The “Duckweed Dip”: Aquatic Spirodela polyrhiza Plants Can Efficiently Uptake Dissolved, DNA-Wrapped Carbon Nanotubes from Their Environment for Transient Gene Expression
Duckweeds (Lemnaceae) are aquatic nongrass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified morphologies, relatively small genomes, and many other ideal traits for emerging applications in plant biotechnology, duckweeds have been largely overl...
Saved in:
Published in | ACS synthetic biology Vol. 13; no. 2; pp. 687 - 691 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Duckweeds (Lemnaceae) are aquatic nongrass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified morphologies, relatively small genomes, and many other ideal traits for emerging applications in plant biotechnology, duckweeds have been largely overlooked in this era of synthetic biology. Here, we report that Greater Duckweed (Spirodela polyrhiza), when simply incubated in a solution containing plasmid-wrapped carbon nanotubes (DNA-CNTs), can directly uptake the DNA-CNTs from their growth media with high efficiency and that transgenes encoded within the plasmids are expressed by the plantswithout the usual need for large doses of nanomaterials or agrobacterium to be directly infiltrated into plant tissue. This process, called the “duckweed dip”, represents a streamlined, “hands-off” tool for transgene delivery to a higher plant that we expect will enhance the throughput of duckweed engineering and help to realize duckweed’s potential as a powerhouse for plant synthetic biology. |
---|---|
AbstractList | Duckweeds (Lemnaceae) are aquatic nongrass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified morphologies, relatively small genomes, and many other ideal traits for emerging applications in plant biotechnology, duckweeds have been largely overlooked in this era of synthetic biology. Here, we report that Greater Duckweed (Spirodela polyrhiza), when simply incubated in a solution containing plasmid-wrapped carbon nanotubes (DNA-CNTs), can directly uptake the DNA-CNTs from their growth media with high efficiency and that transgenes encoded within the plasmids are expressed by the plants─without the usual need for large doses of nanomaterials or agrobacterium to be directly infiltrated into plant tissue. This process, called the "duckweed dip", represents a streamlined, "hands-off" tool for transgene delivery to a higher plant that we expect will enhance the throughput of duckweed engineering and help to realize duckweed's potential as a powerhouse for plant synthetic biology. Duckweeds (Lemnaceae) are aquatic nongrass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified morphologies, relatively small genomes, and many other ideal traits for emerging applications in plant biotechnology, duckweeds have been largely overlooked in this era of synthetic biology. Here, we report that Greater Duckweed (Spirodela polyrhiza), when simply incubated in a solution containing plasmid-wrapped carbon nanotubes (DNA-CNTs), can directly uptake the DNA-CNTs from their growth media with high efficiency and that transgenes encoded within the plasmids are expressed by the plantswithout the usual need for large doses of nanomaterials or agrobacterium to be directly infiltrated into plant tissue. This process, called the “duckweed dip”, represents a streamlined, “hands-off” tool for transgene delivery to a higher plant that we expect will enhance the throughput of duckweed engineering and help to realize duckweed’s potential as a powerhouse for plant synthetic biology. Duckweeds ( ) are aquatic nongrass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified morphologies, relatively small genomes, and many other ideal traits for emerging applications in plant biotechnology, duckweeds have been largely overlooked in this era of synthetic biology. Here, we report that Greater Duckweed ( ), when simply incubated in a solution containing plasmid-wrapped carbon nanotubes (DNA-CNTs), can directly uptake the DNA-CNTs from their growth media with high efficiency and that transgenes encoded within the plasmids are expressed by the plants─without the usual need for large doses of nanomaterials or agrobacterium to be directly infiltrated into plant tissue. This process, called the "duckweed dip", represents a streamlined, "hands-off" tool for transgene delivery to a higher plant that we expect will enhance the throughput of duckweed engineering and help to realize duckweed's potential as a powerhouse for plant synthetic biology. Duckweeds ( Lemnaceae ) are aquatic nongrass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified morphologies, relatively small genomes, and many other ideal traits for emerging applications in plant biotechnology, duckweeds have been largely overlooked in this era of synthetic biology. Here, we report that Greater Duckweed ( Spirodela polyrhiza ), when simply incubated in a solution containing plasmid-wrapped carbon nanotubes (DNA-CNTs), can directly uptake the DNA-CNTs from their growth media with high efficiency and that transgenes encoded within the plasmids are expressed by the plants—without the usual need for large doses of nanomaterials or agrobacterium to be directly infiltrated into plant tissue. This process, called the “duckweed dip”, represents a streamlined, “hands-off” tool for transgene delivery to a higher plant that we expect will enhance the throughput of duckweed engineering and help to realize duckweed’s potential as a powerhouse for plant synthetic biology. |
Author | Islam, Tasmia Tinker-Kulberg, Rachel Kalkar, Swapna Ignatova, Tetyana Josephs, Eric A. |
AuthorAffiliation | Department of Nanoscience |
AuthorAffiliation_xml | – name: Department of Nanoscience |
Author_xml | – sequence: 1 givenname: Tasmia surname: Islam fullname: Islam, Tasmia – sequence: 2 givenname: Swapna surname: Kalkar fullname: Kalkar, Swapna – sequence: 3 givenname: Rachel surname: Tinker-Kulberg fullname: Tinker-Kulberg, Rachel – sequence: 4 givenname: Tetyana orcidid: 0000-0003-3859-6367 surname: Ignatova fullname: Ignatova, Tetyana – sequence: 5 givenname: Eric A. orcidid: 0000-0002-5330-6842 surname: Josephs fullname: Josephs, Eric A. email: eric.josephs@uncg.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38127817$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS1UREvpA7BBXrJgin_imQkbFCWhIFUFiVQsrWuPTdxO7Kk9EwirPgi8Ag_VJ8FVQlQ2eGNLPuc7V_c8RQc-eIPQc0pOKWH0NeiUNl65cMo1ISUjj9ARoyUtBCn5wYP3ITpJ6YrkIwQXvH6CDnlNWVXT6gj9XiwNvrv9ORv09TdjGjxz3d3trzd4cjNA7zT-3LkYGtMC7kK7iUv3A_CnFnyf8BQ8nlvrtDO-bzf4suvh2mRCSqFdm-YVnl1Mii8Rui6DpxBV8PgCfOgHZRK2MaxwjncRz_06p_hV5mAbIl5E8Omeis-MN3j-vYsmJRf8M_TYQpvMye4-Rpfv5ovp--L849mH6eS8AD4mfaEsI0QrWpWMQm2tscBHVpVCkJEeN4ITXlIAzkBZMiaCNapmnBFgzJJSAT9Gb7fcblAr0-g8SoRWdtGtIG5kACf__fFuKb-GtaSkrqqSsEx4uSPEcDOY1MuVS9q0eXUmDEmyHCvoqBTjLKVbqY4hpWjsPocSed-13Hctd11nz4uHA-4df5vNgmIryF55FYbo877-A_wD_lO-Sw |
Cites_doi | 10.1016/j.bpr.2022.100061 10.1039/C7TB00766C 10.1007/s00299-007-0361-4 10.3389/fbioe.2021.761073 10.1021/acs.jpcc.9b09374 10.1007/s004380050604 10.1007/978-3-030-11045-1_13 10.1021/acssynbio.3c00075 10.1007/BF02860083 10.3389/fpls.2019.00755 10.1038/ncomms4311 10.1111/pbi.13943 10.1038/nprot.2006.97 10.3390/ijms22052733 10.1016/j.vaccine.2015.05.076 10.1016/j.ijbiomac.2022.11.139 10.1016/j.biotechadv.2011.08.020 10.1021/acsnano.1c09335 10.1093/jxb/erab006 10.1038/s42003-021-02422-5 10.1016/j.aquabot.2018.08.004 10.3390/agronomy12040796 10.3724/SP.J.1145.2013.00001 10.3389/fimmu.2020.01857 10.1111/nph.18453 10.3389/fpls.2020.617830 10.1007/s00425-021-03764-4 10.1093/pnasnexus/pgad141 10.1038/s41596-019-0208-9 10.1002/adbi.201800321 10.1038/s41565-021-00854-y 10.1093/plcell/koab189 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acssynbio.3c00620 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-5063 |
EndPage | 691 |
ExternalDocumentID | 10_1021_acssynbio_3c00620 38127817 f44715507 |
Genre | Journal Article |
GroupedDBID | 53G 55A 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ GGK GNL IH9 JG~ ROL UI2 VF5 VG9 W1F BAANH CUPRZ NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a390t-bf200cb17621a8ffefa34fb65504c9d530361aa32abf09052db82320a22f06ba3 |
IEDL.DBID | ACS |
ISSN | 2161-5063 |
IngestDate | Tue Sep 17 21:29:29 EDT 2024 Fri Aug 16 10:17:33 EDT 2024 Fri Aug 23 02:57:25 EDT 2024 Sat Nov 02 12:30:47 EDT 2024 Mon Feb 19 04:58:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | transient expression Spirodela polyrhiza Lemnaceae carbon nanotubes duckweed |
Language | English |
License | Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a390t-bf200cb17621a8ffefa34fb65504c9d530361aa32abf09052db82320a22f06ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3859-6367 0000-0002-5330-6842 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10877602 |
PMID | 38127817 |
PQID | 2905514659 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10877602 proquest_miscellaneous_2905514659 crossref_primary_10_1021_acssynbio_3c00620 pubmed_primary_38127817 acs_journals_10_1021_acssynbio_3c00620 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-16 |
PublicationDateYYYYMMDD | 2024-02-16 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS synthetic biology |
PublicationTitleAlternate | ACS Synth. Biol |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | 37662322 - bioRxiv. 2023 Aug 22 ref9/cit9 ref3/cit3 ref27/cit27 Antman-Passig M. (ref31/cit31) 2019; 28 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 Thu P. T. L. (ref18/cit18) 2015; 3 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – volume: 3 start-page: 48 issue: 1 year: 2015 ident: ref18/cit18 publication-title: J. Agric. Stud. contributor: fullname: Thu P. T. L. – ident: ref29/cit29 doi: 10.1016/j.bpr.2022.100061 – volume: 28 start-page: 61 issue: 4 year: 2019 ident: ref31/cit31 publication-title: Electrochem. Soc. Interface contributor: fullname: Antman-Passig M. – ident: ref32/cit32 doi: 10.1039/C7TB00766C – ident: ref14/cit14 doi: 10.1007/s00299-007-0361-4 – ident: ref24/cit24 doi: 10.3389/fbioe.2021.761073 – ident: ref34/cit34 doi: 10.1021/acs.jpcc.9b09374 – ident: ref22/cit22 doi: 10.1007/s004380050604 – ident: ref11/cit11 doi: 10.1007/978-3-030-11045-1_13 – ident: ref21/cit21 doi: 10.1021/acssynbio.3c00075 – ident: ref13/cit13 doi: 10.1007/BF02860083 – ident: ref27/cit27 doi: 10.3389/fpls.2019.00755 – ident: ref5/cit5 doi: 10.1038/ncomms4311 – ident: ref20/cit20 doi: 10.1111/pbi.13943 – ident: ref33/cit33 doi: 10.1038/nprot.2006.97 – ident: ref3/cit3 doi: 10.3390/ijms22052733 – ident: ref19/cit19 doi: 10.1016/j.vaccine.2015.05.076 – ident: ref9/cit9 doi: 10.1016/j.ijbiomac.2022.11.139 – ident: ref15/cit15 doi: 10.1016/j.biotechadv.2011.08.020 – ident: ref28/cit28 doi: 10.1021/acsnano.1c09335 – ident: ref7/cit7 doi: 10.1093/jxb/erab006 – ident: ref8/cit8 doi: 10.1038/s42003-021-02422-5 – ident: ref23/cit23 doi: 10.1016/j.aquabot.2018.08.004 – ident: ref16/cit16 doi: 10.3390/agronomy12040796 – ident: ref1/cit1 doi: 10.3724/SP.J.1145.2013.00001 – ident: ref17/cit17 doi: 10.3389/fimmu.2020.01857 – ident: ref35/cit35 doi: 10.1111/nph.18453 – ident: ref4/cit4 doi: 10.3389/fpls.2020.617830 – ident: ref10/cit10 doi: 10.1007/s00425-021-03764-4 – ident: ref12/cit12 doi: 10.1093/pnasnexus/pgad141 – ident: ref26/cit26 doi: 10.1038/s41596-019-0208-9 – ident: ref30/cit30 doi: 10.1002/adbi.201800321 – ident: ref25/cit25 doi: 10.1038/s41565-021-00854-y – ident: ref2/cit2 doi: 10.1093/plcell/koab189 |
SSID | ssj0000553538 |
Score | 2.3657749 |
Snippet | Duckweeds (Lemnaceae) are aquatic nongrass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified... Duckweeds ( ) are aquatic nongrass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified morphologies,... Duckweeds ( Lemnaceae ) are aquatic nongrass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 687 |
SubjectTerms | Technical Note |
Title | The “Duckweed Dip”: Aquatic Spirodela polyrhiza Plants Can Efficiently Uptake Dissolved, DNA-Wrapped Carbon Nanotubes from Their Environment for Transient Gene Expression |
URI | http://dx.doi.org/10.1021/acssynbio.3c00620 https://www.ncbi.nlm.nih.gov/pubmed/38127817 https://search.proquest.com/docview/2905514659 https://pubmed.ncbi.nlm.nih.gov/PMC10877602 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtswDBaG7rId9v-T_YEDhh2GObNlS7Z3C9IUxYD10gbrzZAUCTVa2J7tDEtPfZDtFfZQfZKRjpM27TD0bIEwLVL8ZJIfGXsnZWKF0Qr9O3VeFMvIU7HglHAUgUmJxIp6h7_uyd1p9OVQHF7wbF_N4PPgkzJNsyh0Xg5DQx1_eD-_zWN0DsJB4_31DxVfiFB0k6s5ohhPYOxdZTH_JYWikWk2o9E1iHm1UvJS6Nm5v-zpbjrGQqo4OR7OWz00p9f5HG-i1QN2r4egMFrazEN2yxaP2N1LxISP2R-0Hjg_-9UNkMb4Btt5dX72-zOMvhM1uIH9Kq9pho6CqjxZ1Ef5qQKaf9Q2MFYFTDpiCtTmZAHTqlXHFiWQmf-ws4-wvTfyvtWqqlDwWNW6LAAP-bKda9sA9bvAAaUvYHLRhAeIraGLqyQViCwbJj_7It7iCZvuTA7Gu14_2cFTYeq3nnbonEYHeBIHKnHOOhVGTku8LkUmnQmKq4FSIVfa-akv-EwnCP18xbnzpVbhU7ZVlIV9zkAqIy1eOq0Jk8gi3jUzId0MUZ90hmt_wN7jt856z2yyLunOg2y9AVm_AQP2YWUKWbVk-vjf4rcrY8nQHynJogpbzpuM4-siCJUiHbBnS-NZi0N0xOMkiAcs2TCr9QLi-t58UuRHHed3QMSN0ucvbqrOS3aHI_6iAvNAvmJbbT23rxE_tfpN5zd_AR49HE0 |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELaqcgAOlH-2_A0S4oDINnFib8Jttd1qgXYv3RW9RbZjq1GrJCRZxPbUB4FX4KH6JIyz2W23IATXxBrZ8Yznc2bmG0Jecx5qpqRA-46ME_R44IgeozbgyDwVWRIrWzt8MOajafDxiB1tELqshcFJVCipaoL4l-wC3g4-q-aZTPOur2zhH17Tb7AeOkwLhwaHq_8qLmM-axpYUwQzDkMXvAxm_kmKdUqqWndKvyHN6wmTVzzQ3taiKrCZe5N4ctKd1bKrzq7ROv7f4u6SOy0ghf5Cg-6RDZ3dJ7ev0BQ-ID9Rl-Di_HvTThq9HeymxcX5j_fQ_2KJwhUcFmlpO-oIKPLTeXmcngmw3ZDqCgYig2FDU4GLOp3DtKjFiUYJVum_6uQd7I77zudSFAUKHohS5hngkZ_XM6krsNUvMLHBDBheluQBIm1ovKyVCpY6G4bf2pTe7CGZ7g0ng5HT9nlwhB-5tSMNmqqSHp7LngiN0Ub4gZEcL0-BihJmvawnhE-FNG7kMprIEIGgKyg1LpfCf0Q2szzTTwhwobjGK6hWfhhoRL8qYdwkiAG5UVS6HfIGv3Xc2mkVNyF46sWrDYjbDeiQt0uNiIsF78ffBr9a6kyM1mlDLiLT-ayKKU4XISlnUYc8XujQShxiJdoLvV6HhGvatRpgmb_X32TpccMA7lkaR-7S7X9dzktyczQ52I_3P4w_PSW3KCIzm3ru8Wdksy5n-jkiq1q-aEzpF8iHJLI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELWqIiF44H5ZrkZCPCCyxE7sTXhb7UXltkJqV-1bZDu2GrVKQpJFbJ_6IfALfFS_hLE3G7oFIXhNrJEdz3iOMzNnEHrOeaSZkgLsOzZeOOChJwaM2oAjIyq2JFa2dvjjjO_Mw3cH7GAL8XUtDEyiBkm1C-Jbqy5T0zIMkNfwvF7mMiv6gbLFf3BVv8QGxIVnh6Pd7t-Kz1jAXBNrCoDGY-CG1wHNP0mxjknVm47pN7R5MWnynBeaXkf73fxd8slRf9HIvjq5QO34_wu8ga61wBQPV5p0E23p_Ba6eo6u8Db6ATqFz06_ubbS4PXwOCvPTr-_wcPPljBc4d0yq2xnHYHL4nhZHWYnAtuuSE2NRyLHE0dXAQs7XuJ52YgjDRKs8n_R6Ss8ng29_UqUJQgeiUoWOYajv2gWUtfYVsHgPRvUwJNfpXkYEDd23tZKxZZCG0--tqm9-R00n072Rjte2-_BE0HsN540YLJKEjifiYiM0UYEoZEcLlGhilNmvS0RIqBCGj_2GU1lBIDQF5Qan0sR3EXbeZHr-whzobiGq6hWQRRqQMEqZdykgAW5UVT6PfQCvnXS2muduFA8JUm3AUm7AT30cq0VSbni__jb4GdrvUnASm3oReS6WNQJhekCNOUs7qF7Kz3qxAFmooOIDHoo2tCwboBlAN98k2eHjgmcWDpH7tMH_7qcp-jyp_E0-fB29v4hukIBoNkMdMIfoe2mWujHALAa-cRZ00_NhCcs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+%22Duckweed+Dip%22%3A+Aquatic+Spirodela+polyrhiza+Plants+Can+Efficiently+Uptake+Dissolved%2C+DNA-Wrapped+Carbon+Nanotubes+from+Their+Environment+for+Transient+Gene+Expression&rft.jtitle=ACS+synthetic+biology&rft.au=Islam%2C+Tasmia&rft.au=Kalkar%2C+Swapna&rft.au=Tinker-Kulberg%2C+Rachel&rft.au=Ignatova%2C+Tetyana&rft.date=2024-02-16&rft.eissn=2161-5063&rft.volume=13&rft.issue=2&rft.spage=687&rft_id=info:doi/10.1021%2Facssynbio.3c00620&rft_id=info%3Apmid%2F38127817&rft.externalDocID=38127817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-5063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-5063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-5063&client=summon |