Transition Metal-Catalyzed Tandem Reactions of Ynamides for Divergent N‑Heterocycle Synthesis

Conspectus Ynamides are electron-rich heteroatom-substituted alkynes with a C–C triple bond directly attached to the amide group. Importantly, this amide group is able to impose an electronic bias, thus resulting in the highly regioselective attack of this polarized alkyne by a large variety of nucl...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 53; no. 9; pp. 2003 - 2019
Main Authors Hong, Feng-Lin, Ye, Long-Wu
Format Journal Article
LanguageEnglish
Published American Chemical Society 15.09.2020
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Ynamides are electron-rich heteroatom-substituted alkynes with a C–C triple bond directly attached to the amide group. Importantly, this amide group is able to impose an electronic bias, thus resulting in the highly regioselective attack of this polarized alkyne by a large variety of nucleophiles. Over the past two decades, catalytic reactions of ynamides have experienced dramatic developments, especially those catalyzed by transition metals. As a result, ynamides have been widely applied to the rapid and efficient assembly of versatile structurally complex N-containing molecules, especially in an atom-economic and stereoselective way. On the basis of newly developed ynamide preparations and new alkyne transformations, we first developed oxidation-initiated tandem reactions of ynamides such as zinc-catalyzed ynamide oxidation/C–H functionalization and copper-catalyzed ynamide oxidation/carbene metathesis, leading to divergent synthesis of isoquinolones, β-carbolines, and pyrrolo­[3,4-c]­quinolin-1-ones. Importantly, this protocol represents the first non-noble-metal-catalyzed intermolecular oxidation of alkynes by N-oxide type oxidants, and the related overoxidation could be dramatically inhibited in this non-noble-metal catalysis. Then, we achieved gold-catalyzed amination-initiated tandem reactions of ynamides via α-imino gold carbenes for efficient construction of various 2-aminoindoles, 3-amino-β-carbolines, and 2-aminopyrroles, where two new types of nitrene transfer reagents (benzyl azides and isoxazoles) were discovered. In particular, the use of isoxazoles as nitrene transfer reagents for atom-economic generation of α-imino metal carbenes has also been elegantly exploited by Hashmi, Liu, and many other groups, providing ready access to a wide range of functionalized N-heterocycles. Moreover, we revealed that donor/donor copper carbenes could be generated via copper-catalyzed diyne cyclization under mild conditions. These novel copper carbenes could undergo asymmetric C–H insertion, cyclopropanation, and formal [3 + 2] cycloaddition to produce diverse chiral polycyclic pyrroles with good to excellent enantioselectivities. Thus, this strategy may open new avenues in catalytic asymmetric reaction of ynamides, which remain largely unexplored and deserve more attention. Meanwhile, we also accomplished the efficient and practical synthesis of medium-sized lactams by yttrium-catalyzed cascade cyclization of allyl alcohol-tethered ynamides and the combination of radical chemistry based on visible-light photoredox catalysis with ynamide chemistry for divergent synthesis of useful 2-benzhydrylindoles and 3-benzhydrylisoquinolines. In this Account, we describe a panoramic picture of our recent contributions since 2015 to the development and application of ynamide chemistry in organic synthesis via transition metal-catalyzed tandem reactions by focusing on the tetrafunctionalization of ynamides. These studies provide not only efficient and attractive methods for divergent synthesis of valuable N-heterocycles but also some new insights into the exploration of alkyne chemistry and metal carbene chemistry.
AbstractList ConspectusYnamides are electron-rich heteroatom-substituted alkynes with a C-C triple bond directly attached to the amide group. Importantly, this amide group is able to impose an electronic bias, thus resulting in the highly regioselective attack of this polarized alkyne by a large variety of nucleophiles. Over the past two decades, catalytic reactions of ynamides have experienced dramatic developments, especially those catalyzed by transition metals. As a result, ynamides have been widely applied to the rapid and efficient assembly of versatile structurally complex N-containing molecules, especially in an atom-economic and stereoselective way.On the basis of newly developed ynamide preparations and new alkyne transformations, we first developed oxidation-initiated tandem reactions of ynamides such as zinc-catalyzed ynamide oxidation/C-H functionalization and copper-catalyzed ynamide oxidation/carbene metathesis, leading to divergent synthesis of isoquinolones, β-carbolines, and pyrrolo[3,4-c]quinolin-1-ones. Importantly, this protocol represents the first non-noble-metal-catalyzed intermolecular oxidation of alkynes by N-oxide type oxidants, and the related overoxidation could be dramatically inhibited in this non-noble-metal catalysis. Then, we achieved gold-catalyzed amination-initiated tandem reactions of ynamides via α-imino gold carbenes for efficient construction of various 2-aminoindoles, 3-amino-β-carbolines, and 2-aminopyrroles, where two new types of nitrene transfer reagents (benzyl azides and isoxazoles) were discovered. In particular, the use of isoxazoles as nitrene transfer reagents for atom-economic generation of α-imino metal carbenes has also been elegantly exploited by Hashmi, Liu, and many other groups, providing ready access to a wide range of functionalized N-heterocycles. Moreover, we revealed that donor/donor copper carbenes could be generated via copper-catalyzed diyne cyclization under mild conditions. These novel copper carbenes could undergo asymmetric C-H insertion, cyclopropanation, and formal [3 + 2] cycloaddition to produce diverse chiral polycyclic pyrroles with good to excellent enantioselectivities. Thus, this strategy may open new avenues in catalytic asymmetric reaction of ynamides, which remain largely unexplored and deserve more attention. Meanwhile, we also accomplished the efficient and practical synthesis of medium-sized lactams by yttrium-catalyzed cascade cyclization of allyl alcohol-tethered ynamides and the combination of radical chemistry based on visible-light photoredox catalysis with ynamide chemistry for divergent synthesis of useful 2-benzhydrylindoles and 3-benzhydrylisoquinolines.In this Account, we describe a panoramic picture of our recent contributions since 2015 to the development and application of ynamide chemistry in organic synthesis via transition metal-catalyzed tandem reactions by focusing on the tetrafunctionalization of ynamides. These studies provide not only efficient and attractive methods for divergent synthesis of valuable N-heterocycles but also some new insights into the exploration of alkyne chemistry and metal carbene chemistry.ConspectusYnamides are electron-rich heteroatom-substituted alkynes with a C-C triple bond directly attached to the amide group. Importantly, this amide group is able to impose an electronic bias, thus resulting in the highly regioselective attack of this polarized alkyne by a large variety of nucleophiles. Over the past two decades, catalytic reactions of ynamides have experienced dramatic developments, especially those catalyzed by transition metals. As a result, ynamides have been widely applied to the rapid and efficient assembly of versatile structurally complex N-containing molecules, especially in an atom-economic and stereoselective way.On the basis of newly developed ynamide preparations and new alkyne transformations, we first developed oxidation-initiated tandem reactions of ynamides such as zinc-catalyzed ynamide oxidation/C-H functionalization and copper-catalyzed ynamide oxidation/carbene metathesis, leading to divergent synthesis of isoquinolones, β-carbolines, and pyrrolo[3,4-c]quinolin-1-ones. Importantly, this protocol represents the first non-noble-metal-catalyzed intermolecular oxidation of alkynes by N-oxide type oxidants, and the related overoxidation could be dramatically inhibited in this non-noble-metal catalysis. Then, we achieved gold-catalyzed amination-initiated tandem reactions of ynamides via α-imino gold carbenes for efficient construction of various 2-aminoindoles, 3-amino-β-carbolines, and 2-aminopyrroles, where two new types of nitrene transfer reagents (benzyl azides and isoxazoles) were discovered. In particular, the use of isoxazoles as nitrene transfer reagents for atom-economic generation of α-imino metal carbenes has also been elegantly exploited by Hashmi, Liu, and many other groups, providing ready access to a wide range of functionalized N-heterocycles. Moreover, we revealed that donor/donor copper carbenes could be generated via copper-catalyzed diyne cyclization under mild conditions. These novel copper carbenes could undergo asymmetric C-H insertion, cyclopropanation, and formal [3 + 2] cycloaddition to produce diverse chiral polycyclic pyrroles with good to excellent enantioselectivities. Thus, this strategy may open new avenues in catalytic asymmetric reaction of ynamides, which remain largely unexplored and deserve more attention. Meanwhile, we also accomplished the efficient and practical synthesis of medium-sized lactams by yttrium-catalyzed cascade cyclization of allyl alcohol-tethered ynamides and the combination of radical chemistry based on visible-light photoredox catalysis with ynamide chemistry for divergent synthesis of useful 2-benzhydrylindoles and 3-benzhydrylisoquinolines.In this Account, we describe a panoramic picture of our recent contributions since 2015 to the development and application of ynamide chemistry in organic synthesis via transition metal-catalyzed tandem reactions by focusing on the tetrafunctionalization of ynamides. These studies provide not only efficient and attractive methods for divergent synthesis of valuable N-heterocycles but also some new insights into the exploration of alkyne chemistry and metal carbene chemistry.
Conspectus Ynamides are electron-rich heteroatom-substituted alkynes with a C–C triple bond directly attached to the amide group. Importantly, this amide group is able to impose an electronic bias, thus resulting in the highly regioselective attack of this polarized alkyne by a large variety of nucleophiles. Over the past two decades, catalytic reactions of ynamides have experienced dramatic developments, especially those catalyzed by transition metals. As a result, ynamides have been widely applied to the rapid and efficient assembly of versatile structurally complex N-containing molecules, especially in an atom-economic and stereoselective way. On the basis of newly developed ynamide preparations and new alkyne transformations, we first developed oxidation-initiated tandem reactions of ynamides such as zinc-catalyzed ynamide oxidation/C–H functionalization and copper-catalyzed ynamide oxidation/carbene metathesis, leading to divergent synthesis of isoquinolones, β-carbolines, and pyrrolo­[3,4-c]­quinolin-1-ones. Importantly, this protocol represents the first non-noble-metal-catalyzed intermolecular oxidation of alkynes by N-oxide type oxidants, and the related overoxidation could be dramatically inhibited in this non-noble-metal catalysis. Then, we achieved gold-catalyzed amination-initiated tandem reactions of ynamides via α-imino gold carbenes for efficient construction of various 2-aminoindoles, 3-amino-β-carbolines, and 2-aminopyrroles, where two new types of nitrene transfer reagents (benzyl azides and isoxazoles) were discovered. In particular, the use of isoxazoles as nitrene transfer reagents for atom-economic generation of α-imino metal carbenes has also been elegantly exploited by Hashmi, Liu, and many other groups, providing ready access to a wide range of functionalized N-heterocycles. Moreover, we revealed that donor/donor copper carbenes could be generated via copper-catalyzed diyne cyclization under mild conditions. These novel copper carbenes could undergo asymmetric C–H insertion, cyclopropanation, and formal [3 + 2] cycloaddition to produce diverse chiral polycyclic pyrroles with good to excellent enantioselectivities. Thus, this strategy may open new avenues in catalytic asymmetric reaction of ynamides, which remain largely unexplored and deserve more attention. Meanwhile, we also accomplished the efficient and practical synthesis of medium-sized lactams by yttrium-catalyzed cascade cyclization of allyl alcohol-tethered ynamides and the combination of radical chemistry based on visible-light photoredox catalysis with ynamide chemistry for divergent synthesis of useful 2-benzhydrylindoles and 3-benzhydrylisoquinolines. In this Account, we describe a panoramic picture of our recent contributions since 2015 to the development and application of ynamide chemistry in organic synthesis via transition metal-catalyzed tandem reactions by focusing on the tetrafunctionalization of ynamides. These studies provide not only efficient and attractive methods for divergent synthesis of valuable N-heterocycles but also some new insights into the exploration of alkyne chemistry and metal carbene chemistry.
Author Hong, Feng-Lin
Ye, Long-Wu
AuthorAffiliation State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
State Key Laboratory of Organometallic Chemistry
AuthorAffiliation_xml – name: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
– name: State Key Laboratory of Organometallic Chemistry
– name: State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Feng-Lin
  surname: Hong
  fullname: Hong, Feng-Lin
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Long-Wu
  orcidid: 0000-0003-3108-2611
  surname: Ye
  fullname: Ye, Long-Wu
  email: longwuye@xmu.edu.cn
  organization: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
BookMark eNqFkDtOAzEQQC0EEkngBhQuaTbY3vV-6FD4BCmABKGgsrzOGBxt7GA7SKHiClyRk7CrhIYCmvlo5o00r492rbOA0BElQ0oYPZEqDKVSbmVjGBJFSEaLHdSjnJEkK6tyF_UIIbStM7aP-iHM25ZledFDYuqlDSYaZ_ENRNkkI9nG9TvM8FTaGSzwPUjVzQN2Gj9ZuTAzCFg7j8_NG_hnsBHffn18jiGCd2qtGsAPaxtfIJhwgPa0bAIcbvMAPV5eTEfjZHJ3dT06myQyrWhMqpRKrXVaMA6zmleKsFKVmsmCl3nNoSq5ZlWpOSjKWM2zQrFC8Yyldc7aD9MBOt7cXXr3uoIQxcIEBU0jLbhVECxLq5zlvM0DdLpZVd6F4EELZaLsPoxemkZQIjqrorUqfqyKrdUWzn7BS28W0q__w8gG66Zzt_K2lfE38g01-JTe
CitedBy_id crossref_primary_10_1039_D4QO00301B
crossref_primary_10_1002_slct_202400001
crossref_primary_10_1002_adsc_202100769
crossref_primary_10_1021_acs_orglett_2c00499
crossref_primary_10_1007_s11426_024_2475_3
crossref_primary_10_1007_s11244_023_01880_x
crossref_primary_10_1002_tcr_202100159
crossref_primary_10_1021_acscatal_1c00461
crossref_primary_10_1021_acs_joc_1c02263
crossref_primary_10_1002_asia_202300346
crossref_primary_10_1016_j_trechm_2023_10_002
crossref_primary_10_1039_D3GC04244H
crossref_primary_10_1016_j_cclet_2022_06_070
crossref_primary_10_1021_acs_orglett_3c00221
crossref_primary_10_1021_acs_orglett_4c01889
crossref_primary_10_1002_anie_202303537
crossref_primary_10_1002_solr_202300695
crossref_primary_10_1016_j_jorganchem_2022_122321
crossref_primary_10_1039_D2CC04674A
crossref_primary_10_1038_s41467_022_30001_7
crossref_primary_10_1039_D3OB02032K
crossref_primary_10_1002_anie_202414612
crossref_primary_10_1126_sciadv_adg4648
crossref_primary_10_1021_acs_orglett_2c03537
crossref_primary_10_1039_D2QO01786E
crossref_primary_10_1039_D1OB02393D
crossref_primary_10_1039_D1QO00912E
crossref_primary_10_1002_ejoc_202401446
crossref_primary_10_1021_acs_joc_2c02906
crossref_primary_10_1039_D3QO00916E
crossref_primary_10_1002_cctc_202401851
crossref_primary_10_1021_acs_orglett_1c00158
crossref_primary_10_1021_acs_joc_2c02103
crossref_primary_10_1002_anie_202300816
crossref_primary_10_1002_adsc_202101189
crossref_primary_10_1002_ange_202207360
crossref_primary_10_1039_D2OB00395C
crossref_primary_10_1039_D3SC01880F
crossref_primary_10_1039_D2QO01569B
crossref_primary_10_1002_slct_202101130
crossref_primary_10_1002_ange_202210637
crossref_primary_10_1007_s11426_023_1739_y
crossref_primary_10_1039_D2QO01105K
crossref_primary_10_1002_asia_202201259
crossref_primary_10_1021_acscatal_4c01805
crossref_primary_10_1021_acs_orglett_5c00752
crossref_primary_10_1021_acs_orglett_1c02003
crossref_primary_10_1039_D1CC02016A
crossref_primary_10_1021_acs_joc_4c00267
crossref_primary_10_1002_tcr_202100172
crossref_primary_10_1002_adsc_202401372
crossref_primary_10_6023_cjoc202300035
crossref_primary_10_1021_acs_orglett_3c00682
crossref_primary_10_1039_D2QO00685E
crossref_primary_10_1021_acs_joc_3c02342
crossref_primary_10_1055_a_2119_5390
crossref_primary_10_1002_anie_202305810
crossref_primary_10_1021_acs_orglett_2c01807
crossref_primary_10_1039_D1CC00870F
crossref_primary_10_1055_a_2050_4967
crossref_primary_10_1021_acscatal_0c04180
crossref_primary_10_1021_acs_orglett_3c00319
crossref_primary_10_1002_anie_202113464
crossref_primary_10_1002_ejoc_202101269
crossref_primary_10_1002_ejoc_202200028
crossref_primary_10_1016_j_tchem_2024_100090
crossref_primary_10_6023_cjoc202206041
crossref_primary_10_1002_chem_202302821
crossref_primary_10_1002_adsc_202300217
crossref_primary_10_1039_D4OB00470A
crossref_primary_10_1002_chem_202402402
crossref_primary_10_1039_D1SC02773E
crossref_primary_10_1016_j_checat_2021_09_011
crossref_primary_10_1021_acs_orglett_1c02360
crossref_primary_10_1021_acs_orglett_3c00434
crossref_primary_10_1007_s11426_021_1158_4
crossref_primary_10_1002_ange_202305810
crossref_primary_10_1021_acs_joc_2c02121
crossref_primary_10_1007_s11426_023_1671_y
crossref_primary_10_1016_j_ccr_2021_214131
crossref_primary_10_1002_adsc_202200971
crossref_primary_10_1002_anie_202201436
crossref_primary_10_1021_acs_accounts_4c00715
crossref_primary_10_1039_D3QO00367A
crossref_primary_10_1021_acs_orglett_2c00574
crossref_primary_10_1002_ange_202316563
crossref_primary_10_1016_j_cclet_2023_108441
crossref_primary_10_1021_acs_orglett_2c02871
crossref_primary_10_1039_D4CC03723E
crossref_primary_10_1021_acs_joc_4c01013
crossref_primary_10_1002_chem_202102534
crossref_primary_10_1002_anie_202216923
crossref_primary_10_1002_anie_202213653
crossref_primary_10_1021_acs_oprd_4c00186
crossref_primary_10_1126_sciadv_adq7767
crossref_primary_10_6023_A23040188
crossref_primary_10_1039_D2QO00457G
crossref_primary_10_1021_acs_orglett_3c02448
crossref_primary_10_1021_acs_joc_1c01654
crossref_primary_10_1016_j_cclet_2025_110870
crossref_primary_10_1039_D1QO01506K
crossref_primary_10_3390_molecules28114564
crossref_primary_10_1002_ajoc_202300052
crossref_primary_10_1021_acs_joc_4c01264
crossref_primary_10_1002_ejoc_202201374
crossref_primary_10_1002_adsc_202300476
crossref_primary_10_1002_ange_202204603
crossref_primary_10_1038_s42004_023_00910_9
crossref_primary_10_1039_D1CC00687H
crossref_primary_10_1038_s41467_024_46288_7
crossref_primary_10_1039_D2OB00420H
crossref_primary_10_1002_ange_202215616
crossref_primary_10_1039_D1QO01054A
crossref_primary_10_1021_acs_orglett_3c03525
crossref_primary_10_1002_anie_202200204
crossref_primary_10_6023_cjoc202201006
crossref_primary_10_1002_ajoc_202300145
crossref_primary_10_1021_acs_joc_4c01712
crossref_primary_10_1039_D3GC03222A
crossref_primary_10_1002_adsc_202300241
crossref_primary_10_1002_ange_202318887
crossref_primary_10_1002_ange_202405781
crossref_primary_10_1021_acs_joc_3c00766
crossref_primary_10_1039_D4QO02371D
crossref_primary_10_1021_acs_orglett_3c01693
crossref_primary_10_1002_anie_202316563
crossref_primary_10_1002_adsc_202001512
crossref_primary_10_1016_j_gresc_2023_11_001
crossref_primary_10_1126_sciadv_adk1704
crossref_primary_10_1002_ajoc_202100656
crossref_primary_10_1038_s41557_021_00778_z
crossref_primary_10_1021_acs_orglett_4c02079
crossref_primary_10_1039_D2OB00102K
crossref_primary_10_1002_adsc_202201002
crossref_primary_10_1021_acs_orglett_1c01345
crossref_primary_10_1021_acs_orglett_1c02316
crossref_primary_10_1002_anie_202405781
crossref_primary_10_1039_D1OB00744K
crossref_primary_10_1002_ange_202201436
crossref_primary_10_1021_acs_orglett_1c03092
crossref_primary_10_1002_ange_202213653
crossref_primary_10_1039_D1CC02559G
crossref_primary_10_1021_acs_joc_4c02936
crossref_primary_10_1021_acscatal_4c02157
crossref_primary_10_1039_D1QO01052B
crossref_primary_10_1002_ange_202216923
crossref_primary_10_1021_acs_joc_1c02978
crossref_primary_10_1002_cjoc_202400607
crossref_primary_10_1039_D4OB01314J
crossref_primary_10_1021_acs_joc_4c01292
crossref_primary_10_1002_anie_202110221
crossref_primary_10_1360_TB_2021_1109
crossref_primary_10_1002_slct_202301685
crossref_primary_10_1007_s11426_021_1069_7
crossref_primary_10_1002_anie_202110901
crossref_primary_10_1021_acs_orglett_1c03830
crossref_primary_10_1039_D3OB01768K
crossref_primary_10_1002_ange_202300610
crossref_primary_10_3390_molecules26082318
crossref_primary_10_1002_adsc_202401198
crossref_primary_10_1021_acs_chemrev_0c00788
crossref_primary_10_1021_acs_orglett_4c01368
crossref_primary_10_1002_asia_202300987
crossref_primary_10_1039_D2QO00045H
crossref_primary_10_1021_acs_joc_1c03076
crossref_primary_10_1039_D2QO00275B
crossref_primary_10_1021_acs_orglett_5c00816
crossref_primary_10_1016_j_trechm_2021_12_010
crossref_primary_10_1039_D1OB01546J
crossref_primary_10_1021_acs_organomet_2c00073
crossref_primary_10_1002_anie_202115464
crossref_primary_10_1039_D4QO02218A
crossref_primary_10_1039_D2SC06152J
crossref_primary_10_1055_s_0040_1719866
crossref_primary_10_1021_acs_joc_0c02326
crossref_primary_10_1039_D2OB01662A
crossref_primary_10_1002_ange_202115554
crossref_primary_10_1039_D2QO00873D
crossref_primary_10_1002_adsc_202301123
crossref_primary_10_1002_anie_202318887
crossref_primary_10_1002_ange_202200204
crossref_primary_10_1016_j_cattod_2021_05_011
crossref_primary_10_1016_j_tetlet_2023_154607
crossref_primary_10_1002_ajoc_202400265
crossref_primary_10_1016_j_cclet_2022_04_050
crossref_primary_10_1002_adsc_202101462
crossref_primary_10_1021_acs_orglett_4c01013
crossref_primary_10_1039_D3QO00890H
crossref_primary_10_1002_anie_202210637
crossref_primary_10_1002_ange_202113464
crossref_primary_10_1007_s11426_022_1536_9
crossref_primary_10_1021_acscatal_2c04736
crossref_primary_10_1039_D3QO00236E
crossref_primary_10_1039_D1QO01923F
crossref_primary_10_1039_D2QO01488B
crossref_primary_10_1055_a_2241_3571
crossref_primary_10_1039_D4SC03190C
crossref_primary_10_1039_D3CC04817A
crossref_primary_10_1016_j_molliq_2023_121510
crossref_primary_10_1002_anie_202204603
crossref_primary_10_1016_j_cclet_2021_11_070
crossref_primary_10_1055_a_1975_4377
crossref_primary_10_1021_acs_orglett_2c02179
crossref_primary_10_1021_acs_orglett_2c04115
crossref_primary_10_1039_D4SC05541A
crossref_primary_10_1021_acs_joc_3c02508
crossref_primary_10_1039_D3RA00139C
crossref_primary_10_6023_cjoc202203061
crossref_primary_10_1002_adsc_202101232
crossref_primary_10_1002_anie_202215616
crossref_primary_10_1039_D3OB00277B
crossref_primary_10_6023_cjoc202107051
crossref_primary_10_1039_D2QO00996J
crossref_primary_10_1038_s41467_024_53605_7
crossref_primary_10_1039_D0OB02575E
crossref_primary_10_1021_acscatal_3c01680
crossref_primary_10_1039_D3QO00489A
crossref_primary_10_1039_D3SC01394D
crossref_primary_10_1021_acs_orglett_1c02519
crossref_primary_10_1021_acs_orglett_1c03729
crossref_primary_10_1002_adsc_202100952
crossref_primary_10_1016_j_molstruc_2022_134309
crossref_primary_10_1002_cctc_202200008
crossref_primary_10_1002_tcr_202100205
crossref_primary_10_3390_catal12080915
crossref_primary_10_1021_acs_orglett_4c04623
crossref_primary_10_1039_D1OB01157J
crossref_primary_10_1021_acscatal_4c08055
crossref_primary_10_1002_ange_202414612
crossref_primary_10_1016_j_mcat_2024_114691
crossref_primary_10_1002_cjoc_202400723
crossref_primary_10_1021_acs_orglett_3c00278
crossref_primary_10_1039_D2GC04091C
crossref_primary_10_1039_D4OB00551A
crossref_primary_10_1039_D3OB01626A
crossref_primary_10_1021_acs_orglett_2c01825
crossref_primary_10_1039_D1CC00998B
crossref_primary_10_1002_ange_202115464
crossref_primary_10_1039_D4CS01329H
crossref_primary_10_1002_anie_202115554
crossref_primary_10_1002_ange_202300816
crossref_primary_10_1055_a_2196_8886
crossref_primary_10_1002_adsc_202101410
crossref_primary_10_1002_open_202500040
crossref_primary_10_1016_j_xcrp_2021_100577
crossref_primary_10_1016_j_cclet_2024_109895
crossref_primary_10_1007_s11426_024_1990_y
crossref_primary_10_1039_D3QO00491K
crossref_primary_10_1021_acs_orglett_4c00874
crossref_primary_10_1038_s41557_023_01179_0
crossref_primary_10_1039_D1OB01922H
crossref_primary_10_6023_cjoc202009020
crossref_primary_10_1038_s41467_023_42805_2
crossref_primary_10_1002_ejoc_202201417
crossref_primary_10_1016_j_xcrp_2021_100448
crossref_primary_10_1038_s42004_023_00999_y
crossref_primary_10_1021_acs_joc_4c01784
crossref_primary_10_1002_adsc_202300075
crossref_primary_10_1021_acs_orglett_1c00631
crossref_primary_10_1002_ange_202303537
crossref_primary_10_1002_anie_202411709
crossref_primary_10_1021_acs_orglett_4c00763
crossref_primary_10_1016_j_checat_2024_101163
crossref_primary_10_1021_acs_joc_1c01143
crossref_primary_10_1055_s_0043_1775404
crossref_primary_10_1002_chem_202300826
crossref_primary_10_1002_anie_202300610
crossref_primary_10_1002_cjoc_202300498
crossref_primary_10_1021_acs_orglett_4c04444
crossref_primary_10_1038_s44160_022_00208_z
crossref_primary_10_1021_acs_orglett_4c03232
crossref_primary_10_1021_acs_joc_3c02095
crossref_primary_10_1002_ajoc_202200458
crossref_primary_10_1002_chem_202005348
crossref_primary_10_1039_D2QO01246D
crossref_primary_10_1039_D3RA02839A
crossref_primary_10_1360_SSC_2023_0060
crossref_primary_10_3987_COM_22_14778
crossref_primary_10_1002_adsc_202001474
crossref_primary_10_1038_s41467_023_40801_0
crossref_primary_10_1021_acs_orglett_2c03225
crossref_primary_10_1039_D1QO00559F
crossref_primary_10_1039_D2CC03252J
crossref_primary_10_1002_ajoc_202300304
crossref_primary_10_1002_ange_202110901
crossref_primary_10_1039_D3NJ04886A
crossref_primary_10_1002_anie_202207360
crossref_primary_10_1021_acs_joc_0c02480
crossref_primary_10_1021_acs_joc_1c00020
crossref_primary_10_1016_j_gresc_2024_05_010
crossref_primary_10_6023_cjoc202401010
crossref_primary_10_1002_ange_202110221
crossref_primary_10_1021_acs_orglett_1c03141
crossref_primary_10_2174_1385272827666230106112146
crossref_primary_10_3389_fchem_2021_738736
crossref_primary_10_1021_acscatal_3c04631
crossref_primary_10_1002_adsc_202401052
crossref_primary_10_1039_D3OB00843F
crossref_primary_10_1021_acs_orglett_2c01607
crossref_primary_10_1002_anie_202303670
crossref_primary_10_1021_acscatal_3c05824
crossref_primary_10_1007_s11426_024_2211_y
crossref_primary_10_1002_adsc_202001342
crossref_primary_10_1007_s11426_024_2174_x
crossref_primary_10_1002_ajoc_202300554
crossref_primary_10_1021_acs_joc_4c00359
crossref_primary_10_1002_cssc_202301604
crossref_primary_10_1002_ange_202411709
crossref_primary_10_1039_D4QO01623H
crossref_primary_10_1021_acs_joc_1c02450
crossref_primary_10_1021_acscatal_0c04786
crossref_primary_10_1039_D2QO00123C
crossref_primary_10_1055_a_1863_8862
crossref_primary_10_3390_molecules27103088
crossref_primary_10_1002_ange_202303670
crossref_primary_10_1002_cjoc_202300277
crossref_primary_10_1021_acs_joc_2c02320
crossref_primary_10_1039_D1CC05514C
crossref_primary_10_1021_acs_orglett_4c00063
Cites_doi 10.1002/chem.201904869
10.1021/ar400193g
10.1002/(SICI)1521-3773(19980302)37:4<489::AID-ANIE489>3.0.CO;2-N
10.1039/C8CC03140A
10.1016/bs.adomc.2019.12.001
10.1021/jacs.5b06015
10.1002/cjoc.201800437
10.1039/C8GC01534A
10.1039/c3cc40529j
10.1039/C5CS00887E
10.1021/jacs.0c01918
10.1002/ajoc.201500170
10.1021/acs.joc.7b01612
10.1038/s41467-017-01853-1
10.1002/1521-3773(20020902)41:17<3281::AID-ANIE3281>3.0.CO;2-G
10.1002/anie.200905817
10.1039/C7OB01895A
10.1021/jacs.9b13975
10.1002/anie.201502553
10.1021/ja077406x
10.1002/anie.201912534
10.1021/acs.orglett.6b02267
10.1038/s41467-019-11245-2
10.1039/C9SC00079H
10.1016/j.chempr.2018.02.001
10.1016/j.scib.2017.08.020
10.1021/cr100003s
10.1002/anie.200901099
10.1002/cjoc.201900478
10.1039/C8GC02051E
10.1002/anie.201100327
10.1055/s-2004-817785
10.1007/s11705-019-1874-4
10.1002/anie.201610042
10.1021/jo060230h
10.1021/jacs.9b09303
10.1039/C6QO00169F
10.1021/ar400181x
10.1039/D0GC01522A
10.1055/s-2005-864821
10.1039/C8QO00552D
10.1039/C4SC02596B
10.1021/acscatal.9b01851
10.1021/acs.orglett.6b01503
10.1039/C6OB01774F
10.1021/ar4001839
10.1039/C9QO00243J
10.1002/anie.201700596
10.1016/S0040-4020(00)01014-0
10.1021/jo900595c
10.1055/s-2007-984529
10.1021/acscatal.6b01599
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.accounts.0c00417
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 2019
ExternalDocumentID 10_1021_acs_accounts_0c00417
c645316652
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
7X8
ID FETCH-LOGICAL-a391t-931afff3725edb59c028c8f2a7586b5e985f298f5ec122b547c27c5423b628983
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 07:28:19 EDT 2025
Tue Jul 01 03:16:05 EDT 2025
Thu Apr 24 23:05:54 EDT 2025
Thu Sep 17 03:19:08 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a391t-931afff3725edb59c028c8f2a7586b5e985f298f5ec122b547c27c5423b628983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3108-2611
PQID 2439626524
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2439626524
crossref_citationtrail_10_1021_acs_accounts_0c00417
crossref_primary_10_1021_acs_accounts_0c00417
acs_journals_10_1021_acs_accounts_0c00417
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
ref13/cit13a
ref13/cit13b
ref13/cit13c
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref20/cit20
ref5/cit5b
ref17/cit17
ref5/cit5a
ref16/cit16b
ref35/cit35
ref16/cit16a
ref21/cit21
ref11/cit11c
ref11/cit11b
ref11/cit11a
ref7/cit7b
ref7/cit7a
ref19/cit19a
ref24/cit24
ref5/cit5f
ref5/cit5d
ref5/cit5e
ref6/cit6
ref19/cit19d
ref19/cit19c
ref19/cit19b
ref29/cit29
ref25/cit25b
ref10/cit10a
ref10/cit10b
ref10/cit10c
ref25/cit25a
ref32/cit32
ref14/cit14
ref28/cit28
ref26/cit26
ref18/cit18b
ref18/cit18a
ref12/cit12
ref15/cit15
Evano G. (ref5/cit5c) 2015; 48
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
References_xml – ident: ref32/cit32
  doi: 10.1002/chem.201904869
– ident: ref5/cit5d
  doi: 10.1021/ar400193g
– ident: ref10/cit10a
  doi: 10.1002/(SICI)1521-3773(19980302)37:4<489::AID-ANIE489>3.0.CO;2-N
– ident: ref25/cit25b
  doi: 10.1039/C8CC03140A
– ident: ref19/cit19a
  doi: 10.1016/bs.adomc.2019.12.001
– ident: ref1/cit1
  doi: 10.1021/jacs.5b06015
– ident: ref18/cit18b
  doi: 10.1002/cjoc.201800437
– ident: ref18/cit18a
  doi: 10.1039/C8GC01534A
– ident: ref10/cit10c
  doi: 10.1039/c3cc40529j
– ident: ref13/cit13a
  doi: 10.1039/C5CS00887E
– ident: ref35/cit35
  doi: 10.1021/jacs.0c01918
– ident: ref19/cit19c
  doi: 10.1002/ajoc.201500170
– ident: ref27/cit27
  doi: 10.1021/acs.joc.7b01612
– ident: ref17/cit17
  doi: 10.1038/s41467-017-01853-1
– ident: ref10/cit10b
  doi: 10.1002/1521-3773(20020902)41:17<3281::AID-ANIE3281>3.0.CO;2-G
– ident: ref5/cit5f
  doi: 10.1002/anie.200905817
– ident: ref23/cit23
  doi: 10.1039/C7OB01895A
– ident: ref30/cit30
  doi: 10.1021/jacs.9b13975
– ident: ref14/cit14
  doi: 10.1002/anie.201502553
– ident: ref6/cit6
  doi: 10.1021/ja077406x
– ident: ref26/cit26
  doi: 10.1002/anie.201912534
– ident: ref22/cit22
  doi: 10.1021/acs.orglett.6b02267
– ident: ref29/cit29
  doi: 10.1038/s41467-019-11245-2
– ident: ref28/cit28
  doi: 10.1039/C9SC00079H
– ident: ref33/cit33
  doi: 10.1016/j.chempr.2018.02.001
– ident: ref20/cit20
  doi: 10.1016/j.scib.2017.08.020
– ident: ref5/cit5e
  doi: 10.1021/cr100003s
– ident: ref8/cit8
  doi: 10.1002/anie.200901099
– ident: ref15/cit15
  doi: 10.1002/cjoc.201900478
– ident: ref25/cit25a
  doi: 10.1039/C8GC02051E
– ident: ref12/cit12
  doi: 10.1002/anie.201100327
– ident: ref9/cit9
  doi: 10.1055/s-2004-817785
– ident: ref19/cit19d
  doi: 10.1007/s11705-019-1874-4
– ident: ref24/cit24
  doi: 10.1002/anie.201610042
– ident: ref7/cit7a
  doi: 10.1021/jo060230h
– ident: ref4/cit4
  doi: 10.1021/jacs.9b09303
– ident: ref16/cit16b
  doi: 10.1039/C6QO00169F
– ident: ref13/cit13c
  doi: 10.1021/ar400181x
– ident: ref31/cit31
  doi: 10.1039/D0GC01522A
– ident: ref11/cit11b
  doi: 10.1055/s-2005-864821
– ident: ref34/cit34
  doi: 10.1039/C8QO00552D
– ident: ref2/cit2
  doi: 10.1039/C4SC02596B
– ident: ref5/cit5a
  doi: 10.1021/acscatal.9b01851
– ident: ref21/cit21
  doi: 10.1021/acs.orglett.6b01503
– ident: ref5/cit5b
  doi: 10.1039/C6OB01774F
– ident: ref13/cit13b
  doi: 10.1021/ar4001839
– ident: ref19/cit19b
  doi: 10.1039/C9QO00243J
– ident: ref3/cit3
  doi: 10.1002/anie.201700596
– ident: ref11/cit11a
  doi: 10.1016/S0040-4020(00)01014-0
– volume: 48
  start-page: 59
  year: 2015
  ident: ref5/cit5c
  publication-title: Aldrichimica Acta
– ident: ref7/cit7b
  doi: 10.1021/jo900595c
– ident: ref11/cit11c
  doi: 10.1055/s-2007-984529
– ident: ref16/cit16a
  doi: 10.1021/acscatal.6b01599
SSID ssj0002467
Score 2.692759
Snippet Conspectus Ynamides are electron-rich heteroatom-substituted alkynes with a C–C triple bond directly attached to the amide group. Importantly, this amide group...
ConspectusYnamides are electron-rich heteroatom-substituted alkynes with a C-C triple bond directly attached to the amide group. Importantly, this amide group...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2003
Title Transition Metal-Catalyzed Tandem Reactions of Ynamides for Divergent N‑Heterocycle Synthesis
URI http://dx.doi.org/10.1021/acs.accounts.0c00417
https://www.proquest.com/docview/2439626524
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aF7rxLdYXEdy4mNrJJDOZZalKEVpBW9DVkGQSEHUqpl20K3_BX_RLvJmHUkXU5QyTTEhu7j0nuQ-EjkRAlZEh9UB6iEeFTEEPGupp4TclwFmehi5QuNsLOwN6ccNuPoni1xt84p8IZaHrvHKCbTSVSxAVzaMF6CZyZKvVvv7QvISGRY5MoMiUU1KFyv3QizNIys4apFl9nBuZ8xV0WYXqFL4l943xSDbU9Hvmxj-OfxUtl3gTtwoBWUNzOltHi-2qzNsGSnJrlTtu4a4GKO613YnOZKpT3HcnzI_4ShfRDxYPDb51FexTbTGgXXzqvDpccBbuvb28dpxrzVBN4Ef4epIBtLR3dhMNzs_67Y5XVl3wRBD7Iy8OfGGMCSLCdCpZrACBKG6IAGYRSqZjzgyJuWFa-YRIRiNFIsUAlskQ2BsPtlAtG2Z6G-EmT6mSsc90k1NDJU_hIQINEglNfKnq6BhmJyl3jU3yC3HiJ-5lNWVJOWV1FFTLlKgyfbmrovHwSyvvo9VTkb7jl-8PKwlIYB3c5YnI9HBsEwLIDcgfI3TnH6PeRUvEEXRXc4Ltodroeaz3AcWM5EEuuu_4ffFK
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ReqCX0l9B6Y-RyqGHbDeOnTiHHtBStBR2D7BI9OTaji0hIFvVu6qWU1-hD9FX4UF4ko7zswikCvWAxDFW7Die8cw39vwAvFcJM06nLELuoRFTukA56FhkVdzVCGdFkYZA4cEw7R-yL0f8aAH-tLEwOAmPI_nqEv8qu0D8MbSpuoCC73RNyBOVNb6Uu3b2Ey01_2lnC8m6Qen251GvHzXFBCKV5PEkypNYOeeSjHJbaJ4bVKxGOKoQMKea21xwR3PhuDUxpZqzzNDMcEQbOkWjRCQ47gN4iPiHBhtvs3cwF_iUpXVqTrTMmWC0jdD7x6yDHjT-uh68rgYq3ba9DBfzValcWk4604numPMbCSPv_bI9gccNuiab9XZ4Cgu2fAZLvbao3XOQlW6u3NTIwKLhEfXC-dXs3BZkFM7Tz8i-rWM9PBk78rVUZ8eF9QSxPdkKPiwhFI0ML3_97gdHorGZ4YfIwaxEIO2P_Qs4vJP_ewmL5bi0K0C6omBG5zG3XcEc06LAhwzlZaYsjbVZhQ9IDdnICC-r638ay9DYkkg2JFqFpOUOaZpk7aFmyOktvaJ5r-91spJb3l9vGU8iHcJVkSrteOolRZyKpi6n7NV_zPodLPVHgz25tzPcXYNHNBxNhGob_DUsTn5M7RvEbxP9tto9BL7dNd_9BfIUUlc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVgIuUP5E6Q9GggOHLBvHTpxDD9VuV1tKV4i2Ujm5tmNLFTRb4V2h7amv0Mfoq_AYPAnj_KzUSqji0APHWLHjeMYz39jzA_BWJcw4nbIIuYdGTOkC5aBjkVVxVyOcFUUaAoX3RunwkH084kcLcNXGwuAkPI7kq0v8sKvPCtdkGIg_hHZVF1Hwna4JuaKyxp9y185-orXmN3f6SNp3lA62D3rDqCkoEKkkjydRnsTKOZdklNtC89ygcjXCUYWgOdXc5oI7mgvHrYkp1ZxlhmaGI-LQKRomIsFx78FSuCkMdt5Wb38u9ClL6_ScaJ0zwWgbpfeXWQddaPx1XXhdFVT6bfAYfs1XpnJr-daZTnTHnN9IGvlfLN0yPGpQNtmqt8UTWLDlU3jQa4vbPQNZ6ejKXY3sWTRAol44x5qd24IchHP1U_LF1jEfnowd-Vqq05PCeoIYn_SDL0sISSOj3xeXw-BQNDYz_BDZn5UIqP2Jfw6Hd_J_L2CxHJf2JZCuKJjRecxtVzDHtCjwIUO5mSlLY21W4D1SQzaywsvKDYDGMjS2JJINiVYgaTlEmiZpe6gd8v2WXtG811mdtOSW99-0zCeRDuHKSJV2PPWSIl5Fk5dT9uofZv0a7n_uD-SnndHuKjyk4YQiFN3ga7A4-TG16wjjJnqj2kAEju-a7f4ACkVU2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition+Metal-Catalyzed+Tandem+Reactions+of+Ynamides+for+Divergent+N-Heterocycle+Synthesis&rft.jtitle=Accounts+of+chemical+research&rft.au=Hong%2C+Feng-Lin&rft.au=Ye%2C+Long-Wu&rft.date=2020-09-15&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=53&rft.issue=9&rft.spage=2003&rft.epage=2019&rft_id=info:doi/10.1021%2Facs.accounts.0c00417&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_accounts_0c00417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon