvlghbME17L0cagf4STuZf2Rfv_GfIQ7Zb1dDF11ks0Gumk2rmstqyi7YDESOQNLEF-AkyjtgClXMiUdmYRE-JwzxoktwKcMqWSUSgWeeBByX8EpBj-Tu0QxPyKbqJJmqdpC2JMJXCkgJKHNaZBQBqIhQpp4MlISTLdtdAKMiItjk8cmIu46sW4suRMX3NlGpNycWBT45bqMRv-XUdZk1PMYv-OX_kflvsfAch09YanKhnmsUQMCG8TK3fkD1Ydovldvxpfn3YtdtOjqhBiTb7iHKoOXodoHi2bAD4zsfgJuY_WZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Efficient+n%E2%80%91Doping+of+Conjugated+Polymers+by+Molecular+Dopants&rft.jtitle=Accounts+of+chemical+research&rft.au=Lu%2C+Yang&rft.au=Wang%2C+Jie-Yu&rft.au=Pei%2C+Jian&rft.date=2021-07-06&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=54&rft.issue=13&rft.spage=2871&rft.epage=2883&rft_id=info:doi/10.1021%2Facs.accounts.1c00223&rft.externalDocID=a554090715 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |