Mechanics, Ionics, and Optics of Metal–Organic Framework and Coordination Polymer Glasses
Melt and glassy states of coordination polymers (CPs)/metal–organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting te...
Saved in:
Published in | Nano letters Vol. 21; no. 15; pp. 6382 - 6390 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
11.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Melt and glassy states of coordination polymers (CPs)/metal–organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting temperatures in the range of 60–593 °C. Here, we discuss the mechanism of crystal melting, glass structures, and mechanical properties by considering both experimental and theoretical studies. High and exclusive H+ or Li+ conductivities in moldable CP glasses have been proven in the all-solid-state devices such as fuel cells or secondary batteries. Transparent glasses with wide composition and available dopants are also attractive for nonlinear optics, photoconductivity, emission, and light-harvesting. The ongoing challenge in the field is to develop the design principles of CP/MOF melts and glasses, corresponding functions of mass (ion, electron, photon, phonon, and so forth). transport and conversion, and the integration of devices with the use of their tunable mechanical properties. |
---|---|
AbstractList | Melt and glassy states of coordination polymers (CPs)/metal-organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting temperatures in the range of 60-593 °C. Here, we discuss the mechanism of crystal melting, glass structures, and mechanical properties by considering both experimental and theoretical studies. High and exclusive H+ or Li+ conductivities in moldable CP glasses have been proven in the all-solid-state devices such as fuel cells or secondary batteries. Transparent glasses with wide composition and available dopants are also attractive for nonlinear optics, photoconductivity, emission, and light-harvesting. The ongoing challenge in the field is to develop the design principles of CP/MOF melts and glasses, corresponding functions of mass (ion, electron, photon, phonon, and so forth). transport and conversion, and the integration of devices with the use of their tunable mechanical properties.Melt and glassy states of coordination polymers (CPs)/metal-organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting temperatures in the range of 60-593 °C. Here, we discuss the mechanism of crystal melting, glass structures, and mechanical properties by considering both experimental and theoretical studies. High and exclusive H+ or Li+ conductivities in moldable CP glasses have been proven in the all-solid-state devices such as fuel cells or secondary batteries. Transparent glasses with wide composition and available dopants are also attractive for nonlinear optics, photoconductivity, emission, and light-harvesting. The ongoing challenge in the field is to develop the design principles of CP/MOF melts and glasses, corresponding functions of mass (ion, electron, photon, phonon, and so forth). transport and conversion, and the integration of devices with the use of their tunable mechanical properties. Melt and glassy states of coordination polymers (CPs)/metal–organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting temperatures in the range of 60–593 °C. Here, we discuss the mechanism of crystal melting, glass structures, and mechanical properties by considering both experimental and theoretical studies. High and exclusive H+ or Li+ conductivities in moldable CP glasses have been proven in the all-solid-state devices such as fuel cells or secondary batteries. Transparent glasses with wide composition and available dopants are also attractive for nonlinear optics, photoconductivity, emission, and light-harvesting. The ongoing challenge in the field is to develop the design principles of CP/MOF melts and glasses, corresponding functions of mass (ion, electron, photon, phonon, and so forth). transport and conversion, and the integration of devices with the use of their tunable mechanical properties. |
Author | Ma, Nattapol Kosasang, Soracha Smedskjaer, Morten M Fan, Zeyu Horike, Satoshi |
AuthorAffiliation | Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering Institute for Integrated Cell-Material Sciences, Institute for Advanced Study AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) National Institute of Advanced Industrial Science and Technology (AIST) Department of Chemistry and Bioscience Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Department of Materials Science and Engineering, School of Molecular Science and Engineering |
AuthorAffiliation_xml | – name: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering – name: AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) – name: National Institute of Advanced Industrial Science and Technology (AIST) – name: Institute for Integrated Cell-Material Sciences, Institute for Advanced Study – name: Department of Chemistry and Bioscience – name: Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering – name: Department of Materials Science and Engineering, School of Molecular Science and Engineering |
Author_xml | – sequence: 1 givenname: Satoshi orcidid: 0000-0001-8530-6364 surname: Horike fullname: Horike, Satoshi email: horike@icems.kyoto-u.ac.jp organization: Department of Materials Science and Engineering, School of Molecular Science and Engineering – sequence: 2 givenname: Nattapol orcidid: 0000-0002-6162-1834 surname: Ma fullname: Ma, Nattapol organization: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering – sequence: 3 givenname: Zeyu surname: Fan fullname: Fan, Zeyu organization: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering – sequence: 4 givenname: Soracha surname: Kosasang fullname: Kosasang, Soracha organization: Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering – sequence: 5 givenname: Morten M orcidid: 0000-0003-0476-2021 surname: Smedskjaer fullname: Smedskjaer, Morten M email: mos@bio.aau.dk organization: Department of Chemistry and Bioscience |
BookMark | eNqFkLtOw0AQRVcIJJLAH1C4pMBhn37QoYiESIlCARWFNV6vwcHeDbsboXT8A3_Il-DEgYICqrnS3DManT461EYrhM4IHhJMySVIN9SgTa28HxKJiUj5AeoRwXAYpSk9_MkJP0Z955YY45QJ3EOPcyWfQVfSXQRT003QRbBY-TYHpgzmykP9-f6xsE_bXjC20Kg3Y192vZExtqg0-Mro4M7Um0bZYFKDc8qdoKMSaqdO93OAHsY396PbcLaYTEfXsxBYSnyYAy4FYMpTVkIcRyBoGSUEi1ywUkjgtIw5wzkTIuJxqqK4YFzFqSwSEfOcsgE67-6urHldK-ezpnJS1TVoZdYuo0IwQSlLorZ61VWlNc5ZVWay8rvnvYWqzgjOtkaz1mj2bTTbG21h_gte2aoBu_kPwx223S7N2upWxt_IFzp_knI |
CitedBy_id | crossref_primary_10_1021_jacs_3c01455 crossref_primary_10_1039_D3SD00188A crossref_primary_10_1039_D1SC06751F crossref_primary_10_2174_0115701786291281240318041709 crossref_primary_10_1016_j_matt_2024_04_004 crossref_primary_10_1016_j_mseb_2023_116891 crossref_primary_10_1016_j_matchemphys_2023_128845 crossref_primary_10_1021_acs_chemmater_3c00392 crossref_primary_10_1002_ange_202208735 crossref_primary_10_1002_adfm_202307226 crossref_primary_10_1021_acsnano_3c11725 crossref_primary_10_4019_bjscc_81_74 crossref_primary_10_1016_j_matdes_2022_111094 crossref_primary_10_1007_s12274_022_5114_8 crossref_primary_10_1038_s41467_022_35372_5 crossref_primary_10_1038_s41467_024_45326_8 crossref_primary_10_1039_D4SC05053C crossref_primary_10_1016_j_ccr_2022_214646 crossref_primary_10_1021_acs_chemmater_2c00654 crossref_primary_10_1021_acs_chemrev_1c00826 crossref_primary_10_1021_acs_inorgchem_2c02709 crossref_primary_10_1021_acs_inorgchem_5c00255 crossref_primary_10_1021_acs_nanolett_2c03207 crossref_primary_10_1038_s41467_022_31658_w crossref_primary_10_1039_D2DT00197G crossref_primary_10_1039_D4SC01793E crossref_primary_10_1039_D2DT00728B crossref_primary_10_1039_D2CE00661H crossref_primary_10_3390_molecules27196677 crossref_primary_10_1002_smll_202307034 crossref_primary_10_1246_bcsj_20230152 crossref_primary_10_1039_D1CC03541J crossref_primary_10_1021_acs_chemmater_2c01536 crossref_primary_10_1021_acs_inorgchem_2c01978 crossref_primary_10_1002_admt_202200343 crossref_primary_10_1007_s40995_023_01544_1 crossref_primary_10_3390_chemosensors12070135 crossref_primary_10_1016_j_jnoncrysol_2025_123504 crossref_primary_10_1002_adem_202400117 crossref_primary_10_1002_adfm_202501311 crossref_primary_10_1021_acs_inorgchem_2c02580 crossref_primary_10_1002_aenm_202405593 crossref_primary_10_1016_j_saa_2024_124401 crossref_primary_10_1021_jacs_3c01821 crossref_primary_10_1002_anie_202208735 crossref_primary_10_1080_00958972_2022_2090246 crossref_primary_10_1021_jacs_3c13156 crossref_primary_10_1039_D4CC02925A crossref_primary_10_1039_D3CC04518H crossref_primary_10_1021_acsomega_4c00676 crossref_primary_10_1039_D1CS00759A crossref_primary_10_1021_jacs_2c08624 |
Cites_doi | 10.1039/D1DT00096A 10.1126/science.aaz0251 10.1002/anie.201700962 10.1073/pnas.2000916117 10.1021/jp0661286 10.1039/D1SC00392E 10.1002/anie.201600123 10.1021/acs.jpclett.8b03348 10.1364/OL.44.001623 10.1364/AO.49.00D157 10.1021/ja301875x 10.1021/jacs.0c11718 10.1021/acs.jpcc.8b00385 10.1038/s41467-020-16382-7 10.1021/ja412807w 10.1038/s41563-019-0317-4 10.26434/chemrxiv.13649816.v1 10.1038/s41578-019-0165-5 10.1038/ncomms9079 10.1039/D0SC01737J 10.1126/science.267.5206.1924 10.1038/19042 10.1021/acs.chemmater.0c02950 10.1039/C8CC02399A 10.1021/acs.inorgchem.0c00806 10.1002/adfm.201908292 10.1016/j.scriptamat.2017.05.005 10.1039/D0SC02258F 10.1063/5.0021045 10.1002/adma.201901803 10.1021/acs.nanolett.0c03313 10.1021/jacs.8b11548 10.1002/anie.201911384 10.1021/jacs.8b11357 10.1038/nmat4998 10.1126/sciadv.aao6827 10.1002/anie.201915807 10.1016/j.jnoncrysol.2017.05.019 10.1021/ja511019u |
ContentType | Journal Article |
Copyright | 2021 American
Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.nanolett.1c01594 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 6390 |
ExternalDocumentID | 10_1021_acs_nanolett_1c01594 c548239311 |
GroupedDBID | - 123 4.4 55A 5VS 7~N AABXI ABFRP ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED F5P GGK GNL IH9 IHE JG K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X .K2 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV CITATION CUPRZ ED~ JG~ 7X8 |
ID | FETCH-LOGICAL-a391t-ba0f5a02493fa776a52f68105b53f5ca42f7430b3556479e67d34e79cd8574b23 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Jul 10 18:17:20 EDT 2025 Tue Jul 01 04:09:54 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Mon Jan 24 19:37:18 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | coordination polymers ion conductivity metal−organic frameworks mechanical properties Glass |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a391t-ba0f5a02493fa776a52f68105b53f5ca42f7430b3556479e67d34e79cd8574b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8530-6364 0000-0002-6162-1834 0000-0003-0476-2021 |
PQID | 2553522386 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2553522386 crossref_citationtrail_10_1021_acs_nanolett_1c01594 crossref_primary_10_1021_acs_nanolett_1c01594 acs_journals_10_1021_acs_nanolett_1c01594 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-11 |
PublicationDateYYYYMMDD | 2021-08-11 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref23/cit23 doi: 10.1039/D1DT00096A – ident: ref9/cit9 doi: 10.1126/science.aaz0251 – ident: ref29/cit29 doi: 10.1002/anie.201700962 – ident: ref20/cit20 doi: 10.1073/pnas.2000916117 – ident: ref27/cit27 doi: 10.1021/jp0661286 – ident: ref28/cit28 doi: 10.1039/D1SC00392E – ident: ref5/cit5 doi: 10.1002/anie.201600123 – ident: ref15/cit15 doi: 10.1021/acs.jpclett.8b03348 – ident: ref32/cit32 doi: 10.1364/OL.44.001623 – ident: ref33/cit33 doi: 10.1364/AO.49.00D157 – ident: ref7/cit7 doi: 10.1021/ja301875x – ident: ref6/cit6 doi: 10.1021/jacs.0c11718 – ident: ref17/cit17 doi: 10.1021/acs.jpcc.8b00385 – ident: ref22/cit22 doi: 10.1038/s41467-020-16382-7 – ident: ref39/cit39 doi: 10.1021/ja412807w – ident: ref8/cit8 doi: 10.1038/s41563-019-0317-4 – ident: ref12/cit12 doi: 10.26434/chemrxiv.13649816.v1 – ident: ref25/cit25 doi: 10.1038/s41578-019-0165-5 – ident: ref3/cit3 doi: 10.1038/ncomms9079 – ident: ref26/cit26 doi: 10.1039/D0SC01737J – ident: ref37/cit37 doi: 10.1126/science.267.5206.1924 – ident: ref11/cit11 doi: 10.1038/19042 – ident: ref18/cit18 doi: 10.1021/acs.chemmater.0c02950 – ident: ref30/cit30 doi: 10.1039/C8CC02399A – ident: ref34/cit34 doi: 10.1021/acs.inorgchem.0c00806 – ident: ref36/cit36 doi: 10.1002/adfm.201908292 – ident: ref24/cit24 doi: 10.1016/j.scriptamat.2017.05.005 – ident: ref35/cit35 doi: 10.1039/D0SC02258F – ident: ref38/cit38 doi: 10.1063/5.0021045 – ident: ref14/cit14 doi: 10.1002/adma.201901803 – ident: ref31/cit31 doi: 10.1021/acs.nanolett.0c03313 – ident: ref13/cit13 doi: 10.1021/jacs.8b11548 – ident: ref4/cit4 doi: 10.1002/anie.201911384 – ident: ref21/cit21 doi: 10.1021/jacs.8b11357 – ident: ref16/cit16 doi: 10.1038/nmat4998 – ident: ref10/cit10 doi: 10.1126/sciadv.aao6827 – ident: ref19/cit19 doi: 10.1002/anie.201915807 – ident: ref1/cit1 doi: 10.1016/j.jnoncrysol.2017.05.019 – ident: ref2/cit2 doi: 10.1021/ja511019u |
SSID | ssj0009350 |
Score | 2.5664265 |
SecondaryResourceType | review_article |
Snippet | Melt and glassy states of coordination polymers (CPs)/metal–organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many... Melt and glassy states of coordination polymers (CPs)/metal-organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6382 |
Title | Mechanics, Ionics, and Optics of Metal–Organic Framework and Coordination Polymer Glasses |
URI | http://dx.doi.org/10.1021/acs.nanolett.1c01594 https://www.proquest.com/docview/2553522386 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnrwLa4vIngR7GqTJk2Psrg-YFXQBcFDSbIJLK6t2O5BT_4H_6G_xEkf6iqingolCelMpvNNMvMFoW1uhAmFtV7IrPQCE1JPUK49cKVSaWqJKbLdO2f8uBucXrPrj0Dx6wk-8fekzpqJTFL4jLzpa3BfUTCOJgkHO3ZQqHX5QbJLixtZwYghJIpEUJfK_TCKc0g6G3VIo__jwsm0Z9F5XapT5pbcNoe5auqn78yNf5z_HJqp8CY-KBfIPBozyQKa_sRCuIhuOsaV__Z1totP0vIpkx4-v3cUzji1uGMAor8-v5SFmxq364yuol0rhQC2X-4q4ot08HhnHvCRQ-UmW0Ld9uFV69ir7lzwJI383FNy3zLpeASplWHIJSPWUZYxxahlWgbEAubYVwBTeBBGoMkeBQ1HuidYGChCl9FEkiZmBWFBqe1BxCkFMwFXMhJWKGMJjOFrHrEG2gHZxJXNZHFxHE782L2sBRZXAmsgWisp1hV5ubtDY_BLL--9131J3vFL-61a_zFYmTs6kYlJh1kMgZdDqlTw1X_Meg1NEZcC4xh0_XU0kT8MzQZgmFxtFgv3DQA97-c |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64HNSDu7gbwYtgx2nTtOlRBsdxGRVcEDyUJJOAqK3YzkFP_gf_ob_Ely5uIOKpEJKQ5aXve3nvfQHYCDTXITfGCZkRjq9D6nAaKAdVqZCKGk8X0e7d46Bz4R9csasBYHUuDA4iw56ywon_yS7gbtuyRCQpziZvuAq1WOQPwjDiEc8K9k7r7JNrlxYPs-JZRsso4n6dMfdLL1Yvqey7Xvr-Wy50TXsCLj9GWYSY3Db6uWyo5x8Ejv-exiSMV-iT7JTiMgUDOpmGsS-chDNw3dU2GfhGZVtkPy2_IumRkwdL6ExSQ7oaAfvby2uZxqlIu47vKuq1UjRnb8o7RnKa3j3d60eyZzG6zmbhor173uo41QsMjqCRmztSNA0TllWQGhGGgWCesQRmTDJqmBK-ZxCBNCWClsAPI9zXHsX9jlSPs9CXHp2DoSRN9DwQTqnpof0pONN-IEXEDZfaeNiHq4KILcAmrk1cnaAsLpzjnhvbwnrB4mrBFoDWexWrisrcvqhx90cr56PVQ0nl8Uf99VoMYjxz1pEiEp32sxjNMItbKQ8W_zHqNRjpnHeP4qP948MlGPVscIzl1nWXYSh_7OsVRDe5XC1k-R0AbvhI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66gujBt_g2ghfBrtumadPjsro-VwUVRA8lSRNYXNvFdg968j_4D_0lTvrwBSJ6KoQkpMlM55vO5BuENj3FlM-0tnyqueUqn1iMeNICU8qFJNpRebZ759Q7uHKPrun1p1JfsIgUZkrzIL7R6n6kS4YBe8e0xzxO4I2yui3BkgXuMBoxkTsj3M3WxQffLsmLs4I-g3cUMLe6NffDLMY2yfSrbfr6ac7tTXsS3byvNE8zuasPMlGXT99IHP_1KlNookShuFmIzTQaUvEMGv_ETTiLbjvKXAruynQbHybFk8cRPusbYmecaNxRANxfn1-K65wSt6s8r7xfKwG3tlv8a8TnSe_xXj3gfYPVVTqHrtp7l60Dq6zEYHES2JkleENTbtgFiea-73HqaENkRgUlmkruOhqQSEMAePFcP4DzjQiceyAjRn1XOGQe1eIkVgsIM0J0BH4oZ1S5nuAB00wo7cActvQCuoi2YG_CUpPSMA-SO3ZoGqsNC8sNW0SkOq9QlpTmprJG75dR1vuofkHp8Uv_jUoUQtA9E1DhsUoGaQjumMGvhHlLf1j1Oho9322HJ4enx8tozDE5MoZi115BtexhoFYB5GRiLRfnN_kC-ss |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanics%2C+Ionics%2C+and+Optics+of+Metal%E2%80%93Organic+Framework+and+Coordination+Polymer+Glasses&rft.jtitle=Nano+letters&rft.au=Horike%2C+Satoshi&rft.au=Ma%2C+Nattapol&rft.au=Fan%2C+Zeyu&rft.au=Kosasang%2C+Soracha&rft.date=2021-08-11&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=21&rft.issue=15&rft.spage=6382&rft.epage=6390&rft_id=info:doi/10.1021%2Facs.nanolett.1c01594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_1c01594 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |