Transition Metal-Catalyzed Tandem Reactions of Ynamides for Divergent N‑Heterocycle Synthesis
Conspectus Ynamides are electron-rich heteroatom-substituted alkynes with a C–C triple bond directly attached to the amide group. Importantly, this amide group is able to impose an electronic bias, thus resulting in the highly regioselective attack of this polarized alkyne by a large variety of nucl...
Saved in:
Published in | Accounts of chemical research Vol. 53; no. 9; pp. 2003 - 2019 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
15.09.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Ynamides are electron-rich heteroatom-substituted alkynes with a C–C triple bond directly attached to the amide group. Importantly, this amide group is able to impose an electronic bias, thus resulting in the highly regioselective attack of this polarized alkyne by a large variety of nucleophiles. Over the past two decades, catalytic reactions of ynamides have experienced dramatic developments, especially those catalyzed by transition metals. As a result, ynamides have been widely applied to the rapid and efficient assembly of versatile structurally complex N-containing molecules, especially in an atom-economic and stereoselective way. On the basis of newly developed ynamide preparations and new alkyne transformations, we first developed oxidation-initiated tandem reactions of ynamides such as zinc-catalyzed ynamide oxidation/C–H functionalization and copper-catalyzed ynamide oxidation/carbene metathesis, leading to divergent synthesis of isoquinolones, β-carbolines, and pyrrolo[3,4-c]quinolin-1-ones. Importantly, this protocol represents the first non-noble-metal-catalyzed intermolecular oxidation of alkynes by N-oxide type oxidants, and the related overoxidation could be dramatically inhibited in this non-noble-metal catalysis. Then, we achieved gold-catalyzed amination-initiated tandem reactions of ynamides via α-imino gold carbenes for efficient construction of various 2-aminoindoles, 3-amino-β-carbolines, and 2-aminopyrroles, where two new types of nitrene transfer reagents (benzyl azides and isoxazoles) were discovered. In particular, the use of isoxazoles as nitrene transfer reagents for atom-economic generation of α-imino metal carbenes has also been elegantly exploited by Hashmi, Liu, and many other groups, providing ready access to a wide range of functionalized N-heterocycles. Moreover, we revealed that donor/donor copper carbenes could be generated via copper-catalyzed diyne cyclization under mild conditions. These novel copper carbenes could undergo asymmetric C–H insertion, cyclopropanation, and formal [3 + 2] cycloaddition to produce diverse chiral polycyclic pyrroles with good to excellent enantioselectivities. Thus, this strategy may open new avenues in catalytic asymmetric reaction of ynamides, which remain largely unexplored and deserve more attention. Meanwhile, we also accomplished the efficient and practical synthesis of medium-sized lactams by yttrium-catalyzed cascade cyclization of allyl alcohol-tethered ynamides and the combination of radical chemistry based on visible-light photoredox catalysis with ynamide chemistry for divergent synthesis of useful 2-benzhydrylindoles and 3-benzhydrylisoquinolines. In this Account, we describe a panoramic picture of our recent contributions since 2015 to the development and application of ynamide chemistry in organic synthesis via transition metal-catalyzed tandem reactions by focusing on the tetrafunctionalization of ynamides. These studies provide not only efficient and attractive methods for divergent synthesis of valuable N-heterocycles but also some new insights into the exploration of alkyne chemistry and metal carbene chemistry. |
---|---|
AbstractList | ConspectusYnamides are electron-rich heteroatom-substituted alkynes with a C-C triple bond directly attached to the amide group. Importantly, this amide group is able to impose an electronic bias, thus resulting in the highly regioselective attack of this polarized alkyne by a large variety of nucleophiles. Over the past two decades, catalytic reactions of ynamides have experienced dramatic developments, especially those catalyzed by transition metals. As a result, ynamides have been widely applied to the rapid and efficient assembly of versatile structurally complex N-containing molecules, especially in an atom-economic and stereoselective way.On the basis of newly developed ynamide preparations and new alkyne transformations, we first developed oxidation-initiated tandem reactions of ynamides such as zinc-catalyzed ynamide oxidation/C-H functionalization and copper-catalyzed ynamide oxidation/carbene metathesis, leading to divergent synthesis of isoquinolones, β-carbolines, and pyrrolo[3,4-c]quinolin-1-ones. Importantly, this protocol represents the first non-noble-metal-catalyzed intermolecular oxidation of alkynes by N-oxide type oxidants, and the related overoxidation could be dramatically inhibited in this non-noble-metal catalysis. Then, we achieved gold-catalyzed amination-initiated tandem reactions of ynamides via α-imino gold carbenes for efficient construction of various 2-aminoindoles, 3-amino-β-carbolines, and 2-aminopyrroles, where two new types of nitrene transfer reagents (benzyl azides and isoxazoles) were discovered. In particular, the use of isoxazoles as nitrene transfer reagents for atom-economic generation of α-imino metal carbenes has also been elegantly exploited by Hashmi, Liu, and many other groups, providing ready access to a wide range of functionalized N-heterocycles. Moreover, we revealed that donor/donor copper carbenes could be generated via copper-catalyzed diyne cyclization under mild conditions. These novel copper carbenes could undergo asymmetric C-H insertion, cyclopropanation, and formal [3 + 2] cycloaddition to produce diverse chiral polycyclic pyrroles with good to excellent enantioselectivities. Thus, this strategy may open new avenues in catalytic asymmetric reaction of ynamides, which remain largely unexplored and deserve more attention. Meanwhile, we also accomplished the efficient and practical synthesis of medium-sized lactams by yttrium-catalyzed cascade cyclization of allyl alcohol-tethered ynamides and the combination of radical chemistry based on visible-light photoredox catalysis with ynamide chemistry for divergent synthesis of useful 2-benzhydrylindoles and 3-benzhydrylisoquinolines.In this Account, we describe a panoramic picture of our recent contributions since 2015 to the development and application of ynamide chemistry in organic synthesis via transition metal-catalyzed tandem reactions by focusing on the tetrafunctionalization of ynamides. These studies provide not only efficient and attractive methods for divergent synthesis of valuable N-heterocycles but also some new insights into the exploration of alkyne chemistry and metal carbene chemistry.ConspectusYnamides are electron-rich heteroatom-substituted alkynes with a C-C triple bond directly attached to the amide group. Importantly, this amide group is able to impose an electronic bias, thus resulting in the highly regioselective attack of this polarized alkyne by a large variety of nucleophiles. Over the past two decades, catalytic reactions of ynamides have experienced dramatic developments, especially those catalyzed by transition metals. As a result, ynamides have been widely applied to the rapid and efficient assembly of versatile structurally complex N-containing molecules, especially in an atom-economic and stereoselective way.On the basis of newly developed ynamide preparations and new alkyne transformations, we first developed oxidation-initiated tandem reactions of ynamides such as zinc-catalyzed ynamide oxidation/C-H functionalization and copper-catalyzed ynamide oxidation/carbene metathesis, leading to divergent synthesis of isoquinolones, β-carbolines, and pyrrolo[3,4-c]quinolin-1-ones. Importantly, this protocol represents the first non-noble-metal-catalyzed intermolecular oxidation of alkynes by N-oxide type oxidants, and the related overoxidation could be dramatically inhibited in this non-noble-metal catalysis. Then, we achieved gold-catalyzed amination-initiated tandem reactions of ynamides via α-imino gold carbenes for efficient construction of various 2-aminoindoles, 3-amino-β-carbolines, and 2-aminopyrroles, where two new types of nitrene transfer reagents (benzyl azides and isoxazoles) were discovered. In particular, the use of isoxazoles as nitrene transfer reagents for atom-economic generation of α-imino metal carbenes has also been elegantly exploited by Hashmi, Liu, and many other groups, providing ready access to a wide range of functionalized N-heterocycles. Moreover, we revealed that donor/donor copper carbenes could be generated via copper-catalyzed diyne cyclization under mild conditions. These novel copper carbenes could undergo asymmetric C-H insertion, cyclopropanation, and formal [3 + 2] cycloaddition to produce diverse chiral polycyclic pyrroles with good to excellent enantioselectivities. Thus, this strategy may open new avenues in catalytic asymmetric reaction of ynamides, which remain largely unexplored and deserve more attention. Meanwhile, we also accomplished the efficient and practical synthesis of medium-sized lactams by yttrium-catalyzed cascade cyclization of allyl alcohol-tethered ynamides and the combination of radical chemistry based on visible-light photoredox catalysis with ynamide chemistry for divergent synthesis of useful 2-benzhydrylindoles and 3-benzhydrylisoquinolines.In this Account, we describe a panoramic picture of our recent contributions since 2015 to the development and application of ynamide chemistry in organic synthesis via transition metal-catalyzed tandem reactions by focusing on the tetrafunctionalization of ynamides. These studies provide not only efficient and attractive methods for divergent synthesis of valuable N-heterocycles but also some new insights into the exploration of alkyne chemistry and metal carbene chemistry. Conspectus Ynamides are electron-rich heteroatom-substituted alkynes with a C–C triple bond directly attached to the amide group. Importantly, this amide group is able to impose an electronic bias, thus resulting in the highly regioselective attack of this polarized alkyne by a large variety of nucleophiles. Over the past two decades, catalytic reactions of ynamides have experienced dramatic developments, especially those catalyzed by transition metals. As a result, ynamides have been widely applied to the rapid and efficient assembly of versatile structurally complex N-containing molecules, especially in an atom-economic and stereoselective way. On the basis of newly developed ynamide preparations and new alkyne transformations, we first developed oxidation-initiated tandem reactions of ynamides such as zinc-catalyzed ynamide oxidation/C–H functionalization and copper-catalyzed ynamide oxidation/carbene metathesis, leading to divergent synthesis of isoquinolones, β-carbolines, and pyrrolo[3,4-c]quinolin-1-ones. Importantly, this protocol represents the first non-noble-metal-catalyzed intermolecular oxidation of alkynes by N-oxide type oxidants, and the related overoxidation could be dramatically inhibited in this non-noble-metal catalysis. Then, we achieved gold-catalyzed amination-initiated tandem reactions of ynamides via α-imino gold carbenes for efficient construction of various 2-aminoindoles, 3-amino-β-carbolines, and 2-aminopyrroles, where two new types of nitrene transfer reagents (benzyl azides and isoxazoles) were discovered. In particular, the use of isoxazoles as nitrene transfer reagents for atom-economic generation of α-imino metal carbenes has also been elegantly exploited by Hashmi, Liu, and many other groups, providing ready access to a wide range of functionalized N-heterocycles. Moreover, we revealed that donor/donor copper carbenes could be generated via copper-catalyzed diyne cyclization under mild conditions. These novel copper carbenes could undergo asymmetric C–H insertion, cyclopropanation, and formal [3 + 2] cycloaddition to produce diverse chiral polycyclic pyrroles with good to excellent enantioselectivities. Thus, this strategy may open new avenues in catalytic asymmetric reaction of ynamides, which remain largely unexplored and deserve more attention. Meanwhile, we also accomplished the efficient and practical synthesis of medium-sized lactams by yttrium-catalyzed cascade cyclization of allyl alcohol-tethered ynamides and the combination of radical chemistry based on visible-light photoredox catalysis with ynamide chemistry for divergent synthesis of useful 2-benzhydrylindoles and 3-benzhydrylisoquinolines. In this Account, we describe a panoramic picture of our recent contributions since 2015 to the development and application of ynamide chemistry in organic synthesis via transition metal-catalyzed tandem reactions by focusing on the tetrafunctionalization of ynamides. These studies provide not only efficient and attractive methods for divergent synthesis of valuable N-heterocycles but also some new insights into the exploration of alkyne chemistry and metal carbene chemistry. |
Author | Hong, Feng-Lin Ye, Long-Wu |
AuthorAffiliation | State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences State Key Laboratory of Organometallic Chemistry |
AuthorAffiliation_xml | – name: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences – name: State Key Laboratory of Organometallic Chemistry – name: State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Feng-Lin surname: Hong fullname: Hong, Feng-Lin organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering – sequence: 2 givenname: Long-Wu orcidid: 0000-0003-3108-2611 surname: Ye fullname: Ye, Long-Wu email: longwuye@xmu.edu.cn organization: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences |
BookMark | eNqFkDtOAzEQQC0EEkngBhQuaTbY3vV-6FD4BCmABKGgsrzOGBxt7GA7SKHiClyRk7CrhIYCmvlo5o00r492rbOA0BElQ0oYPZEqDKVSbmVjGBJFSEaLHdSjnJEkK6tyF_UIIbStM7aP-iHM25ZledFDYuqlDSYaZ_ENRNkkI9nG9TvM8FTaGSzwPUjVzQN2Gj9ZuTAzCFg7j8_NG_hnsBHffn18jiGCd2qtGsAPaxtfIJhwgPa0bAIcbvMAPV5eTEfjZHJ3dT06myQyrWhMqpRKrXVaMA6zmleKsFKVmsmCl3nNoSq5ZlWpOSjKWM2zQrFC8Yyldc7aD9MBOt7cXXr3uoIQxcIEBU0jLbhVECxLq5zlvM0DdLpZVd6F4EELZaLsPoxemkZQIjqrorUqfqyKrdUWzn7BS28W0q__w8gG66Zzt_K2lfE38g01-JTe |
CitedBy_id | crossref_primary_10_1039_D4QO00301B crossref_primary_10_1002_slct_202400001 crossref_primary_10_1002_adsc_202100769 crossref_primary_10_1021_acs_orglett_2c00499 crossref_primary_10_1007_s11426_024_2475_3 crossref_primary_10_1007_s11244_023_01880_x crossref_primary_10_1002_tcr_202100159 crossref_primary_10_1021_acscatal_1c00461 crossref_primary_10_1021_acs_joc_1c02263 crossref_primary_10_1002_asia_202300346 crossref_primary_10_1016_j_trechm_2023_10_002 crossref_primary_10_1039_D3GC04244H crossref_primary_10_1016_j_cclet_2022_06_070 crossref_primary_10_1021_acs_orglett_3c00221 crossref_primary_10_1021_acs_orglett_4c01889 crossref_primary_10_1002_anie_202303537 crossref_primary_10_1002_solr_202300695 crossref_primary_10_1016_j_jorganchem_2022_122321 crossref_primary_10_1039_D2CC04674A crossref_primary_10_1038_s41467_022_30001_7 crossref_primary_10_1039_D3OB02032K crossref_primary_10_1002_anie_202414612 crossref_primary_10_1126_sciadv_adg4648 crossref_primary_10_1021_acs_orglett_2c03537 crossref_primary_10_1039_D2QO01786E crossref_primary_10_1039_D1OB02393D crossref_primary_10_1039_D1QO00912E crossref_primary_10_1002_ejoc_202401446 crossref_primary_10_1021_acs_joc_2c02906 crossref_primary_10_1039_D3QO00916E crossref_primary_10_1002_cctc_202401851 crossref_primary_10_1021_acs_orglett_1c00158 crossref_primary_10_1021_acs_joc_2c02103 crossref_primary_10_1002_anie_202300816 crossref_primary_10_1002_adsc_202101189 crossref_primary_10_1002_ange_202207360 crossref_primary_10_1039_D2OB00395C crossref_primary_10_1039_D3SC01880F crossref_primary_10_1039_D2QO01569B crossref_primary_10_1002_slct_202101130 crossref_primary_10_1002_ange_202210637 crossref_primary_10_1007_s11426_023_1739_y crossref_primary_10_1039_D2QO01105K crossref_primary_10_1002_asia_202201259 crossref_primary_10_1021_acscatal_4c01805 crossref_primary_10_1021_acs_orglett_5c00752 crossref_primary_10_1021_acs_orglett_1c02003 crossref_primary_10_1039_D1CC02016A crossref_primary_10_1021_acs_joc_4c00267 crossref_primary_10_1002_tcr_202100172 crossref_primary_10_1002_adsc_202401372 crossref_primary_10_6023_cjoc202300035 crossref_primary_10_1021_acs_orglett_3c00682 crossref_primary_10_1039_D2QO00685E crossref_primary_10_1021_acs_joc_3c02342 crossref_primary_10_1055_a_2119_5390 crossref_primary_10_1002_anie_202305810 crossref_primary_10_1021_acs_orglett_2c01807 crossref_primary_10_1039_D1CC00870F crossref_primary_10_1055_a_2050_4967 crossref_primary_10_1021_acscatal_0c04180 crossref_primary_10_1021_acs_orglett_3c00319 crossref_primary_10_1002_anie_202113464 crossref_primary_10_1002_ejoc_202101269 crossref_primary_10_1002_ejoc_202200028 crossref_primary_10_1016_j_tchem_2024_100090 crossref_primary_10_6023_cjoc202206041 crossref_primary_10_1002_chem_202302821 crossref_primary_10_1002_adsc_202300217 crossref_primary_10_1039_D4OB00470A crossref_primary_10_1002_chem_202402402 crossref_primary_10_1039_D1SC02773E crossref_primary_10_1016_j_checat_2021_09_011 crossref_primary_10_1021_acs_orglett_1c02360 crossref_primary_10_1021_acs_orglett_3c00434 crossref_primary_10_1007_s11426_021_1158_4 crossref_primary_10_1002_ange_202305810 crossref_primary_10_1021_acs_joc_2c02121 crossref_primary_10_1007_s11426_023_1671_y crossref_primary_10_1016_j_ccr_2021_214131 crossref_primary_10_1002_adsc_202200971 crossref_primary_10_1002_anie_202201436 crossref_primary_10_1021_acs_accounts_4c00715 crossref_primary_10_1039_D3QO00367A crossref_primary_10_1021_acs_orglett_2c00574 crossref_primary_10_1002_ange_202316563 crossref_primary_10_1016_j_cclet_2023_108441 crossref_primary_10_1021_acs_orglett_2c02871 crossref_primary_10_1039_D4CC03723E crossref_primary_10_1021_acs_joc_4c01013 crossref_primary_10_1002_chem_202102534 crossref_primary_10_1002_anie_202216923 crossref_primary_10_1002_anie_202213653 crossref_primary_10_1021_acs_oprd_4c00186 crossref_primary_10_1126_sciadv_adq7767 crossref_primary_10_6023_A23040188 crossref_primary_10_1039_D2QO00457G crossref_primary_10_1021_acs_orglett_3c02448 crossref_primary_10_1021_acs_joc_1c01654 crossref_primary_10_1016_j_cclet_2025_110870 crossref_primary_10_1039_D1QO01506K crossref_primary_10_3390_molecules28114564 crossref_primary_10_1002_ajoc_202300052 crossref_primary_10_1021_acs_joc_4c01264 crossref_primary_10_1002_ejoc_202201374 crossref_primary_10_1002_adsc_202300476 crossref_primary_10_1002_ange_202204603 crossref_primary_10_1038_s42004_023_00910_9 crossref_primary_10_1039_D1CC00687H crossref_primary_10_1038_s41467_024_46288_7 crossref_primary_10_1039_D2OB00420H crossref_primary_10_1002_ange_202215616 crossref_primary_10_1039_D1QO01054A crossref_primary_10_1021_acs_orglett_3c03525 crossref_primary_10_1002_anie_202200204 crossref_primary_10_6023_cjoc202201006 crossref_primary_10_1002_ajoc_202300145 crossref_primary_10_1021_acs_joc_4c01712 crossref_primary_10_1039_D3GC03222A crossref_primary_10_1002_adsc_202300241 crossref_primary_10_1002_ange_202318887 crossref_primary_10_1002_ange_202405781 crossref_primary_10_1021_acs_joc_3c00766 crossref_primary_10_1039_D4QO02371D crossref_primary_10_1021_acs_orglett_3c01693 crossref_primary_10_1002_anie_202316563 crossref_primary_10_1002_adsc_202001512 crossref_primary_10_1016_j_gresc_2023_11_001 crossref_primary_10_1126_sciadv_adk1704 crossref_primary_10_1002_ajoc_202100656 crossref_primary_10_1038_s41557_021_00778_z crossref_primary_10_1021_acs_orglett_4c02079 crossref_primary_10_1039_D2OB00102K crossref_primary_10_1002_adsc_202201002 crossref_primary_10_1021_acs_orglett_1c01345 crossref_primary_10_1021_acs_orglett_1c02316 crossref_primary_10_1002_anie_202405781 crossref_primary_10_1039_D1OB00744K crossref_primary_10_1002_ange_202201436 crossref_primary_10_1021_acs_orglett_1c03092 crossref_primary_10_1002_ange_202213653 crossref_primary_10_1039_D1CC02559G crossref_primary_10_1021_acs_joc_4c02936 crossref_primary_10_1021_acscatal_4c02157 crossref_primary_10_1039_D1QO01052B crossref_primary_10_1002_ange_202216923 crossref_primary_10_1021_acs_joc_1c02978 crossref_primary_10_1002_cjoc_202400607 crossref_primary_10_1039_D4OB01314J crossref_primary_10_1021_acs_joc_4c01292 crossref_primary_10_1002_anie_202110221 crossref_primary_10_1360_TB_2021_1109 crossref_primary_10_1002_slct_202301685 crossref_primary_10_1007_s11426_021_1069_7 crossref_primary_10_1002_anie_202110901 crossref_primary_10_1021_acs_orglett_1c03830 crossref_primary_10_1039_D3OB01768K crossref_primary_10_1002_ange_202300610 crossref_primary_10_3390_molecules26082318 crossref_primary_10_1002_adsc_202401198 crossref_primary_10_1021_acs_chemrev_0c00788 crossref_primary_10_1021_acs_orglett_4c01368 crossref_primary_10_1002_asia_202300987 crossref_primary_10_1039_D2QO00045H crossref_primary_10_1021_acs_joc_1c03076 crossref_primary_10_1039_D2QO00275B crossref_primary_10_1021_acs_orglett_5c00816 crossref_primary_10_1016_j_trechm_2021_12_010 crossref_primary_10_1039_D1OB01546J crossref_primary_10_1021_acs_organomet_2c00073 crossref_primary_10_1002_anie_202115464 crossref_primary_10_1039_D4QO02218A crossref_primary_10_1039_D2SC06152J crossref_primary_10_1055_s_0040_1719866 crossref_primary_10_1021_acs_joc_0c02326 crossref_primary_10_1039_D2OB01662A crossref_primary_10_1002_ange_202115554 crossref_primary_10_1039_D2QO00873D crossref_primary_10_1002_adsc_202301123 crossref_primary_10_1002_anie_202318887 crossref_primary_10_1002_ange_202200204 crossref_primary_10_1016_j_cattod_2021_05_011 crossref_primary_10_1016_j_tetlet_2023_154607 crossref_primary_10_1002_ajoc_202400265 crossref_primary_10_1016_j_cclet_2022_04_050 crossref_primary_10_1002_adsc_202101462 crossref_primary_10_1021_acs_orglett_4c01013 crossref_primary_10_1039_D3QO00890H crossref_primary_10_1002_anie_202210637 crossref_primary_10_1002_ange_202113464 crossref_primary_10_1007_s11426_022_1536_9 crossref_primary_10_1021_acscatal_2c04736 crossref_primary_10_1039_D3QO00236E crossref_primary_10_1039_D1QO01923F crossref_primary_10_1039_D2QO01488B crossref_primary_10_1055_a_2241_3571 crossref_primary_10_1039_D4SC03190C crossref_primary_10_1039_D3CC04817A crossref_primary_10_1016_j_molliq_2023_121510 crossref_primary_10_1002_anie_202204603 crossref_primary_10_1016_j_cclet_2021_11_070 crossref_primary_10_1055_a_1975_4377 crossref_primary_10_1021_acs_orglett_2c02179 crossref_primary_10_1021_acs_orglett_2c04115 crossref_primary_10_1039_D4SC05541A crossref_primary_10_1021_acs_joc_3c02508 crossref_primary_10_1039_D3RA00139C crossref_primary_10_6023_cjoc202203061 crossref_primary_10_1002_adsc_202101232 crossref_primary_10_1002_anie_202215616 crossref_primary_10_1039_D3OB00277B crossref_primary_10_6023_cjoc202107051 crossref_primary_10_1039_D2QO00996J crossref_primary_10_1038_s41467_024_53605_7 crossref_primary_10_1039_D0OB02575E crossref_primary_10_1021_acscatal_3c01680 crossref_primary_10_1039_D3QO00489A crossref_primary_10_1039_D3SC01394D crossref_primary_10_1021_acs_orglett_1c02519 crossref_primary_10_1021_acs_orglett_1c03729 crossref_primary_10_1002_adsc_202100952 crossref_primary_10_1016_j_molstruc_2022_134309 crossref_primary_10_1002_cctc_202200008 crossref_primary_10_1002_tcr_202100205 crossref_primary_10_3390_catal12080915 crossref_primary_10_1021_acs_orglett_4c04623 crossref_primary_10_1039_D1OB01157J crossref_primary_10_1021_acscatal_4c08055 crossref_primary_10_1002_ange_202414612 crossref_primary_10_1016_j_mcat_2024_114691 crossref_primary_10_1002_cjoc_202400723 crossref_primary_10_1021_acs_orglett_3c00278 crossref_primary_10_1039_D2GC04091C crossref_primary_10_1039_D4OB00551A crossref_primary_10_1039_D3OB01626A crossref_primary_10_1021_acs_orglett_2c01825 crossref_primary_10_1039_D1CC00998B crossref_primary_10_1002_ange_202115464 crossref_primary_10_1039_D4CS01329H crossref_primary_10_1002_anie_202115554 crossref_primary_10_1002_ange_202300816 crossref_primary_10_1055_a_2196_8886 crossref_primary_10_1002_adsc_202101410 crossref_primary_10_1002_open_202500040 crossref_primary_10_1016_j_xcrp_2021_100577 crossref_primary_10_1016_j_cclet_2024_109895 crossref_primary_10_1007_s11426_024_1990_y crossref_primary_10_1039_D3QO00491K crossref_primary_10_1021_acs_orglett_4c00874 crossref_primary_10_1038_s41557_023_01179_0 crossref_primary_10_1039_D1OB01922H crossref_primary_10_6023_cjoc202009020 crossref_primary_10_1038_s41467_023_42805_2 crossref_primary_10_1002_ejoc_202201417 crossref_primary_10_1016_j_xcrp_2021_100448 crossref_primary_10_1038_s42004_023_00999_y crossref_primary_10_1021_acs_joc_4c01784 crossref_primary_10_1002_adsc_202300075 crossref_primary_10_1021_acs_orglett_1c00631 crossref_primary_10_1002_ange_202303537 crossref_primary_10_1002_anie_202411709 crossref_primary_10_1021_acs_orglett_4c00763 crossref_primary_10_1016_j_checat_2024_101163 crossref_primary_10_1021_acs_joc_1c01143 crossref_primary_10_1055_s_0043_1775404 crossref_primary_10_1002_chem_202300826 crossref_primary_10_1002_anie_202300610 crossref_primary_10_1002_cjoc_202300498 crossref_primary_10_1021_acs_orglett_4c04444 crossref_primary_10_1038_s44160_022_00208_z crossref_primary_10_1021_acs_orglett_4c03232 crossref_primary_10_1021_acs_joc_3c02095 crossref_primary_10_1002_ajoc_202200458 crossref_primary_10_1002_chem_202005348 crossref_primary_10_1039_D2QO01246D crossref_primary_10_1039_D3RA02839A crossref_primary_10_1360_SSC_2023_0060 crossref_primary_10_3987_COM_22_14778 crossref_primary_10_1002_adsc_202001474 crossref_primary_10_1038_s41467_023_40801_0 crossref_primary_10_1021_acs_orglett_2c03225 crossref_primary_10_1039_D1QO00559F crossref_primary_10_1039_D2CC03252J crossref_primary_10_1002_ajoc_202300304 crossref_primary_10_1002_ange_202110901 crossref_primary_10_1039_D3NJ04886A crossref_primary_10_1002_anie_202207360 crossref_primary_10_1021_acs_joc_0c02480 crossref_primary_10_1021_acs_joc_1c00020 crossref_primary_10_1016_j_gresc_2024_05_010 crossref_primary_10_6023_cjoc202401010 crossref_primary_10_1002_ange_202110221 crossref_primary_10_1021_acs_orglett_1c03141 crossref_primary_10_2174_1385272827666230106112146 crossref_primary_10_3389_fchem_2021_738736 crossref_primary_10_1021_acscatal_3c04631 crossref_primary_10_1002_adsc_202401052 crossref_primary_10_1039_D3OB00843F crossref_primary_10_1021_acs_orglett_2c01607 crossref_primary_10_1002_anie_202303670 crossref_primary_10_1021_acscatal_3c05824 crossref_primary_10_1007_s11426_024_2211_y crossref_primary_10_1002_adsc_202001342 crossref_primary_10_1007_s11426_024_2174_x crossref_primary_10_1002_ajoc_202300554 crossref_primary_10_1021_acs_joc_4c00359 crossref_primary_10_1002_cssc_202301604 crossref_primary_10_1002_ange_202411709 crossref_primary_10_1039_D4QO01623H crossref_primary_10_1021_acs_joc_1c02450 crossref_primary_10_1021_acscatal_0c04786 crossref_primary_10_1039_D2QO00123C crossref_primary_10_1055_a_1863_8862 crossref_primary_10_3390_molecules27103088 crossref_primary_10_1002_ange_202303670 crossref_primary_10_1002_cjoc_202300277 crossref_primary_10_1021_acs_joc_2c02320 crossref_primary_10_1039_D1CC05514C crossref_primary_10_1021_acs_orglett_4c00063 |
Cites_doi | 10.1002/chem.201904869 10.1021/ar400193g 10.1002/(SICI)1521-3773(19980302)37:4<489::AID-ANIE489>3.0.CO;2-N 10.1039/C8CC03140A 10.1016/bs.adomc.2019.12.001 10.1021/jacs.5b06015 10.1002/cjoc.201800437 10.1039/C8GC01534A 10.1039/c3cc40529j 10.1039/C5CS00887E 10.1021/jacs.0c01918 10.1002/ajoc.201500170 10.1021/acs.joc.7b01612 10.1038/s41467-017-01853-1 10.1002/1521-3773(20020902)41:17<3281::AID-ANIE3281>3.0.CO;2-G 10.1002/anie.200905817 10.1039/C7OB01895A 10.1021/jacs.9b13975 10.1002/anie.201502553 10.1021/ja077406x 10.1002/anie.201912534 10.1021/acs.orglett.6b02267 10.1038/s41467-019-11245-2 10.1039/C9SC00079H 10.1016/j.chempr.2018.02.001 10.1016/j.scib.2017.08.020 10.1021/cr100003s 10.1002/anie.200901099 10.1002/cjoc.201900478 10.1039/C8GC02051E 10.1002/anie.201100327 10.1055/s-2004-817785 10.1007/s11705-019-1874-4 10.1002/anie.201610042 10.1021/jo060230h 10.1021/jacs.9b09303 10.1039/C6QO00169F 10.1021/ar400181x 10.1039/D0GC01522A 10.1055/s-2005-864821 10.1039/C8QO00552D 10.1039/C4SC02596B 10.1021/acscatal.9b01851 10.1021/acs.orglett.6b01503 10.1039/C6OB01774F 10.1021/ar4001839 10.1039/C9QO00243J 10.1002/anie.201700596 10.1016/S0040-4020(00)01014-0 10.1021/jo900595c 10.1055/s-2007-984529 10.1021/acscatal.6b01599 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.accounts.0c00417 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 2019 |
ExternalDocumentID | 10_1021_acs_accounts_0c00417 c645316652 |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 7X8 |
ID | FETCH-LOGICAL-a391t-931afff3725edb59c028c8f2a7586b5e985f298f5ec122b547c27c5423b628983 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 07:28:19 EDT 2025 Tue Jul 01 03:16:05 EDT 2025 Thu Apr 24 23:05:54 EDT 2025 Thu Sep 17 03:19:08 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a391t-931afff3725edb59c028c8f2a7586b5e985f298f5ec122b547c27c5423b628983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3108-2611 |
PQID | 2439626524 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2439626524 crossref_citationtrail_10_1021_acs_accounts_0c00417 crossref_primary_10_1021_acs_accounts_0c00417 acs_journals_10_1021_acs_accounts_0c00417 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-15 |
PublicationDateYYYYMMDD | 2020-09-15 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 ref27/cit27 ref13/cit13a ref13/cit13b ref13/cit13c ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref20/cit20 ref5/cit5b ref17/cit17 ref5/cit5a ref16/cit16b ref35/cit35 ref16/cit16a ref21/cit21 ref11/cit11c ref11/cit11b ref11/cit11a ref7/cit7b ref7/cit7a ref19/cit19a ref24/cit24 ref5/cit5f ref5/cit5d ref5/cit5e ref6/cit6 ref19/cit19d ref19/cit19c ref19/cit19b ref29/cit29 ref25/cit25b ref10/cit10a ref10/cit10b ref10/cit10c ref25/cit25a ref32/cit32 ref14/cit14 ref28/cit28 ref26/cit26 ref18/cit18b ref18/cit18a ref12/cit12 ref15/cit15 Evano G. (ref5/cit5c) 2015; 48 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 |
References_xml | – ident: ref32/cit32 doi: 10.1002/chem.201904869 – ident: ref5/cit5d doi: 10.1021/ar400193g – ident: ref10/cit10a doi: 10.1002/(SICI)1521-3773(19980302)37:4<489::AID-ANIE489>3.0.CO;2-N – ident: ref25/cit25b doi: 10.1039/C8CC03140A – ident: ref19/cit19a doi: 10.1016/bs.adomc.2019.12.001 – ident: ref1/cit1 doi: 10.1021/jacs.5b06015 – ident: ref18/cit18b doi: 10.1002/cjoc.201800437 – ident: ref18/cit18a doi: 10.1039/C8GC01534A – ident: ref10/cit10c doi: 10.1039/c3cc40529j – ident: ref13/cit13a doi: 10.1039/C5CS00887E – ident: ref35/cit35 doi: 10.1021/jacs.0c01918 – ident: ref19/cit19c doi: 10.1002/ajoc.201500170 – ident: ref27/cit27 doi: 10.1021/acs.joc.7b01612 – ident: ref17/cit17 doi: 10.1038/s41467-017-01853-1 – ident: ref10/cit10b doi: 10.1002/1521-3773(20020902)41:17<3281::AID-ANIE3281>3.0.CO;2-G – ident: ref5/cit5f doi: 10.1002/anie.200905817 – ident: ref23/cit23 doi: 10.1039/C7OB01895A – ident: ref30/cit30 doi: 10.1021/jacs.9b13975 – ident: ref14/cit14 doi: 10.1002/anie.201502553 – ident: ref6/cit6 doi: 10.1021/ja077406x – ident: ref26/cit26 doi: 10.1002/anie.201912534 – ident: ref22/cit22 doi: 10.1021/acs.orglett.6b02267 – ident: ref29/cit29 doi: 10.1038/s41467-019-11245-2 – ident: ref28/cit28 doi: 10.1039/C9SC00079H – ident: ref33/cit33 doi: 10.1016/j.chempr.2018.02.001 – ident: ref20/cit20 doi: 10.1016/j.scib.2017.08.020 – ident: ref5/cit5e doi: 10.1021/cr100003s – ident: ref8/cit8 doi: 10.1002/anie.200901099 – ident: ref15/cit15 doi: 10.1002/cjoc.201900478 – ident: ref25/cit25a doi: 10.1039/C8GC02051E – ident: ref12/cit12 doi: 10.1002/anie.201100327 – ident: ref9/cit9 doi: 10.1055/s-2004-817785 – ident: ref19/cit19d doi: 10.1007/s11705-019-1874-4 – ident: ref24/cit24 doi: 10.1002/anie.201610042 – ident: ref7/cit7a doi: 10.1021/jo060230h – ident: ref4/cit4 doi: 10.1021/jacs.9b09303 – ident: ref16/cit16b doi: 10.1039/C6QO00169F – ident: ref13/cit13c doi: 10.1021/ar400181x – ident: ref31/cit31 doi: 10.1039/D0GC01522A – ident: ref11/cit11b doi: 10.1055/s-2005-864821 – ident: ref34/cit34 doi: 10.1039/C8QO00552D – ident: ref2/cit2 doi: 10.1039/C4SC02596B – ident: ref5/cit5a doi: 10.1021/acscatal.9b01851 – ident: ref21/cit21 doi: 10.1021/acs.orglett.6b01503 – ident: ref5/cit5b doi: 10.1039/C6OB01774F – ident: ref13/cit13b doi: 10.1021/ar4001839 – ident: ref19/cit19b doi: 10.1039/C9QO00243J – ident: ref3/cit3 doi: 10.1002/anie.201700596 – ident: ref11/cit11a doi: 10.1016/S0040-4020(00)01014-0 – volume: 48 start-page: 59 year: 2015 ident: ref5/cit5c publication-title: Aldrichimica Acta – ident: ref7/cit7b doi: 10.1021/jo900595c – ident: ref11/cit11c doi: 10.1055/s-2007-984529 – ident: ref16/cit16a doi: 10.1021/acscatal.6b01599 |
SSID | ssj0002467 |
Score | 2.692759 |
Snippet | Conspectus Ynamides are electron-rich heteroatom-substituted alkynes with a C–C triple bond directly attached to the amide group. Importantly, this amide group... ConspectusYnamides are electron-rich heteroatom-substituted alkynes with a C-C triple bond directly attached to the amide group. Importantly, this amide group... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2003 |
Title | Transition Metal-Catalyzed Tandem Reactions of Ynamides for Divergent N‑Heterocycle Synthesis |
URI | http://dx.doi.org/10.1021/acs.accounts.0c00417 https://www.proquest.com/docview/2439626524 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aF7rxLdYXEdy4mNrJJDOZZalKEVpBW9DVkGQSEHUqpl20K3_BX_RLvJmHUkXU5QyTTEhu7j0nuQ-EjkRAlZEh9UB6iEeFTEEPGupp4TclwFmehi5QuNsLOwN6ccNuPoni1xt84p8IZaHrvHKCbTSVSxAVzaMF6CZyZKvVvv7QvISGRY5MoMiUU1KFyv3QizNIys4apFl9nBuZ8xV0WYXqFL4l943xSDbU9Hvmxj-OfxUtl3gTtwoBWUNzOltHi-2qzNsGSnJrlTtu4a4GKO613YnOZKpT3HcnzI_4ShfRDxYPDb51FexTbTGgXXzqvDpccBbuvb28dpxrzVBN4Ef4epIBtLR3dhMNzs_67Y5XVl3wRBD7Iy8OfGGMCSLCdCpZrACBKG6IAGYRSqZjzgyJuWFa-YRIRiNFIsUAlskQ2BsPtlAtG2Z6G-EmT6mSsc90k1NDJU_hIQINEglNfKnq6BhmJyl3jU3yC3HiJ-5lNWVJOWV1FFTLlKgyfbmrovHwSyvvo9VTkb7jl-8PKwlIYB3c5YnI9HBsEwLIDcgfI3TnH6PeRUvEEXRXc4Ltodroeaz3AcWM5EEuuu_4ffFK |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ReqCX0l9B6Y-RyqGHbDeOnTiHHtBStBR2D7BI9OTaji0hIFvVu6qWU1-hD9FX4UF4ko7zswikCvWAxDFW7Die8cw39vwAvFcJM06nLELuoRFTukA56FhkVdzVCGdFkYZA4cEw7R-yL0f8aAH-tLEwOAmPI_nqEv8qu0D8MbSpuoCC73RNyBOVNb6Uu3b2Ey01_2lnC8m6Qen251GvHzXFBCKV5PEkypNYOeeSjHJbaJ4bVKxGOKoQMKea21xwR3PhuDUxpZqzzNDMcEQbOkWjRCQ47gN4iPiHBhtvs3cwF_iUpXVqTrTMmWC0jdD7x6yDHjT-uh68rgYq3ba9DBfzValcWk4604numPMbCSPv_bI9gccNuiab9XZ4Cgu2fAZLvbao3XOQlW6u3NTIwKLhEfXC-dXs3BZkFM7Tz8i-rWM9PBk78rVUZ8eF9QSxPdkKPiwhFI0ML3_97gdHorGZ4YfIwaxEIO2P_Qs4vJP_ewmL5bi0K0C6omBG5zG3XcEc06LAhwzlZaYsjbVZhQ9IDdnICC-r638ay9DYkkg2JFqFpOUOaZpk7aFmyOktvaJ5r-91spJb3l9vGU8iHcJVkSrteOolRZyKpi6n7NV_zPodLPVHgz25tzPcXYNHNBxNhGob_DUsTn5M7RvEbxP9tto9BL7dNd_9BfIUUlc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVgIuUP5E6Q9GggOHLBvHTpxDD9VuV1tKV4i2Ujm5tmNLFTRb4V2h7amv0Mfoq_AYPAnj_KzUSqji0APHWLHjeMYz39jzA_BWJcw4nbIIuYdGTOkC5aBjkVVxVyOcFUUaAoX3RunwkH084kcLcNXGwuAkPI7kq0v8sKvPCtdkGIg_hHZVF1Hwna4JuaKyxp9y185-orXmN3f6SNp3lA62D3rDqCkoEKkkjydRnsTKOZdklNtC89ygcjXCUYWgOdXc5oI7mgvHrYkp1ZxlhmaGI-LQKRomIsFx78FSuCkMdt5Wb38u9ClL6_ScaJ0zwWgbpfeXWQddaPx1XXhdFVT6bfAYfs1XpnJr-daZTnTHnN9IGvlfLN0yPGpQNtmqt8UTWLDlU3jQa4vbPQNZ6ejKXY3sWTRAol44x5qd24IchHP1U_LF1jEfnowd-Vqq05PCeoIYn_SDL0sISSOj3xeXw-BQNDYz_BDZn5UIqP2Jfw6Hd_J_L2CxHJf2JZCuKJjRecxtVzDHtCjwIUO5mSlLY21W4D1SQzaywsvKDYDGMjS2JJINiVYgaTlEmiZpe6gd8v2WXtG811mdtOSW99-0zCeRDuHKSJV2PPWSIl5Fk5dT9uofZv0a7n_uD-SnndHuKjyk4YQiFN3ga7A4-TG16wjjJnqj2kAEju-a7f4ACkVU2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition+Metal-Catalyzed+Tandem+Reactions+of+Ynamides+for+Divergent+N-Heterocycle+Synthesis&rft.jtitle=Accounts+of+chemical+research&rft.au=Hong%2C+Feng-Lin&rft.au=Ye%2C+Long-Wu&rft.date=2020-09-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=53&rft.issue=9&rft.spage=2003&rft.epage=2019&rft_id=info:doi/10.1021%2Facs.accounts.0c00417&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_accounts_0c00417 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |