Computational Design of Alloy Nanostructures for Optical Sensing of Hydrogen
Pd nanoalloys show great potential as hysteresis-free, reliable hydrogen sensors. Here, a multiscale modeling approach is employed to determine optimal conditions for optical hydrogen sensing using the Pd–Au–H system. Changes in hydrogen pressure translate to changes in hydrogen content and eventual...
Saved in:
Published in | ACS applied nano materials Vol. 5; no. 8; pp. 10225 - 10236 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
26.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pd nanoalloys show great potential as hysteresis-free, reliable hydrogen sensors. Here, a multiscale modeling approach is employed to determine optimal conditions for optical hydrogen sensing using the Pd–Au–H system. Changes in hydrogen pressure translate to changes in hydrogen content and eventually the optical spectrum. At the single particle level, the shift of the plasmon peak position with hydrogen concentration (i.e., the “optical” sensitivity) is approximately constant at 180 nm/c H for nanodisk diameters of ≳100 nm. For smaller particles, the optical sensitivity is negative and increases with decreasing diameter, due to the emergence of a second peak originating from coupling between a localized surface plasmon and interband transitions. In addition to tracking peak position, the onset of extinction as well as extinction at fixed wavelengths is considered. We carefully compare the simulation results with experimental data and assess the potential sources for discrepancies. Invariably, the results suggest that there is an upper bound for the optical sensitivity that cannot be overcome by engineering composition and/or geometry. While the alloy composition has a limited impact on optical sensitivity, it can strongly affect H uptake and consequently the “thermodynamic” sensitivity and the detection limit. Here, it is shown how the latter can be improved by compositional engineering and even substantially enhanced via the formation of an ordered phase that can be synthesized at higher hydrogen partial pressures. |
---|---|
AbstractList | Pd nanoalloys show great potential as hysteresis-free, reliable hydrogen sensors. Here, a multiscale modeling approach is employed to determine optimal conditions for optical hydrogen sensing using the Pd–Au–H system. Changes in hydrogen pressure translate to changes in hydrogen content and eventually the optical spectrum. At the single particle level, the shift of the plasmon peak position with hydrogen concentration (i.e., the “optical” sensitivity) is approximately constant at 180 nm/c H for nanodisk diameters of ≳100 nm. For smaller particles, the optical sensitivity is negative and increases with decreasing diameter, due to the emergence of a second peak originating from coupling between a localized surface plasmon and interband transitions. In addition to tracking peak position, the onset of extinction as well as extinction at fixed wavelengths is considered. We carefully compare the simulation results with experimental data and assess the potential sources for discrepancies. Invariably, the results suggest that there is an upper bound for the optical sensitivity that cannot be overcome by engineering composition and/or geometry. While the alloy composition has a limited impact on optical sensitivity, it can strongly affect H uptake and consequently the “thermodynamic” sensitivity and the detection limit. Here, it is shown how the latter can be improved by compositional engineering and even substantially enhanced via the formation of an ordered phase that can be synthesized at higher hydrogen partial pressures. Pd nanoalloys show great potential as hysteresis-free, reliable hydrogen sensors. Here, a multiscale modeling approach is employed to determine optimal conditions for optical hydrogen sensing using the Pd-Au-H system. Changes in hydrogen pressure translate to changes in hydrogen content and eventually the optical spectrum. At the single particle level, the shift of the plasmon peak position with hydrogen concentration (i.e., the "optical" sensitivity) is approximately constant at 180 nm/c(H) for nanodisk diameters of greater than or similar to 100 nm. For smaller particles, the optical sensitivity is negative and increases with decreasing diameter, due to the emergence of a second peak originating from coupling between a localized surface plasmon and interband transitions. In addition to tracking peak position, the onset of extinction as well as extinction at fixed wavelengths is considered. We carefully compare the simulation results with experimental data and assess the potential sources for discrepancies. Invariably, the results suggest that there is an upper bound for the optical sensitivity that cannot be overcome by engineering composition and/or geometry. While the alloy composition has a limited impact on optical sensitivity, it can strongly affect H uptake and consequently the "thermodynamic" sensitivity and the detection limit. Here, it is shown how the latter can be improved by compositional engineering and even substantially enhanced via the formation of an ordered phase that can be synthesized at higher hydrogen partial pressures. |
Author | Erhart, Paul Rahm, J. Magnus Rosendal, Victor Bancerek, Maria Ekborg-Tanner, Pernilla Antosiewicz, Tomasz J. Rossi, Tuomas P. |
AuthorAffiliation | Faculty of Physics Department of Applied Physics Department of Physics |
AuthorAffiliation_xml | – name: Department of Physics – name: Department of Applied Physics – name: Faculty of Physics |
Author_xml | – sequence: 1 givenname: Pernilla orcidid: 0000-0002-9427-4816 surname: Ekborg-Tanner fullname: Ekborg-Tanner, Pernilla organization: Department of Physics – sequence: 2 givenname: J. Magnus orcidid: 0000-0002-6777-0371 surname: Rahm fullname: Rahm, J. Magnus organization: Department of Physics – sequence: 3 givenname: Victor surname: Rosendal fullname: Rosendal, Victor organization: Department of Physics – sequence: 4 givenname: Maria surname: Bancerek fullname: Bancerek, Maria organization: Faculty of Physics – sequence: 5 givenname: Tuomas P. orcidid: 0000-0002-8713-4559 surname: Rossi fullname: Rossi, Tuomas P. organization: Department of Applied Physics – sequence: 6 givenname: Tomasz J. orcidid: 0000-0003-2535-4174 surname: Antosiewicz fullname: Antosiewicz, Tomasz J. organization: Faculty of Physics – sequence: 7 givenname: Paul orcidid: 0000-0002-2516-6061 surname: Erhart fullname: Erhart, Paul email: erhart@chalmers.se organization: Department of Physics |
BackLink | https://research.chalmers.se/publication/531531$$DView record from Swedish Publication Index |
BookMark | eNp1kD1rwzAQhkVJoWmatbPnQtKTbMvyGNKPFEIzpJ3FWZYSB1sykk3Jv6-DS-nS6Y7jeV-O55ZMrLOakHsKSwqMPqIKaJslU0CpyK_IlKVZsoA8g8mf_YbMQzgBAM0pjwGmZLt2Tdt32FXOYh096VAdbORMtKprd47e0brQ-V51vdchMs5Hu7ar1IDutQ2VPVzYzbn07qDtHbk2WAc9_5kz8vny_LHeLLa717f1arvAOIduoQrMUCDnKeVgKKSiYDEKUMhZWqiScwUg0iRlA5IBT0uRY2o0JCaLC57EM7Ife8OXbvtCtr5q0J-lw0oOb2r06ijVEetG-yCDlkZnhVCcSVaUKJMy5zLnoGSsTFKaQQRnYmhdjq3KuxC8Nr-9FORFshwlyx_JQ-BhDAx3eXK9HwyG_-BvK1SAvA |
CitedBy_id | crossref_primary_10_1002_ppsc_202300143 crossref_primary_10_1016_j_jssc_2024_124867 crossref_primary_10_1021_acsnano_3c11418 crossref_primary_10_1021_acs_accounts_3c00182 crossref_primary_10_1016_j_saa_2023_123575 crossref_primary_10_1021_acsnano_3c04147 crossref_primary_10_1016_j_comptc_2024_114533 crossref_primary_10_1080_09500340_2023_2219781 |
Cites_doi | 10.1002/adma.202100500 10.1002/adts.201800184 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.105.165109 10.1088/0953-8984/19/32/326222 10.1103/PhysRevB.58.9817 10.1038/ncomms15718 10.1103/PhysRevLett.65.353 10.1016/j.calphad.2013.06.006 10.1038/s41563-019-0325-4 10.1016/j.jallcom.2014.04.156 10.1103/PhysRevB.83.245122 10.1021/acsnano.8b02835 10.1021/acsphotonics.8b01243 10.1021/j100894a054 10.1016/0927-0256(96)00008-0 10.1002/adfm.202002122 10.1021/acs.nanolett.5b01053 10.1364/AO.53.005294 10.1021/acssensors.9b00980 10.1088/0953-8984/24/10/104021 10.1016/j.jqsrt.2021.107846 10.1364/OL.391647 10.1103/PhysRevB.82.115106 10.1038/nmat3029 10.1016/j.snb.2016.05.013 10.1021/acsphotonics.5b00420 10.1016/j.snb.2015.11.120 10.1002/adts.201900015 10.1002/adma.200700680 10.1038/s41377-018-0114-x 10.1016/j.jiec.2013.07.037 10.1021/jp207413h 10.1016/j.actamat.2021.116893 10.1016/j.ijhydene.2012.12.146 10.1021/ph4000339 10.1016/j.cpc.2009.11.008 10.1021/acssensors.9b02436 10.1038/s41592-019-0686-2 10.1103/PhysRevLett.109.247401 10.1021/jz3007723 10.1103/PhysRevB.102.085431 10.1021/acssensors.0c01387 10.1021/acssensors.0c02019 10.1021/nl101727b 10.1088/0953-8984/22/25/253202 10.1103/PhysRevB.89.035412 10.1002/adfm.202010483 10.1038/nmat4480 10.1021/acsanm.1c01242 10.1214/aos/1176344136 10.1021/nl071664a |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society |
DBID | AAYXX CITATION ABBSD ADTPV AOWAS D8T F1S ZZAVC |
DOI | 10.1021/acsanm.2c01189 |
DatabaseName | CrossRef SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2574-0970 |
EndPage | 10236 |
ExternalDocumentID | oai_research_chalmers_se_fe7b8c62_2bda_4d96_960c_3cf4df300628 10_1021_acsanm_2c01189 b688699142 |
GroupedDBID | ABFRP ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 W1F AAYXX ABQRX BAANH CITATION CUPRZ ABBSD ADTPV AOWAS D8T EJD F1S ZZAVC |
ID | FETCH-LOGICAL-a390t-cba7a8a665160f1058b23a80ca625bcd66c00854526657065d89a5fe04f73b643 |
IEDL.DBID | ACS |
ISSN | 2574-0970 |
IngestDate | Sat Aug 24 00:55:30 EDT 2024 Fri Aug 23 01:18:35 EDT 2024 Tue Aug 30 03:10:32 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | nanoplasmonics palladium alloys nanoparticles localized surface plasmon resonance hydrogen sensing dielectric function |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a390t-cba7a8a665160f1058b23a80ca625bcd66c00854526657065d89a5fe04f73b643 |
ORCID | 0000-0002-6777-0371 0000-0002-2516-6061 0000-0002-8713-4559 0000-0002-9427-4816 0000-0003-2535-4174 |
OpenAccessLink | https://research.chalmers.se/publication/531531 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_fe7b8c62_2bda_4d96_960c_3cf4df300628 crossref_primary_10_1021_acsanm_2c01189 acs_journals_10_1021_acsanm_2c01189 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-26 |
PublicationDateYYYYMMDD | 2022-08-26 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied nano materials |
PublicationTitleAlternate | ACS Appl. Nano Mater |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref59/cit59 ref2/cit2 ref34/cit34 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref50/cit50 ref54/cit54 ref6/cit6 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 Pedregosa F. (ref56/cit56) 2011; 12 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – volume: 12 start-page: 2825 year: 2011 ident: ref56/cit56 publication-title: J. Mach. Learn. Res. contributor: fullname: Pedregosa F. – ident: ref12/cit12 doi: 10.1002/adma.202100500 – ident: ref53/cit53 doi: 10.1002/adts.201800184 – ident: ref47/cit47 doi: 10.1103/PhysRevB.59.1758 – ident: ref42/cit42 doi: 10.1103/PhysRevB.105.165109 – ident: ref26/cit26 doi: 10.1088/0953-8984/19/32/326222 – ident: ref60/cit60 doi: 10.1103/PhysRevB.58.9817 – ident: ref5/cit5 doi: 10.1038/ncomms15718 – ident: ref27/cit27 doi: 10.1103/PhysRevLett.65.353 – ident: ref45/cit45 doi: 10.1016/j.calphad.2013.06.006 – ident: ref9/cit9 doi: 10.1038/s41563-019-0325-4 – ident: ref28/cit28 doi: 10.1016/j.jallcom.2014.04.156 – ident: ref50/cit50 doi: 10.1103/PhysRevB.83.245122 – ident: ref6/cit6 doi: 10.1021/acsnano.8b02835 – ident: ref29/cit29 doi: 10.1021/acsphotonics.8b01243 – ident: ref19/cit19 doi: 10.1021/j100894a054 – ident: ref46/cit46 doi: 10.1016/0927-0256(96)00008-0 – ident: ref22/cit22 doi: 10.1002/adfm.202002122 – ident: ref17/cit17 doi: 10.1021/acs.nanolett.5b01053 – ident: ref30/cit30 doi: 10.1364/AO.53.005294 – ident: ref8/cit8 doi: 10.1021/acssensors.9b00980 – ident: ref24/cit24 doi: 10.1088/0953-8984/24/10/104021 – ident: ref57/cit57 doi: 10.1016/j.jqsrt.2021.107846 – ident: ref41/cit41 doi: 10.1364/OL.391647 – ident: ref51/cit51 doi: 10.1103/PhysRevB.82.115106 – ident: ref4/cit4 doi: 10.1038/nmat3029 – ident: ref13/cit13 doi: 10.1016/j.snb.2016.05.013 – ident: ref40/cit40 doi: 10.1021/acsphotonics.5b00420 – ident: ref14/cit14 doi: 10.1016/j.snb.2015.11.120 – ident: ref44/cit44 doi: 10.1002/adts.201900015 – ident: ref32/cit32 doi: 10.1002/adma.200700680 – ident: ref43/cit43 – ident: ref7/cit7 doi: 10.1038/s41377-018-0114-x – ident: ref1/cit1 doi: 10.1016/j.jiec.2013.07.037 – ident: ref33/cit33 doi: 10.1021/jp207413h – ident: ref25/cit25 doi: 10.1016/j.actamat.2021.116893 – ident: ref20/cit20 doi: 10.1016/j.ijhydene.2012.12.146 – ident: ref34/cit34 doi: 10.1021/ph4000339 – ident: ref52/cit52 doi: 10.1016/j.cpc.2009.11.008 – ident: ref10/cit10 doi: 10.1021/acssensors.9b02436 – ident: ref55/cit55 doi: 10.1038/s41592-019-0686-2 – ident: ref58/cit58 doi: 10.1103/PhysRevLett.109.247401 – ident: ref23/cit23 doi: 10.1021/jz3007723 – ident: ref59/cit59 doi: 10.1103/PhysRevB.102.085431 – ident: ref15/cit15 doi: 10.1021/acssensors.0c01387 – ident: ref18/cit18 doi: 10.1021/acssensors.0c02019 – ident: ref3/cit3 doi: 10.1021/nl101727b – ident: ref49/cit49 doi: 10.1088/0953-8984/22/25/253202 – ident: ref48/cit48 doi: 10.1103/PhysRevB.89.035412 – ident: ref11/cit11 doi: 10.1002/adfm.202010483 – ident: ref16/cit16 doi: 10.1038/nmat4480 – ident: ref21/cit21 doi: 10.1021/acsanm.1c01242 – ident: ref54/cit54 doi: 10.1214/aos/1176344136 – ident: ref2/cit2 doi: 10.1021/nl071664a |
SSID | ssj0001916300 |
Score | 2.3024123 |
Snippet | Pd nanoalloys show great potential as hysteresis-free, reliable hydrogen sensors. Here, a multiscale modeling approach is employed to determine optimal... |
SourceID | swepub crossref acs |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 10225 |
SubjectTerms | dielectric function hydrogen sensing localized surface plasmon resonance nanoparticles nanoplasmonics palladium alloys |
Title | Computational Design of Alloy Nanostructures for Optical Sensing of Hydrogen |
URI | http://dx.doi.org/10.1021/acsanm.2c01189 https://research.chalmers.se/publication/531531 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-ELz4Ft8EFDx1TdM2bY7ig0V8HFTwFpJpouDait09rL_eSVoVFdH7EMJkkvlmMvMNIXuepcryJIs4lxigOLCRgVxHaSmlzS2TLFS7X1yK_m16dpfdfeY7vv_g8_hAQ6Orpx4H3yMpJ8k0z_FmeBB0dP2ZTUGUk4R-EzTBNGIyZ-8MjT-W8H4Imi9-6AtLaPAsp_MtzVETCAl9QcljbzQ0PXj9Sdf456YXyFwHL-lhaw-LZMJWS2QmlHlCs0zO2yEOXQKQHofyDVo7ejgY1GOKT23dEsqOMAqniGfp1XNIdtNrX-he3XvZ_rh8qdHuVsjt6cnNUT_q5ilEOpFsGIHRuS60EFksmENgVRie6IKBxiDIQCkEeATmh477ghiRlYXUmbMsdXliELqskqmqruwaoSaJPbNYDLHjKZhS5xj2eOp2pqV0Uq-TXVSB6u5Do8JXN49VqxfV6WWd7L-fgXpuyTV-lTxvj-hDztNid3xIDwoewrCZRjVWOZubAgRXHLel0OaEwigNVAIuLV0SmkY3_rW9TTLLfbMDw7dEbJEp1L_dRggyNDvB-t4AA5_VIg |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6xIrS9bAyYxn6ApU3iKcVxEid-rNhQgcIm0Uq8WbZjU2ldgpb2ofvrd3ZSEENI8BqdrNP54vvOvvsO4KtnqbIsySLGBCYozthIm1xFaSmEzS0VNFS7n1_w4SQ9vcqu1uBw1QuDSjS4UhMe8e_YBeJD_Kaq331mfKukeAHrWY7R0mOho8u7SxUEO0loO0FPTCMqcroianywhA9HprkXju6RhYYAc_wGft6qFupKfvUXc903f_9jbXyG7pvwugObZNB6x1tYs9UWbISiT9Nsw6gd6dBdB5JvoZiD1I4MZrN6SfDgrVt62QXm5ATRLflxE66-yaUve6-uvexwWf6p0Qt3YHL8fXw0jLrpCpFKBJ1HRqtcFYrzLObUIcwqNEtUQY3ClEibknPj8ZgfQe7LY3hWFkJlztLU5YlGIPMOelVd2fdAdBJ7nrHYxI6lRpcqxyTIE7lTJYQTahe-oAlk93c0Mjx8s1i2dpGdXXbhYLUV8qal2nhUctTu1K2cJ8nu2JGm0kzD6JlGNlY6m-vCcCYZqiXRA7nEnM3IxLi0dEloIf3wJPX24eVwfD6So5OLs4_wivk2CIqnDP8EPdwL-xnByVzvBYf8B1qA3Yc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66onjxLb4NKHjqmqZt2hwXdVl1fYAK3kKSJgpqu9jdg_56J2lVVAS9hhCGyST5ZjLzDUK7jqXK0CgJKOXgoFhtAqVTGcQ55yY1hBOf7X52zno38cltctvUcbtaGBCigpUq_4nvTvUgtw3DQLgP47J4alPtyiX5OJpI0tD_zXYOrj4DKwB4Il96AtYYB4Sn5J2s8ccS7knS1Zcn6QthqH9kurPo-kM8n1vy0B4NVVu_fmNu_Kf8c2imAZ24U1vJPBozxQKa9MmfulpE_bq1QxMWxIc-qQOXFnceH8sXDBdwWdPMjsA3x4By8cXAh8DxlUt_L-7c3N5L_lyCNS6hm-7R9UEvaLosBDLiZBhoJVOZScaSkBELcCtTNJIZ0RJcI6VzxrTDZa4VuUuTYUmecZlYQ2KbRgoAzTJqFWVhVhBWUej4xkIdWhprlcsUnCFH6E4k55bLVbQDKhDNKamE_wCnoaj1Ihq9rKK99-0Qg5py49eZ_Xq3PuY5suyGJele6HvfgqYSlRHWpCrTjAoKYgmwRCbAd9Mi0jbObeRLSdf-JN42mro87Ir-8fnpOpqmrhqCwGXDNlALtsJsAkYZqi1vk2-SA-AB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Design+of+Alloy+Nanostructures+for+Optical+Sensing+of+Hydrogen&rft.jtitle=ACS+applied+nano+materials&rft.au=Ekborg-Tanner%2C+Pernilla&rft.au=Rahm%2C+Magnus&rft.au=Rosendal%2C+Victor&rft.au=Bancerek%2C+Maria&rft.date=2022-08-26&rft.issn=2574-0970&rft.eissn=2574-0970&rft.volume=5&rft.issue=8&rft.spage=10225&rft_id=info:doi/10.1021%2Facsanm.2c01189&rft.externalDocID=oai_research_chalmers_se_fe7b8c62_2bda_4d96_960c_3cf4df300628 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0970&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0970&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0970&client=summon |