Computational Design of Alloy Nanostructures for Optical Sensing of Hydrogen

Pd nanoalloys show great potential as hysteresis-free, reliable hydrogen sensors. Here, a multiscale modeling approach is employed to determine optimal conditions for optical hydrogen sensing using the Pd–Au–H system. Changes in hydrogen pressure translate to changes in hydrogen content and eventual...

Full description

Saved in:
Bibliographic Details
Published inACS applied nano materials Vol. 5; no. 8; pp. 10225 - 10236
Main Authors Ekborg-Tanner, Pernilla, Rahm, J. Magnus, Rosendal, Victor, Bancerek, Maria, Rossi, Tuomas P., Antosiewicz, Tomasz J., Erhart, Paul
Format Journal Article
LanguageEnglish
Published American Chemical Society 26.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pd nanoalloys show great potential as hysteresis-free, reliable hydrogen sensors. Here, a multiscale modeling approach is employed to determine optimal conditions for optical hydrogen sensing using the Pd–Au–H system. Changes in hydrogen pressure translate to changes in hydrogen content and eventually the optical spectrum. At the single particle level, the shift of the plasmon peak position with hydrogen concentration (i.e., the “optical” sensitivity) is approximately constant at 180 nm/c H for nanodisk diameters of ≳100 nm. For smaller particles, the optical sensitivity is negative and increases with decreasing diameter, due to the emergence of a second peak originating from coupling between a localized surface plasmon and interband transitions. In addition to tracking peak position, the onset of extinction as well as extinction at fixed wavelengths is considered. We carefully compare the simulation results with experimental data and assess the potential sources for discrepancies. Invariably, the results suggest that there is an upper bound for the optical sensitivity that cannot be overcome by engineering composition and/or geometry. While the alloy composition has a limited impact on optical sensitivity, it can strongly affect H uptake and consequently the “thermodynamic” sensitivity and the detection limit. Here, it is shown how the latter can be improved by compositional engineering and even substantially enhanced via the formation of an ordered phase that can be synthesized at higher hydrogen partial pressures.
AbstractList Pd nanoalloys show great potential as hysteresis-free, reliable hydrogen sensors. Here, a multiscale modeling approach is employed to determine optimal conditions for optical hydrogen sensing using the Pd–Au–H system. Changes in hydrogen pressure translate to changes in hydrogen content and eventually the optical spectrum. At the single particle level, the shift of the plasmon peak position with hydrogen concentration (i.e., the “optical” sensitivity) is approximately constant at 180 nm/c H for nanodisk diameters of ≳100 nm. For smaller particles, the optical sensitivity is negative and increases with decreasing diameter, due to the emergence of a second peak originating from coupling between a localized surface plasmon and interband transitions. In addition to tracking peak position, the onset of extinction as well as extinction at fixed wavelengths is considered. We carefully compare the simulation results with experimental data and assess the potential sources for discrepancies. Invariably, the results suggest that there is an upper bound for the optical sensitivity that cannot be overcome by engineering composition and/or geometry. While the alloy composition has a limited impact on optical sensitivity, it can strongly affect H uptake and consequently the “thermodynamic” sensitivity and the detection limit. Here, it is shown how the latter can be improved by compositional engineering and even substantially enhanced via the formation of an ordered phase that can be synthesized at higher hydrogen partial pressures.
Pd nanoalloys show great potential as hysteresis-free, reliable hydrogen sensors. Here, a multiscale modeling approach is employed to determine optimal conditions for optical hydrogen sensing using the Pd-Au-H system. Changes in hydrogen pressure translate to changes in hydrogen content and eventually the optical spectrum. At the single particle level, the shift of the plasmon peak position with hydrogen concentration (i.e., the "optical" sensitivity) is approximately constant at 180 nm/c(H) for nanodisk diameters of greater than or similar to 100 nm. For smaller particles, the optical sensitivity is negative and increases with decreasing diameter, due to the emergence of a second peak originating from coupling between a localized surface plasmon and interband transitions. In addition to tracking peak position, the onset of extinction as well as extinction at fixed wavelengths is considered. We carefully compare the simulation results with experimental data and assess the potential sources for discrepancies. Invariably, the results suggest that there is an upper bound for the optical sensitivity that cannot be overcome by engineering composition and/or geometry. While the alloy composition has a limited impact on optical sensitivity, it can strongly affect H uptake and consequently the "thermodynamic" sensitivity and the detection limit. Here, it is shown how the latter can be improved by compositional engineering and even substantially enhanced via the formation of an ordered phase that can be synthesized at higher hydrogen partial pressures.
Author Erhart, Paul
Rahm, J. Magnus
Rosendal, Victor
Bancerek, Maria
Ekborg-Tanner, Pernilla
Antosiewicz, Tomasz J.
Rossi, Tuomas P.
AuthorAffiliation Faculty of Physics
Department of Applied Physics
Department of Physics
AuthorAffiliation_xml – name: Department of Physics
– name: Department of Applied Physics
– name: Faculty of Physics
Author_xml – sequence: 1
  givenname: Pernilla
  orcidid: 0000-0002-9427-4816
  surname: Ekborg-Tanner
  fullname: Ekborg-Tanner, Pernilla
  organization: Department of Physics
– sequence: 2
  givenname: J. Magnus
  orcidid: 0000-0002-6777-0371
  surname: Rahm
  fullname: Rahm, J. Magnus
  organization: Department of Physics
– sequence: 3
  givenname: Victor
  surname: Rosendal
  fullname: Rosendal, Victor
  organization: Department of Physics
– sequence: 4
  givenname: Maria
  surname: Bancerek
  fullname: Bancerek, Maria
  organization: Faculty of Physics
– sequence: 5
  givenname: Tuomas P.
  orcidid: 0000-0002-8713-4559
  surname: Rossi
  fullname: Rossi, Tuomas P.
  organization: Department of Applied Physics
– sequence: 6
  givenname: Tomasz J.
  orcidid: 0000-0003-2535-4174
  surname: Antosiewicz
  fullname: Antosiewicz, Tomasz J.
  organization: Faculty of Physics
– sequence: 7
  givenname: Paul
  orcidid: 0000-0002-2516-6061
  surname: Erhart
  fullname: Erhart, Paul
  email: erhart@chalmers.se
  organization: Department of Physics
BackLink https://research.chalmers.se/publication/531531$$DView record from Swedish Publication Index
BookMark eNp1kD1rwzAQhkVJoWmatbPnQtKTbMvyGNKPFEIzpJ3FWZYSB1sykk3Jv6-DS-nS6Y7jeV-O55ZMrLOakHsKSwqMPqIKaJslU0CpyK_IlKVZsoA8g8mf_YbMQzgBAM0pjwGmZLt2Tdt32FXOYh096VAdbORMtKprd47e0brQ-V51vdchMs5Hu7ar1IDutQ2VPVzYzbn07qDtHbk2WAc9_5kz8vny_LHeLLa717f1arvAOIduoQrMUCDnKeVgKKSiYDEKUMhZWqiScwUg0iRlA5IBT0uRY2o0JCaLC57EM7Ife8OXbvtCtr5q0J-lw0oOb2r06ijVEetG-yCDlkZnhVCcSVaUKJMy5zLnoGSsTFKaQQRnYmhdjq3KuxC8Nr-9FORFshwlyx_JQ-BhDAx3eXK9HwyG_-BvK1SAvA
CitedBy_id crossref_primary_10_1002_ppsc_202300143
crossref_primary_10_1016_j_jssc_2024_124867
crossref_primary_10_1021_acsnano_3c11418
crossref_primary_10_1021_acs_accounts_3c00182
crossref_primary_10_1016_j_saa_2023_123575
crossref_primary_10_1021_acsnano_3c04147
crossref_primary_10_1016_j_comptc_2024_114533
crossref_primary_10_1080_09500340_2023_2219781
Cites_doi 10.1002/adma.202100500
10.1002/adts.201800184
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.105.165109
10.1088/0953-8984/19/32/326222
10.1103/PhysRevB.58.9817
10.1038/ncomms15718
10.1103/PhysRevLett.65.353
10.1016/j.calphad.2013.06.006
10.1038/s41563-019-0325-4
10.1016/j.jallcom.2014.04.156
10.1103/PhysRevB.83.245122
10.1021/acsnano.8b02835
10.1021/acsphotonics.8b01243
10.1021/j100894a054
10.1016/0927-0256(96)00008-0
10.1002/adfm.202002122
10.1021/acs.nanolett.5b01053
10.1364/AO.53.005294
10.1021/acssensors.9b00980
10.1088/0953-8984/24/10/104021
10.1016/j.jqsrt.2021.107846
10.1364/OL.391647
10.1103/PhysRevB.82.115106
10.1038/nmat3029
10.1016/j.snb.2016.05.013
10.1021/acsphotonics.5b00420
10.1016/j.snb.2015.11.120
10.1002/adts.201900015
10.1002/adma.200700680
10.1038/s41377-018-0114-x
10.1016/j.jiec.2013.07.037
10.1021/jp207413h
10.1016/j.actamat.2021.116893
10.1016/j.ijhydene.2012.12.146
10.1021/ph4000339
10.1016/j.cpc.2009.11.008
10.1021/acssensors.9b02436
10.1038/s41592-019-0686-2
10.1103/PhysRevLett.109.247401
10.1021/jz3007723
10.1103/PhysRevB.102.085431
10.1021/acssensors.0c01387
10.1021/acssensors.0c02019
10.1021/nl101727b
10.1088/0953-8984/22/25/253202
10.1103/PhysRevB.89.035412
10.1002/adfm.202010483
10.1038/nmat4480
10.1021/acsanm.1c01242
10.1214/aos/1176344136
10.1021/nl071664a
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
DBID AAYXX
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1021/acsanm.2c01189
DatabaseName CrossRef
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2574-0970
EndPage 10236
ExternalDocumentID oai_research_chalmers_se_fe7b8c62_2bda_4d96_960c_3cf4df300628
10_1021_acsanm_2c01189
b688699142
GroupedDBID ABFRP
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
W1F
AAYXX
ABQRX
BAANH
CITATION
CUPRZ
ABBSD
ADTPV
AOWAS
D8T
EJD
F1S
ZZAVC
ID FETCH-LOGICAL-a390t-cba7a8a665160f1058b23a80ca625bcd66c00854526657065d89a5fe04f73b643
IEDL.DBID ACS
ISSN 2574-0970
IngestDate Sat Aug 24 00:55:30 EDT 2024
Fri Aug 23 01:18:35 EDT 2024
Tue Aug 30 03:10:32 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords nanoplasmonics
palladium alloys
nanoparticles
localized surface plasmon resonance
hydrogen sensing
dielectric function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a390t-cba7a8a665160f1058b23a80ca625bcd66c00854526657065d89a5fe04f73b643
ORCID 0000-0002-6777-0371
0000-0002-2516-6061
0000-0002-8713-4559
0000-0002-9427-4816
0000-0003-2535-4174
OpenAccessLink https://research.chalmers.se/publication/531531
PageCount 12
ParticipantIDs swepub_primary_oai_research_chalmers_se_fe7b8c62_2bda_4d96_960c_3cf4df300628
crossref_primary_10_1021_acsanm_2c01189
acs_journals_10_1021_acsanm_2c01189
PublicationCentury 2000
PublicationDate 2022-08-26
PublicationDateYYYYMMDD 2022-08-26
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-26
  day: 26
PublicationDecade 2020
PublicationTitle ACS applied nano materials
PublicationTitleAlternate ACS Appl. Nano Mater
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref59/cit59
ref2/cit2
ref34/cit34
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref50/cit50
ref54/cit54
ref6/cit6
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
Pedregosa F. (ref56/cit56) 2011; 12
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – volume: 12
  start-page: 2825
  year: 2011
  ident: ref56/cit56
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa F.
– ident: ref12/cit12
  doi: 10.1002/adma.202100500
– ident: ref53/cit53
  doi: 10.1002/adts.201800184
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.59.1758
– ident: ref42/cit42
  doi: 10.1103/PhysRevB.105.165109
– ident: ref26/cit26
  doi: 10.1088/0953-8984/19/32/326222
– ident: ref60/cit60
  doi: 10.1103/PhysRevB.58.9817
– ident: ref5/cit5
  doi: 10.1038/ncomms15718
– ident: ref27/cit27
  doi: 10.1103/PhysRevLett.65.353
– ident: ref45/cit45
  doi: 10.1016/j.calphad.2013.06.006
– ident: ref9/cit9
  doi: 10.1038/s41563-019-0325-4
– ident: ref28/cit28
  doi: 10.1016/j.jallcom.2014.04.156
– ident: ref50/cit50
  doi: 10.1103/PhysRevB.83.245122
– ident: ref6/cit6
  doi: 10.1021/acsnano.8b02835
– ident: ref29/cit29
  doi: 10.1021/acsphotonics.8b01243
– ident: ref19/cit19
  doi: 10.1021/j100894a054
– ident: ref46/cit46
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref22/cit22
  doi: 10.1002/adfm.202002122
– ident: ref17/cit17
  doi: 10.1021/acs.nanolett.5b01053
– ident: ref30/cit30
  doi: 10.1364/AO.53.005294
– ident: ref8/cit8
  doi: 10.1021/acssensors.9b00980
– ident: ref24/cit24
  doi: 10.1088/0953-8984/24/10/104021
– ident: ref57/cit57
  doi: 10.1016/j.jqsrt.2021.107846
– ident: ref41/cit41
  doi: 10.1364/OL.391647
– ident: ref51/cit51
  doi: 10.1103/PhysRevB.82.115106
– ident: ref4/cit4
  doi: 10.1038/nmat3029
– ident: ref13/cit13
  doi: 10.1016/j.snb.2016.05.013
– ident: ref40/cit40
  doi: 10.1021/acsphotonics.5b00420
– ident: ref14/cit14
  doi: 10.1016/j.snb.2015.11.120
– ident: ref44/cit44
  doi: 10.1002/adts.201900015
– ident: ref32/cit32
  doi: 10.1002/adma.200700680
– ident: ref43/cit43
– ident: ref7/cit7
  doi: 10.1038/s41377-018-0114-x
– ident: ref1/cit1
  doi: 10.1016/j.jiec.2013.07.037
– ident: ref33/cit33
  doi: 10.1021/jp207413h
– ident: ref25/cit25
  doi: 10.1016/j.actamat.2021.116893
– ident: ref20/cit20
  doi: 10.1016/j.ijhydene.2012.12.146
– ident: ref34/cit34
  doi: 10.1021/ph4000339
– ident: ref52/cit52
  doi: 10.1016/j.cpc.2009.11.008
– ident: ref10/cit10
  doi: 10.1021/acssensors.9b02436
– ident: ref55/cit55
  doi: 10.1038/s41592-019-0686-2
– ident: ref58/cit58
  doi: 10.1103/PhysRevLett.109.247401
– ident: ref23/cit23
  doi: 10.1021/jz3007723
– ident: ref59/cit59
  doi: 10.1103/PhysRevB.102.085431
– ident: ref15/cit15
  doi: 10.1021/acssensors.0c01387
– ident: ref18/cit18
  doi: 10.1021/acssensors.0c02019
– ident: ref3/cit3
  doi: 10.1021/nl101727b
– ident: ref49/cit49
  doi: 10.1088/0953-8984/22/25/253202
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.89.035412
– ident: ref11/cit11
  doi: 10.1002/adfm.202010483
– ident: ref16/cit16
  doi: 10.1038/nmat4480
– ident: ref21/cit21
  doi: 10.1021/acsanm.1c01242
– ident: ref54/cit54
  doi: 10.1214/aos/1176344136
– ident: ref2/cit2
  doi: 10.1021/nl071664a
SSID ssj0001916300
Score 2.3024123
Snippet Pd nanoalloys show great potential as hysteresis-free, reliable hydrogen sensors. Here, a multiscale modeling approach is employed to determine optimal...
SourceID swepub
crossref
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 10225
SubjectTerms dielectric function
hydrogen sensing
localized surface plasmon resonance
nanoparticles
nanoplasmonics
palladium alloys
Title Computational Design of Alloy Nanostructures for Optical Sensing of Hydrogen
URI http://dx.doi.org/10.1021/acsanm.2c01189
https://research.chalmers.se/publication/531531
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-ELz4Ft8EFDx1TdM2bY7ig0V8HFTwFpJpouDait09rL_eSVoVFdH7EMJkkvlmMvMNIXuepcryJIs4lxigOLCRgVxHaSmlzS2TLFS7X1yK_m16dpfdfeY7vv_g8_hAQ6Orpx4H3yMpJ8k0z_FmeBB0dP2ZTUGUk4R-EzTBNGIyZ-8MjT-W8H4Imi9-6AtLaPAsp_MtzVETCAl9QcljbzQ0PXj9Sdf456YXyFwHL-lhaw-LZMJWS2QmlHlCs0zO2yEOXQKQHofyDVo7ejgY1GOKT23dEsqOMAqniGfp1XNIdtNrX-he3XvZ_rh8qdHuVsjt6cnNUT_q5ilEOpFsGIHRuS60EFksmENgVRie6IKBxiDIQCkEeATmh477ghiRlYXUmbMsdXliELqskqmqruwaoSaJPbNYDLHjKZhS5xj2eOp2pqV0Uq-TXVSB6u5Do8JXN49VqxfV6WWd7L-fgXpuyTV-lTxvj-hDztNid3xIDwoewrCZRjVWOZubAgRXHLel0OaEwigNVAIuLV0SmkY3_rW9TTLLfbMDw7dEbJEp1L_dRggyNDvB-t4AA5_VIg
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6xIrS9bAyYxn6ApU3iKcVxEid-rNhQgcIm0Uq8WbZjU2ldgpb2ofvrd3ZSEENI8BqdrNP54vvOvvsO4KtnqbIsySLGBCYozthIm1xFaSmEzS0VNFS7n1_w4SQ9vcqu1uBw1QuDSjS4UhMe8e_YBeJD_Kaq331mfKukeAHrWY7R0mOho8u7SxUEO0loO0FPTCMqcroianywhA9HprkXju6RhYYAc_wGft6qFupKfvUXc903f_9jbXyG7pvwugObZNB6x1tYs9UWbISiT9Nsw6gd6dBdB5JvoZiD1I4MZrN6SfDgrVt62QXm5ATRLflxE66-yaUve6-uvexwWf6p0Qt3YHL8fXw0jLrpCpFKBJ1HRqtcFYrzLObUIcwqNEtUQY3ClEibknPj8ZgfQe7LY3hWFkJlztLU5YlGIPMOelVd2fdAdBJ7nrHYxI6lRpcqxyTIE7lTJYQTahe-oAlk93c0Mjx8s1i2dpGdXXbhYLUV8qal2nhUctTu1K2cJ8nu2JGm0kzD6JlGNlY6m-vCcCYZqiXRA7nEnM3IxLi0dEloIf3wJPX24eVwfD6So5OLs4_wivk2CIqnDP8EPdwL-xnByVzvBYf8B1qA3Yc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66onjxLb4NKHjqmqZt2hwXdVl1fYAK3kKSJgpqu9jdg_56J2lVVAS9hhCGyST5ZjLzDUK7jqXK0CgJKOXgoFhtAqVTGcQ55yY1hBOf7X52zno38cltctvUcbtaGBCigpUq_4nvTvUgtw3DQLgP47J4alPtyiX5OJpI0tD_zXYOrj4DKwB4Il96AtYYB4Sn5J2s8ccS7knS1Zcn6QthqH9kurPo-kM8n1vy0B4NVVu_fmNu_Kf8c2imAZ24U1vJPBozxQKa9MmfulpE_bq1QxMWxIc-qQOXFnceH8sXDBdwWdPMjsA3x4By8cXAh8DxlUt_L-7c3N5L_lyCNS6hm-7R9UEvaLosBDLiZBhoJVOZScaSkBELcCtTNJIZ0RJcI6VzxrTDZa4VuUuTYUmecZlYQ2KbRgoAzTJqFWVhVhBWUej4xkIdWhprlcsUnCFH6E4k55bLVbQDKhDNKamE_wCnoaj1Ihq9rKK99-0Qg5py49eZ_Xq3PuY5suyGJele6HvfgqYSlRHWpCrTjAoKYgmwRCbAd9Mi0jbObeRLSdf-JN42mro87Ir-8fnpOpqmrhqCwGXDNlALtsJsAkYZqi1vk2-SA-AB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Design+of+Alloy+Nanostructures+for+Optical+Sensing+of+Hydrogen&rft.jtitle=ACS+applied+nano+materials&rft.au=Ekborg-Tanner%2C+Pernilla&rft.au=Rahm%2C+Magnus&rft.au=Rosendal%2C+Victor&rft.au=Bancerek%2C+Maria&rft.date=2022-08-26&rft.issn=2574-0970&rft.eissn=2574-0970&rft.volume=5&rft.issue=8&rft.spage=10225&rft_id=info:doi/10.1021%2Facsanm.2c01189&rft.externalDocID=oai_research_chalmers_se_fe7b8c62_2bda_4d96_960c_3cf4df300628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0970&client=summon