Promoting Rechargeable Batteries Operated at Low Temperature
Conspectus Building rechargeable batteries for subzero temperature application is highly demanding for various specific applications including electric vehicles, grid energy storage, defense/space/subsea explorations, and so forth. Commercialized nonaqueous lithium ion batteries generally adapt to a...
Saved in:
Published in | Accounts of chemical research Vol. 54; no. 20; pp. 3883 - 3894 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
19.10.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Building rechargeable batteries for subzero temperature application is highly demanding for various specific applications including electric vehicles, grid energy storage, defense/space/subsea explorations, and so forth. Commercialized nonaqueous lithium ion batteries generally adapt to a temperature above −20 °C, which cannot well meet the requirements under colder conditions. Certain improvements have been achieved with nascent materials and electrolyte systems but have mainly been restrained to discharge and within a small rate at temperatures above −40 °C. Moreover, the recharging process of batteries based on the graphite anode still faces huge challenges from the simultaneous Li+ intercalation and potential Li stripping at subzero temperatures. Revealing the temperature-dependent evolution of physicochemical and electrochemical properties will greatly benefit our understanding of the limiting factors at low temperature, which is of significant importance. Herein, we dissect the ion movements in the liquid electrolyte and solid electrode as well as their interphase to analyze the temperature effect on Li+-diffusion behavior during charging/discharging processes. An electrolyte is the vital factor, and its ionic conductivity guarantees the smooth operation of the battery. However, it is the sluggish diffusion in the solid, especially the charge transfer at the solid electrolyte/electrode interfaces (SEI), that greatly limits the kinetics at low temperature. Many strategies have been put forward to tame electrolytes for low-temperature application. From a macroscopic point of view, multiple solvents are mixed to adjust the liquid temperature range and viscosity. With respect to the microscopic nature, research is focusing on the solvation structure by formulating the ratio of Li+ ions to solvent molecules. The binding energy of the Li+–solvent complex is crucial for the desolvation process at low temperature, which is manipulated with fluorinated solvents or other weakly solvating electrolytes. On the basis of an optimized electrolyte, electrodes and their reaction mechanism need to be coupled carefully because different materials show totally different responses to temperature change. To avoid the sluggish desolvation process or slow diffusion in the bulk intercalation compounds, several kinds of materials are summarized for low temperature use. The intercalation pseudocapacitive behavior can compensate for the kinetics to some extent, and a metal anode is a good candidate for replacing a graphite anode to build high-energy-density batteries at subzero temperature. It is also a wise choice to develop nascent battery chemistry based on the co-intercalation of solvent molecules into electrodes. Furthermore, the interfacial resistance contributes a lot at low temperature, which need be modified to accelerate the Li+ diffusion across the film. This will be linked to the electrolyte, exactly speaking, the solvation structure, to regulate the organic and inorganic components as well as the structure. Although it is difficult to investigate SEI on a graphite anode owing to its poor performance at low temperature, great efforts on Li metal anodes have offered some valuable information as reference. It is worth mentioning that the improvement in low-temperature performance calls for not only a change in the single composition but also the synergetic effect of each part in the whole battery. The elementary studies covered in this account could be taken as insight into some key strategies that help advance the low-temperature battery chemistry. |
---|---|
AbstractList | ConspectusBuilding rechargeable batteries for subzero temperature application is highly demanding for various specific applications including electric vehicles, grid energy storage, defense/space/subsea explorations, and so forth. Commercialized nonaqueous lithium ion batteries generally adapt to a temperature above -20 °C, which cannot well meet the requirements under colder conditions. Certain improvements have been achieved with nascent materials and electrolyte systems but have mainly been restrained to discharge and within a small rate at temperatures above -40 °C. Moreover, the recharging process of batteries based on the graphite anode still faces huge challenges from the simultaneous Li+ intercalation and potential Li stripping at subzero temperatures. Revealing the temperature-dependent evolution of physicochemical and electrochemical properties will greatly benefit our understanding of the limiting factors at low temperature, which is of significant importance.Herein, we dissect the ion movements in the liquid electrolyte and solid electrode as well as their interphase to analyze the temperature effect on Li+-diffusion behavior during charging/discharging processes. An electrolyte is the vital factor, and its ionic conductivity guarantees the smooth operation of the battery. However, it is the sluggish diffusion in the solid, especially the charge transfer at the solid electrolyte/electrode interfaces (SEI), that greatly limits the kinetics at low temperature. Many strategies have been put forward to tame electrolytes for low-temperature application. From a macroscopic point of view, multiple solvents are mixed to adjust the liquid temperature range and viscosity. With respect to the microscopic nature, research is focusing on the solvation structure by formulating the ratio of Li+ ions to solvent molecules. The binding energy of the Li+-solvent complex is crucial for the desolvation process at low temperature, which is manipulated with fluorinated solvents or other weakly solvating electrolytes. On the basis of an optimized electrolyte, electrodes and their reaction mechanism need to be coupled carefully because different materials show totally different responses to temperature change. To avoid the sluggish desolvation process or slow diffusion in the bulk intercalation compounds, several kinds of materials are summarized for low temperature use. The intercalation pseudocapacitive behavior can compensate for the kinetics to some extent, and a metal anode is a good candidate for replacing a graphite anode to build high-energy-density batteries at subzero temperature. It is also a wise choice to develop nascent battery chemistry based on the co-intercalation of solvent molecules into electrodes. Furthermore, the interfacial resistance contributes a lot at low temperature, which need be modified to accelerate the Li+ diffusion across the film. This will be linked to the electrolyte, exactly speaking, the solvation structure, to regulate the organic and inorganic components as well as the structure. Although it is difficult to investigate SEI on a graphite anode owing to its poor performance at low temperature, great efforts on Li metal anodes have offered some valuable information as reference. It is worth mentioning that the improvement in low-temperature performance calls for not only a change in the single composition but also the synergetic effect of each part in the whole battery. The elementary studies covered in this account could be taken as insight into some key strategies that help advance the low-temperature battery chemistry.ConspectusBuilding rechargeable batteries for subzero temperature application is highly demanding for various specific applications including electric vehicles, grid energy storage, defense/space/subsea explorations, and so forth. Commercialized nonaqueous lithium ion batteries generally adapt to a temperature above -20 °C, which cannot well meet the requirements under colder conditions. Certain improvements have been achieved with nascent materials and electrolyte systems but have mainly been restrained to discharge and within a small rate at temperatures above -40 °C. Moreover, the recharging process of batteries based on the graphite anode still faces huge challenges from the simultaneous Li+ intercalation and potential Li stripping at subzero temperatures. Revealing the temperature-dependent evolution of physicochemical and electrochemical properties will greatly benefit our understanding of the limiting factors at low temperature, which is of significant importance.Herein, we dissect the ion movements in the liquid electrolyte and solid electrode as well as their interphase to analyze the temperature effect on Li+-diffusion behavior during charging/discharging processes. An electrolyte is the vital factor, and its ionic conductivity guarantees the smooth operation of the battery. However, it is the sluggish diffusion in the solid, especially the charge transfer at the solid electrolyte/electrode interfaces (SEI), that greatly limits the kinetics at low temperature. Many strategies have been put forward to tame electrolytes for low-temperature application. From a macroscopic point of view, multiple solvents are mixed to adjust the liquid temperature range and viscosity. With respect to the microscopic nature, research is focusing on the solvation structure by formulating the ratio of Li+ ions to solvent molecules. The binding energy of the Li+-solvent complex is crucial for the desolvation process at low temperature, which is manipulated with fluorinated solvents or other weakly solvating electrolytes. On the basis of an optimized electrolyte, electrodes and their reaction mechanism need to be coupled carefully because different materials show totally different responses to temperature change. To avoid the sluggish desolvation process or slow diffusion in the bulk intercalation compounds, several kinds of materials are summarized for low temperature use. The intercalation pseudocapacitive behavior can compensate for the kinetics to some extent, and a metal anode is a good candidate for replacing a graphite anode to build high-energy-density batteries at subzero temperature. It is also a wise choice to develop nascent battery chemistry based on the co-intercalation of solvent molecules into electrodes. Furthermore, the interfacial resistance contributes a lot at low temperature, which need be modified to accelerate the Li+ diffusion across the film. This will be linked to the electrolyte, exactly speaking, the solvation structure, to regulate the organic and inorganic components as well as the structure. Although it is difficult to investigate SEI on a graphite anode owing to its poor performance at low temperature, great efforts on Li metal anodes have offered some valuable information as reference. It is worth mentioning that the improvement in low-temperature performance calls for not only a change in the single composition but also the synergetic effect of each part in the whole battery. The elementary studies covered in this account could be taken as insight into some key strategies that help advance the low-temperature battery chemistry. Conspectus Building rechargeable batteries for subzero temperature application is highly demanding for various specific applications including electric vehicles, grid energy storage, defense/space/subsea explorations, and so forth. Commercialized nonaqueous lithium ion batteries generally adapt to a temperature above −20 °C, which cannot well meet the requirements under colder conditions. Certain improvements have been achieved with nascent materials and electrolyte systems but have mainly been restrained to discharge and within a small rate at temperatures above −40 °C. Moreover, the recharging process of batteries based on the graphite anode still faces huge challenges from the simultaneous Li+ intercalation and potential Li stripping at subzero temperatures. Revealing the temperature-dependent evolution of physicochemical and electrochemical properties will greatly benefit our understanding of the limiting factors at low temperature, which is of significant importance. Herein, we dissect the ion movements in the liquid electrolyte and solid electrode as well as their interphase to analyze the temperature effect on Li+-diffusion behavior during charging/discharging processes. An electrolyte is the vital factor, and its ionic conductivity guarantees the smooth operation of the battery. However, it is the sluggish diffusion in the solid, especially the charge transfer at the solid electrolyte/electrode interfaces (SEI), that greatly limits the kinetics at low temperature. Many strategies have been put forward to tame electrolytes for low-temperature application. From a macroscopic point of view, multiple solvents are mixed to adjust the liquid temperature range and viscosity. With respect to the microscopic nature, research is focusing on the solvation structure by formulating the ratio of Li+ ions to solvent molecules. The binding energy of the Li+–solvent complex is crucial for the desolvation process at low temperature, which is manipulated with fluorinated solvents or other weakly solvating electrolytes. On the basis of an optimized electrolyte, electrodes and their reaction mechanism need to be coupled carefully because different materials show totally different responses to temperature change. To avoid the sluggish desolvation process or slow diffusion in the bulk intercalation compounds, several kinds of materials are summarized for low temperature use. The intercalation pseudocapacitive behavior can compensate for the kinetics to some extent, and a metal anode is a good candidate for replacing a graphite anode to build high-energy-density batteries at subzero temperature. It is also a wise choice to develop nascent battery chemistry based on the co-intercalation of solvent molecules into electrodes. Furthermore, the interfacial resistance contributes a lot at low temperature, which need be modified to accelerate the Li+ diffusion across the film. This will be linked to the electrolyte, exactly speaking, the solvation structure, to regulate the organic and inorganic components as well as the structure. Although it is difficult to investigate SEI on a graphite anode owing to its poor performance at low temperature, great efforts on Li metal anodes have offered some valuable information as reference. It is worth mentioning that the improvement in low-temperature performance calls for not only a change in the single composition but also the synergetic effect of each part in the whole battery. The elementary studies covered in this account could be taken as insight into some key strategies that help advance the low-temperature battery chemistry. |
Author | Xia, Yongyao Wang, Yong-Gang Dong, Xiaoli |
AuthorAffiliation | Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials |
AuthorAffiliation_xml | – name: Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials |
Author_xml | – sequence: 1 givenname: Xiaoli orcidid: 0000-0002-3267-7548 surname: Dong fullname: Dong, Xiaoli email: xldong@fudan.edu.cn – sequence: 2 givenname: Yong-Gang orcidid: 0000-0002-2447-4679 surname: Wang fullname: Wang, Yong-Gang – sequence: 3 givenname: Yongyao orcidid: 0000-0001-6379-9655 surname: Xia fullname: Xia, Yongyao email: yyxia@fudan.edu.cn |
BookMark | eNqFkD1PwzAQhi1UJNrCP2DIyJJiO84XYoGKL6lSESqzdXEuxVUSF9sR4t_j0rIwwHR39vucTs-EjHrTIyHnjM4Y5ewSlJuBUmbovZsxRang9IiMWcppLIqyGJExpZSFXvATMnFuE0YusnxMrp-t6YzX_Tp6QfUGdo1QtRjdgvdoNbpouUULHusIfLQwH9EKu--XweIpOW6gdXh2qFPyen-3mj_Gi-XD0_xmEUNSMh-nkGRVVQOFRkHNS6qaKkfV1FjxQihshKjKcLYClmSJqOs0zWqVpQKLXUYkU3Kx37u15n1A52WnncK2hR7N4CRPC5qVecryEBX7qLLGOYuN3Frdgf2UjMqdLBlkyR9Z8iArYFe_MKU9eG16b0G3_8F0D-9-N2awfZDxN_IFwiGJLA |
CitedBy_id | crossref_primary_10_1016_j_ensm_2022_05_005 crossref_primary_10_1007_s10694_022_01251_0 crossref_primary_10_1016_j_ensm_2024_103691 crossref_primary_10_1039_D2QI02483G crossref_primary_10_1002_ange_202408902 crossref_primary_10_1016_j_jcis_2023_10_064 crossref_primary_10_1039_D4TA09111F crossref_primary_10_1021_acs_chemmater_3c02615 crossref_primary_10_1002_anie_202300384 crossref_primary_10_1002_adma_202308881 crossref_primary_10_1002_adma_202403803 crossref_primary_10_1002_aenm_202301742 crossref_primary_10_1039_D3TA06641J crossref_primary_10_23919_IEN_2022_0003 crossref_primary_10_1016_j_jpowsour_2022_231817 crossref_primary_10_1002_adma_202405310 crossref_primary_10_1016_j_jechem_2023_12_019 crossref_primary_10_1002_ange_202406182 crossref_primary_10_1002_aenm_202200889 crossref_primary_10_1038_s41467_024_45347_3 crossref_primary_10_1021_acsenergylett_2c00292 crossref_primary_10_1002_ange_202401051 crossref_primary_10_1016_j_esci_2023_100170 crossref_primary_10_1002_ange_202403585 crossref_primary_10_1002_aenm_202202432 crossref_primary_10_1016_j_ensm_2024_103316 crossref_primary_10_1002_anie_202303888 crossref_primary_10_1016_j_ensm_2024_103438 crossref_primary_10_1021_acsami_4c03149 crossref_primary_10_1002_anie_202307122 crossref_primary_10_1002_smll_202306438 crossref_primary_10_1002_adfm_202501303 crossref_primary_10_1002_adma_202107899 crossref_primary_10_1039_D2QI01990F crossref_primary_10_1002_cssc_202202143 crossref_primary_10_1039_D1EE03292E crossref_primary_10_26599_NRE_2022_9120003 crossref_primary_10_1002_aenm_202301758 crossref_primary_10_1002_smtd_202401254 crossref_primary_10_1002_smll_202401735 crossref_primary_10_1016_j_mtsust_2022_100187 crossref_primary_10_1002_adma_202208340 crossref_primary_10_1016_j_jechem_2024_10_014 crossref_primary_10_3390_en15041410 crossref_primary_10_1002_aenm_202203449 crossref_primary_10_1016_j_cej_2021_134031 crossref_primary_10_3390_ma15228166 crossref_primary_10_1016_j_nxmate_2024_100307 crossref_primary_10_1002_ange_202300238 crossref_primary_10_1016_j_elecom_2023_107606 crossref_primary_10_1039_D4EE02060J crossref_primary_10_1007_s11708_022_0853_5 crossref_primary_10_1016_j_ensm_2024_103783 crossref_primary_10_1115_1_4062163 crossref_primary_10_1002_aenm_202300053 crossref_primary_10_1016_j_ensm_2025_104096 crossref_primary_10_1016_j_rser_2023_113861 crossref_primary_10_1038_s41467_023_40221_0 crossref_primary_10_1002_smll_202207093 crossref_primary_10_1016_j_energy_2022_126416 crossref_primary_10_1021_acsnano_3c08576 crossref_primary_10_1002_anie_202300238 crossref_primary_10_1049_esi2_12167 crossref_primary_10_1002_adfm_202309858 crossref_primary_10_1016_j_est_2023_110263 crossref_primary_10_1002_smtd_202400183 crossref_primary_10_1002_tcr_202200132 crossref_primary_10_1002_cssc_202201595 crossref_primary_10_1002_anie_202406182 crossref_primary_10_1021_acs_jpclett_2c00770 crossref_primary_10_1039_D4TA07449A crossref_primary_10_1021_jacs_3c11931 crossref_primary_10_1002_anie_202423118 crossref_primary_10_1016_j_jpowsour_2024_234101 crossref_primary_10_1039_D4TA08958H crossref_primary_10_1021_jacs_3c11134 crossref_primary_10_1016_j_cej_2023_142913 crossref_primary_10_1002_anie_202401051 crossref_primary_10_1016_j_mattod_2024_11_010 crossref_primary_10_1002_ange_202303888 crossref_primary_10_1002_anie_202403585 crossref_primary_10_1002_smll_202304901 crossref_primary_10_1016_j_jpowsour_2022_232550 crossref_primary_10_4274_meandros_galenos_2021_02693 crossref_primary_10_1021_acs_energyfuels_4c06075 crossref_primary_10_1016_j_jelechem_2022_116823 crossref_primary_10_1016_j_cej_2023_145455 crossref_primary_10_1002_adfm_202212349 crossref_primary_10_1007_s42823_024_00749_7 crossref_primary_10_1021_acsenergylett_2c02434 crossref_primary_10_1002_anie_202411029 crossref_primary_10_1002_chem_202400803 crossref_primary_10_1002_advs_202410318 crossref_primary_10_1021_acsenergylett_4c00833 crossref_primary_10_1039_D4CP01967A crossref_primary_10_1002_adma_202410704 crossref_primary_10_1002_anie_202408902 crossref_primary_10_1016_j_ensm_2022_06_003 crossref_primary_10_1039_D2TA09988H crossref_primary_10_1016_j_cclet_2024_110121 crossref_primary_10_1002_ange_202300384 crossref_primary_10_1007_s41918_023_00199_1 crossref_primary_10_1002_aenm_202404032 crossref_primary_10_1038_s41570_024_00670_7 crossref_primary_10_1002_adsu_202300285 crossref_primary_10_1007_s40820_024_01355_y crossref_primary_10_1002_er_8194 crossref_primary_10_1002_ange_202402301 crossref_primary_10_1021_acs_accounts_4c00016 crossref_primary_10_1021_acscentsci_2c00641 crossref_primary_10_1073_pnas_2316914121 crossref_primary_10_1002_adma_202402291 crossref_primary_10_1002_adma_202205678 crossref_primary_10_1149_1945_7111_ac6bc4 crossref_primary_10_1002_aenm_202301285 crossref_primary_10_1039_D4EE05304D crossref_primary_10_1007_s12209_023_00366_x crossref_primary_10_1021_acsami_3c08915 crossref_primary_10_1002_ange_202307122 crossref_primary_10_1016_j_ensm_2024_103741 crossref_primary_10_1038_s41467_023_43163_9 crossref_primary_10_1002_ange_202423118 crossref_primary_10_1007_s40820_024_01363_y crossref_primary_10_1002_ange_202208345 crossref_primary_10_1007_s12274_022_4852_y crossref_primary_10_1016_j_jpowsour_2023_233044 crossref_primary_10_1016_j_est_2024_114207 crossref_primary_10_1021_acs_accounts_4c00022 crossref_primary_10_1073_pnas_2311075121 crossref_primary_10_1002_anie_202402301 crossref_primary_10_1016_j_esci_2025_100394 crossref_primary_10_1002_aenm_202400731 crossref_primary_10_1002_anie_202208345 crossref_primary_10_1039_D3TA00213F crossref_primary_10_1002_adma_202308193 crossref_primary_10_1002_ange_202411029 crossref_primary_10_1002_adma_202311912 crossref_primary_10_1016_j_esci_2024_100252 crossref_primary_10_1149_1945_7111_ac9a84 crossref_primary_10_1002_adfm_202315498 crossref_primary_10_1039_D3TA07347E crossref_primary_10_5796_electrochemistry_24_00031 crossref_primary_10_1021_acsami_2c10953 |
Cites_doi | 10.1021/jp0639142 10.1007/b114546 10.1039/D0CC04049E 10.1016/j.electacta.2014.12.093 10.1021/acs.accounts.6b00363 10.1021/acsami.1c05894 10.1002/aenm.201800802 10.1016/j.joule.2018.01.017 10.1002/aenm.202002821 10.1038/s41560-020-0640-7 10.34133/2019/7481319 10.1016/j.joule.2019.06.008 10.1002/anie.202005603 10.1021/cr500003w 10.1002/anie.201710555 10.1039/D0CC02481C 10.1002/aenm.202000968 10.1016/j.nanoen.2021.105847 10.1038/s41467-020-14748-5 10.1002/anie.201900266 10.1038/s41560-019-0474-3 10.1039/C9EE01473J 10.1021/acssuschemeng.1c01341 10.1016/j.ensm.2019.04.033 10.1016/j.ensm.2019.12.002 10.1149/2.1221802jes 10.1021/acsenergylett.0c01209 10.1039/D0TA04864J 10.1002/anie.202107657 10.1021/cr000689q 10.1021/acsenergylett.0c00643 10.1126/science.aal4263 10.1021/acsenergylett.1c00484 10.1149/1.3501236 10.1021/acsami.8b19654 10.1002/anie.202011482 10.1038/s41560-021-00783-z 10.1002/aenm.202000368 10.1016/j.jpowsour.2019.05.024 10.1002/advs.202000196 10.1038/nature16502 10.1002/adfm.202102856 10.1021/cr030203g 10.1002/anie.202009738 10.1002/cjoc.202000512 10.1002/aenm.201904152 10.1002/anie.201908913 10.1038/s41560-019-0464-5 10.1002/anie.201912167 10.1021/acsenergylett.0c00109 10.1002/batt.202000117 10.1021/jp068691u 10.1149/1.2133112 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.accounts.1c00420 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 3894 |
ExternalDocumentID | 10_1021_acs_accounts_1c00420 b801154918 |
GroupedDBID | - 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED F5P GGK GNL IH2 IH9 JG LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV CITATION CUPRZ ED~ JG~ XSW ZCA ~02 7X8 |
ID | FETCH-LOGICAL-a391t-5a36bbda0afcad290cfb7ecfdeb284cef44b91c0ca13634dd556dc654e8fdeb43 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 11:23:32 EDT 2025 Tue Jul 01 03:16:07 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Thu Oct 21 05:16:53 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a391t-5a36bbda0afcad290cfb7ecfdeb284cef44b91c0ca13634dd556dc654e8fdeb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2447-4679 0000-0002-3267-7548 0000-0001-6379-9655 |
PQID | 2580697517 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2580697517 crossref_primary_10_1021_acs_accounts_1c00420 crossref_citationtrail_10_1021_acs_accounts_1c00420 acs_journals_10_1021_acs_accounts_1c00420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-19 |
PublicationDateYYYYMMDD | 2021-10-19 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 Bockris J. O. (ref23/cit23) 1998 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref53/cit53 doi: 10.1021/jp0639142 – volume-title: Modern Electrochemistry year: 1998 ident: ref23/cit23 doi: 10.1007/b114546 – ident: ref2/cit2 doi: 10.1039/D0CC04049E – ident: ref30/cit30 doi: 10.1016/j.electacta.2014.12.093 – ident: ref26/cit26 doi: 10.1021/acs.accounts.6b00363 – ident: ref8/cit8 doi: 10.1021/acsami.1c05894 – ident: ref13/cit13 doi: 10.1002/aenm.201800802 – ident: ref1/cit1 doi: 10.1016/j.joule.2018.01.017 – ident: ref34/cit34 doi: 10.1002/aenm.202002821 – ident: ref52/cit52 doi: 10.1038/s41560-020-0640-7 – ident: ref42/cit42 doi: 10.34133/2019/7481319 – ident: ref33/cit33 doi: 10.1016/j.joule.2019.06.008 – ident: ref20/cit20 doi: 10.1002/anie.202005603 – ident: ref27/cit27 doi: 10.1021/cr500003w – ident: ref41/cit41 doi: 10.1002/anie.201710555 – ident: ref48/cit48 doi: 10.1039/D0CC02481C – ident: ref47/cit47 doi: 10.1002/aenm.202000968 – ident: ref49/cit49 doi: 10.1016/j.nanoen.2021.105847 – ident: ref17/cit17 doi: 10.1038/s41467-020-14748-5 – ident: ref35/cit35 doi: 10.1002/anie.201900266 – ident: ref12/cit12 doi: 10.1038/s41560-019-0474-3 – ident: ref44/cit44 doi: 10.1039/C9EE01473J – ident: ref45/cit45 doi: 10.1021/acssuschemeng.1c01341 – ident: ref21/cit21 doi: 10.1016/j.ensm.2019.04.033 – ident: ref9/cit9 doi: 10.1016/j.ensm.2019.12.002 – ident: ref28/cit28 doi: 10.1149/2.1221802jes – ident: ref32/cit32 doi: 10.1021/acsenergylett.0c01209 – ident: ref19/cit19 doi: 10.1039/D0TA04864J – ident: ref24/cit24 doi: 10.1002/anie.202107657 – ident: ref25/cit25 doi: 10.1021/cr000689q – ident: ref39/cit39 doi: 10.1021/acsenergylett.0c00643 – ident: ref5/cit5 doi: 10.1126/science.aal4263 – ident: ref31/cit31 doi: 10.1021/acsenergylett.1c00484 – ident: ref7/cit7 doi: 10.1149/1.3501236 – ident: ref46/cit46 doi: 10.1021/acsami.8b19654 – ident: ref50/cit50 doi: 10.1002/anie.202011482 – ident: ref10/cit10 doi: 10.1038/s41560-021-00783-z – ident: ref37/cit37 doi: 10.1002/aenm.202000368 – ident: ref14/cit14 doi: 10.1016/j.jpowsour.2019.05.024 – ident: ref3/cit3 doi: 10.1002/advs.202000196 – ident: ref4/cit4 doi: 10.1038/nature16502 – ident: ref43/cit43 doi: 10.1002/adfm.202102856 – ident: ref22/cit22 doi: 10.1021/cr030203g – ident: ref36/cit36 doi: 10.1002/anie.202009738 – ident: ref40/cit40 doi: 10.1002/cjoc.202000512 – ident: ref6/cit6 doi: 10.1002/aenm.201904152 – ident: ref16/cit16 doi: 10.1002/anie.201908913 – ident: ref38/cit38 doi: 10.1038/s41560-019-0464-5 – ident: ref11/cit11 doi: 10.1002/anie.201912167 – ident: ref18/cit18 doi: 10.1021/acsenergylett.0c00109 – ident: ref15/cit15 doi: 10.1002/batt.202000117 – ident: ref51/cit51 doi: 10.1021/jp068691u – ident: ref29/cit29 doi: 10.1149/1.2133112 |
SSID | ssj0002467 |
Score | 2.6558824 |
Snippet | Conspectus Building rechargeable batteries for subzero temperature application is highly demanding for various specific applications including electric... ConspectusBuilding rechargeable batteries for subzero temperature application is highly demanding for various specific applications including electric... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3883 |
Title | Promoting Rechargeable Batteries Operated at Low Temperature |
URI | http://dx.doi.org/10.1021/acs.accounts.1c00420 https://www.proquest.com/docview/2580697517 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB734FuuLCF48bN3NJtld8CLFUkStYAu9LZOXB3Vb3C2Cv95kH5UqUr0uSZhNJpn5mJlvEDoz1moqRonnG2MBipDci2Ppe-BrEQFoJYyL6N7d896Q3ozY6Asofo_gk-ACZG6XLjsnuDQhp2UWoq8Qbu-xc4U6j7OXl1BecWRaiExjSppSuV9WcQZJ5vMGaf49Lo1MdwP1m1KdKrfkuT0tRFt-_GRu_KP8m2i99jfxVaUgW2hJZ9totdO0edtBlw9VQl72hK0L6XiTtKumwhXxpsXRuD9xxMtaYSjw7fgdD_TrpKZi3kXD7vWg0_PqlgoehElQeAxCLoQCH4wERRJfGhFpaZQF2DGV2lAqEiukhCDkIVWKMa4kZ1THbgwN99ByNs70PsLAIRQWf1mAKWiiAlBJFICJopD6WknTQuf219P6SuRpGe0mQeo-NvuR1vvRQmFzBqmsucldi4yXBbO82axJxc2xYPxpc7yp3WQXGYFMj6d5Sljs8yRiQXTwD6kP0RpxGS4uvyU5QsvF21QfWxelECelXn4COcrmSA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lHurFt1ifEbx42Lq7eewueCnFUrWtgq30tuTpQd0Wd4vgrzfZR6WCSK8hCZNkkpmPmXwDwIU2VlMS7Duu1gagcEGdMBSuw1zFA8aU5NpGdAdD2hvjuwmZ1ACp_sIYIVIzU5oH8X_YBbwr28aKAgo2W8gqm0Hqa8Yf8a1itztPiwfYx7SgyjRIGYfYr37M_TGLtUsiXbZLy89ybmu6m-B5IWWeYvLamme8Jb5-ETiuvIwtsFF6n7BdqMs2qKlkBzQ6VdG3XXD9WKTnJS_QOJSWRUnZv1WwoOE0qBo-zCwNs5KQZbA__YQj9T4riZn3wLh7M-r0nLLAgsNQ5GUOYYhyLpnLtGDSj1yheaCElgZuh1gojTGPjJCCeYgiLCUhVApKsAptH4z2QT2ZJuoAQEYZ4gaNGbjJcSQ9JqPAYzoIEHaVFLoJLs3S4_KCpHEe-_a92DZW-xGX-9EEqDqKWJRM5bZgxts_o5zFqFnB1PFP__PqlGOzyTZOwhI1naexT0KXRgHxgsMVpD4Djd5o0I_7t8P7I7Du29wXm_kSHYN69jFXJ8Z5yfhprqrfFsLuqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SQb34FutzBS8etu5ustld8FKqpWqtBVsoXpY8Pajb4m4R_PVm9lGsIKLXkIRJMsnMx0y-QehUG6spfeLZjtYGoHBB7TAUjs0cxQPGlOQaIrp3PdoZkpuRP_pS6ssIkZqZ0jyID7d6InXJMOCeQzsriihAxhAonEHrixC5A-Vuth5mj7BHaEGXadAyCYlX_Zr7YRawTSKdt03zT3Nub9pr6HEmaZ5m8tyYZrwhPr6ROP5rKetotfRCrWahNhtoQSWbaLlVFX_bQhf9Ik0vebKMYwlsSgr-WFkFHadB19b9BOiYlbRYZnXH79ZAvU5KguZtNGxfDVoduyy0YDMcuZntM0w5l8xhWjDpRY7QPFBCSwO7QyKUJoRHRkjBXEwxkdL3qRTUJyqEPgTvoFoyTtQushhlmBtUZmAnJ5F0mYwCl-kgwMRRUug6OjNLj8uLksZ5DNxzY2is9iMu96OOcHUcsSgZy6Fwxssvo-zZqEnB2PFL_5PqpGOzyRAvYYkaT9PY80OHRoHvBnt_kPoYLfUv23H3une7j1Y8SIGBBJjoANWyt6k6ND5Mxo9ybf0EvOPxLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promoting+Rechargeable+Batteries+Operated+at+Low+Temperature&rft.jtitle=Accounts+of+chemical+research&rft.au=Dong%2C+Xiaoli&rft.au=Wang%2C+Yong-Gang&rft.au=Xia%2C+Yongyao&rft.date=2021-10-19&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=54&rft.issue=20&rft.spage=3883&rft.epage=3894&rft_id=info:doi/10.1021%2Facs.accounts.1c00420&rft.externalDocID=b801154918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |