Nonionic Surfactant-Assisted In Situ Generation of Stable Passivation Protective Layer for Highly Stable Aqueous Zn Metal Anodes
A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assi...
Saved in:
Published in | Nano letters Vol. 22; no. 21; pp. 8574 - 8583 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
09.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio. |
---|---|
AbstractList | A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio.A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio. A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio. |
Author | Zheng, Xiaoyang Wu, Kuan Wu, Chao Zhang, Yuanjun Liu, Hua-Kun Zhang, Ying Wu, Minghong Dou, Shi-Xue Xu, Gang |
AuthorAffiliation | School of Intelligent Manufacturing Huzhou College Graduate School of Pure and Applied Sciences School of Materials Science and Engineering Institute of Energy Materials Science (IEMS) Southwest University of Science and Technology Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials School of Environmental and Chemical Engineering Key Laboratory of Organic Compound Pollution Control Engineering (MOE) University of Shanghai for Science and Technology |
AuthorAffiliation_xml | – name: Key Laboratory of Organic Compound Pollution Control Engineering (MOE) – name: Institute of Energy Materials Science (IEMS) – name: Huzhou College – name: Southwest University of Science and Technology – name: School of Materials Science and Engineering – name: School of Intelligent Manufacturing – name: University of Shanghai for Science and Technology – name: Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials – name: School of Environmental and Chemical Engineering – name: Graduate School of Pure and Applied Sciences |
Author_xml | – sequence: 1 givenname: Yuanjun surname: Zhang fullname: Zhang, Yuanjun organization: Huzhou College – sequence: 2 givenname: Xiaoyang surname: Zheng fullname: Zheng, Xiaoyang organization: Southwest University of Science and Technology – sequence: 3 givenname: Kuan surname: Wu fullname: Wu, Kuan organization: School of Environmental and Chemical Engineering – sequence: 4 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: School of Environmental and Chemical Engineering – sequence: 5 givenname: Gang orcidid: 0000-0002-8580-8564 surname: Xu fullname: Xu, Gang organization: Key Laboratory of Organic Compound Pollution Control Engineering (MOE) – sequence: 6 givenname: Minghong orcidid: 0000-0002-9776-671X surname: Wu fullname: Wu, Minghong organization: Key Laboratory of Organic Compound Pollution Control Engineering (MOE) – sequence: 7 givenname: Hua-Kun surname: Liu fullname: Liu, Hua-Kun organization: University of Shanghai for Science and Technology – sequence: 8 givenname: Shi-Xue surname: Dou fullname: Dou, Shi-Xue organization: University of Shanghai for Science and Technology – sequence: 9 givenname: Chao orcidid: 0000-0002-2825-6337 surname: Wu fullname: Wu, Chao email: chaowu@uow.edu.au organization: Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials |
BookMark | eNqFkE1LAzEQhoMo-PkPPOToZWu-ttv1Voq2QtVC9eJlmU1nNbImNckKvfnTTW314EEhkDB53mHmOSS71lkk5JSzHmeCn4MOPQvWtRhjT2gmOVc75IDnkmX9shS7P--B2ieHIbwwxkqZswPyceusSUfTeecb0BFszIYhmBBxQa8tnZvY0TFa9BATSF1D5xHqFukMEva-qc68i6ijeUc6hRV62jhPJ-bpuV1948O3Dl0X6KOlNxihpUPrFhiOyV4DbcCT7X1EHq4u70eTbHo3vh4NpxnIkseMlw2vGXAhFFNaIIIqdFpN5_18MOC6Luq6BMUWC5XLvlQAtRalKmrGa6m1kkfkbNN36V2aJMTq1QSNbQt2PVYlCjHgSkpWJFRtUO1dCB6baunNK_hVxVm1Fl4l4dW38GorPMUufsW0iV96ogfT_hdmm_D698V13iYZf0c-Aedmn-M |
CitedBy_id | crossref_primary_10_1021_acsaem_4c01166 crossref_primary_10_1002_smtd_202401838 crossref_primary_10_1021_acsami_3c11936 crossref_primary_10_1016_j_jpowsour_2023_233491 crossref_primary_10_1016_j_jpowsour_2023_233887 crossref_primary_10_1021_acs_nanolett_3c01406 crossref_primary_10_1039_D4EE00986J crossref_primary_10_1002_smll_202305554 crossref_primary_10_1002_smtd_202201572 crossref_primary_10_1039_D4TA01107D crossref_primary_10_1021_acsnano_3c09774 crossref_primary_10_1002_anie_202415221 crossref_primary_10_1002_ange_202415251 crossref_primary_10_1016_j_jece_2024_114862 crossref_primary_10_1002_adma_202408067 crossref_primary_10_1002_aenm_202401293 crossref_primary_10_1016_j_ensm_2024_103245 crossref_primary_10_1002_adfm_202402014 crossref_primary_10_1016_j_ensm_2024_103524 crossref_primary_10_1002_smtd_202300268 crossref_primary_10_1016_j_jcis_2024_08_022 crossref_primary_10_1016_j_jechem_2023_08_052 crossref_primary_10_1002_aenm_202401053 crossref_primary_10_1002_anie_202401163 crossref_primary_10_1021_acsnano_3c10394 crossref_primary_10_1016_j_coelec_2024_101538 crossref_primary_10_1039_D3EE02522E crossref_primary_10_1002_ange_202401163 crossref_primary_10_1021_acsnano_3c01518 crossref_primary_10_1002_tcr_202400142 crossref_primary_10_1002_adfm_202416931 crossref_primary_10_1002_anie_202319661 crossref_primary_10_1016_j_ijbiomac_2025_141326 crossref_primary_10_1016_j_jechem_2024_09_065 crossref_primary_10_1021_acsmaterialslett_4c00308 crossref_primary_10_1007_s40843_023_2912_5 crossref_primary_10_1038_s41560_024_01638_z crossref_primary_10_1016_j_cclet_2023_109393 crossref_primary_10_1016_j_jcis_2024_11_172 crossref_primary_10_1002_aenm_202400353 crossref_primary_10_1016_j_nxener_2023_100073 crossref_primary_10_1016_j_jpowsour_2025_236380 crossref_primary_10_1002_ange_202319661 crossref_primary_10_1016_j_cej_2024_158924 crossref_primary_10_1002_adfm_202413456 crossref_primary_10_1039_D3EE01453C crossref_primary_10_1002_aenm_202304557 crossref_primary_10_1007_s40820_023_01304_1 crossref_primary_10_1016_j_jcis_2024_09_240 crossref_primary_10_1039_D4EE02096K crossref_primary_10_1002_aenm_202404660 crossref_primary_10_1016_j_cej_2023_145313 crossref_primary_10_1016_j_jwpe_2025_107039 crossref_primary_10_1002_adma_202309726 crossref_primary_10_1016_j_cej_2023_145955 crossref_primary_10_1016_j_mser_2024_100844 crossref_primary_10_1002_adma_202210055 crossref_primary_10_1002_anie_202415251 crossref_primary_10_1002_adma_202312924 crossref_primary_10_1002_aenm_202300403 crossref_primary_10_1002_ange_202415221 |
Cites_doi | 10.1002/smll.202103345 10.1021/ac015536x 10.1021/acsenergylett.1c00393 10.1002/celc.201800572 10.1021/jacs.0c09794 10.1002/smll.202104148. 10.1002/adfm.202101607 10.1039/D0EE01538E 10.5402/2012/907340 10.1039/D1EE03882F 10.1016/j.cej.2020.128062 10.1021/acsenergylett.0c02371 10.1002/smll.202008059 10.1002/aenm.201904215 10.1126/sciadv.abn5097 10.1016/j.ensm.2021.04.027 10.1039/C9EE00596J 10.1002/anie.202017020 10.1016/j.jelechem.2021.115361 10.1149/2.040311jes 10.1002/adma.202007406 10.1038/s41467-021-26947-9 10.1039/D1EE03749H 10.1002/adma.201906803 10.1021/acsami.0c22911 10.1021/acsami.0c17023 10.1038/s41467-020-17752-x 10.1021/acs.nanolett.9b05148 10.1016/j.nanoen.2020.105739 10.1039/D0EE02162H 10.1021/acs.nanolett.1c04975 10.1002/anie.202000162 10.1002/aenm.202100214 10.1021/acsenergylett.0c02684 10.1002/ange.202016531 10.1039/D0TA11668H 10.1002/adma.202007416 10.1021/acs.nanolett.2c00398 10.1002/adfm.202104361 10.1039/C9EE03545A 10.1002/aenm.202002293 10.1016/j.nanoen.2020.105478 10.1002/aenm.202003927 10.1039/D0TA12177K 10.1021/ja0275562 10.1002/adma.202003021 10.1039/D0TA06622B 10.1002/adfm.202003932 10.1002/admi.201800848 10.1021/acsenergylett.0c01792 10.1016/j.cej.2020.125363 10.1002/aenm.202100982 10.1021/acsami.6b16560 10.1002/smll.202107033 10.1002/adma.202100445 10.1038/s41467-021-23352-0 10.1016/j.ensm.2022.06.032 10.1016/j.nanoen.2019.05.042 10.1039/D1EE00308A 10.1002/adma.202007388 10.1007/s40820-022-00846-0 10.1016/j.isci.2020.100995 10.1016/j.ensm.2022.02.019 10.1002/anie.201907830 10.1002/smll.202001736 10.1002/advs.202002173 10.1039/D0EE03898A 10.1021/acsaem.2c01048 10.1016/j.ensm.2021.10.033 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.nanolett.2c03114 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 8583 |
ExternalDocumentID | 10_1021_acs_nanolett_2c03114 c706780034 |
GroupedDBID | --- -~X .K2 123 4.4 55A 5VS 6P2 7~N AABXI ABFRP ABMVS ABPTK ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ PK8 RNS ROL TN5 UI2 VF5 VG9 W1F AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA CITATION CUPRZ 7X8 |
ID | FETCH-LOGICAL-a391t-19f1b0a122404c2eea47c992c565881cb7bb9a40dd453634aabc2947b01b3cc43 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 11:02:21 EDT 2025 Tue Jul 01 03:00:32 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Fri Nov 11 19:10:33 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Aqueous Zn-ion battery Protection layer High areal capacity Nonionic surfactant Zn metal anodes |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a391t-19f1b0a122404c2eea47c992c565881cb7bb9a40dd453634aabc2947b01b3cc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9776-671X 0000-0002-8580-8564 0000-0002-2825-6337 |
PQID | 2728143307 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2728143307 crossref_primary_10_1021_acs_nanolett_2c03114 crossref_citationtrail_10_1021_acs_nanolett_2c03114 acs_journals_10_1021_acs_nanolett_2c03114 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-09 |
PublicationDateYYYYMMDD | 2022-11-09 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-09 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref19/cit19 doi: 10.1002/smll.202103345 – ident: ref59/cit59 doi: 10.1021/ac015536x – ident: ref7/cit7 doi: 10.1021/acsenergylett.1c00393 – ident: ref15/cit15 doi: 10.1002/celc.201800572 – ident: ref24/cit24 doi: 10.1021/jacs.0c09794 – ident: ref4/cit4 doi: 10.1002/smll.202104148. – ident: ref60/cit60 doi: 10.1002/adfm.202101607 – ident: ref16/cit16 doi: 10.1039/D0EE01538E – ident: ref52/cit52 doi: 10.5402/2012/907340 – ident: ref39/cit39 doi: 10.1039/D1EE03882F – ident: ref36/cit36 doi: 10.1016/j.cej.2020.128062 – ident: ref20/cit20 doi: 10.1021/acsenergylett.0c02371 – ident: ref49/cit49 doi: 10.1002/smll.202008059 – ident: ref62/cit62 doi: 10.1002/aenm.201904215 – ident: ref6/cit6 doi: 10.1126/sciadv.abn5097 – ident: ref9/cit9 doi: 10.1016/j.ensm.2021.04.027 – ident: ref56/cit56 doi: 10.1039/C9EE00596J – ident: ref29/cit29 doi: 10.1002/anie.202017020 – ident: ref58/cit58 doi: 10.1016/j.jelechem.2021.115361 – ident: ref17/cit17 doi: 10.1149/2.040311jes – ident: ref47/cit47 doi: 10.1002/adma.202007406 – ident: ref44/cit44 doi: 10.1038/s41467-021-26947-9 – ident: ref28/cit28 doi: 10.1039/D1EE03749H – ident: ref34/cit34 doi: 10.1002/adma.201906803 – ident: ref42/cit42 doi: 10.1021/acsami.0c22911 – ident: ref14/cit14 doi: 10.1021/acsami.0c17023 – ident: ref37/cit37 doi: 10.1038/s41467-020-17752-x – ident: ref11/cit11 doi: 10.1021/acs.nanolett.9b05148 – ident: ref22/cit22 doi: 10.1016/j.nanoen.2020.105739 – ident: ref8/cit8 doi: 10.1039/D0EE02162H – ident: ref48/cit48 doi: 10.1021/acs.nanolett.1c04975 – ident: ref2/cit2 doi: 10.1002/anie.202000162 – ident: ref33/cit33 doi: 10.1002/aenm.202100214 – ident: ref1/cit1 doi: 10.1021/acsenergylett.0c02684 – ident: ref31/cit31 doi: 10.1002/ange.202016531 – ident: ref51/cit51 doi: 10.1039/D0TA11668H – ident: ref27/cit27 doi: 10.1002/adma.202007416 – ident: ref12/cit12 doi: 10.1021/acs.nanolett.2c00398 – ident: ref67/cit67 doi: 10.1002/adfm.202104361 – ident: ref35/cit35 doi: 10.1039/C9EE03545A – ident: ref69/cit69 doi: 10.1002/aenm.202002293 – ident: ref18/cit18 doi: 10.1016/j.nanoen.2020.105478 – ident: ref32/cit32 doi: 10.1002/aenm.202003927 – ident: ref43/cit43 doi: 10.1039/D0TA12177K – ident: ref53/cit53 doi: 10.1021/ja0275562 – ident: ref10/cit10 doi: 10.1002/adma.202003021 – ident: ref26/cit26 doi: 10.1039/D0TA06622B – ident: ref21/cit21 doi: 10.1002/adfm.202003932 – ident: ref38/cit38 doi: 10.1002/admi.201800848 – ident: ref54/cit54 doi: 10.1021/acsenergylett.0c01792 – ident: ref40/cit40 doi: 10.1016/j.cej.2020.125363 – ident: ref65/cit65 doi: 10.1002/aenm.202100982 – ident: ref13/cit13 doi: 10.1021/acsami.6b16560 – ident: ref5/cit5 doi: 10.1002/smll.202107033 – ident: ref66/cit66 doi: 10.1002/adma.202100445 – ident: ref64/cit64 doi: 10.1038/s41467-021-23352-0 – ident: ref45/cit45 doi: 10.1016/j.ensm.2022.06.032 – ident: ref23/cit23 doi: 10.1016/j.nanoen.2019.05.042 – ident: ref63/cit63 doi: 10.1039/D1EE00308A – ident: ref46/cit46 doi: 10.1002/adma.202007388 – ident: ref30/cit30 doi: 10.1007/s40820-022-00846-0 – ident: ref57/cit57 doi: 10.1016/j.isci.2020.100995 – ident: ref25/cit25 doi: 10.1016/j.ensm.2022.02.019 – ident: ref3/cit3 doi: 10.1002/anie.201907830 – ident: ref41/cit41 doi: 10.1002/smll.202001736 – ident: ref50/cit50 doi: 10.1002/advs.202002173 – ident: ref61/cit61 doi: 10.1039/D0EE03898A – ident: ref55/cit55 doi: 10.1021/acsaem.2c01048 – ident: ref68/cit68 doi: 10.1016/j.ensm.2021.10.033 |
SSID | ssj0009350 |
Score | 2.6072218 |
Snippet | A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8574 |
Title | Nonionic Surfactant-Assisted In Situ Generation of Stable Passivation Protective Layer for Highly Stable Aqueous Zn Metal Anodes |
URI | http://dx.doi.org/10.1021/acs.nanolett.2c03114 https://www.proquest.com/docview/2728143307 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT90wELYquLQHlhYEZZEr9dJDHvHykviIEAhQoUivSKiXyJ74SYgnpyLJAU78dGaylE0VcI1syx7PeD5nPN8w9n0slB57RG4gXRJpkUHkJLjIk3uOpYGifZtzcpocnuvji_HFw0XxeQRfih0L1SjYUOIy6pEEVEKqWz0vE7RjgkJ7kweSXdVWZEUjxiuRyfSQKvefUcghQfXUIT09j1snc7DIfg2pOt3bkqtRU7sR3L5kbnzj_JfYQo83-W6nIMvsgw-f2adHLIRf2N0p2jUx5PJJc02JDijsCLeNFKDgR4FPLuuGd_zUtI28nHLEqG7m-RlC7748Gj_rGB_w9OQ_LQJ5jnCY0zOS2c3QfBcXXTYV_xP4ia9pWqEsfLXCzg_2f-8dRn1hhsgqI-pImKlwsaWgXKxBem91CsZIQHSYZQJc6pyxOi4KPVaJ0tY6kEanLhZOAWi1yuZCGfwa4-lUu8JChj2sphogPvGU3OutEugq7Tr7gQLMe8Oq8jZmLkVOHwep5r1U15kadjKHnuGcCm3MXukV_ev1t2P4eKX9t0FJcjRFiq_YQMLLZSozhJ94an59x6w32EdJKRX0q9pssrn6uvFbCHRqt91q9z0J6_y3 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYqOMAO2xhMY4NhpF04pMQ_0sTHCoFaaCukUlRxiWzHlRCVM5HkAKf96XsvTWAgTYirZVv2e89-X_L8vkfIr4gJGTlAbpabXiBZYgPDrQkcuueQK5vVb3PGk95gJs_n0bxDojYXBhZRwExFHcR_Zhdgx9jmtc9hN2WXW7BFLF-9DniEo2H3T6bPXLuiLswKZxm-jFQi24y5_8yCfskWL_3Sy2u59jVnn8j10yrrJyZ33ao0Xfv4isDx3dv4TD426JP2V-ayRTrOfyEf_uEk3CZ_JnDKkS-XTqt7THsA0QegRDSHjA49nd6WFV2xVaNSab6ggFjN0tFLAOJNsTR6ueJ_gLuUjjTAegrgmOKjkuVD270Pe8-rgt54OnYlLsvnmSt2yOzs9OpkEDRlGgItFCsDphbMhBpDdKG03DktY6sUt6CbJGHWxMYoLcMsk5HoCam1sVzJ2ITMCGul-ErWfO7dN0LjhTSZtgmM0BIrgriew1RfpwUDx6l3yREIMG2OWZHWEXTOUmxspZo2Ut0lolVoahu-cyy7sXxjVPA06veK7-ON_oetraRwMDHaoj0KL-UxTwCMwh36_R2rPiAbg6vxKB0NJxc_yCbHZAv8ia32yFp5X7l9gECl-Vkb_F9kBAUn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcmkKbxABsb4mvMSLzsIV380SZ-rApV2UpVqUNCvES240qIykFN8gBP_OncpUkHSKhir5Ztne_Dd8n5fkfISZsJ2XYQuVluOoFksQ0MtyZw6J5Drmxavc25GHUGl_L3VfvqWasvICKHnfIqiY9WfZdOa4QB9gvHvfYZnKhocQv6iC2s1zFzh8rd7U3-4e2Kqjkr2DN8HalYNlVzb-yCvsnmL33Ty6u58jf9LXK9pLR6ZnLbKgvTsg-vQBz_6yifyWYdhdLuQm2-kA_Ob5ONZ9iEX8njCKwdcXPppJxj-QOIIABholqk9NzTyU1R0gVqNQqXZlMKkauZOTqGgLxumkbHCxwIuFPpUEN4TyFIpvi4ZHbfTO_C-bMyp9eeXrgCyfJZ6vJv5LJ_9rc3COp2DYEWihUBU1NmQo2pulBa7pyWkVWKW5BPHDNrImOUlmGayrboCKm1sVzJyITMCGul2CFrPvNul9BoKk2qbQwrtMTOIK7jsOTXacHAgeo98hMYmNTmlidVJp2zBAcbriY1V_eIaISa2Br3HNtvzFasCpar7ha4HyvmHzf6koCBYtZFe2RewiMeQ1AKd-n-O6j-QT6OT_vJ8Hz054B84lhzgf-y1SFZK-al-w6RUGGOKp1_ArRcB6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonionic+Surfactant-Assisted+In+Situ+Generation+of+Stable+Passivation+Protective+Layer+for+Highly+Stable+Aqueous+Zn+Metal+Anodes&rft.jtitle=Nano+letters&rft.au=Zhang%2C+Yuanjun&rft.au=Zheng%2C+Xiaoyang&rft.au=Wu%2C+Kuan&rft.au=Zhang%2C+Ying&rft.date=2022-11-09&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=22&rft.issue=21&rft.spage=8574&rft.epage=8583&rft_id=info:doi/10.1021%2Facs.nanolett.2c03114&rft.externalDocID=c706780034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |