Chemically Stable Metal–Organic Frameworks: Rational Construction and Application Expansion
Conspectus Metal–organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing ass...
Saved in:
Published in | Accounts of chemical research Vol. 54; no. 15; pp. 3083 - 3094 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
03.08.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Metal–organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some “potential” applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications. In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework–framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced. With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety. A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds. Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time. It is believed that this Account will provide valuable references on stable MOFs’ construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications. |
---|---|
AbstractList | Conspectus Metal–organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some “potential” applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications. In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework–framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced. With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety. A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds. Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time. It is believed that this Account will provide valuable references on stable MOFs’ construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications. Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications.Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications. |
Author | He, Tao Li, Jian-Rong Kong, Xiang-Jing |
AuthorAffiliation | Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life |
AuthorAffiliation_xml | – name: Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0003-3443-6243 surname: He fullname: He, Tao – sequence: 2 givenname: Xiang-Jing orcidid: 0000-0003-2940-8600 surname: Kong fullname: Kong, Xiang-Jing – sequence: 3 givenname: Jian-Rong orcidid: 0000-0002-8101-8493 surname: Li fullname: Li, Jian-Rong email: jrli@bjut.edu.cn |
BookMark | eNqFkLtOwzAUhi0EEm3hDRgysqTYjnPrVlUtIBVV4jKiyDl1IMWxg-0IuvEOvCFPgnthYYDJ_y-f7-jo66NDpZVA6IzgIcGUXHCwQw6gO-XskADGNMMHqEdiikOW5dkh6mGMic-MHqO-tStfKUvSHnqcPIumBi7lOrhzvJQiuBGOy6-Pz4V54qqGYGZ4I960ebGj4Ja7Wisug4lW1pkONjXgahmM21b6Pds-fW-5sj6doKOKSytO9-8APcym95OrcL64vJ6M5yGPcuJCmkTEh4iWCWQsw7GI4nLJ0qRc5iWmIirLCvIyzSFiKQNSsSjJRJIKIJALBtEAne_2tka_dsK6oqktCCm5ErqzBY29igSnDPvR0W4UjLbWiKqA2m3PdobXsiC42DgtvNPix2mxd-ph9gtuTd1ws_4Pwzts87vSnfEG7d_IN1FWlII |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215301 crossref_primary_10_1016_j_cscm_2024_e03586 crossref_primary_10_1039_D2CC00213B crossref_primary_10_1021_acs_inorgchem_3c03661 crossref_primary_10_1016_j_jssc_2022_122964 crossref_primary_10_1039_D3CE00302G crossref_primary_10_1002_anie_202318115 crossref_primary_10_1016_j_cej_2023_145949 crossref_primary_10_1016_j_cej_2025_159319 crossref_primary_10_1039_D3CE01265D crossref_primary_10_1016_j_cej_2022_138215 crossref_primary_10_3390_molecules29153700 crossref_primary_10_1016_j_ccr_2022_214967 crossref_primary_10_1155_er_8856604 crossref_primary_10_1016_j_gee_2022_06_002 crossref_primary_10_1016_j_molstruc_2023_136847 crossref_primary_10_1016_j_ijhydene_2023_06_006 crossref_primary_10_1016_j_carbpol_2023_121645 crossref_primary_10_1021_acs_inorgchem_4c00350 crossref_primary_10_1039_D4NJ03591G crossref_primary_10_1039_D3DT02134C crossref_primary_10_1016_j_mtadv_2023_100390 crossref_primary_10_1039_D3NR03302C crossref_primary_10_3390_org5040028 crossref_primary_10_1007_s11705_022_2278_4 crossref_primary_10_1007_s11356_024_34761_1 crossref_primary_10_1021_acs_cgd_3c00796 crossref_primary_10_1016_j_trac_2025_118211 crossref_primary_10_1016_j_chempr_2023_02_016 crossref_primary_10_1021_acs_cgd_1c00942 crossref_primary_10_1039_D3TA07938D crossref_primary_10_1039_D2NJ04435H crossref_primary_10_1016_j_cej_2022_137381 crossref_primary_10_1007_s11243_023_00522_1 crossref_primary_10_1016_j_microc_2025_112816 crossref_primary_10_1039_D3AN00723E crossref_primary_10_1021_acs_inorgchem_2c03319 crossref_primary_10_1007_s10008_024_05815_8 crossref_primary_10_1039_D3QM00468F crossref_primary_10_1016_j_inoche_2024_112915 crossref_primary_10_1021_acsami_3c18878 crossref_primary_10_1016_j_micromeso_2025_113609 crossref_primary_10_3897_j_moem_10_2_126396 crossref_primary_10_1016_j_seppur_2024_127955 crossref_primary_10_1016_j_apmt_2024_102224 crossref_primary_10_1016_j_cej_2023_142094 crossref_primary_10_1039_D4TA08090D crossref_primary_10_1016_j_inoche_2025_114320 crossref_primary_10_1039_D2QI01175A crossref_primary_10_1021_jacs_3c12679 crossref_primary_10_1002_adma_202200465 crossref_primary_10_1021_acs_inorgchem_3c01351 crossref_primary_10_1039_D3CC05270B crossref_primary_10_1016_j_ccr_2024_216361 crossref_primary_10_1016_j_ccr_2024_216004 crossref_primary_10_1039_D2QI00291D crossref_primary_10_1021_acs_inorgchem_3c03654 crossref_primary_10_1002_adfm_202214388 crossref_primary_10_1039_D3EN00332A crossref_primary_10_1016_j_molstruc_2024_139631 crossref_primary_10_1016_j_micromeso_2023_112825 crossref_primary_10_1016_j_jtice_2024_105390 crossref_primary_10_1021_acsaem_1c03852 crossref_primary_10_1021_acs_cgd_4c01172 crossref_primary_10_1016_j_poly_2022_116144 crossref_primary_10_1039_D3CC00778B crossref_primary_10_1039_D4TB00226A crossref_primary_10_1021_jacs_3c05585 crossref_primary_10_1016_j_biortech_2023_130288 crossref_primary_10_1016_j_molstruc_2024_139809 crossref_primary_10_1021_acsami_2c05961 crossref_primary_10_1021_acscatal_2c01681 crossref_primary_10_1039_D1CC06261A crossref_primary_10_1039_D1NR06530K crossref_primary_10_1186_s40580_023_00390_6 crossref_primary_10_1016_j_ccr_2022_214930 crossref_primary_10_1007_s44169_022_00020_y crossref_primary_10_1021_acsaem_4c01646 crossref_primary_10_1039_D4SC07144A crossref_primary_10_1360_SSC_2023_0001 crossref_primary_10_1038_s41467_022_32678_2 crossref_primary_10_1002_ange_202215985 crossref_primary_10_1016_j_seppur_2024_128588 crossref_primary_10_1002_smll_202410518 crossref_primary_10_1007_s11426_024_2277_2 crossref_primary_10_1039_D1DT04065K crossref_primary_10_1016_j_gce_2022_04_004 crossref_primary_10_1021_acsmaterialslett_4c00317 crossref_primary_10_1002_cnma_202100400 crossref_primary_10_1007_s42114_022_00432_3 crossref_primary_10_1038_s43586_024_00320_8 crossref_primary_10_1016_j_cclet_2024_110593 crossref_primary_10_1016_j_cclet_2024_110473 crossref_primary_10_1007_s11705_023_2320_1 crossref_primary_10_1016_j_chemosphere_2023_138160 crossref_primary_10_1002_smtd_202300468 crossref_primary_10_1016_j_actbio_2023_06_039 crossref_primary_10_1038_s41467_024_53385_0 crossref_primary_10_1021_acs_cgd_1c01382 crossref_primary_10_1016_j_ccr_2024_215690 crossref_primary_10_1002_cplu_202100426 crossref_primary_10_1002_smsc_202400132 crossref_primary_10_1016_j_seppur_2025_132203 crossref_primary_10_1039_D2TC03973G crossref_primary_10_1039_D3CE00022B crossref_primary_10_1007_s12274_024_6429_4 crossref_primary_10_1016_j_seppur_2024_128453 crossref_primary_10_1016_j_inoche_2022_109347 crossref_primary_10_1016_j_esci_2023_100133 crossref_primary_10_1039_D1TA09194H crossref_primary_10_1039_D1CC07034G crossref_primary_10_1039_D4QI01366B crossref_primary_10_1016_j_cej_2025_161163 crossref_primary_10_1016_j_cis_2025_103444 crossref_primary_10_1021_acsmaterialslett_2c00558 crossref_primary_10_1039_D4CS00989D crossref_primary_10_1007_s11356_024_35501_1 crossref_primary_10_1039_D3EE02705H crossref_primary_10_1002_cjoc_202200571 crossref_primary_10_1039_D2CC05851K crossref_primary_10_1002_ange_202301764 crossref_primary_10_1016_j_jece_2022_108930 crossref_primary_10_1016_j_susmat_2021_e00354 crossref_primary_10_1021_acs_nanolett_3c04654 crossref_primary_10_1039_D4CC06778A crossref_primary_10_1016_j_cis_2024_103178 crossref_primary_10_1016_j_ccr_2023_215615 crossref_primary_10_1021_acs_inorgchem_2c00754 crossref_primary_10_1016_j_fuel_2025_134609 crossref_primary_10_1007_s10904_024_03078_4 crossref_primary_10_1021_acs_langmuir_2c00165 crossref_primary_10_1016_j_dt_2025_02_019 crossref_primary_10_1021_acs_langmuir_3c03545 crossref_primary_10_1039_D2TA07769H crossref_primary_10_1016_j_molliq_2022_119976 crossref_primary_10_1039_D3SC06076D crossref_primary_10_1002_anie_202301764 crossref_primary_10_1016_j_cis_2025_103469 crossref_primary_10_1021_jacs_4c09173 crossref_primary_10_1039_D2TC02559K crossref_primary_10_1063_5_0144695 crossref_primary_10_1016_j_matt_2025_101958 crossref_primary_10_1016_j_ijrefrig_2024_10_009 crossref_primary_10_1021_acs_jcim_4c00065 crossref_primary_10_1016_j_ccr_2022_214692 crossref_primary_10_1016_j_cej_2023_147605 crossref_primary_10_1021_acscatal_4c03722 crossref_primary_10_1016_j_cclet_2021_10_042 crossref_primary_10_1007_s12274_023_5935_0 crossref_primary_10_1016_j_talanta_2024_125937 crossref_primary_10_1002_adfm_202500568 crossref_primary_10_1038_s41467_024_51522_3 crossref_primary_10_1021_acssuschemeng_4c07589 crossref_primary_10_1021_jacs_4c09742 crossref_primary_10_1021_acsami_3c18378 crossref_primary_10_1016_j_jwpe_2024_105530 crossref_primary_10_1016_j_ccr_2022_214561 crossref_primary_10_1021_acsami_2c01156 crossref_primary_10_1021_acs_inorgchem_2c01545 crossref_primary_10_1002_ejic_202400789 crossref_primary_10_3390_sym16081049 crossref_primary_10_1016_j_microc_2024_111888 crossref_primary_10_1039_D3CS00873H crossref_primary_10_1007_s00604_024_06534_7 crossref_primary_10_1007_s13538_025_01746_5 crossref_primary_10_1016_j_marpolbul_2024_116188 crossref_primary_10_1007_s12274_023_6061_8 crossref_primary_10_1016_j_jcis_2025_02_096 crossref_primary_10_1021_acs_cgd_3c01339 crossref_primary_10_1021_acs_inorgchem_3c01747 crossref_primary_10_1002_adma_202300943 crossref_primary_10_1039_D1TA09348G crossref_primary_10_1021_acsfoodscitech_4c00354 crossref_primary_10_1002_chem_202301325 crossref_primary_10_1002_smll_202405533 crossref_primary_10_1021_acsami_2c04779 crossref_primary_10_1016_j_psep_2023_01_072 crossref_primary_10_1016_j_jece_2023_111219 crossref_primary_10_1016_j_jcis_2025_01_043 crossref_primary_10_1002_smm2_1091 crossref_primary_10_1021_jacs_2c02598 crossref_primary_10_1016_j_ccr_2024_216405 crossref_primary_10_1021_acs_iecr_2c02472 crossref_primary_10_1016_j_inoche_2024_113174 crossref_primary_10_1016_j_seppur_2022_122213 crossref_primary_10_1134_S1070328422050049 crossref_primary_10_1016_j_seppur_2022_122211 crossref_primary_10_1038_s41467_024_54493_7 crossref_primary_10_1021_acs_accounts_4c00348 crossref_primary_10_1016_j_jmst_2024_11_081 crossref_primary_10_3389_fchem_2024_1386311 crossref_primary_10_1007_s10904_024_03474_w crossref_primary_10_1002_adfm_202302265 crossref_primary_10_1039_D3CS00285C crossref_primary_10_1007_s12274_022_4301_y crossref_primary_10_1021_acsami_4c06914 crossref_primary_10_1002_anie_202215985 crossref_primary_10_1021_acs_jafc_2c05780 crossref_primary_10_1016_j_inoche_2024_113616 crossref_primary_10_3390_molecules28237908 crossref_primary_10_1039_D4GC05154H crossref_primary_10_1016_j_cej_2022_139189 crossref_primary_10_34133_2022_9869510 crossref_primary_10_1016_j_eng_2022_07_017 crossref_primary_10_1016_j_seppur_2023_124144 crossref_primary_10_1039_D2TA01466A crossref_primary_10_1016_j_mtchem_2023_101577 crossref_primary_10_1002_anie_202414650 crossref_primary_10_1016_j_jssc_2024_124956 crossref_primary_10_1039_D3TB02827E crossref_primary_10_1016_j_cherd_2024_06_042 crossref_primary_10_1021_jacs_4c05879 crossref_primary_10_1016_j_ccr_2023_215117 crossref_primary_10_1002_adma_202300177 crossref_primary_10_1021_acsmaterialslett_2c00129 crossref_primary_10_1021_acs_inorgchem_4c01885 crossref_primary_10_1016_j_jece_2023_111696 crossref_primary_10_1002_ange_202108364 crossref_primary_10_1021_acs_chemrev_4c00546 crossref_primary_10_1039_D1DT04231A crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1021_acs_inorgchem_2c02318 crossref_primary_10_1021_acs_inorgchem_4c05110 crossref_primary_10_3390_su151712923 crossref_primary_10_1039_D3TA05297D crossref_primary_10_1021_jacs_4c06046 crossref_primary_10_1021_acs_inorgchem_2c04053 crossref_primary_10_1016_j_jcat_2024_115308 crossref_primary_10_1021_acsanm_4c03885 crossref_primary_10_1021_acsami_2c06873 crossref_primary_10_1021_acs_inorgchem_4c00468 crossref_primary_10_1002_advs_202310025 crossref_primary_10_1002_anie_202108364 crossref_primary_10_1021_acs_accounts_4c00774 crossref_primary_10_1021_jacs_1c10008 crossref_primary_10_1007_s11051_024_06156_3 crossref_primary_10_1016_j_seppur_2024_130006 crossref_primary_10_1021_acs_langmuir_4c00404 crossref_primary_10_1016_j_jece_2023_109469 crossref_primary_10_1021_acs_inorgchem_4c03387 crossref_primary_10_1002_smll_202207342 crossref_primary_10_1007_s12274_023_6077_0 crossref_primary_10_1016_j_cej_2025_161533 crossref_primary_10_1016_j_chphi_2025_100864 crossref_primary_10_1016_j_poly_2022_116078 crossref_primary_10_1002_sus2_154 crossref_primary_10_1016_j_matt_2022_10_004 crossref_primary_10_1002_ange_202318115 crossref_primary_10_3390_bios12110928 crossref_primary_10_1016_j_ccr_2025_216464 crossref_primary_10_1039_D2TA02699F crossref_primary_10_1016_j_gce_2023_07_004 crossref_primary_10_1016_j_hybadv_2025_100406 crossref_primary_10_1002_smll_202410922 crossref_primary_10_1016_j_cej_2023_143091 crossref_primary_10_1021_acs_cgd_2c01552 crossref_primary_10_3390_analytica5040040 crossref_primary_10_1016_j_microc_2023_108956 crossref_primary_10_1002_ange_202414650 crossref_primary_10_1016_j_ijoes_2023_100338 |
Cites_doi | 10.1016/j.jhazmat.2019.121018 10.1021/cr200190s 10.1021/acsami.8b03987 10.1039/C7TA03917D 10.1039/C9SC00178F 10.1021/acsami.7b00918 10.1021/jacs.6b03125 10.1016/j.chempr.2017.11.005 10.1039/C9SC03916C 10.1021/jacs.7b12916 10.1038/natrevmats.2015.18 10.1016/j.ccr.2015.08.005 10.1039/C4CS00081A 10.1021/cr5002589 10.1039/c0dt01722a 10.1038/s41560-017-0018-7 10.1021/jacs.9b02947 10.1039/C6CS00362A 10.1016/j.chempr.2018.05.017 10.1039/C5CS00837A 10.1021/acs.chemmater.5b00084 10.1002/anie.200901241 10.1021/ja500330a 10.1002/adma.201704303 10.1002/adma.201702891 10.1021/acs.accounts.0c00313 10.1021/jacs.6b09463 10.1038/s41467-019-11912-4 10.1021/acs.iecr.8b01239 10.1021/jacs.6b01663 10.1073/pnas.0602439103 10.1021/jacs.0c05074 10.1126/science.1116275 10.1002/anie.201204475 10.1021/jacs.5b10881 10.1021/acs.chemrev.9b00685 10.1021/jacs.9b08754 10.1039/C9EN00316A 10.1039/c1sc00136a 10.1021/cr300014x 10.1021/acsami.7b07920 10.1002/anie.201701217 10.1021/acs.chemrev.9b00842 10.1021/ja8057953 10.1021/acsmaterialslett.9b00021 10.1016/j.ccr.2019.02.032 10.1002/smll.202005357 10.1016/j.ccr.2017.08.017 10.1039/C4SC00171K 10.1002/adma.201704679 10.1021/acs.chemrev.9b00766 10.1016/j.chempr.2019.04.013 10.1016/j.ccr.2019.01.009 10.1002/anie.200604943 10.1039/C4CS00033A 10.1021/jacs.9b13070 10.1126/science.1230444 10.1021/cr200139g |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.accounts.1c00280 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 3094 |
ExternalDocumentID | 10_1021_acs_accounts_1c00280 c812817719 |
GroupedDBID | - .K2 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ F5P GGK GNL IH2 IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV CITATION CUPRZ XSW ZCA ~02 7X8 |
ID | FETCH-LOGICAL-a391t-263139132b6c84805e35bd476bd9b02e3bbfc9b79c3474c1f4368e67ec1c9e4c3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri Jul 11 09:39:31 EDT 2025 Tue Jul 01 03:16:07 EDT 2025 Thu Apr 24 23:00:14 EDT 2025 Thu Aug 05 18:26:24 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a391t-263139132b6c84805e35bd476bd9b02e3bbfc9b79c3474c1f4368e67ec1c9e4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3443-6243 0000-0003-2940-8600 0000-0002-8101-8493 |
PQID | 2552060740 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2552060740 crossref_citationtrail_10_1021_acs_accounts_1c00280 crossref_primary_10_1021_acs_accounts_1c00280 acs_journals_10_1021_acs_accounts_1c00280 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-03 |
PublicationDateYYYYMMDD | 2021-08-03 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-03 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref27/cit27 doi: 10.1016/j.jhazmat.2019.121018 – ident: ref7/cit7 doi: 10.1021/cr200190s – ident: ref25/cit25 doi: 10.1021/acsami.8b03987 – ident: ref33/cit33 doi: 10.1039/C7TA03917D – ident: ref52/cit52 doi: 10.1039/C9SC00178F – ident: ref23/cit23 doi: 10.1021/acsami.7b00918 – ident: ref47/cit47 doi: 10.1021/jacs.6b03125 – ident: ref50/cit50 doi: 10.1016/j.chempr.2017.11.005 – ident: ref20/cit20 doi: 10.1039/C9SC03916C – ident: ref56/cit56 doi: 10.1021/jacs.7b12916 – ident: ref17/cit17 doi: 10.1038/natrevmats.2015.18 – ident: ref48/cit48 doi: 10.1016/j.ccr.2015.08.005 – ident: ref35/cit35 doi: 10.1039/C4CS00081A – ident: ref21/cit21 doi: 10.1021/cr5002589 – ident: ref53/cit53 doi: 10.1039/c0dt01722a – ident: ref2/cit2 doi: 10.1038/s41560-017-0018-7 – ident: ref4/cit4 doi: 10.1021/jacs.9b02947 – ident: ref18/cit18 doi: 10.1039/C6CS00362A – ident: ref24/cit24 doi: 10.1016/j.chempr.2018.05.017 – ident: ref36/cit36 doi: 10.1039/C5CS00837A – ident: ref54/cit54 doi: 10.1021/acs.chemmater.5b00084 – ident: ref45/cit45 doi: 10.1002/anie.200901241 – ident: ref42/cit42 doi: 10.1021/ja500330a – ident: ref19/cit19 doi: 10.1002/adma.201704303 – ident: ref9/cit9 doi: 10.1002/adma.201702891 – ident: ref14/cit14 doi: 10.1021/acs.accounts.0c00313 – ident: ref28/cit28 doi: 10.1021/jacs.6b09463 – ident: ref3/cit3 doi: 10.1038/s41467-019-11912-4 – ident: ref34/cit34 doi: 10.1021/acs.iecr.8b01239 – ident: ref22/cit22 doi: 10.1021/jacs.6b01663 – ident: ref44/cit44 doi: 10.1073/pnas.0602439103 – ident: ref29/cit29 doi: 10.1021/jacs.0c05074 – ident: ref41/cit41 doi: 10.1126/science.1116275 – ident: ref40/cit40 doi: 10.1002/anie.201204475 – ident: ref1/cit1 doi: 10.1021/jacs.5b10881 – ident: ref12/cit12 doi: 10.1021/acs.chemrev.9b00685 – ident: ref37/cit37 doi: 10.1021/jacs.9b08754 – ident: ref26/cit26 doi: 10.1039/C9EN00316A – ident: ref46/cit46 doi: 10.1039/c1sc00136a – ident: ref5/cit5 doi: 10.1021/cr300014x – ident: ref32/cit32 doi: 10.1021/acsami.7b07920 – ident: ref49/cit49 doi: 10.1002/anie.201701217 – ident: ref15/cit15 doi: 10.1021/acs.chemrev.9b00842 – ident: ref39/cit39 doi: 10.1021/ja8057953 – ident: ref30/cit30 doi: 10.1021/acsmaterialslett.9b00021 – ident: ref11/cit11 doi: 10.1016/j.ccr.2019.02.032 – ident: ref31/cit31 doi: 10.1002/smll.202005357 – ident: ref57/cit57 doi: 10.1016/j.ccr.2017.08.017 – ident: ref38/cit38 doi: 10.1039/C4SC00171K – ident: ref8/cit8 doi: 10.1002/adma.201704679 – ident: ref16/cit16 doi: 10.1021/acs.chemrev.9b00766 – ident: ref10/cit10 doi: 10.1016/j.chempr.2019.04.013 – ident: ref13/cit13 doi: 10.1016/j.ccr.2019.01.009 – ident: ref58/cit58 doi: 10.1002/anie.200604943 – ident: ref51/cit51 doi: 10.1039/C4CS00033A – ident: ref55/cit55 doi: 10.1021/jacs.9b13070 – ident: ref6/cit6 doi: 10.1126/science.1230444 – ident: ref43/cit43 doi: 10.1021/cr200139g |
SSID | ssj0002467 |
Score | 2.7033265 |
Snippet | Conspectus Metal–organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability.... Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3083 |
Title | Chemically Stable Metal–Organic Frameworks: Rational Construction and Application Expansion |
URI | http://dx.doi.org/10.1021/acs.accounts.1c00280 https://www.proquest.com/docview/2552060740 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA5aD3rxX6x_RPDiIXU3SbMbb6W0iFAFtdCLLJts9mLZCtuCevIdfEOfxMnupqWKVK_LJoRMMjNfZuYbhM4kQAwwcymRRjPCpVYkVCEjgUnB_AdKyYJntncjrvr8etAczIDi9wg-9S9incPURecEmyZUxAKX0QoVYWDBVqt9P9W8lIuSIxMgMg85daVyv8xiDZLO5w3SvD4ujEx3A926Up0yt-SpMRmrhn77ydz4x_VvovXK38St8oBsoSWTbaPVtmvztoMeHWXA8BWD56mGBvcMeOSf7x9lnabGXZfAlV_iu-rxENtOn457FsdZgluzUDjuvICSse9wu6jf7Ty0r0jVc4HETPpjQgUDnxAgqhI65KHXNKypEh4IlUjlUcOUSrVUgdSMB1z7qWWwNyIw2tfScM32UC0bZWYfYUCGcQoiT0KhuaBxrBhPDY99FiZCCllH57A3UXVn8qgIh1M_sh_dhkXVhtURc0KKdEVebntoDBeMItNRzyV5x4L_T538I5CCDZ3EmRlN8giAF_UEuFvewT9WfYjWqE2BsRkm7AjVQCrmGHyYsTopDu4XiK7wxQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV29btswED4k7uAu6T-S9I8F2qGDXImkKTFAB8ONYdc_Q2sDXgpVpKglhhJANtJ0yjvkGfoqeZA8SY6S6CAFiqCDgayESFC8I-8-3vE7gPcSIQaaucyTRjOPS628SEXMC02G5j9USpY8s-OJ6M_413l7vgV_3FsYnESBIxVlEP-GXSD4ZNuSqoCCzRYqQ4J1LuXQnJ0iUis-D76gWD9Q2jucdvteXUzAS5gMlh4VDJ0dxF5K6IhHftuwtkp5KFQqlU8NUyrTUoVSMx5yHWSWmt2I0OhAS8M1w3G34QH6P9RivE73-_rAp1xU1JyIzHnEqXuh949ZWzuoi9t28LYZKG1b7xFcrlelTGk5aq2WqqV__0UYee-X7THs1N416VTb4QlsmfwpNLuuqN0z-OEIEhZnBP1stTBkbBB_XJ1fVK9SNem5dLXigHyrr0qJrWvqmHZJkqekcxP4J4e_8Ei1t47PYbaRv3sBjfw4N7tAEAcnGSp4GgnNBU0SxXhmeBKwKBVSyD34iLKI6xOiiMvgPw1i2-gEFNcC2gPmdCPWNVW7rRiyuKOXt-51UlGV3PH9O6d2MUrBBoqS3ByvihhhJvUFOpf-_n_M-i00-9PxKB4NJsOX8JDa5B-bW8NeQQMlZF6j97ZUb8q9Q-DnprXuGqylUqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIhUuBVoQ6R9GKoceNuzajnddqYcobZTQHyFopFyqZe31Xog2lTZVf068A0_RV-lj8CQd766DgoQiDjlwtdaW1zP2zOcZfwOwKxFioJnLPGk087jUyotUxLzQZGj-Q6VkyTN7eiZ6A_5p2Bouwb17C4OTKHCkogzi2119mWY1w0Dw0bYnVREFmzFUhgXrfMpjc3uNaK046B-iaD9Q2j067_S8uqCAlzAZTDwqGDo8iL-U0BGP_JZhLZXyUKhUKp8aplSmpQqlZjzkOsgsPbsRodGBloZrhuM-gac2UmhxXrvzdXroUy4qek5E5zzi1L3S-8usrS3UxawtnDUFpX3rvoCH6cqUaS3fm1cT1dR3f5BG_hdL9xJWay-btKtt8QqWTL4GzzquuN06XDiihNEtQX9bjQw5NYhDfv34Wb1O1aTr0taKffKlvjIltr6pY9wlSZ6S9u8EAHJ0g0ervX18DYOF_N0bWM7HuXkLBPFwkqGip5HQXNAkUYxnhicBi1IhhWzAHsoirk-KIi6TAGgQ20YnoLgWUAOY049Y15TttnLIaE4vb9rrsqIsmfP9e6d6MUrBBoyS3IyvihjhJvUFOpn-xj_M-h2sfD7sxif9s-NNeE5tDpBNsWFbsIwCMtvoxE3UTrl9CHxbtNI9Ar0HVSc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemically+Stable+Metal-Organic+Frameworks%3A+Rational+Construction+and+Application+Expansion&rft.jtitle=Accounts+of+chemical+research&rft.au=He%2C+Tao&rft.au=Kong%2C+Xiang-Jing&rft.au=Li%2C+Jian-Rong&rft.date=2021-08-03&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=54&rft.issue=15&rft.spage=3083&rft_id=info:doi/10.1021%2Facs.accounts.1c00280&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |