Nonionic Surfactant-Assisted In Situ Generation of Stable Passivation Protective Layer for Highly Stable Aqueous Zn Metal Anodes

A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assi...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 22; no. 21; pp. 8574 - 8583
Main Authors Zhang, Yuanjun, Zheng, Xiaoyang, Wu, Kuan, Zhang, Ying, Xu, Gang, Wu, Minghong, Liu, Hua-Kun, Dou, Shi-Xue, Wu, Chao
Format Journal Article
LanguageEnglish
Published American Chemical Society 09.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio.
AbstractList A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio.A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio.
A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio.
Author Zheng, Xiaoyang
Wu, Kuan
Wu, Chao
Zhang, Yuanjun
Liu, Hua-Kun
Zhang, Ying
Wu, Minghong
Dou, Shi-Xue
Xu, Gang
AuthorAffiliation School of Intelligent Manufacturing
Huzhou College
Graduate School of Pure and Applied Sciences
School of Materials Science and Engineering
Institute of Energy Materials Science (IEMS)
Southwest University of Science and Technology
Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials
School of Environmental and Chemical Engineering
Key Laboratory of Organic Compound Pollution Control Engineering (MOE)
University of Shanghai for Science and Technology
AuthorAffiliation_xml – name: Key Laboratory of Organic Compound Pollution Control Engineering (MOE)
– name: Institute of Energy Materials Science (IEMS)
– name: Huzhou College
– name: Southwest University of Science and Technology
– name: School of Materials Science and Engineering
– name: School of Intelligent Manufacturing
– name: University of Shanghai for Science and Technology
– name: Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials
– name: School of Environmental and Chemical Engineering
– name: Graduate School of Pure and Applied Sciences
Author_xml – sequence: 1
  givenname: Yuanjun
  surname: Zhang
  fullname: Zhang, Yuanjun
  organization: Huzhou College
– sequence: 2
  givenname: Xiaoyang
  surname: Zheng
  fullname: Zheng, Xiaoyang
  organization: Southwest University of Science and Technology
– sequence: 3
  givenname: Kuan
  surname: Wu
  fullname: Wu, Kuan
  organization: School of Environmental and Chemical Engineering
– sequence: 4
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: School of Environmental and Chemical Engineering
– sequence: 5
  givenname: Gang
  orcidid: 0000-0002-8580-8564
  surname: Xu
  fullname: Xu, Gang
  organization: Key Laboratory of Organic Compound Pollution Control Engineering (MOE)
– sequence: 6
  givenname: Minghong
  orcidid: 0000-0002-9776-671X
  surname: Wu
  fullname: Wu, Minghong
  organization: Key Laboratory of Organic Compound Pollution Control Engineering (MOE)
– sequence: 7
  givenname: Hua-Kun
  surname: Liu
  fullname: Liu, Hua-Kun
  organization: University of Shanghai for Science and Technology
– sequence: 8
  givenname: Shi-Xue
  surname: Dou
  fullname: Dou, Shi-Xue
  organization: University of Shanghai for Science and Technology
– sequence: 9
  givenname: Chao
  orcidid: 0000-0002-2825-6337
  surname: Wu
  fullname: Wu, Chao
  email: chaowu@uow.edu.au
  organization: Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials
BookMark eNqFkE1LAzEQhoMo-PkPPOToZWu-ttv1Voq2QtVC9eJlmU1nNbImNckKvfnTTW314EEhkDB53mHmOSS71lkk5JSzHmeCn4MOPQvWtRhjT2gmOVc75IDnkmX9shS7P--B2ieHIbwwxkqZswPyceusSUfTeecb0BFszIYhmBBxQa8tnZvY0TFa9BATSF1D5xHqFukMEva-qc68i6ijeUc6hRV62jhPJ-bpuV1948O3Dl0X6KOlNxihpUPrFhiOyV4DbcCT7X1EHq4u70eTbHo3vh4NpxnIkseMlw2vGXAhFFNaIIIqdFpN5_18MOC6Luq6BMUWC5XLvlQAtRalKmrGa6m1kkfkbNN36V2aJMTq1QSNbQt2PVYlCjHgSkpWJFRtUO1dCB6baunNK_hVxVm1Fl4l4dW38GorPMUufsW0iV96ogfT_hdmm_D698V13iYZf0c-Aedmn-M
CitedBy_id crossref_primary_10_1021_acsaem_4c01166
crossref_primary_10_1002_smtd_202401838
crossref_primary_10_1021_acsami_3c11936
crossref_primary_10_1016_j_jpowsour_2023_233491
crossref_primary_10_1016_j_jpowsour_2023_233887
crossref_primary_10_1021_acs_nanolett_3c01406
crossref_primary_10_1039_D4EE00986J
crossref_primary_10_1002_smll_202305554
crossref_primary_10_1002_smtd_202201572
crossref_primary_10_1039_D4TA01107D
crossref_primary_10_1021_acsnano_3c09774
crossref_primary_10_1002_anie_202415221
crossref_primary_10_1002_ange_202415251
crossref_primary_10_1016_j_jece_2024_114862
crossref_primary_10_1002_adma_202408067
crossref_primary_10_1002_aenm_202401293
crossref_primary_10_1016_j_ensm_2024_103245
crossref_primary_10_1002_adfm_202402014
crossref_primary_10_1016_j_ensm_2024_103524
crossref_primary_10_1002_smtd_202300268
crossref_primary_10_1016_j_jcis_2024_08_022
crossref_primary_10_1016_j_jechem_2023_08_052
crossref_primary_10_1002_aenm_202401053
crossref_primary_10_1002_anie_202401163
crossref_primary_10_1021_acsnano_3c10394
crossref_primary_10_1016_j_coelec_2024_101538
crossref_primary_10_1039_D3EE02522E
crossref_primary_10_1002_ange_202401163
crossref_primary_10_1021_acsnano_3c01518
crossref_primary_10_1002_tcr_202400142
crossref_primary_10_1002_adfm_202416931
crossref_primary_10_1002_anie_202319661
crossref_primary_10_1016_j_ijbiomac_2025_141326
crossref_primary_10_1016_j_jechem_2024_09_065
crossref_primary_10_1021_acsmaterialslett_4c00308
crossref_primary_10_1007_s40843_023_2912_5
crossref_primary_10_1038_s41560_024_01638_z
crossref_primary_10_1016_j_cclet_2023_109393
crossref_primary_10_1016_j_jcis_2024_11_172
crossref_primary_10_1002_aenm_202400353
crossref_primary_10_1016_j_nxener_2023_100073
crossref_primary_10_1016_j_jpowsour_2025_236380
crossref_primary_10_1002_ange_202319661
crossref_primary_10_1016_j_cej_2024_158924
crossref_primary_10_1002_adfm_202413456
crossref_primary_10_1039_D3EE01453C
crossref_primary_10_1002_aenm_202304557
crossref_primary_10_1007_s40820_023_01304_1
crossref_primary_10_1016_j_jcis_2024_09_240
crossref_primary_10_1039_D4EE02096K
crossref_primary_10_1002_aenm_202404660
crossref_primary_10_1016_j_cej_2023_145313
crossref_primary_10_1016_j_jwpe_2025_107039
crossref_primary_10_1002_adma_202309726
crossref_primary_10_1016_j_cej_2023_145955
crossref_primary_10_1016_j_mser_2024_100844
crossref_primary_10_1002_adma_202210055
crossref_primary_10_1002_anie_202415251
crossref_primary_10_1002_adma_202312924
crossref_primary_10_1002_aenm_202300403
crossref_primary_10_1002_ange_202415221
Cites_doi 10.1002/smll.202103345
10.1021/ac015536x
10.1021/acsenergylett.1c00393
10.1002/celc.201800572
10.1021/jacs.0c09794
10.1002/smll.202104148.
10.1002/adfm.202101607
10.1039/D0EE01538E
10.5402/2012/907340
10.1039/D1EE03882F
10.1016/j.cej.2020.128062
10.1021/acsenergylett.0c02371
10.1002/smll.202008059
10.1002/aenm.201904215
10.1126/sciadv.abn5097
10.1016/j.ensm.2021.04.027
10.1039/C9EE00596J
10.1002/anie.202017020
10.1016/j.jelechem.2021.115361
10.1149/2.040311jes
10.1002/adma.202007406
10.1038/s41467-021-26947-9
10.1039/D1EE03749H
10.1002/adma.201906803
10.1021/acsami.0c22911
10.1021/acsami.0c17023
10.1038/s41467-020-17752-x
10.1021/acs.nanolett.9b05148
10.1016/j.nanoen.2020.105739
10.1039/D0EE02162H
10.1021/acs.nanolett.1c04975
10.1002/anie.202000162
10.1002/aenm.202100214
10.1021/acsenergylett.0c02684
10.1002/ange.202016531
10.1039/D0TA11668H
10.1002/adma.202007416
10.1021/acs.nanolett.2c00398
10.1002/adfm.202104361
10.1039/C9EE03545A
10.1002/aenm.202002293
10.1016/j.nanoen.2020.105478
10.1002/aenm.202003927
10.1039/D0TA12177K
10.1021/ja0275562
10.1002/adma.202003021
10.1039/D0TA06622B
10.1002/adfm.202003932
10.1002/admi.201800848
10.1021/acsenergylett.0c01792
10.1016/j.cej.2020.125363
10.1002/aenm.202100982
10.1021/acsami.6b16560
10.1002/smll.202107033
10.1002/adma.202100445
10.1038/s41467-021-23352-0
10.1016/j.ensm.2022.06.032
10.1016/j.nanoen.2019.05.042
10.1039/D1EE00308A
10.1002/adma.202007388
10.1007/s40820-022-00846-0
10.1016/j.isci.2020.100995
10.1016/j.ensm.2022.02.019
10.1002/anie.201907830
10.1002/smll.202001736
10.1002/advs.202002173
10.1039/D0EE03898A
10.1021/acsaem.2c01048
10.1016/j.ensm.2021.10.033
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.nanolett.2c03114
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 8583
ExternalDocumentID 10_1021_acs_nanolett_2c03114
c706780034
GroupedDBID ---
-~X
.K2
123
4.4
55A
5VS
6P2
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a391t-19f1b0a122404c2eea47c992c565881cb7bb9a40dd453634aabc2947b01b3cc43
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 11:02:21 EDT 2025
Tue Jul 01 03:00:32 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Fri Nov 11 19:10:33 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Aqueous Zn-ion battery
Protection layer
High areal capacity
Nonionic surfactant
Zn metal anodes
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a391t-19f1b0a122404c2eea47c992c565881cb7bb9a40dd453634aabc2947b01b3cc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9776-671X
0000-0002-8580-8564
0000-0002-2825-6337
PQID 2728143307
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2728143307
crossref_primary_10_1021_acs_nanolett_2c03114
crossref_citationtrail_10_1021_acs_nanolett_2c03114
acs_journals_10_1021_acs_nanolett_2c03114
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-09
PublicationDateYYYYMMDD 2022-11-09
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-09
  day: 09
PublicationDecade 2020
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref19/cit19
  doi: 10.1002/smll.202103345
– ident: ref59/cit59
  doi: 10.1021/ac015536x
– ident: ref7/cit7
  doi: 10.1021/acsenergylett.1c00393
– ident: ref15/cit15
  doi: 10.1002/celc.201800572
– ident: ref24/cit24
  doi: 10.1021/jacs.0c09794
– ident: ref4/cit4
  doi: 10.1002/smll.202104148.
– ident: ref60/cit60
  doi: 10.1002/adfm.202101607
– ident: ref16/cit16
  doi: 10.1039/D0EE01538E
– ident: ref52/cit52
  doi: 10.5402/2012/907340
– ident: ref39/cit39
  doi: 10.1039/D1EE03882F
– ident: ref36/cit36
  doi: 10.1016/j.cej.2020.128062
– ident: ref20/cit20
  doi: 10.1021/acsenergylett.0c02371
– ident: ref49/cit49
  doi: 10.1002/smll.202008059
– ident: ref62/cit62
  doi: 10.1002/aenm.201904215
– ident: ref6/cit6
  doi: 10.1126/sciadv.abn5097
– ident: ref9/cit9
  doi: 10.1016/j.ensm.2021.04.027
– ident: ref56/cit56
  doi: 10.1039/C9EE00596J
– ident: ref29/cit29
  doi: 10.1002/anie.202017020
– ident: ref58/cit58
  doi: 10.1016/j.jelechem.2021.115361
– ident: ref17/cit17
  doi: 10.1149/2.040311jes
– ident: ref47/cit47
  doi: 10.1002/adma.202007406
– ident: ref44/cit44
  doi: 10.1038/s41467-021-26947-9
– ident: ref28/cit28
  doi: 10.1039/D1EE03749H
– ident: ref34/cit34
  doi: 10.1002/adma.201906803
– ident: ref42/cit42
  doi: 10.1021/acsami.0c22911
– ident: ref14/cit14
  doi: 10.1021/acsami.0c17023
– ident: ref37/cit37
  doi: 10.1038/s41467-020-17752-x
– ident: ref11/cit11
  doi: 10.1021/acs.nanolett.9b05148
– ident: ref22/cit22
  doi: 10.1016/j.nanoen.2020.105739
– ident: ref8/cit8
  doi: 10.1039/D0EE02162H
– ident: ref48/cit48
  doi: 10.1021/acs.nanolett.1c04975
– ident: ref2/cit2
  doi: 10.1002/anie.202000162
– ident: ref33/cit33
  doi: 10.1002/aenm.202100214
– ident: ref1/cit1
  doi: 10.1021/acsenergylett.0c02684
– ident: ref31/cit31
  doi: 10.1002/ange.202016531
– ident: ref51/cit51
  doi: 10.1039/D0TA11668H
– ident: ref27/cit27
  doi: 10.1002/adma.202007416
– ident: ref12/cit12
  doi: 10.1021/acs.nanolett.2c00398
– ident: ref67/cit67
  doi: 10.1002/adfm.202104361
– ident: ref35/cit35
  doi: 10.1039/C9EE03545A
– ident: ref69/cit69
  doi: 10.1002/aenm.202002293
– ident: ref18/cit18
  doi: 10.1016/j.nanoen.2020.105478
– ident: ref32/cit32
  doi: 10.1002/aenm.202003927
– ident: ref43/cit43
  doi: 10.1039/D0TA12177K
– ident: ref53/cit53
  doi: 10.1021/ja0275562
– ident: ref10/cit10
  doi: 10.1002/adma.202003021
– ident: ref26/cit26
  doi: 10.1039/D0TA06622B
– ident: ref21/cit21
  doi: 10.1002/adfm.202003932
– ident: ref38/cit38
  doi: 10.1002/admi.201800848
– ident: ref54/cit54
  doi: 10.1021/acsenergylett.0c01792
– ident: ref40/cit40
  doi: 10.1016/j.cej.2020.125363
– ident: ref65/cit65
  doi: 10.1002/aenm.202100982
– ident: ref13/cit13
  doi: 10.1021/acsami.6b16560
– ident: ref5/cit5
  doi: 10.1002/smll.202107033
– ident: ref66/cit66
  doi: 10.1002/adma.202100445
– ident: ref64/cit64
  doi: 10.1038/s41467-021-23352-0
– ident: ref45/cit45
  doi: 10.1016/j.ensm.2022.06.032
– ident: ref23/cit23
  doi: 10.1016/j.nanoen.2019.05.042
– ident: ref63/cit63
  doi: 10.1039/D1EE00308A
– ident: ref46/cit46
  doi: 10.1002/adma.202007388
– ident: ref30/cit30
  doi: 10.1007/s40820-022-00846-0
– ident: ref57/cit57
  doi: 10.1016/j.isci.2020.100995
– ident: ref25/cit25
  doi: 10.1016/j.ensm.2022.02.019
– ident: ref3/cit3
  doi: 10.1002/anie.201907830
– ident: ref41/cit41
  doi: 10.1002/smll.202001736
– ident: ref50/cit50
  doi: 10.1002/advs.202002173
– ident: ref61/cit61
  doi: 10.1039/D0EE03898A
– ident: ref55/cit55
  doi: 10.1021/acsaem.2c01048
– ident: ref68/cit68
  doi: 10.1016/j.ensm.2021.10.033
SSID ssj0009350
Score 2.6072218
Snippet A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8574
Title Nonionic Surfactant-Assisted In Situ Generation of Stable Passivation Protective Layer for Highly Stable Aqueous Zn Metal Anodes
URI http://dx.doi.org/10.1021/acs.nanolett.2c03114
https://www.proquest.com/docview/2728143307
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT90wELYquLQHlhYEZZEr9dJDHvHykviIEAhQoUivSKiXyJ74SYgnpyLJAU78dGaylE0VcI1syx7PeD5nPN8w9n0slB57RG4gXRJpkUHkJLjIk3uOpYGifZtzcpocnuvji_HFw0XxeQRfih0L1SjYUOIy6pEEVEKqWz0vE7RjgkJ7kweSXdVWZEUjxiuRyfSQKvefUcghQfXUIT09j1snc7DIfg2pOt3bkqtRU7sR3L5kbnzj_JfYQo83-W6nIMvsgw-f2adHLIRf2N0p2jUx5PJJc02JDijsCLeNFKDgR4FPLuuGd_zUtI28nHLEqG7m-RlC7748Gj_rGB_w9OQ_LQJ5jnCY0zOS2c3QfBcXXTYV_xP4ia9pWqEsfLXCzg_2f-8dRn1hhsgqI-pImKlwsaWgXKxBem91CsZIQHSYZQJc6pyxOi4KPVaJ0tY6kEanLhZOAWi1yuZCGfwa4-lUu8JChj2sphogPvGU3OutEugq7Tr7gQLMe8Oq8jZmLkVOHwep5r1U15kadjKHnuGcCm3MXukV_ev1t2P4eKX9t0FJcjRFiq_YQMLLZSozhJ94an59x6w32EdJKRX0q9pssrn6uvFbCHRqt91q9z0J6_y3
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYqOMAO2xhMY4NhpF04pMQ_0sTHCoFaaCukUlRxiWzHlRCVM5HkAKf96XsvTWAgTYirZVv2e89-X_L8vkfIr4gJGTlAbpabXiBZYgPDrQkcuueQK5vVb3PGk95gJs_n0bxDojYXBhZRwExFHcR_Zhdgx9jmtc9hN2WXW7BFLF-9DniEo2H3T6bPXLuiLswKZxm-jFQi24y5_8yCfskWL_3Sy2u59jVnn8j10yrrJyZ33ao0Xfv4isDx3dv4TD426JP2V-ayRTrOfyEf_uEk3CZ_JnDKkS-XTqt7THsA0QegRDSHjA49nd6WFV2xVaNSab6ggFjN0tFLAOJNsTR6ueJ_gLuUjjTAegrgmOKjkuVD270Pe8-rgt54OnYlLsvnmSt2yOzs9OpkEDRlGgItFCsDphbMhBpDdKG03DktY6sUt6CbJGHWxMYoLcMsk5HoCam1sVzJ2ITMCGul-ErWfO7dN0LjhTSZtgmM0BIrgriew1RfpwUDx6l3yREIMG2OWZHWEXTOUmxspZo2Ut0lolVoahu-cyy7sXxjVPA06veK7-ON_oetraRwMDHaoj0KL-UxTwCMwh36_R2rPiAbg6vxKB0NJxc_yCbHZAv8ia32yFp5X7l9gECl-Vkb_F9kBAUn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcmkKbxABsb4mvMSLzsIV380SZ-rApV2UpVqUNCvES240qIykFN8gBP_OncpUkHSKhir5Ztne_Dd8n5fkfISZsJ2XYQuVluOoFksQ0MtyZw6J5Drmxavc25GHUGl_L3VfvqWasvICKHnfIqiY9WfZdOa4QB9gvHvfYZnKhocQv6iC2s1zFzh8rd7U3-4e2Kqjkr2DN8HalYNlVzb-yCvsnmL33Ty6u58jf9LXK9pLR6ZnLbKgvTsg-vQBz_6yifyWYdhdLuQm2-kA_Ob5ONZ9iEX8njCKwdcXPppJxj-QOIIABholqk9NzTyU1R0gVqNQqXZlMKkauZOTqGgLxumkbHCxwIuFPpUEN4TyFIpvi4ZHbfTO_C-bMyp9eeXrgCyfJZ6vJv5LJ_9rc3COp2DYEWihUBU1NmQo2pulBa7pyWkVWKW5BPHDNrImOUlmGayrboCKm1sVzJyITMCGul2CFrPvNul9BoKk2qbQwrtMTOIK7jsOTXacHAgeo98hMYmNTmlidVJp2zBAcbriY1V_eIaISa2Br3HNtvzFasCpar7ha4HyvmHzf6koCBYtZFe2RewiMeQ1AKd-n-O6j-QT6OT_vJ8Hz054B84lhzgf-y1SFZK-al-w6RUGGOKp1_ArRcB6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonionic+Surfactant-Assisted+In+Situ+Generation+of+Stable+Passivation+Protective+Layer+for+Highly+Stable+Aqueous+Zn+Metal+Anodes&rft.jtitle=Nano+letters&rft.au=Zhang%2C+Yuanjun&rft.au=Zheng%2C+Xiaoyang&rft.au=Wu%2C+Kuan&rft.au=Zhang%2C+Ying&rft.date=2022-11-09&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=22&rft.issue=21&rft.spage=8574&rft.epage=8583&rft_id=info:doi/10.1021%2Facs.nanolett.2c03114&rft.externalDocID=c706780034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon