Achieving Efficient n‑Doping of Conjugated Polymers by Molecular Dopants

Conspectus Molecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Ther...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 54; no. 13; pp. 2871 - 2883
Main Authors Lu, Yang, Wang, Jie-Yu, Pei, Jian
Format Journal Article
LanguageEnglish
Published American Chemical Society 06.07.2021
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Molecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Therefore, the complex noncovalent interactions between two components often cause the molecular dopant to destroy the orderly stacking of the host organic materials and reduce the original properties of the material, such as carrier mobility, which here we call the “doping dilemma.” Recently, many studies focus on improving p-doping efficiency and electrical conductivity of doped conjugated polymers; however, the development of n-type molecular doping currently lags far behind that of its p-counterpart. It is well-known that both efficient p- and n-type molecular doping are indispensable in various organic electronic devices, including light-emitting diodes, photovoltaics, field-effect transistors, and thermoelectrics. It is thus an urgent requirement to achieve efficient n-doping in conjugated polymers. In this Account, we give a brief overview of our efforts to improve the n-doping efficiency in conjugated polymers with several strategies from the aspects of the polymer/dopant molecular design and the exploration of the n-type molecular doping mechanism and charge transport mechanism in n-doped organic materials. For the conjugated polymer engineering, we first demonstrate that increasing the electron affinity of the host polymer through halogen substitution can boost the n-doping efficiency. Still, the rigid coplanar backbones of conjugated polymers play a crucial role in the polaron delocalization and final electrical performance. In addition, we emphasize the importance of morphology control in the doped polymers to address the “doping dilemma.” For n-dopants designing, we summarize some basic guidelines from molecular sizes and shapes, the interaction between dopants (or dopant cations) and polymers, and the effects of dopants on morphology to design high-efficacy n-type molecular dopants. We propose that the polymers and the dopants need to be treated as a whole system; while enhancing the ionization efficiency, more attention should be paid to the carrierization (free-carrier generation) efficiency of these binary systems. In the end, we adopt the n-type polymer thermoelectric material as an example to discuss the grand challenges encountered in practical applications of n-doped conjugated polymers. The air stability and micrometer-thick thermo-leg processing of n-doped polymers are highlighted for thermoelectric applications. It is our hope that this Account showcases a blueprint for rational approaches and a deep understanding toward the design and development of efficient n-doping in conjugated polymers, bringing n-doped organic materials into the next era.
AbstractList Conspectus Molecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Therefore, the complex noncovalent interactions between two components often cause the molecular dopant to destroy the orderly stacking of the host organic materials and reduce the original properties of the material, such as carrier mobility, which here we call the “doping dilemma.” Recently, many studies focus on improving p-doping efficiency and electrical conductivity of doped conjugated polymers; however, the development of n-type molecular doping currently lags far behind that of its p-counterpart. It is well-known that both efficient p- and n-type molecular doping are indispensable in various organic electronic devices, including light-emitting diodes, photovoltaics, field-effect transistors, and thermoelectrics. It is thus an urgent requirement to achieve efficient n-doping in conjugated polymers. In this Account, we give a brief overview of our efforts to improve the n-doping efficiency in conjugated polymers with several strategies from the aspects of the polymer/dopant molecular design and the exploration of the n-type molecular doping mechanism and charge transport mechanism in n-doped organic materials. For the conjugated polymer engineering, we first demonstrate that increasing the electron affinity of the host polymer through halogen substitution can boost the n-doping efficiency. Still, the rigid coplanar backbones of conjugated polymers play a crucial role in the polaron delocalization and final electrical performance. In addition, we emphasize the importance of morphology control in the doped polymers to address the “doping dilemma.” For n-dopants designing, we summarize some basic guidelines from molecular sizes and shapes, the interaction between dopants (or dopant cations) and polymers, and the effects of dopants on morphology to design high-efficacy n-type molecular dopants. We propose that the polymers and the dopants need to be treated as a whole system; while enhancing the ionization efficiency, more attention should be paid to the carrierization (free-carrier generation) efficiency of these binary systems. In the end, we adopt the n-type polymer thermoelectric material as an example to discuss the grand challenges encountered in practical applications of n-doped conjugated polymers. The air stability and micrometer-thick thermo-leg processing of n-doped polymers are highlighted for thermoelectric applications. It is our hope that this Account showcases a blueprint for rational approaches and a deep understanding toward the design and development of efficient n-doping in conjugated polymers, bringing n-doped organic materials into the next era.
ConspectusMolecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Therefore, the complex noncovalent interactions between two components often cause the molecular dopant to destroy the orderly stacking of the host organic materials and reduce the original properties of the material, such as carrier mobility, which here we call the "doping dilemma." Recently, many studies focus on improving p-doping efficiency and electrical conductivity of doped conjugated polymers; however, the development of n-type molecular doping currently lags far behind that of its p-counterpart. It is well-known that both efficient p- and n-type molecular doping are indispensable in various organic electronic devices, including light-emitting diodes, photovoltaics, field-effect transistors, and thermoelectrics. It is thus an urgent requirement to achieve efficient n-doping in conjugated polymers.In this Account, we give a brief overview of our efforts to improve the n-doping efficiency in conjugated polymers with several strategies from the aspects of the polymer/dopant molecular design and the exploration of the n-type molecular doping mechanism and charge transport mechanism in n-doped organic materials. For the conjugated polymer engineering, we first demonstrate that increasing the electron affinity of the host polymer through halogen substitution can boost the n-doping efficiency. Still, the rigid coplanar backbones of conjugated polymers play a crucial role in the polaron delocalization and final electrical performance. In addition, we emphasize the importance of morphology control in the doped polymers to address the "doping dilemma." For n-dopants designing, we summarize some basic guidelines from molecular sizes and shapes, the interaction between dopants (or dopant cations) and polymers, and the effects of dopants on morphology to design high-efficacy n-type molecular dopants. We propose that the polymers and the dopants need to be treated as a whole system; while enhancing the ionization efficiency, more attention should be paid to the carrierization (free-carrier generation) efficiency of these binary systems. In the end, we adopt the n-type polymer thermoelectric material as an example to discuss the grand challenges encountered in practical applications of n-doped conjugated polymers. The air stability and micrometer-thick thermo-leg processing of n-doped polymers are highlighted for thermoelectric applications. It is our hope that this Account showcases a blueprint for rational approaches and a deep understanding toward the design and development of efficient n-doping in conjugated polymers, bringing n-doped organic materials into the next era.ConspectusMolecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Therefore, the complex noncovalent interactions between two components often cause the molecular dopant to destroy the orderly stacking of the host organic materials and reduce the original properties of the material, such as carrier mobility, which here we call the "doping dilemma." Recently, many studies focus on improving p-doping efficiency and electrical conductivity of doped conjugated polymers; however, the development of n-type molecular doping currently lags far behind that of its p-counterpart. It is well-known that both efficient p- and n-type molecular doping are indispensable in various organic electronic devices, including light-emitting diodes, photovoltaics, field-effect transistors, and thermoelectrics. It is thus an urgent requirement to achieve efficient n-doping in conjugated polymers.In this Account, we give a brief overview of our efforts to improve the n-doping efficiency in conjugated polymers with several strategies from the aspects of the polymer/dopant molecular design and the exploration of the n-type molecular doping mechanism and charge transport mechanism in n-doped organic materials. For the conjugated polymer engineering, we first demonstrate that increasing the electron affinity of the host polymer through halogen substitution can boost the n-doping efficiency. Still, the rigid coplanar backbones of conjugated polymers play a crucial role in the polaron delocalization and final electrical performance. In addition, we emphasize the importance of morphology control in the doped polymers to address the "doping dilemma." For n-dopants designing, we summarize some basic guidelines from molecular sizes and shapes, the interaction between dopants (or dopant cations) and polymers, and the effects of dopants on morphology to design high-efficacy n-type molecular dopants. We propose that the polymers and the dopants need to be treated as a whole system; while enhancing the ionization efficiency, more attention should be paid to the carrierization (free-carrier generation) efficiency of these binary systems. In the end, we adopt the n-type polymer thermoelectric material as an example to discuss the grand challenges encountered in practical applications of n-doped conjugated polymers. The air stability and micrometer-thick thermo-leg processing of n-doped polymers are highlighted for thermoelectric applications. It is our hope that this Account showcases a blueprint for rational approaches and a deep understanding toward the design and development of efficient n-doping in conjugated polymers, bringing n-doped organic materials into the next era.
Author Wang, Jie-Yu
Lu, Yang
Pei, Jian
AuthorAffiliation Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering
AuthorAffiliation_xml – name: Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0001-9416-2198
  surname: Lu
  fullname: Lu, Yang
– sequence: 2
  givenname: Jie-Yu
  orcidid: 0000-0002-1903-8928
  surname: Wang
  fullname: Wang, Jie-Yu
– sequence: 3
  givenname: Jian
  orcidid: 0000-0002-2222-5361
  surname: Pei
  fullname: Pei, Jian
  email: jianpei@pku.edu.cn
BookMark eNqFkDtOAzEQhi0UJELgBhRb0mzwa190UQgvBUEB9WrWOxscbexg7yKl4wpckZPgKKGhgMpjz__NyN8xGRhrkJAzRseMcnYByo9BKdubzo-ZopRzcUCGLOE0lnmRD8iQUspCLfkROfZ-Ga5cptmQ3E_Uq8Z3bRbRrGm00mi6yHx9fF7Z9fbRNtHUmmW_gA7r6Mm2mxU6H1Wb6MG2qPoWXBSiEDafkMMGWo-n-3NEXq5nz9PbeP54czedzGMQBetiJVIlZVrTDJDXgDWrm1yotKoAKkFVzpNc1iBljViJLK9SLFKRyKLiAiEtxIic7-aunX3r0XflSnuFbQsGbe9LnkiR0fA7HqKXu6hy1nuHTal0B522pnOg25LRciuwDALLH4HlXmCA5S947fQK3OY_jO6wbXdpe2eCjL-Rb2VIjeo
CitedBy_id crossref_primary_10_1016_j_trac_2024_118062
crossref_primary_10_1002_anie_202214192
crossref_primary_10_1021_acsaelm_2c00940
crossref_primary_10_1039_D2TC03574J
crossref_primary_10_1016_j_mtadv_2023_100360
crossref_primary_10_1039_D2CS00720G
crossref_primary_10_1002_adfm_202111351
crossref_primary_10_1126_sciadv_adr1758
crossref_primary_10_1021_acsaelm_3c01241
crossref_primary_10_1002_anie_202402375
crossref_primary_10_1021_acs_macromol_2c01029
crossref_primary_10_1108_EC_05_2023_0216
crossref_primary_10_5059_yukigoseikyokaishi_82_1001
crossref_primary_10_1039_D4TA03920C
crossref_primary_10_1063_5_0205666
crossref_primary_10_1016_j_jpowsour_2022_232516
crossref_primary_10_1021_acs_chemrev_2c00720
crossref_primary_10_1093_nsr_nwae009
crossref_primary_10_1063_5_0129861
crossref_primary_10_1002_adfm_202213911
crossref_primary_10_1126_sciadv_adf3495
crossref_primary_10_1557_s43578_024_01513_3
crossref_primary_10_1021_accountsmr_4c00134
crossref_primary_10_1021_acs_chemmater_3c00688
crossref_primary_10_1021_acsomega_3c05602
crossref_primary_10_1021_accountsmr_4c00054
crossref_primary_10_1002_ange_202219262
crossref_primary_10_1002_anie_202319658
crossref_primary_10_1002_ange_202402375
crossref_primary_10_1016_j_electacta_2021_139325
crossref_primary_10_1039_D4NR03982C
crossref_primary_10_1002_advs_202410046
crossref_primary_10_1039_D4CS00504J
crossref_primary_10_1021_acsaelm_4c01876
crossref_primary_10_1039_D3TA00231D
crossref_primary_10_1246_cl_230072
crossref_primary_10_1002_cjoc_202300650
crossref_primary_10_1039_D2CS01027E
crossref_primary_10_1021_acsmaterialslett_4c00624
crossref_primary_10_3390_bios13060586
crossref_primary_10_1002_ange_202307856
crossref_primary_10_3390_polym17010072
crossref_primary_10_1021_acs_chemmater_3c01936
crossref_primary_10_1021_acs_chemrev_2c00696
crossref_primary_10_1002_adma_202412811
crossref_primary_10_1039_D4QO00961D
crossref_primary_10_1002_adfm_202400982
crossref_primary_10_20517_microstructures_2024_56
crossref_primary_10_1021_acsaem_4c03246
crossref_primary_10_1039_D2TC00761D
crossref_primary_10_1002_anie_202219262
crossref_primary_10_1016_j_dyepig_2024_112201
crossref_primary_10_1002_ange_202319658
crossref_primary_10_1039_D3CC00891F
crossref_primary_10_1016_j_surfin_2022_101887
crossref_primary_10_1016_j_jocs_2023_102122
crossref_primary_10_54097_75bzbv14
crossref_primary_10_1002_adfm_202400469
crossref_primary_10_1039_D2TA04691A
crossref_primary_10_7209_carbon_020303
crossref_primary_10_1002_adma_202313863
crossref_primary_10_1002_adma_202201062
crossref_primary_10_3390_polym16172467
crossref_primary_10_1021_acsapm_4c01013
crossref_primary_10_1002_anie_202408537
crossref_primary_10_1002_adfm_202412647
crossref_primary_10_1002_adfm_202415715
crossref_primary_10_1039_D4TA00032C
crossref_primary_10_1021_acs_accounts_3c00091
crossref_primary_10_1021_jacs_2c07888
crossref_primary_10_1021_acs_macromol_3c01680
crossref_primary_10_1093_chemle_upad054
crossref_primary_10_1002_adfm_202400774
crossref_primary_10_1002_asia_202400329
crossref_primary_10_1021_jacs_4c17140
crossref_primary_10_1002_admi_202202416
crossref_primary_10_1002_anie_202307856
crossref_primary_10_1021_acsmaterialslett_2c00223
crossref_primary_10_1016_j_synthmet_2022_117277
crossref_primary_10_1002_slct_202204021
crossref_primary_10_1002_ange_202214192
crossref_primary_10_1039_D3TA02943C
crossref_primary_10_3390_polym17060746
crossref_primary_10_1016_j_polymer_2023_126159
crossref_primary_10_1021_acs_jpcc_4c03020
crossref_primary_10_1039_D4TC00374H
crossref_primary_10_1021_accountsmr_1c00149
crossref_primary_10_1021_acsmaterialslett_4c00128
crossref_primary_10_1002_ange_202408537
crossref_primary_10_1016_j_progpolymsci_2022_101626
crossref_primary_10_1021_acsaelm_1c00801
crossref_primary_10_1021_acsaelm_4c00407
crossref_primary_10_1177_00405175231167602
crossref_primary_10_1002_adfm_202300809
crossref_primary_10_1002_cplu_202400286
Cites_doi 10.1038/nature07727
10.1039/c2ee22777k
10.1002/adma.201805647
10.1002/aelm.201700164
10.1002/adma.201603731
10.1021/acs.jpclett.5b02332
10.1038/s41563-020-00859-3
10.1021/ja208824d
10.1021/acs.chemmater.7b03516
10.1002/adfm.202010695
10.1038/nmat4634
10.1038/nmat1612
10.1021/ja075523m
10.1002/anie.201905835
10.1038/s41467-020-17063-1
10.1039/D0PY00456A
10.1016/S0379-6779(97)80097-5
10.1103/PhysRevB.93.235203
10.1002/adfm.202005901
10.1021/acscentsci.6b00073
10.1002/anie.202007589
10.1021/ja403624a
10.1038/s41563-020-0778-5
10.1021/ja403906d
10.1021/jacs.5b00945
10.1039/D0TA01087A
10.1039/D0TC02828B
10.1002/aenm.201900817
10.1016/j.sna.2006.04.024
10.1016/j.chempr.2021.01.020
10.1002/anie.201408067
10.1038/s41467-018-03302-z
10.1002/pssa.201228310
10.1038/ncomms3238
10.1021/acs.accounts.5b00438
10.1039/C8TA05922E
10.1002/adma.202005946
10.1002/adma.201606928
10.1039/C5TC04207K
10.1038/s41563-018-0263-6
10.1002/anie.201713415
10.1002/anie.202011537
10.1021/jacs.0c05699
10.1038/s41563-020-0618-7
10.1021/acs.chemmater.9b01422
10.1021/ja00471a081
10.1002/aelm.201600004
10.1021/ja412533d
10.1021/ja103173m
10.1002/adma.201304866
10.1038/s41586-019-1504-9
10.1039/D0CS00204F
10.1002/aelm.201700581
10.1021/cr3001109
10.1039/D0PY01491E
10.1063/1.3689760
10.1002/adma.201305981
10.1002/adma.201103238
10.1002/adma.200903628
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.accounts.1c00223
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 2883
ExternalDocumentID 10_1021_acs_accounts_1c00223
a554090715
GroupedDBID -
.K2
02
23M
3RI
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GGK
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
CITATION
CUPRZ
XSW
ZCA
~02
7X8
ID FETCH-LOGICAL-a391t-c36c446d07ae2daed1df83c6bbaab30c82584da44deeb378b6e963549b23ea693
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 12:06:48 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Tue Jul 01 03:16:07 EDT 2025
Thu Jul 08 14:26:01 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a391t-c36c446d07ae2daed1df83c6bbaab30c82584da44deeb378b6e963549b23ea693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9416-2198
0000-0002-1903-8928
0000-0002-2222-5361
PQID 2543704672
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2543704672
crossref_citationtrail_10_1021_acs_accounts_1c00223
crossref_primary_10_1021_acs_accounts_1c00223
acs_journals_10_1021_acs_accounts_1c00223
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
3RI
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-06
PublicationDateYYYYMMDD 2021-07-06
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-06
  day: 06
PublicationDecade 2020
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
Heeger A. J. (ref5/cit5) 2010
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1038/nature07727
– ident: ref18/cit18
  doi: 10.1039/c2ee22777k
– ident: ref49/cit49
  doi: 10.1002/adma.201805647
– ident: ref45/cit45
  doi: 10.1002/aelm.201700164
– ident: ref31/cit31
  doi: 10.1002/adma.201603731
– ident: ref11/cit11
  doi: 10.1021/acs.jpclett.5b02332
– ident: ref58/cit58
  doi: 10.1038/s41563-020-00859-3
– ident: ref32/cit32
  doi: 10.1021/ja208824d
– ident: ref39/cit39
  doi: 10.1021/acs.chemmater.7b03516
– ident: ref51/cit51
  doi: 10.1002/adfm.202010695
– ident: ref13/cit13
  doi: 10.1038/nmat4634
– ident: ref34/cit34
  doi: 10.1038/nmat1612
– ident: ref44/cit44
  doi: 10.1021/ja075523m
– ident: ref33/cit33
  doi: 10.1002/anie.201905835
– ident: ref2/cit2
  doi: 10.1038/s41467-020-17063-1
– ident: ref38/cit38
  doi: 10.1039/D0PY00456A
– ident: ref53/cit53
  doi: 10.1016/S0379-6779(97)80097-5
– ident: ref50/cit50
  doi: 10.1103/PhysRevB.93.235203
– ident: ref55/cit55
  doi: 10.1002/adfm.202005901
– ident: ref10/cit10
  doi: 10.1021/acscentsci.6b00073
– ident: ref60/cit60
  doi: 10.1002/anie.202007589
– ident: ref28/cit28
  doi: 10.1021/ja403624a
– ident: ref7/cit7
  doi: 10.1038/s41563-020-0778-5
– ident: ref21/cit21
  doi: 10.1021/ja403906d
– ident: ref1/cit1
  doi: 10.1021/jacs.5b00945
– ident: ref22/cit22
  doi: 10.1039/D0TA01087A
– ident: ref16/cit16
  doi: 10.1039/D0TC02828B
– ident: ref23/cit23
  doi: 10.1002/aenm.201900817
– ident: ref56/cit56
  doi: 10.1016/j.sna.2006.04.024
– ident: ref57/cit57
  doi: 10.1016/j.chempr.2021.01.020
– ident: ref46/cit46
  doi: 10.1002/anie.201408067
– ident: ref19/cit19
  doi: 10.1038/s41467-018-03302-z
– ident: ref8/cit8
  doi: 10.1002/pssa.201228310
– ident: ref41/cit41
  doi: 10.1038/ncomms3238
– ident: ref9/cit9
  doi: 10.1021/acs.accounts.5b00438
– ident: ref24/cit24
  doi: 10.1039/C8TA05922E
– ident: ref4/cit4
  doi: 10.1002/adma.202005946
– ident: ref54/cit54
  doi: 10.1002/adma.201606928
– ident: ref12/cit12
  doi: 10.1039/C5TC04207K
– ident: ref14/cit14
  doi: 10.1038/s41563-018-0263-6
– ident: ref47/cit47
  doi: 10.1002/anie.201713415
– ident: ref48/cit48
  doi: 10.1002/anie.202011537
– ident: ref3/cit3
  doi: 10.1021/jacs.0c05699
– ident: ref59/cit59
  doi: 10.1038/s41563-020-0618-7
– ident: ref6/cit6
  doi: 10.1021/acs.chemmater.9b01422
– volume-title: Semiconducting and Metallic Polymers
  year: 2010
  ident: ref5/cit5
– ident: ref25/cit25
  doi: 10.1021/ja00471a081
– ident: ref30/cit30
  doi: 10.1002/aelm.201600004
– ident: ref29/cit29
  doi: 10.1021/ja412533d
– ident: ref42/cit42
  doi: 10.1021/ja103173m
– ident: ref36/cit36
  doi: 10.1002/adma.201304866
– ident: ref15/cit15
  doi: 10.1038/s41586-019-1504-9
– ident: ref52/cit52
  doi: 10.1039/D0CS00204F
– ident: ref40/cit40
  doi: 10.1002/aelm.201700581
– ident: ref35/cit35
  doi: 10.1021/cr3001109
– ident: ref37/cit37
  doi: 10.1039/D0PY01491E
– ident: ref43/cit43
  doi: 10.1063/1.3689760
– ident: ref27/cit27
  doi: 10.1002/adma.201305981
– ident: ref20/cit20
  doi: 10.1002/adma.201103238
– ident: ref17/cit17
  doi: 10.1002/adma.200903628
SSID ssj0002467
Score 2.616046
Snippet Conspectus Molecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by...
ConspectusMolecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2871
Title Achieving Efficient n‑Doping of Conjugated Polymers by Molecular Dopants
URI http://dx.doi.org/10.1021/acs.accounts.1c00223
https://www.proquest.com/docview/2543704672
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3rxLdYXEbx42LqbZF_HsraUQlXQQm9LXouPsit2e6gn_4J_0V_iZLtbqSLVa0hCmEwy8yUz3yB0prkbUpcCUrV9YTEZBhaXTFoy0D4ljhSq4O7sXXmdPusO3MEXUPz-g0-cCy5HMHVROcGECRmjQ5fRCvHgHBtXKLqd3byEeVOOTIDILGCkSpX7ZRZjkORo3iDN38eFkWlvoOsqVWcaW_LUGOeiIV9_Mjf-cf2baL30N3FzqiBbaEmn22g1qsq87aBuU94_aPOsgFsFnQRYIZx-vL1fFqlUOEtwlKWPY_PcpvBNNpyYl24sJrhXVdbF0NWE0-yifrt1F3WsssCCxWno5JakngQ4qGyfa6K4Vo5KAio9ITgX1JaAHgOmOGNKA-b2A-FpOK-AKAWhmnsh3UO1NEv1PsKuSuDyAHUIbMH8hHFQAhmwxFWhVuCk1dE5CCIuD8goLv6-iRObxko6cSmdOqLVjsSyZCo3BTOGC0ZZs1HPU6aOBf1Pq82OQeTmn4SnOhuPYsMP4NugS-TgH6s-RGvExLsU4YRHqJa_jPUxOCy5OCm09BNWFuq1
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSgQxEC1cDnpxF3cjePHQ2p2kt-MwKuMyIrjgrcnWuNEt9sxBT_6Cv-iXWMl0jyiIeA1JqFQqtSSVVwDbRoQpCxlGqn4sPa7SxBOKK08lJmY0UFI77M7uWdS54sc34c0IhM1fGCSiwpkq94j_hS4Q7Nk2MSigYLOFrO1hozCO_gi1gt1qXwwVMOXRACoTI2WecNr8mPtlFmuXVPXdLn1Xy87WHE7D9ZBKl2LysNvvyV31-gPA8d_LmIGp2vskrYG4zMKIKeZgot0UfZuH45a6vTP2koEcOHAJtEmk-Hh733cfq0iZk3ZZ3Pft5Zsm5-Xji733JvKFdJs6uwS72uSaBbg6PLhsd7y63IInWBr0PMUihcGh9mNhqBZGBzpPmIqkFEIyX2EsmXAtONcGI_A4kZHB04vxpaTMiChlizBWlIVZAhLqHFUJCkfiSx7nXKBIqITnoU6NRpdtGXaQEVl9XKrMvYTTILONDXeymjvLwJqNyVSNW27LZzz-Mcobjnoa4Hb80X-r2fMMWW5fTURhyn6VWbSA2EeRoiv_oHoTJjqX3dPs9OjsZBUmqc2EcYmGazDWe-6bdXRlenLDCe4nqkzzFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aQb34Ft9G8OJhdXeTfR1LH9RqS0EF8bLktfgou-K2h3ryL_gX_SVO0t1iBRG9hiRMJpPMTGbyDULHinkR8Qh4qnbALSqi0GKCCkuEKiCuI7g02J2drt-6oe1b7_ZLqS8gIoeZchPE16f6WSYFwoBzptvZuIiCzhjS-ofMojkdudPCXa1dTS5hl_pjuEzwlmlI3fLX3A-zaN0k8mndNH01G33TXEZ3E0pNmsnT6XDAT8XrNxDHfy1lBS0VViiujsVmFc2odA0t1Mrib-uoXRX3D0o_NuCGAZkA3YTTj7f3uvlghbME17L0cagf4STuZf2Rfv_GfIQ7Zb1dDF11ks0Gumk2rmstqyi7YDESOQNLEF-AkyjtgClXMiUdmYRE-JwzxoktwKcMqWSUSgWeeBByX8EpBj-Tu0QxPyKbqJJmqdpC2JMJXCkgJKHNaZBQBqIhQpp4MlISTLdtdAKMiItjk8cmIu46sW4suRMX3NlGpNycWBT45bqMRv-XUdZk1PMYv-OX_kflvsfAch09YanKhnmsUQMCG8TK3fkD1Ydovldvxpfn3YtdtOjqhBiTb7iHKoOXodoHi2bAD4zsfgJuY_WZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Efficient+n%E2%80%91Doping+of+Conjugated+Polymers+by+Molecular+Dopants&rft.jtitle=Accounts+of+chemical+research&rft.au=Lu%2C+Yang&rft.au=Wang%2C+Jie-Yu&rft.au=Pei%2C+Jian&rft.date=2021-07-06&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=54&rft.issue=13&rft.spage=2871&rft.epage=2883&rft_id=info:doi/10.1021%2Facs.accounts.1c00223&rft.externalDocID=a554090715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon