Mechanics, Ionics, and Optics of Metal–Organic Framework and Coordination Polymer Glasses

Melt and glassy states of coordination polymers (CPs)/metal–organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting te...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 21; no. 15; pp. 6382 - 6390
Main Authors Horike, Satoshi, Ma, Nattapol, Fan, Zeyu, Kosasang, Soracha, Smedskjaer, Morten M
Format Journal Article
LanguageEnglish
Published American Chemical Society 11.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Melt and glassy states of coordination polymers (CPs)/metal–organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting temperatures in the range of 60–593 °C. Here, we discuss the mechanism of crystal melting, glass structures, and mechanical properties by considering both experimental and theoretical studies. High and exclusive H+ or Li+ conductivities in moldable CP glasses have been proven in the all-solid-state devices such as fuel cells or secondary batteries. Transparent glasses with wide composition and available dopants are also attractive for nonlinear optics, photoconductivity, emission, and light-harvesting. The ongoing challenge in the field is to develop the design principles of CP/MOF melts and glasses, corresponding functions of mass (ion, electron, photon, phonon, and so forth). transport and conversion, and the integration of devices with the use of their tunable mechanical properties.
AbstractList Melt and glassy states of coordination polymers (CPs)/metal-organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting temperatures in the range of 60-593 °C. Here, we discuss the mechanism of crystal melting, glass structures, and mechanical properties by considering both experimental and theoretical studies. High and exclusive H+ or Li+ conductivities in moldable CP glasses have been proven in the all-solid-state devices such as fuel cells or secondary batteries. Transparent glasses with wide composition and available dopants are also attractive for nonlinear optics, photoconductivity, emission, and light-harvesting. The ongoing challenge in the field is to develop the design principles of CP/MOF melts and glasses, corresponding functions of mass (ion, electron, photon, phonon, and so forth). transport and conversion, and the integration of devices with the use of their tunable mechanical properties.Melt and glassy states of coordination polymers (CPs)/metal-organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting temperatures in the range of 60-593 °C. Here, we discuss the mechanism of crystal melting, glass structures, and mechanical properties by considering both experimental and theoretical studies. High and exclusive H+ or Li+ conductivities in moldable CP glasses have been proven in the all-solid-state devices such as fuel cells or secondary batteries. Transparent glasses with wide composition and available dopants are also attractive for nonlinear optics, photoconductivity, emission, and light-harvesting. The ongoing challenge in the field is to develop the design principles of CP/MOF melts and glasses, corresponding functions of mass (ion, electron, photon, phonon, and so forth). transport and conversion, and the integration of devices with the use of their tunable mechanical properties.
Melt and glassy states of coordination polymers (CPs)/metal–organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting temperatures in the range of 60–593 °C. Here, we discuss the mechanism of crystal melting, glass structures, and mechanical properties by considering both experimental and theoretical studies. High and exclusive H+ or Li+ conductivities in moldable CP glasses have been proven in the all-solid-state devices such as fuel cells or secondary batteries. Transparent glasses with wide composition and available dopants are also attractive for nonlinear optics, photoconductivity, emission, and light-harvesting. The ongoing challenge in the field is to develop the design principles of CP/MOF melts and glasses, corresponding functions of mass (ion, electron, photon, phonon, and so forth). transport and conversion, and the integration of devices with the use of their tunable mechanical properties.
Author Ma, Nattapol
Kosasang, Soracha
Smedskjaer, Morten M
Fan, Zeyu
Horike, Satoshi
AuthorAffiliation Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering
Institute for Integrated Cell-Material Sciences, Institute for Advanced Study
AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)
National Institute of Advanced Industrial Science and Technology (AIST)
Department of Chemistry and Bioscience
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
Department of Materials Science and Engineering, School of Molecular Science and Engineering
AuthorAffiliation_xml – name: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
– name: AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)
– name: National Institute of Advanced Industrial Science and Technology (AIST)
– name: Institute for Integrated Cell-Material Sciences, Institute for Advanced Study
– name: Department of Chemistry and Bioscience
– name: Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering
– name: Department of Materials Science and Engineering, School of Molecular Science and Engineering
Author_xml – sequence: 1
  givenname: Satoshi
  orcidid: 0000-0001-8530-6364
  surname: Horike
  fullname: Horike, Satoshi
  email: horike@icems.kyoto-u.ac.jp
  organization: Department of Materials Science and Engineering, School of Molecular Science and Engineering
– sequence: 2
  givenname: Nattapol
  orcidid: 0000-0002-6162-1834
  surname: Ma
  fullname: Ma, Nattapol
  organization: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
– sequence: 3
  givenname: Zeyu
  surname: Fan
  fullname: Fan, Zeyu
  organization: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
– sequence: 4
  givenname: Soracha
  surname: Kosasang
  fullname: Kosasang, Soracha
  organization: Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering
– sequence: 5
  givenname: Morten M
  orcidid: 0000-0003-0476-2021
  surname: Smedskjaer
  fullname: Smedskjaer, Morten M
  email: mos@bio.aau.dk
  organization: Department of Chemistry and Bioscience
BookMark eNqFkLtOw0AQRVcIJJLAH1C4pMBhn37QoYiESIlCARWFNV6vwcHeDbsboXT8A3_Il-DEgYICqrnS3DManT461EYrhM4IHhJMySVIN9SgTa28HxKJiUj5AeoRwXAYpSk9_MkJP0Z955YY45QJ3EOPcyWfQVfSXQRT003QRbBY-TYHpgzmykP9-f6xsE_bXjC20Kg3Y192vZExtqg0-Mro4M7Um0bZYFKDc8qdoKMSaqdO93OAHsY396PbcLaYTEfXsxBYSnyYAy4FYMpTVkIcRyBoGSUEi1ywUkjgtIw5wzkTIuJxqqK4YFzFqSwSEfOcsgE67-6urHldK-ezpnJS1TVoZdYuo0IwQSlLorZ61VWlNc5ZVWay8rvnvYWqzgjOtkaz1mj2bTTbG21h_gte2aoBu_kPwx223S7N2upWxt_IFzp_knI
CitedBy_id crossref_primary_10_1021_jacs_3c01455
crossref_primary_10_1039_D3SD00188A
crossref_primary_10_1039_D1SC06751F
crossref_primary_10_2174_0115701786291281240318041709
crossref_primary_10_1016_j_matt_2024_04_004
crossref_primary_10_1016_j_mseb_2023_116891
crossref_primary_10_1016_j_matchemphys_2023_128845
crossref_primary_10_1021_acs_chemmater_3c00392
crossref_primary_10_1002_ange_202208735
crossref_primary_10_1002_adfm_202307226
crossref_primary_10_1021_acsnano_3c11725
crossref_primary_10_4019_bjscc_81_74
crossref_primary_10_1016_j_matdes_2022_111094
crossref_primary_10_1007_s12274_022_5114_8
crossref_primary_10_1038_s41467_022_35372_5
crossref_primary_10_1038_s41467_024_45326_8
crossref_primary_10_1039_D4SC05053C
crossref_primary_10_1016_j_ccr_2022_214646
crossref_primary_10_1021_acs_chemmater_2c00654
crossref_primary_10_1021_acs_chemrev_1c00826
crossref_primary_10_1021_acs_inorgchem_2c02709
crossref_primary_10_1021_acs_inorgchem_5c00255
crossref_primary_10_1021_acs_nanolett_2c03207
crossref_primary_10_1038_s41467_022_31658_w
crossref_primary_10_1039_D2DT00197G
crossref_primary_10_1039_D4SC01793E
crossref_primary_10_1039_D2DT00728B
crossref_primary_10_1039_D2CE00661H
crossref_primary_10_3390_molecules27196677
crossref_primary_10_1002_smll_202307034
crossref_primary_10_1246_bcsj_20230152
crossref_primary_10_1039_D1CC03541J
crossref_primary_10_1021_acs_chemmater_2c01536
crossref_primary_10_1021_acs_inorgchem_2c01978
crossref_primary_10_1002_admt_202200343
crossref_primary_10_1007_s40995_023_01544_1
crossref_primary_10_3390_chemosensors12070135
crossref_primary_10_1016_j_jnoncrysol_2025_123504
crossref_primary_10_1002_adem_202400117
crossref_primary_10_1002_adfm_202501311
crossref_primary_10_1021_acs_inorgchem_2c02580
crossref_primary_10_1002_aenm_202405593
crossref_primary_10_1016_j_saa_2024_124401
crossref_primary_10_1021_jacs_3c01821
crossref_primary_10_1002_anie_202208735
crossref_primary_10_1080_00958972_2022_2090246
crossref_primary_10_1021_jacs_3c13156
crossref_primary_10_1039_D4CC02925A
crossref_primary_10_1039_D3CC04518H
crossref_primary_10_1021_acsomega_4c00676
crossref_primary_10_1039_D1CS00759A
crossref_primary_10_1021_jacs_2c08624
Cites_doi 10.1039/D1DT00096A
10.1126/science.aaz0251
10.1002/anie.201700962
10.1073/pnas.2000916117
10.1021/jp0661286
10.1039/D1SC00392E
10.1002/anie.201600123
10.1021/acs.jpclett.8b03348
10.1364/OL.44.001623
10.1364/AO.49.00D157
10.1021/ja301875x
10.1021/jacs.0c11718
10.1021/acs.jpcc.8b00385
10.1038/s41467-020-16382-7
10.1021/ja412807w
10.1038/s41563-019-0317-4
10.26434/chemrxiv.13649816.v1
10.1038/s41578-019-0165-5
10.1038/ncomms9079
10.1039/D0SC01737J
10.1126/science.267.5206.1924
10.1038/19042
10.1021/acs.chemmater.0c02950
10.1039/C8CC02399A
10.1021/acs.inorgchem.0c00806
10.1002/adfm.201908292
10.1016/j.scriptamat.2017.05.005
10.1039/D0SC02258F
10.1063/5.0021045
10.1002/adma.201901803
10.1021/acs.nanolett.0c03313
10.1021/jacs.8b11548
10.1002/anie.201911384
10.1021/jacs.8b11357
10.1038/nmat4998
10.1126/sciadv.aao6827
10.1002/anie.201915807
10.1016/j.jnoncrysol.2017.05.019
10.1021/ja511019u
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.nanolett.1c01594
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 6390
ExternalDocumentID 10_1021_acs_nanolett_1c01594
c548239311
GroupedDBID -
123
4.4
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
.K2
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
CITATION
CUPRZ
ED~
JG~
7X8
ID FETCH-LOGICAL-a391t-ba0f5a02493fa776a52f68105b53f5ca42f7430b3556479e67d34e79cd8574b23
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu Jul 10 18:17:20 EDT 2025
Tue Jul 01 04:09:54 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Mon Jan 24 19:37:18 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords coordination polymers
ion conductivity
metal−organic frameworks
mechanical properties
Glass
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a391t-ba0f5a02493fa776a52f68105b53f5ca42f7430b3556479e67d34e79cd8574b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8530-6364
0000-0002-6162-1834
0000-0003-0476-2021
PQID 2553522386
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2553522386
crossref_citationtrail_10_1021_acs_nanolett_1c01594
crossref_primary_10_1021_acs_nanolett_1c01594
acs_journals_10_1021_acs_nanolett_1c01594
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-11
PublicationDateYYYYMMDD 2021-08-11
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-11
  day: 11
PublicationDecade 2020
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1039/D1DT00096A
– ident: ref9/cit9
  doi: 10.1126/science.aaz0251
– ident: ref29/cit29
  doi: 10.1002/anie.201700962
– ident: ref20/cit20
  doi: 10.1073/pnas.2000916117
– ident: ref27/cit27
  doi: 10.1021/jp0661286
– ident: ref28/cit28
  doi: 10.1039/D1SC00392E
– ident: ref5/cit5
  doi: 10.1002/anie.201600123
– ident: ref15/cit15
  doi: 10.1021/acs.jpclett.8b03348
– ident: ref32/cit32
  doi: 10.1364/OL.44.001623
– ident: ref33/cit33
  doi: 10.1364/AO.49.00D157
– ident: ref7/cit7
  doi: 10.1021/ja301875x
– ident: ref6/cit6
  doi: 10.1021/jacs.0c11718
– ident: ref17/cit17
  doi: 10.1021/acs.jpcc.8b00385
– ident: ref22/cit22
  doi: 10.1038/s41467-020-16382-7
– ident: ref39/cit39
  doi: 10.1021/ja412807w
– ident: ref8/cit8
  doi: 10.1038/s41563-019-0317-4
– ident: ref12/cit12
  doi: 10.26434/chemrxiv.13649816.v1
– ident: ref25/cit25
  doi: 10.1038/s41578-019-0165-5
– ident: ref3/cit3
  doi: 10.1038/ncomms9079
– ident: ref26/cit26
  doi: 10.1039/D0SC01737J
– ident: ref37/cit37
  doi: 10.1126/science.267.5206.1924
– ident: ref11/cit11
  doi: 10.1038/19042
– ident: ref18/cit18
  doi: 10.1021/acs.chemmater.0c02950
– ident: ref30/cit30
  doi: 10.1039/C8CC02399A
– ident: ref34/cit34
  doi: 10.1021/acs.inorgchem.0c00806
– ident: ref36/cit36
  doi: 10.1002/adfm.201908292
– ident: ref24/cit24
  doi: 10.1016/j.scriptamat.2017.05.005
– ident: ref35/cit35
  doi: 10.1039/D0SC02258F
– ident: ref38/cit38
  doi: 10.1063/5.0021045
– ident: ref14/cit14
  doi: 10.1002/adma.201901803
– ident: ref31/cit31
  doi: 10.1021/acs.nanolett.0c03313
– ident: ref13/cit13
  doi: 10.1021/jacs.8b11548
– ident: ref4/cit4
  doi: 10.1002/anie.201911384
– ident: ref21/cit21
  doi: 10.1021/jacs.8b11357
– ident: ref16/cit16
  doi: 10.1038/nmat4998
– ident: ref10/cit10
  doi: 10.1126/sciadv.aao6827
– ident: ref19/cit19
  doi: 10.1002/anie.201915807
– ident: ref1/cit1
  doi: 10.1016/j.jnoncrysol.2017.05.019
– ident: ref2/cit2
  doi: 10.1021/ja511019u
SSID ssj0009350
Score 2.5664265
SecondaryResourceType review_article
Snippet Melt and glassy states of coordination polymers (CPs)/metal–organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many...
Melt and glassy states of coordination polymers (CPs)/metal-organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6382
Title Mechanics, Ionics, and Optics of Metal–Organic Framework and Coordination Polymer Glasses
URI http://dx.doi.org/10.1021/acs.nanolett.1c01594
https://www.proquest.com/docview/2553522386
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnrwLa4vIngR7GqTJk2Psrg-YFXQBcFDSbIJLK6t2O5BT_4H_6G_xEkf6iqingolCelMpvNNMvMFoW1uhAmFtV7IrPQCE1JPUK49cKVSaWqJKbLdO2f8uBucXrPrj0Dx6wk-8fekzpqJTFL4jLzpa3BfUTCOJgkHO3ZQqHX5QbJLixtZwYghJIpEUJfK_TCKc0g6G3VIo__jwsm0Z9F5XapT5pbcNoe5auqn78yNf5z_HJqp8CY-KBfIPBozyQKa_sRCuIhuOsaV__Z1totP0vIpkx4-v3cUzji1uGMAor8-v5SFmxq364yuol0rhQC2X-4q4ot08HhnHvCRQ-UmW0Ld9uFV69ir7lzwJI383FNy3zLpeASplWHIJSPWUZYxxahlWgbEAubYVwBTeBBGoMkeBQ1HuidYGChCl9FEkiZmBWFBqe1BxCkFMwFXMhJWKGMJjOFrHrEG2gHZxJXNZHFxHE782L2sBRZXAmsgWisp1hV5ubtDY_BLL--9131J3vFL-61a_zFYmTs6kYlJh1kMgZdDqlTw1X_Meg1NEZcC4xh0_XU0kT8MzQZgmFxtFgv3DQA97-c
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64HNSDu7gbwYtgx2nTtOlRBsdxGRVcEDyUJJOAqK3YzkFP_gf_ob_Ely5uIOKpEJKQ5aXve3nvfQHYCDTXITfGCZkRjq9D6nAaKAdVqZCKGk8X0e7d46Bz4R9csasBYHUuDA4iw56ywon_yS7gbtuyRCQpziZvuAq1WOQPwjDiEc8K9k7r7JNrlxYPs-JZRsso4n6dMfdLL1Yvqey7Xvr-Wy50TXsCLj9GWYSY3Db6uWyo5x8Ejv-exiSMV-iT7JTiMgUDOpmGsS-chDNw3dU2GfhGZVtkPy2_IumRkwdL6ExSQ7oaAfvby2uZxqlIu47vKuq1UjRnb8o7RnKa3j3d60eyZzG6zmbhor173uo41QsMjqCRmztSNA0TllWQGhGGgWCesQRmTDJqmBK-ZxCBNCWClsAPI9zXHsX9jlSPs9CXHp2DoSRN9DwQTqnpof0pONN-IEXEDZfaeNiHq4KILcAmrk1cnaAsLpzjnhvbwnrB4mrBFoDWexWrisrcvqhx90cr56PVQ0nl8Uf99VoMYjxz1pEiEp32sxjNMItbKQ8W_zHqNRjpnHeP4qP948MlGPVscIzl1nWXYSh_7OsVRDe5XC1k-R0AbvhI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66gujBt_g2ghfBrtumadPjsro-VwUVRA8lSRNYXNvFdg968j_4D_0lTvrwBSJ6KoQkpMlM55vO5BuENj3FlM-0tnyqueUqn1iMeNICU8qFJNpRebZ759Q7uHKPrun1p1JfsIgUZkrzIL7R6n6kS4YBe8e0xzxO4I2yui3BkgXuMBoxkTsj3M3WxQffLsmLs4I-g3cUMLe6NffDLMY2yfSrbfr6ac7tTXsS3byvNE8zuasPMlGXT99IHP_1KlNookShuFmIzTQaUvEMGv_ETTiLbjvKXAruynQbHybFk8cRPusbYmecaNxRANxfn1-K65wSt6s8r7xfKwG3tlv8a8TnSe_xXj3gfYPVVTqHrtp7l60Dq6zEYHES2JkleENTbtgFiea-73HqaENkRgUlmkruOhqQSEMAePFcP4DzjQiceyAjRn1XOGQe1eIkVgsIM0J0BH4oZ1S5nuAB00wo7cActvQCuoi2YG_CUpPSMA-SO3ZoGqsNC8sNW0SkOq9QlpTmprJG75dR1vuofkHp8Uv_jUoUQtA9E1DhsUoGaQjumMGvhHlLf1j1Oho9322HJ4enx8tozDE5MoZi115BtexhoFYB5GRiLRfnN_kC-ss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanics%2C+Ionics%2C+and+Optics+of+Metal%E2%80%93Organic+Framework+and+Coordination+Polymer+Glasses&rft.jtitle=Nano+letters&rft.au=Horike%2C+Satoshi&rft.au=Ma%2C+Nattapol&rft.au=Fan%2C+Zeyu&rft.au=Kosasang%2C+Soracha&rft.date=2021-08-11&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=21&rft.issue=15&rft.spage=6382&rft.epage=6390&rft_id=info:doi/10.1021%2Facs.nanolett.1c01594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_1c01594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon