Chemically Stable Metal–Organic Frameworks: Rational Construction and Application Expansion

Conspectus Metal–organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing ass...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 54; no. 15; pp. 3083 - 3094
Main Authors He, Tao, Kong, Xiang-Jing, Li, Jian-Rong
Format Journal Article
LanguageEnglish
Published American Chemical Society 03.08.2021
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Metal–organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some “potential” applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications. In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework–framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced. With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety. A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds. Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8­(Cr)­A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time. It is believed that this Account will provide valuable references on stable MOFs’ construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications.
AbstractList Conspectus Metal–organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some “potential” applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications. In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework–framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced. With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety. A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds. Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8­(Cr)­A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time. It is believed that this Account will provide valuable references on stable MOFs’ construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications.
Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications.Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications.
Author He, Tao
Li, Jian-Rong
Kong, Xiang-Jing
AuthorAffiliation Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life
AuthorAffiliation_xml – name: Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0003-3443-6243
  surname: He
  fullname: He, Tao
– sequence: 2
  givenname: Xiang-Jing
  orcidid: 0000-0003-2940-8600
  surname: Kong
  fullname: Kong, Xiang-Jing
– sequence: 3
  givenname: Jian-Rong
  orcidid: 0000-0002-8101-8493
  surname: Li
  fullname: Li, Jian-Rong
  email: jrli@bjut.edu.cn
BookMark eNqFkLtOwzAUhi0EEm3hDRgysqTYjnPrVlUtIBVV4jKiyDl1IMWxg-0IuvEOvCFPgnthYYDJ_y-f7-jo66NDpZVA6IzgIcGUXHCwQw6gO-XskADGNMMHqEdiikOW5dkh6mGMic-MHqO-tStfKUvSHnqcPIumBi7lOrhzvJQiuBGOy6-Pz4V54qqGYGZ4I960ebGj4Ja7Wisug4lW1pkONjXgahmM21b6Pds-fW-5sj6doKOKSytO9-8APcym95OrcL64vJ6M5yGPcuJCmkTEh4iWCWQsw7GI4nLJ0qRc5iWmIirLCvIyzSFiKQNSsSjJRJIKIJALBtEAne_2tka_dsK6oqktCCm5ErqzBY29igSnDPvR0W4UjLbWiKqA2m3PdobXsiC42DgtvNPix2mxd-ph9gtuTd1ws_4Pwzts87vSnfEG7d_IN1FWlII
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215301
crossref_primary_10_1016_j_cscm_2024_e03586
crossref_primary_10_1039_D2CC00213B
crossref_primary_10_1021_acs_inorgchem_3c03661
crossref_primary_10_1016_j_jssc_2022_122964
crossref_primary_10_1039_D3CE00302G
crossref_primary_10_1002_anie_202318115
crossref_primary_10_1016_j_cej_2023_145949
crossref_primary_10_1016_j_cej_2025_159319
crossref_primary_10_1039_D3CE01265D
crossref_primary_10_1016_j_cej_2022_138215
crossref_primary_10_3390_molecules29153700
crossref_primary_10_1016_j_ccr_2022_214967
crossref_primary_10_1155_er_8856604
crossref_primary_10_1016_j_gee_2022_06_002
crossref_primary_10_1016_j_molstruc_2023_136847
crossref_primary_10_1016_j_ijhydene_2023_06_006
crossref_primary_10_1016_j_carbpol_2023_121645
crossref_primary_10_1021_acs_inorgchem_4c00350
crossref_primary_10_1039_D4NJ03591G
crossref_primary_10_1039_D3DT02134C
crossref_primary_10_1016_j_mtadv_2023_100390
crossref_primary_10_1039_D3NR03302C
crossref_primary_10_3390_org5040028
crossref_primary_10_1007_s11705_022_2278_4
crossref_primary_10_1007_s11356_024_34761_1
crossref_primary_10_1021_acs_cgd_3c00796
crossref_primary_10_1016_j_trac_2025_118211
crossref_primary_10_1016_j_chempr_2023_02_016
crossref_primary_10_1021_acs_cgd_1c00942
crossref_primary_10_1039_D3TA07938D
crossref_primary_10_1039_D2NJ04435H
crossref_primary_10_1016_j_cej_2022_137381
crossref_primary_10_1007_s11243_023_00522_1
crossref_primary_10_1016_j_microc_2025_112816
crossref_primary_10_1039_D3AN00723E
crossref_primary_10_1021_acs_inorgchem_2c03319
crossref_primary_10_1007_s10008_024_05815_8
crossref_primary_10_1039_D3QM00468F
crossref_primary_10_1016_j_inoche_2024_112915
crossref_primary_10_1021_acsami_3c18878
crossref_primary_10_1016_j_micromeso_2025_113609
crossref_primary_10_3897_j_moem_10_2_126396
crossref_primary_10_1016_j_seppur_2024_127955
crossref_primary_10_1016_j_apmt_2024_102224
crossref_primary_10_1016_j_cej_2023_142094
crossref_primary_10_1039_D4TA08090D
crossref_primary_10_1016_j_inoche_2025_114320
crossref_primary_10_1039_D2QI01175A
crossref_primary_10_1021_jacs_3c12679
crossref_primary_10_1002_adma_202200465
crossref_primary_10_1021_acs_inorgchem_3c01351
crossref_primary_10_1039_D3CC05270B
crossref_primary_10_1016_j_ccr_2024_216361
crossref_primary_10_1016_j_ccr_2024_216004
crossref_primary_10_1039_D2QI00291D
crossref_primary_10_1021_acs_inorgchem_3c03654
crossref_primary_10_1002_adfm_202214388
crossref_primary_10_1039_D3EN00332A
crossref_primary_10_1016_j_molstruc_2024_139631
crossref_primary_10_1016_j_micromeso_2023_112825
crossref_primary_10_1016_j_jtice_2024_105390
crossref_primary_10_1021_acsaem_1c03852
crossref_primary_10_1021_acs_cgd_4c01172
crossref_primary_10_1016_j_poly_2022_116144
crossref_primary_10_1039_D3CC00778B
crossref_primary_10_1039_D4TB00226A
crossref_primary_10_1021_jacs_3c05585
crossref_primary_10_1016_j_biortech_2023_130288
crossref_primary_10_1016_j_molstruc_2024_139809
crossref_primary_10_1021_acsami_2c05961
crossref_primary_10_1021_acscatal_2c01681
crossref_primary_10_1039_D1CC06261A
crossref_primary_10_1039_D1NR06530K
crossref_primary_10_1186_s40580_023_00390_6
crossref_primary_10_1016_j_ccr_2022_214930
crossref_primary_10_1007_s44169_022_00020_y
crossref_primary_10_1021_acsaem_4c01646
crossref_primary_10_1039_D4SC07144A
crossref_primary_10_1360_SSC_2023_0001
crossref_primary_10_1038_s41467_022_32678_2
crossref_primary_10_1002_ange_202215985
crossref_primary_10_1016_j_seppur_2024_128588
crossref_primary_10_1002_smll_202410518
crossref_primary_10_1007_s11426_024_2277_2
crossref_primary_10_1039_D1DT04065K
crossref_primary_10_1016_j_gce_2022_04_004
crossref_primary_10_1021_acsmaterialslett_4c00317
crossref_primary_10_1002_cnma_202100400
crossref_primary_10_1007_s42114_022_00432_3
crossref_primary_10_1038_s43586_024_00320_8
crossref_primary_10_1016_j_cclet_2024_110593
crossref_primary_10_1016_j_cclet_2024_110473
crossref_primary_10_1007_s11705_023_2320_1
crossref_primary_10_1016_j_chemosphere_2023_138160
crossref_primary_10_1002_smtd_202300468
crossref_primary_10_1016_j_actbio_2023_06_039
crossref_primary_10_1038_s41467_024_53385_0
crossref_primary_10_1021_acs_cgd_1c01382
crossref_primary_10_1016_j_ccr_2024_215690
crossref_primary_10_1002_cplu_202100426
crossref_primary_10_1002_smsc_202400132
crossref_primary_10_1016_j_seppur_2025_132203
crossref_primary_10_1039_D2TC03973G
crossref_primary_10_1039_D3CE00022B
crossref_primary_10_1007_s12274_024_6429_4
crossref_primary_10_1016_j_seppur_2024_128453
crossref_primary_10_1016_j_inoche_2022_109347
crossref_primary_10_1016_j_esci_2023_100133
crossref_primary_10_1039_D1TA09194H
crossref_primary_10_1039_D1CC07034G
crossref_primary_10_1039_D4QI01366B
crossref_primary_10_1016_j_cej_2025_161163
crossref_primary_10_1016_j_cis_2025_103444
crossref_primary_10_1021_acsmaterialslett_2c00558
crossref_primary_10_1039_D4CS00989D
crossref_primary_10_1007_s11356_024_35501_1
crossref_primary_10_1039_D3EE02705H
crossref_primary_10_1002_cjoc_202200571
crossref_primary_10_1039_D2CC05851K
crossref_primary_10_1002_ange_202301764
crossref_primary_10_1016_j_jece_2022_108930
crossref_primary_10_1016_j_susmat_2021_e00354
crossref_primary_10_1021_acs_nanolett_3c04654
crossref_primary_10_1039_D4CC06778A
crossref_primary_10_1016_j_cis_2024_103178
crossref_primary_10_1016_j_ccr_2023_215615
crossref_primary_10_1021_acs_inorgchem_2c00754
crossref_primary_10_1016_j_fuel_2025_134609
crossref_primary_10_1007_s10904_024_03078_4
crossref_primary_10_1021_acs_langmuir_2c00165
crossref_primary_10_1016_j_dt_2025_02_019
crossref_primary_10_1021_acs_langmuir_3c03545
crossref_primary_10_1039_D2TA07769H
crossref_primary_10_1016_j_molliq_2022_119976
crossref_primary_10_1039_D3SC06076D
crossref_primary_10_1002_anie_202301764
crossref_primary_10_1016_j_cis_2025_103469
crossref_primary_10_1021_jacs_4c09173
crossref_primary_10_1039_D2TC02559K
crossref_primary_10_1063_5_0144695
crossref_primary_10_1016_j_matt_2025_101958
crossref_primary_10_1016_j_ijrefrig_2024_10_009
crossref_primary_10_1021_acs_jcim_4c00065
crossref_primary_10_1016_j_ccr_2022_214692
crossref_primary_10_1016_j_cej_2023_147605
crossref_primary_10_1021_acscatal_4c03722
crossref_primary_10_1016_j_cclet_2021_10_042
crossref_primary_10_1007_s12274_023_5935_0
crossref_primary_10_1016_j_talanta_2024_125937
crossref_primary_10_1002_adfm_202500568
crossref_primary_10_1038_s41467_024_51522_3
crossref_primary_10_1021_acssuschemeng_4c07589
crossref_primary_10_1021_jacs_4c09742
crossref_primary_10_1021_acsami_3c18378
crossref_primary_10_1016_j_jwpe_2024_105530
crossref_primary_10_1016_j_ccr_2022_214561
crossref_primary_10_1021_acsami_2c01156
crossref_primary_10_1021_acs_inorgchem_2c01545
crossref_primary_10_1002_ejic_202400789
crossref_primary_10_3390_sym16081049
crossref_primary_10_1016_j_microc_2024_111888
crossref_primary_10_1039_D3CS00873H
crossref_primary_10_1007_s00604_024_06534_7
crossref_primary_10_1007_s13538_025_01746_5
crossref_primary_10_1016_j_marpolbul_2024_116188
crossref_primary_10_1007_s12274_023_6061_8
crossref_primary_10_1016_j_jcis_2025_02_096
crossref_primary_10_1021_acs_cgd_3c01339
crossref_primary_10_1021_acs_inorgchem_3c01747
crossref_primary_10_1002_adma_202300943
crossref_primary_10_1039_D1TA09348G
crossref_primary_10_1021_acsfoodscitech_4c00354
crossref_primary_10_1002_chem_202301325
crossref_primary_10_1002_smll_202405533
crossref_primary_10_1021_acsami_2c04779
crossref_primary_10_1016_j_psep_2023_01_072
crossref_primary_10_1016_j_jece_2023_111219
crossref_primary_10_1016_j_jcis_2025_01_043
crossref_primary_10_1002_smm2_1091
crossref_primary_10_1021_jacs_2c02598
crossref_primary_10_1016_j_ccr_2024_216405
crossref_primary_10_1021_acs_iecr_2c02472
crossref_primary_10_1016_j_inoche_2024_113174
crossref_primary_10_1016_j_seppur_2022_122213
crossref_primary_10_1134_S1070328422050049
crossref_primary_10_1016_j_seppur_2022_122211
crossref_primary_10_1038_s41467_024_54493_7
crossref_primary_10_1021_acs_accounts_4c00348
crossref_primary_10_1016_j_jmst_2024_11_081
crossref_primary_10_3389_fchem_2024_1386311
crossref_primary_10_1007_s10904_024_03474_w
crossref_primary_10_1002_adfm_202302265
crossref_primary_10_1039_D3CS00285C
crossref_primary_10_1007_s12274_022_4301_y
crossref_primary_10_1021_acsami_4c06914
crossref_primary_10_1002_anie_202215985
crossref_primary_10_1021_acs_jafc_2c05780
crossref_primary_10_1016_j_inoche_2024_113616
crossref_primary_10_3390_molecules28237908
crossref_primary_10_1039_D4GC05154H
crossref_primary_10_1016_j_cej_2022_139189
crossref_primary_10_34133_2022_9869510
crossref_primary_10_1016_j_eng_2022_07_017
crossref_primary_10_1016_j_seppur_2023_124144
crossref_primary_10_1039_D2TA01466A
crossref_primary_10_1016_j_mtchem_2023_101577
crossref_primary_10_1002_anie_202414650
crossref_primary_10_1016_j_jssc_2024_124956
crossref_primary_10_1039_D3TB02827E
crossref_primary_10_1016_j_cherd_2024_06_042
crossref_primary_10_1021_jacs_4c05879
crossref_primary_10_1016_j_ccr_2023_215117
crossref_primary_10_1002_adma_202300177
crossref_primary_10_1021_acsmaterialslett_2c00129
crossref_primary_10_1021_acs_inorgchem_4c01885
crossref_primary_10_1016_j_jece_2023_111696
crossref_primary_10_1002_ange_202108364
crossref_primary_10_1021_acs_chemrev_4c00546
crossref_primary_10_1039_D1DT04231A
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1021_acs_inorgchem_2c02318
crossref_primary_10_1021_acs_inorgchem_4c05110
crossref_primary_10_3390_su151712923
crossref_primary_10_1039_D3TA05297D
crossref_primary_10_1021_jacs_4c06046
crossref_primary_10_1021_acs_inorgchem_2c04053
crossref_primary_10_1016_j_jcat_2024_115308
crossref_primary_10_1021_acsanm_4c03885
crossref_primary_10_1021_acsami_2c06873
crossref_primary_10_1021_acs_inorgchem_4c00468
crossref_primary_10_1002_advs_202310025
crossref_primary_10_1002_anie_202108364
crossref_primary_10_1021_acs_accounts_4c00774
crossref_primary_10_1021_jacs_1c10008
crossref_primary_10_1007_s11051_024_06156_3
crossref_primary_10_1016_j_seppur_2024_130006
crossref_primary_10_1021_acs_langmuir_4c00404
crossref_primary_10_1016_j_jece_2023_109469
crossref_primary_10_1021_acs_inorgchem_4c03387
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1007_s12274_023_6077_0
crossref_primary_10_1016_j_cej_2025_161533
crossref_primary_10_1016_j_chphi_2025_100864
crossref_primary_10_1016_j_poly_2022_116078
crossref_primary_10_1002_sus2_154
crossref_primary_10_1016_j_matt_2022_10_004
crossref_primary_10_1002_ange_202318115
crossref_primary_10_3390_bios12110928
crossref_primary_10_1016_j_ccr_2025_216464
crossref_primary_10_1039_D2TA02699F
crossref_primary_10_1016_j_gce_2023_07_004
crossref_primary_10_1016_j_hybadv_2025_100406
crossref_primary_10_1002_smll_202410922
crossref_primary_10_1016_j_cej_2023_143091
crossref_primary_10_1021_acs_cgd_2c01552
crossref_primary_10_3390_analytica5040040
crossref_primary_10_1016_j_microc_2023_108956
crossref_primary_10_1002_ange_202414650
crossref_primary_10_1016_j_ijoes_2023_100338
Cites_doi 10.1016/j.jhazmat.2019.121018
10.1021/cr200190s
10.1021/acsami.8b03987
10.1039/C7TA03917D
10.1039/C9SC00178F
10.1021/acsami.7b00918
10.1021/jacs.6b03125
10.1016/j.chempr.2017.11.005
10.1039/C9SC03916C
10.1021/jacs.7b12916
10.1038/natrevmats.2015.18
10.1016/j.ccr.2015.08.005
10.1039/C4CS00081A
10.1021/cr5002589
10.1039/c0dt01722a
10.1038/s41560-017-0018-7
10.1021/jacs.9b02947
10.1039/C6CS00362A
10.1016/j.chempr.2018.05.017
10.1039/C5CS00837A
10.1021/acs.chemmater.5b00084
10.1002/anie.200901241
10.1021/ja500330a
10.1002/adma.201704303
10.1002/adma.201702891
10.1021/acs.accounts.0c00313
10.1021/jacs.6b09463
10.1038/s41467-019-11912-4
10.1021/acs.iecr.8b01239
10.1021/jacs.6b01663
10.1073/pnas.0602439103
10.1021/jacs.0c05074
10.1126/science.1116275
10.1002/anie.201204475
10.1021/jacs.5b10881
10.1021/acs.chemrev.9b00685
10.1021/jacs.9b08754
10.1039/C9EN00316A
10.1039/c1sc00136a
10.1021/cr300014x
10.1021/acsami.7b07920
10.1002/anie.201701217
10.1021/acs.chemrev.9b00842
10.1021/ja8057953
10.1021/acsmaterialslett.9b00021
10.1016/j.ccr.2019.02.032
10.1002/smll.202005357
10.1016/j.ccr.2017.08.017
10.1039/C4SC00171K
10.1002/adma.201704679
10.1021/acs.chemrev.9b00766
10.1016/j.chempr.2019.04.013
10.1016/j.ccr.2019.01.009
10.1002/anie.200604943
10.1039/C4CS00033A
10.1021/jacs.9b13070
10.1126/science.1230444
10.1021/cr200139g
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.accounts.1c00280
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 3094
ExternalDocumentID 10_1021_acs_accounts_1c00280
c812817719
GroupedDBID -
.K2
02
23M
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GGK
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
CITATION
CUPRZ
XSW
ZCA
~02
7X8
ID FETCH-LOGICAL-a391t-263139132b6c84805e35bd476bd9b02e3bbfc9b79c3474c1f4368e67ec1c9e4c3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri Jul 11 09:39:31 EDT 2025
Tue Jul 01 03:16:07 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
Thu Aug 05 18:26:24 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a391t-263139132b6c84805e35bd476bd9b02e3bbfc9b79c3474c1f4368e67ec1c9e4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3443-6243
0000-0003-2940-8600
0000-0002-8101-8493
PQID 2552060740
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2552060740
crossref_citationtrail_10_1021_acs_accounts_1c00280
crossref_primary_10_1021_acs_accounts_1c00280
acs_journals_10_1021_acs_accounts_1c00280
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-03
PublicationDateYYYYMMDD 2021-08-03
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-03
  day: 03
PublicationDecade 2020
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1016/j.jhazmat.2019.121018
– ident: ref7/cit7
  doi: 10.1021/cr200190s
– ident: ref25/cit25
  doi: 10.1021/acsami.8b03987
– ident: ref33/cit33
  doi: 10.1039/C7TA03917D
– ident: ref52/cit52
  doi: 10.1039/C9SC00178F
– ident: ref23/cit23
  doi: 10.1021/acsami.7b00918
– ident: ref47/cit47
  doi: 10.1021/jacs.6b03125
– ident: ref50/cit50
  doi: 10.1016/j.chempr.2017.11.005
– ident: ref20/cit20
  doi: 10.1039/C9SC03916C
– ident: ref56/cit56
  doi: 10.1021/jacs.7b12916
– ident: ref17/cit17
  doi: 10.1038/natrevmats.2015.18
– ident: ref48/cit48
  doi: 10.1016/j.ccr.2015.08.005
– ident: ref35/cit35
  doi: 10.1039/C4CS00081A
– ident: ref21/cit21
  doi: 10.1021/cr5002589
– ident: ref53/cit53
  doi: 10.1039/c0dt01722a
– ident: ref2/cit2
  doi: 10.1038/s41560-017-0018-7
– ident: ref4/cit4
  doi: 10.1021/jacs.9b02947
– ident: ref18/cit18
  doi: 10.1039/C6CS00362A
– ident: ref24/cit24
  doi: 10.1016/j.chempr.2018.05.017
– ident: ref36/cit36
  doi: 10.1039/C5CS00837A
– ident: ref54/cit54
  doi: 10.1021/acs.chemmater.5b00084
– ident: ref45/cit45
  doi: 10.1002/anie.200901241
– ident: ref42/cit42
  doi: 10.1021/ja500330a
– ident: ref19/cit19
  doi: 10.1002/adma.201704303
– ident: ref9/cit9
  doi: 10.1002/adma.201702891
– ident: ref14/cit14
  doi: 10.1021/acs.accounts.0c00313
– ident: ref28/cit28
  doi: 10.1021/jacs.6b09463
– ident: ref3/cit3
  doi: 10.1038/s41467-019-11912-4
– ident: ref34/cit34
  doi: 10.1021/acs.iecr.8b01239
– ident: ref22/cit22
  doi: 10.1021/jacs.6b01663
– ident: ref44/cit44
  doi: 10.1073/pnas.0602439103
– ident: ref29/cit29
  doi: 10.1021/jacs.0c05074
– ident: ref41/cit41
  doi: 10.1126/science.1116275
– ident: ref40/cit40
  doi: 10.1002/anie.201204475
– ident: ref1/cit1
  doi: 10.1021/jacs.5b10881
– ident: ref12/cit12
  doi: 10.1021/acs.chemrev.9b00685
– ident: ref37/cit37
  doi: 10.1021/jacs.9b08754
– ident: ref26/cit26
  doi: 10.1039/C9EN00316A
– ident: ref46/cit46
  doi: 10.1039/c1sc00136a
– ident: ref5/cit5
  doi: 10.1021/cr300014x
– ident: ref32/cit32
  doi: 10.1021/acsami.7b07920
– ident: ref49/cit49
  doi: 10.1002/anie.201701217
– ident: ref15/cit15
  doi: 10.1021/acs.chemrev.9b00842
– ident: ref39/cit39
  doi: 10.1021/ja8057953
– ident: ref30/cit30
  doi: 10.1021/acsmaterialslett.9b00021
– ident: ref11/cit11
  doi: 10.1016/j.ccr.2019.02.032
– ident: ref31/cit31
  doi: 10.1002/smll.202005357
– ident: ref57/cit57
  doi: 10.1016/j.ccr.2017.08.017
– ident: ref38/cit38
  doi: 10.1039/C4SC00171K
– ident: ref8/cit8
  doi: 10.1002/adma.201704679
– ident: ref16/cit16
  doi: 10.1021/acs.chemrev.9b00766
– ident: ref10/cit10
  doi: 10.1016/j.chempr.2019.04.013
– ident: ref13/cit13
  doi: 10.1016/j.ccr.2019.01.009
– ident: ref58/cit58
  doi: 10.1002/anie.200604943
– ident: ref51/cit51
  doi: 10.1039/C4CS00033A
– ident: ref55/cit55
  doi: 10.1021/jacs.9b13070
– ident: ref6/cit6
  doi: 10.1126/science.1230444
– ident: ref43/cit43
  doi: 10.1021/cr200139g
SSID ssj0002467
Score 2.7033265
Snippet Conspectus Metal–organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability....
Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3083
Title Chemically Stable Metal–Organic Frameworks: Rational Construction and Application Expansion
URI http://dx.doi.org/10.1021/acs.accounts.1c00280
https://www.proquest.com/docview/2552060740
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA5aD3rxX6x_RPDiIXU3SbMbb6W0iFAFtdCLLJts9mLZCtuCevIdfEOfxMnupqWKVK_LJoRMMjNfZuYbhM4kQAwwcymRRjPCpVYkVCEjgUnB_AdKyYJntncjrvr8etAczIDi9wg-9S9incPURecEmyZUxAKX0QoVYWDBVqt9P9W8lIuSIxMgMg85daVyv8xiDZLO5w3SvD4ujEx3A926Up0yt-SpMRmrhn77ydz4x_VvovXK38St8oBsoSWTbaPVtmvztoMeHWXA8BWD56mGBvcMeOSf7x9lnabGXZfAlV_iu-rxENtOn457FsdZgluzUDjuvICSse9wu6jf7Ty0r0jVc4HETPpjQgUDnxAgqhI65KHXNKypEh4IlUjlUcOUSrVUgdSMB1z7qWWwNyIw2tfScM32UC0bZWYfYUCGcQoiT0KhuaBxrBhPDY99FiZCCllH57A3UXVn8qgIh1M_sh_dhkXVhtURc0KKdEVebntoDBeMItNRzyV5x4L_T538I5CCDZ3EmRlN8giAF_UEuFvewT9WfYjWqE2BsRkm7AjVQCrmGHyYsTopDu4XiK7wxQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV29btswED4k7uAu6T-S9I8F2qGDXImkKTFAB8ONYdc_Q2sDXgpVpKglhhJANtJ0yjvkGfoqeZA8SY6S6CAFiqCDgayESFC8I-8-3vE7gPcSIQaaucyTRjOPS628SEXMC02G5j9USpY8s-OJ6M_413l7vgV_3FsYnESBIxVlEP-GXSD4ZNuSqoCCzRYqQ4J1LuXQnJ0iUis-D76gWD9Q2jucdvteXUzAS5gMlh4VDJ0dxF5K6IhHftuwtkp5KFQqlU8NUyrTUoVSMx5yHWSWmt2I0OhAS8M1w3G34QH6P9RivE73-_rAp1xU1JyIzHnEqXuh949ZWzuoi9t28LYZKG1b7xFcrlelTGk5aq2WqqV__0UYee-X7THs1N416VTb4QlsmfwpNLuuqN0z-OEIEhZnBP1stTBkbBB_XJ1fVK9SNem5dLXigHyrr0qJrWvqmHZJkqekcxP4J4e_8Ei1t47PYbaRv3sBjfw4N7tAEAcnGSp4GgnNBU0SxXhmeBKwKBVSyD34iLKI6xOiiMvgPw1i2-gEFNcC2gPmdCPWNVW7rRiyuKOXt-51UlGV3PH9O6d2MUrBBoqS3ByvihhhJvUFOpf-_n_M-i00-9PxKB4NJsOX8JDa5B-bW8NeQQMlZF6j97ZUb8q9Q-DnprXuGqylUqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIhUuBVoQ6R9GKoceNuzajnddqYcobZTQHyFopFyqZe31Xog2lTZVf068A0_RV-lj8CQd766DgoQiDjlwtdaW1zP2zOcZfwOwKxFioJnLPGk087jUyotUxLzQZGj-Q6VkyTN7eiZ6A_5p2Bouwb17C4OTKHCkogzi2119mWY1w0Dw0bYnVREFmzFUhgXrfMpjc3uNaK046B-iaD9Q2j067_S8uqCAlzAZTDwqGDo8iL-U0BGP_JZhLZXyUKhUKp8aplSmpQqlZjzkOsgsPbsRodGBloZrhuM-gac2UmhxXrvzdXroUy4qek5E5zzi1L3S-8usrS3UxawtnDUFpX3rvoCH6cqUaS3fm1cT1dR3f5BG_hdL9xJWay-btKtt8QqWTL4GzzquuN06XDiihNEtQX9bjQw5NYhDfv34Wb1O1aTr0taKffKlvjIltr6pY9wlSZ6S9u8EAHJ0g0ervX18DYOF_N0bWM7HuXkLBPFwkqGip5HQXNAkUYxnhicBi1IhhWzAHsoirk-KIi6TAGgQ20YnoLgWUAOY049Y15TttnLIaE4vb9rrsqIsmfP9e6d6MUrBBoyS3IyvihjhJvUFOpn-xj_M-h2sfD7sxif9s-NNeE5tDpBNsWFbsIwCMtvoxE3UTrl9CHxbtNI9Ar0HVSc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemically+Stable+Metal-Organic+Frameworks%3A+Rational+Construction+and+Application+Expansion&rft.jtitle=Accounts+of+chemical+research&rft.au=He%2C+Tao&rft.au=Kong%2C+Xiang-Jing&rft.au=Li%2C+Jian-Rong&rft.date=2021-08-03&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=54&rft.issue=15&rft.spage=3083&rft_id=info:doi/10.1021%2Facs.accounts.1c00280&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon