Mechanisms of hydroxyl radicals production from pyrite oxidation by hydrogen peroxide: Surface versus aqueous reactions
Pyrite oxidation by hydrogen peroxide (H2O2) occurs in both natural and engineered systems. Hydroxyl radical (OH) is a key reactive intermediate for pyrite and coexisting substances oxidation. In acidic H2O2/pyrite systems, H2O2 decomposition by aqueous Fe2+ is documented to predominate for OH produ...
Saved in:
Published in | Geochimica et cosmochimica acta Vol. 238; no. C; pp. 394 - 410 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.10.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pyrite oxidation by hydrogen peroxide (H2O2) occurs in both natural and engineered systems. Hydroxyl radical (OH) is a key reactive intermediate for pyrite and coexisting substances oxidation. In acidic H2O2/pyrite systems, H2O2 decomposition by aqueous Fe2+ is documented to predominate for OH production, whereas here we show that H2O2 decomposition by surface Fe(II) sites contributes considerably to OH production under certain conditions. Pyrite oxidation by H2O2 under anoxic conditions was performed under different conditions (2–12 g/L pyrite, 0.025–1 mM H2O2 and pH 2–4), and OH and aqueous Fe2+/Fe3+ production as well as H2O2 consumption were measured during the oxidation. In order to evaluate the contribution of surface reaction to OH production, 1 mM 2, 2′-bipyridine (BPY) was added to inhibit H2O2 decomposition by aqueous Fe2+. The rate constants of OH production decreased by 44.4–65.6% with addition of 1 mM BPY, which suggests that both surface and aqueous reactions contributed to OH production. Regarding the surface reaction, density functional theory (DFT) calculation reveals that H2O2 was adsorbed onto the Fe(II) sites on pyrite surface and transformed to surface adsorbed OH which desorbed subsequently into the aqueous solution. On the basis of mechanistic understanding, a kinetic model was developed to assess the relative contributions of surface and aqueous reactions to OH production. The relative contribution of surface reaction is dependent on the ratio of pyrite surface concentration to aqueous Fe2+ concentration, which decreases with the progress of pyrite oxidation due to the increase in aqueous Fe2+. When the ratio is higher than the threshold value of 1.6 × 103 m2/mM, surface reaction becomes predominant for OH production. Typical systems necessitating consideration of surface reaction involve pyritic rocks and shale leaching and pollutants treatment by H2O2/pyrite. The mechanisms unraveled in this study supplement the fundamental of OH production from pyrite oxidation by both H2O2 and O2 in natural and engineered systems. |
---|---|
AbstractList | Pyrite oxidation by hydrogen peroxide (H2O2) occurs in both natural and engineered systems. Hydroxyl radical (OH) is a key reactive intermediate for pyrite and coexisting substances oxidation. In acidic H2O2/pyrite systems, H2O2 decomposition by aqueous Fe2+ is documented to predominate for OH production, whereas here we show that H2O2 decomposition by surface Fe(II) sites contributes considerably to OH production under certain conditions. Pyrite oxidation by H2O2 under anoxic conditions was performed under different conditions (2–12 g/L pyrite, 0.025–1 mM H2O2 and pH 2–4), and OH and aqueous Fe2+/Fe3+ production as well as H2O2 consumption were measured during the oxidation. In order to evaluate the contribution of surface reaction to OH production, 1 mM 2, 2′-bipyridine (BPY) was added to inhibit H2O2 decomposition by aqueous Fe2+. The rate constants of OH production decreased by 44.4–65.6% with addition of 1 mM BPY, which suggests that both surface and aqueous reactions contributed to OH production. Regarding the surface reaction, density functional theory (DFT) calculation reveals that H2O2 was adsorbed onto the Fe(II) sites on pyrite surface and transformed to surface adsorbed OH which desorbed subsequently into the aqueous solution. On the basis of mechanistic understanding, a kinetic model was developed to assess the relative contributions of surface and aqueous reactions to OH production. The relative contribution of surface reaction is dependent on the ratio of pyrite surface concentration to aqueous Fe2+ concentration, which decreases with the progress of pyrite oxidation due to the increase in aqueous Fe2+. When the ratio is higher than the threshold value of 1.6 × 103 m2/mM, surface reaction becomes predominant for OH production. Typical systems necessitating consideration of surface reaction involve pyritic rocks and shale leaching and pollutants treatment by H2O2/pyrite. The mechanisms unraveled in this study supplement the fundamental of OH production from pyrite oxidation by both H2O2 and O2 in natural and engineered systems. |
Author | Zhou, Chenggang Zhang, Peng Huang, Wan Ji, Zhuan Yuan, Songhu |
Author_xml | – sequence: 1 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China – sequence: 2 givenname: Wan surname: Huang fullname: Huang, Wan organization: School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China – sequence: 3 givenname: Zhuan surname: Ji fullname: Ji, Zhuan organization: Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China – sequence: 4 givenname: Chenggang surname: Zhou fullname: Zhou, Chenggang organization: Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China – sequence: 5 givenname: Songhu surname: Yuan fullname: Yuan, Songhu email: yuansonghu622@cug.edu.cn organization: State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China |
BackLink | https://www.osti.gov/biblio/1548093$$D View this record in Osti.gov |
BookMark | eNp9kE9PAjEQxRuDiYB-AG-Nd9Z2l6VdPRnivwTjQT033dkplMAW2wXZb28XPHng0pd03m_y5g1Ir3Y1EnLNWcIZn9wukznoJGVcJkwkUc5In0uRjoo8y3qkz6JpJFgmLsgghCVjTOQ565OfN4SFrm1YB-oMXbSVd_t2Rb2uLOhVoBvvqi001tXUeLemm9bbBqnb20offsv2SM2xphv03QDv6MfWGw1Id-jDNlD9vUUX1aM-7AqX5NzE9Xj1p0Py9fT4OX0Zzd6fX6cPs5HOCtbEN4eU85KJciIm0sCYF4hmLI2UVYpFCaVIU6EBxggTENpITJmU3GhElGk2JDfHvS40VgWI2WEBrq4RGsXzsWRFFk3iaALvQvBoVPQdrmu8tivFmepKVksVS1ZdyYoJFSWS_B-58XatfXuSuT8yGO_eWfRdLKwBK-u7VJWzJ-hfiUaa3w |
CitedBy_id | crossref_primary_10_1039_D4AY01469C crossref_primary_10_1016_j_scitotenv_2024_170275 crossref_primary_10_1016_j_chemgeo_2024_121981 crossref_primary_10_1016_j_jhazmat_2019_120998 crossref_primary_10_1016_j_watres_2022_118048 crossref_primary_10_1007_s10653_023_01583_y crossref_primary_10_1016_j_envres_2024_118198 crossref_primary_10_1080_10643389_2024_2411793 crossref_primary_10_1016_j_cej_2024_152080 crossref_primary_10_1016_j_jhazmat_2021_125704 crossref_primary_10_1016_j_jwpe_2025_107141 crossref_primary_10_3724_j_1000_4734_2024_44_071 crossref_primary_10_1021_acs_est_9b07604 crossref_primary_10_1016_j_chemgeo_2021_120537 crossref_primary_10_1016_j_jhazmat_2023_132962 crossref_primary_10_1021_acs_est_3c09316 crossref_primary_10_2139_ssrn_3997662 crossref_primary_10_1016_j_jhazmat_2023_131798 crossref_primary_10_1016_j_jece_2021_105368 crossref_primary_10_1016_j_jhazmat_2022_128693 crossref_primary_10_1016_j_jenvman_2020_110835 crossref_primary_10_1088_2058_6272_ac7639 crossref_primary_10_1016_j_scitotenv_2023_168143 crossref_primary_10_1016_j_orggeochem_2024_104877 crossref_primary_10_1016_j_eti_2021_101582 crossref_primary_10_1016_j_jhazmat_2024_135340 crossref_primary_10_1016_j_watres_2021_117484 crossref_primary_10_1016_j_catcom_2023_106661 crossref_primary_10_1016_j_scitotenv_2019_134293 crossref_primary_10_1016_j_watres_2022_119164 crossref_primary_10_3390_catal12060669 crossref_primary_10_1016_j_apcatb_2019_117876 crossref_primary_10_1016_j_apcatb_2021_120051 crossref_primary_10_1016_j_seppur_2024_130610 crossref_primary_10_3390_min13111461 crossref_primary_10_1021_acsestwater_3c00002 crossref_primary_10_1016_j_chemgeo_2023_121443 crossref_primary_10_1029_2023GC011223 crossref_primary_10_1016_j_epsl_2023_118464 crossref_primary_10_1016_j_seppur_2021_118680 crossref_primary_10_1016_j_seppur_2022_122189 crossref_primary_10_1016_j_jcis_2022_03_057 crossref_primary_10_1016_j_mineng_2021_107356 crossref_primary_10_1016_j_scitotenv_2022_154441 crossref_primary_10_1016_j_scitotenv_2021_147117 crossref_primary_10_1016_j_jhydrol_2024_132568 crossref_primary_10_1016_j_seppur_2023_123150 crossref_primary_10_1016_j_scitotenv_2020_142387 crossref_primary_10_1016_j_cclet_2019_09_003 crossref_primary_10_1016_j_cej_2019_122667 crossref_primary_10_1016_j_chemosphere_2021_131565 crossref_primary_10_1016_j_jes_2022_02_012 crossref_primary_10_1016_j_jhazmat_2021_127783 crossref_primary_10_1016_j_apgeochem_2021_104893 crossref_primary_10_1002_jctb_7375 crossref_primary_10_1016_j_jwpe_2024_105353 crossref_primary_10_1021_acsestengg_3c00248 crossref_primary_10_1039_D1DT03645A crossref_primary_10_1016_j_scitotenv_2024_175833 crossref_primary_10_1016_j_chemosphere_2021_130335 crossref_primary_10_1021_acs_inorgchem_3c03934 crossref_primary_10_1016_j_apsusc_2023_157673 crossref_primary_10_2139_ssrn_4176856 crossref_primary_10_1016_j_chemosphere_2021_129883 crossref_primary_10_1016_j_scitotenv_2024_171072 crossref_primary_10_1002_qua_27388 crossref_primary_10_1016_j_mineng_2019_106168 crossref_primary_10_1021_acs_energyfuels_0c02432 crossref_primary_10_1039_D3EM00221G crossref_primary_10_1016_j_envres_2021_112326 crossref_primary_10_1016_j_jece_2022_108841 crossref_primary_10_1016_j_jwpe_2025_107193 crossref_primary_10_1016_j_watres_2023_120071 |
Cites_doi | 10.1021/jz300996c 10.1021/es048983d 10.1186/1467-4866-7-3 10.1021/acs.jpcc.5b10949 10.1021/es800649p 10.1016/j.gca.2017.08.032 10.1016/S0016-7037(00)00384-7 10.1007/s12583-016-0688-2 10.1016/j.apcatb.2012.12.031 10.1021/es801720d 10.1021/es050717s 10.1021/j100269a035 10.1016/j.gca.2006.07.026 10.1126/science.250.4981.661 10.1186/1467-4866-11-2 10.1016/0304-4203(90)90062-H 10.1063/1.1566936 10.1016/j.gca.2007.08.022 10.1016/j.seppur.2015.09.016 10.1016/j.jes.2016.01.012 10.1021/cr0503658 10.1016/j.watres.2015.02.006 10.1021/es505584r 10.1016/0016-7037(86)90325-X 10.1016/j.gca.2012.01.006 10.1016/0304-386X(95)00094-W 10.1107/S0567739476001198 10.1016/0927-0256(96)00008-0 10.1016/j.epsl.2010.01.020 10.1016/S0039-6028(02)01849-6 10.1021/acs.est.5b04323 10.1016/j.chemosphere.2013.06.082 10.1016/0016-7037(94)90199-6 10.2166/wh.2014.013 10.1016/0016-7037(94)90241-0 10.1021/la0300479 10.1016/0016-7037(95)00025-U 10.1016/j.gca.2017.03.011 10.1103/PhysRevLett.77.3865 10.1186/1467-4866-10-8 10.1021/es801310y 10.1063/1.555843 10.1186/1467-4866-13-4 10.1016/j.apcatb.2015.06.061 10.1103/PhysRevB.54.11169 10.1016/S0304-386X(96)00096-5 10.1016/j.jhazmat.2010.10.055 10.1016/j.hydromet.2015.04.003 10.1016/j.cej.2014.01.088 10.1021/acs.est.6b05906 10.1016/S0016-7037(01)00745-1 10.1016/j.gca.2015.10.015 10.1016/0016-7037(91)90005-P 10.1016/j.gca.2014.02.037 10.1186/1467-4866-13-3 10.1007/s10653-011-9438-7 10.1016/j.watres.2004.01.033 10.1063/1.555805 10.1016/0039-9140(74)80012-3 10.1016/j.gca.2010.05.028 10.1016/0304-4203(92)90049-G 10.1016/S0016-7037(02)01222-X 10.1016/j.gca.2011.09.020 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1016/j.gca.2018.07.018 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9533 |
EndPage | 410 |
ExternalDocumentID | 1548093 10_1016_j_gca_2018_07_018 S0016703718303946 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMA IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SEP SES SPC SSE SSZ T5K TN5 TWZ XSW ZMT ~02 ~G- 29H 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ MVM OHT R2- SEW SSH UQL VH1 VOH WUQ XJT XOL ZKB AALMO AAPBV ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-a390t-a35c211b07b6768fc419eef48f88d2e9bcb7227acc4ec6c7af8e20881faeee823 |
IEDL.DBID | .~1 |
ISSN | 0016-7037 |
IngestDate | Fri May 19 00:40:12 EDT 2023 Tue Jul 01 03:36:14 EDT 2025 Thu Apr 24 23:05:40 EDT 2025 Fri Feb 23 02:30:31 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Oxidation Pyrite Hydrogen peroxide Hydroxyl radical Surface |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a390t-a35c211b07b6768fc419eef48f88d2e9bcb7227acc4ec6c7af8e20881faeee823 |
Notes | USDOE Office of Electricity (OE), Advanced Grid Research & Development. Power Systems Engineering Research 2016B020240008 |
OpenAccessLink | https://www.osti.gov/biblio/1548093 |
PageCount | 17 |
ParticipantIDs | osti_scitechconnect_1548093 crossref_citationtrail_10_1016_j_gca_2018_07_018 crossref_primary_10_1016_j_gca_2018_07_018 elsevier_sciencedirect_doi_10_1016_j_gca_2018_07_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 2018-10-00 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Geochimica et cosmochimica acta |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Kong, Hu, He (b0175) 2015; 49 Qiu, Luo, Chen, Lv, Tan, Liu, Liu (b0265) 2016; 45 Ianni, J. (2015) Kintecus. Windows version 5.5 Rush, Bielski (b0275) 1985; 89 Zhou, Zhu, Zhang, Yuan (b0365) 2017; 42 Mopper, Zhou (b0235) 1990; 250 Lefticariu, Pratt, LaVerne, Schimmelmann (b0190) 2010; 292 Williamson, Rimstidt (b0330) 1994; 58 Tamura, Goto, Yotsuyanagi, Nagayama (b0310) 1974; 21 Nesbitt, Muir (b0245) 1994; 58 Zhou, Mopper (b0360) 1990; 30 Che, Bae, Lee (b0040) 2011; 185 Dimitrijevic, Antonijevic, Jankovic (b0075) 1996; 42 Antonijević, Dimitrijević, Janković (b0010) 1997; 46 Kamei, Ohmoto (b0150) 2000; 64 Cohn, Fisher, Brownawell, Schoonen (b0050) 2010; 11 Zhang, Yuan, Liao (b0345) 2016; 172 Knipe, Mycroft, Pratt, Nesbitt, Bancroff (b0165) 1995; 59 Schilt (b0280) 2013 Hung, Muscat, Yarovsky, Russo (b0135) 2002; 513 Katsoyiannis, Ruettimann, Hug (b0155) 2008; 42 Chirita (b0045) 2007; 21 . Kresse, Furthmüller (b0185) 1996; 6 Huang, Hou, Zhao, Zhang (b0130) 2016; 181 Lefticariu, Pratt, Ripley (b0195) 2006; 70 Hou, Huang, Jia, Ai, Zhao, Zhang (b0125) 2017; 51 Borda, Elsetinow, Strongin, Schoonen (b0020) 2003; 67 Bae, Kim, Lee (b0015) 2013; 134 Cohn, Mueller, Wimmer, Leifer, Greenbaum, Strongin, Schoonen (b0055) 2006; 7 Stirling, Bernasconi, Parrinello (b0300) 2003; 118 Duesterberg, Mylon, Waite (b0085) 2008; 42 Ammar, Oturan, Labiadh, Guersalli, Abdelhedi, Oturan, Brillas (b0005) 2015; 74 Buxton, Greenstock, Helman, Ross (b0025) 1988; 17 Rickard, Luther (b0270) 2007; 107 Wu, Chen, Zhang, Feng, Shih (b0335) 2015; 154 Qiao, Lang, Peng, Jiang, Chen, Huang, Shen (b0260) 2016; 27 Sun, Chen, Zou, Shu, Ruan (b0305) 2015; 155 Graham, Bouwer (b0105) 2012; 83 Fisher, Schoonen, Brownawell (b0095) 2012; 13 Moses, Herman (b0240) 1991; 55 Wardman (b0325) 1989; 18 Li, Chandra, Gerson (b0205) 2014; 133 Tong, Yuan, Ma, Jin, Liu, Cheng, Liu, Gan, Wang (b0315) 2016; 50 McKibben, Barnes (b0225) 1986; 50 Schoonen, Harrington, Laffers, Strongin (b0290) 2010; 74 Finklea, Cathey, Amma (b0090) 1976; 32 Harrington, Hylton, Schoonen (b0110) 2012; 34 Harrington, Tsirka, Schoonen (b0115) 2012; 13 Cohn, Pedigo, Hylton, Simon, Schoonen (b0060) 2009; 10 Pham, Kitsuneduka, Hara, Suto, Inoue (b0255) 2008; 42 Luther, Kostka, Church, Sulzberger, Stumm (b0215) 1992; 40 Perdew, Burke, Ernzerhof (b0250) 1996; 77 Joo, Feitz, Sedlak, Waite (b0145) 2005; 39 Zhang, Yuan (b0340) 2017; 218 Demoisson, Mullet, Humbert (b0070) 2005; 39 Kresse, Furthmüller (b0180) 1996; 54 Zhang, Borda, Schoonen, Strongin (b0350) 2003; 19 Lefticariu, Schimmelmann, Pratt, Ripley (b0200) 2007; 71 Truong, De Laat, Legube (b0320) 2004; 38 Friedlander, Puri, Schoonen, Karzai (b0100) 2015; 13 Zhang, Zhang, Dai, Zhou, Si (b0355) 2014; 244 Sit, Cohen, Selloni (b0295) 2012; 3 Schippers, Jørgensen (b0285) 2002; 66 Dos Santos, de Mendonca Silva, Duarte (b0080) 2016; 120 Chandra, Gerson (b0035) 2011; 75 Harrington, Tsirka, Schoonen (b0120) 2013; 93 Kaur, Schoonen (b0160) 2017; 206 Kresse (10.1016/j.gca.2018.07.018_b0180) 1996; 54 McKibben (10.1016/j.gca.2018.07.018_b0225) 1986; 50 Zhang (10.1016/j.gca.2018.07.018_b0340) 2017; 218 Zhou (10.1016/j.gca.2018.07.018_b0360) 1990; 30 Rush (10.1016/j.gca.2018.07.018_b0275) 1985; 89 Zhang (10.1016/j.gca.2018.07.018_b0355) 2014; 244 Harrington (10.1016/j.gca.2018.07.018_b0110) 2012; 34 10.1016/j.gca.2018.07.018_b0140 Qiu (10.1016/j.gca.2018.07.018_b0265) 2016; 45 Chirita (10.1016/j.gca.2018.07.018_b0045) 2007; 21 Schoonen (10.1016/j.gca.2018.07.018_b0290) 2010; 74 Wu (10.1016/j.gca.2018.07.018_b0335) 2015; 154 Zhang (10.1016/j.gca.2018.07.018_b0350) 2003; 19 Ammar (10.1016/j.gca.2018.07.018_b0005) 2015; 74 Cohn (10.1016/j.gca.2018.07.018_b0060) 2009; 10 Demoisson (10.1016/j.gca.2018.07.018_b0070) 2005; 39 Nesbitt (10.1016/j.gca.2018.07.018_b0245) 1994; 58 Wardman (10.1016/j.gca.2018.07.018_b0325) 1989; 18 Finklea (10.1016/j.gca.2018.07.018_b0090) 1976; 32 Harrington (10.1016/j.gca.2018.07.018_b0115) 2012; 13 Schilt (10.1016/j.gca.2018.07.018_b0280) 2013 Truong (10.1016/j.gca.2018.07.018_b0320) 2004; 38 Qiao (10.1016/j.gca.2018.07.018_b0260) 2016; 27 Zhou (10.1016/j.gca.2018.07.018_b0365) 2017; 42 Perdew (10.1016/j.gca.2018.07.018_b0250) 1996; 77 Friedlander (10.1016/j.gca.2018.07.018_b0100) 2015; 13 Mopper (10.1016/j.gca.2018.07.018_b0235) 1990; 250 Lefticariu (10.1016/j.gca.2018.07.018_b0200) 2007; 71 Che (10.1016/j.gca.2018.07.018_b0040) 2011; 185 Tamura (10.1016/j.gca.2018.07.018_b0310) 1974; 21 Bae (10.1016/j.gca.2018.07.018_b0015) 2013; 134 Schippers (10.1016/j.gca.2018.07.018_b0285) 2002; 66 Lefticariu (10.1016/j.gca.2018.07.018_b0195) 2006; 70 Buxton (10.1016/j.gca.2018.07.018_b0025) 1988; 17 Huang (10.1016/j.gca.2018.07.018_b0130) 2016; 181 Duesterberg (10.1016/j.gca.2018.07.018_b0085) 2008; 42 Kaur (10.1016/j.gca.2018.07.018_b0160) 2017; 206 Knipe (10.1016/j.gca.2018.07.018_b0165) 1995; 59 Sit (10.1016/j.gca.2018.07.018_b0295) 2012; 3 Li (10.1016/j.gca.2018.07.018_b0205) 2014; 133 Kong (10.1016/j.gca.2018.07.018_b0175) 2015; 49 Kresse (10.1016/j.gca.2018.07.018_b0185) 1996; 6 Lefticariu (10.1016/j.gca.2018.07.018_b0190) 2010; 292 Borda (10.1016/j.gca.2018.07.018_b0020) 2003; 67 Katsoyiannis (10.1016/j.gca.2018.07.018_b0155) 2008; 42 Dos Santos (10.1016/j.gca.2018.07.018_b0080) 2016; 120 Williamson (10.1016/j.gca.2018.07.018_b0330) 1994; 58 Fisher (10.1016/j.gca.2018.07.018_b0095) 2012; 13 Sun (10.1016/j.gca.2018.07.018_b0305) 2015; 155 Kamei (10.1016/j.gca.2018.07.018_b0150) 2000; 64 Moses (10.1016/j.gca.2018.07.018_b0240) 1991; 55 Pham (10.1016/j.gca.2018.07.018_b0255) 2008; 42 Zhang (10.1016/j.gca.2018.07.018_b0345) 2016; 172 Tong (10.1016/j.gca.2018.07.018_b0315) 2016; 50 Luther (10.1016/j.gca.2018.07.018_b0215) 1992; 40 Joo (10.1016/j.gca.2018.07.018_b0145) 2005; 39 Chandra (10.1016/j.gca.2018.07.018_b0035) 2011; 75 Cohn (10.1016/j.gca.2018.07.018_b0055) 2006; 7 Hung (10.1016/j.gca.2018.07.018_b0135) 2002; 513 Hou (10.1016/j.gca.2018.07.018_b0125) 2017; 51 Cohn (10.1016/j.gca.2018.07.018_b0050) 2010; 11 Dimitrijevic (10.1016/j.gca.2018.07.018_b0075) 1996; 42 Harrington (10.1016/j.gca.2018.07.018_b0120) 2013; 93 Stirling (10.1016/j.gca.2018.07.018_b0300) 2003; 118 Antonijević (10.1016/j.gca.2018.07.018_b0010) 1997; 46 Rickard (10.1016/j.gca.2018.07.018_b0270) 2007; 107 Graham (10.1016/j.gca.2018.07.018_b0105) 2012; 83 |
References_xml | – volume: 11 start-page: 1 year: 2010 end-page: 8 ident: b0050 article-title: Adenine oxidation by pyrite-generated hydroxyl radicals publication-title: Geochem. Trans. – volume: 58 start-page: 4667 year: 1994 end-page: 4679 ident: b0245 article-title: X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water-vapor and air publication-title: Geochim. Cosmochim. Acta – volume: 71 start-page: 5072 year: 2007 end-page: 5088 ident: b0200 article-title: Oxygen isotope partitioning during oxidation of pyrite by H publication-title: Geochim. Cosmochim. Acta – volume: 89 start-page: 5062 year: 1985 end-page: 5066 ident: b0275 article-title: Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O publication-title: J. Phys. Chem. – volume: 107 start-page: 514 year: 2007 end-page: 562 ident: b0270 article-title: Chemistry of iron sulfides publication-title: Chem. Rev. – volume: 39 start-page: 1263 year: 2005 end-page: 1268 ident: b0145 article-title: Quantification of the oxidizing capacity of nanoparticulate zero-valent iron publication-title: Environ. Sci. Technol. – volume: 13 start-page: 42 year: 2015 end-page: 53 ident: b0100 article-title: The effect of pyrite on publication-title: J. Water Health – volume: 18 start-page: 1637 year: 1989 end-page: 1755 ident: b0325 article-title: Reduction potentials of one-electron couples involving free-radicals in aqueous-solution publication-title: J. Phys. Chem. Ref. Data – volume: 206 start-page: 364 year: 2017 end-page: 378 ident: b0160 article-title: Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles publication-title: Geochim. Cosmochim. Acta – volume: 154 start-page: 60 year: 2015 end-page: 67 ident: b0335 article-title: Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS publication-title: Sep. Purif. Technol. – volume: 134 start-page: 93 year: 2013 end-page: 102 ident: b0015 article-title: Degradation of diclofenac by pyrite catalyzed Fenton oxidation publication-title: Appl. Catal. B-Environ. – volume: 83 start-page: 379 year: 2012 end-page: 396 ident: b0105 article-title: Oxidative dissolution of pyrite surfaces by hexavalent chromium: Surface site saturation and surface renewal publication-title: Geochim. Cosmochim. Acta – volume: 185 start-page: 1355 year: 2011 end-page: 1361 ident: b0040 article-title: Degradation of trichloroethylene by Fenton reaction in pyrite suspension publication-title: J. Hazard. Mater. – volume: 10 start-page: 8 year: 2009 ident: b0060 article-title: Evaluating the use of 3'-(p-Aminophenyl) fluorescein for determining the formation of highly reactive oxygen species in particle suspensions publication-title: Geochem. Trans. – year: 2013 ident: b0280 article-title: Analytical applications of 1, 10-phenanthroline and related compounds: international series of monographs in analytical chemistry – volume: 3 start-page: 2409 year: 2012 end-page: 2414 ident: b0295 article-title: Interaction of oxygen and water with the (100) surface of pyrite: mechanism of sulfur oxidation publication-title: J. Phys. Chem. Lett. – volume: 74 start-page: 4971 year: 2010 end-page: 4987 ident: b0290 article-title: Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen publication-title: Geochim. Cosmochim. Acta – volume: 50 start-page: 214 year: 2016 end-page: 221 ident: b0315 article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments publication-title: Environ. Sci. Technol. – volume: 55 start-page: 471 year: 1991 end-page: 482 ident: b0240 article-title: Pyrite oxidation at circumneutral pH publication-title: Geochim. Cosmochim. Acta – volume: 19 start-page: 8787 year: 2003 end-page: 8792 ident: b0350 article-title: Adsorption of phospholipids on pyrite and their effect on surface oxidation publication-title: Langmuir – volume: 58 start-page: 5443 year: 1994 end-page: 5454 ident: b0330 article-title: The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation publication-title: Geochim. Cosmochim. Acta – volume: 13 start-page: 4 year: 2012 ident: b0115 article-title: Quantification of particle-induced inflammatory stress response: a novel approach for toxicity testing of earth materials publication-title: Geochem. Trans. – volume: 181 start-page: 127 year: 2016 end-page: 137 ident: b0130 article-title: Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H publication-title: Appl. Catal. B-Environ. – volume: 66 start-page: 85 year: 2002 end-page: 92 ident: b0285 article-title: Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments publication-title: Geochim. Cosmochim. Acta – reference: Ianni, J. (2015) Kintecus. Windows version 5.5 < – volume: 74 start-page: 77 year: 2015 end-page: 87 ident: b0005 article-title: Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst publication-title: Water Res. – volume: 292 start-page: 57 year: 2010 end-page: 67 ident: b0190 article-title: Anoxic pyrite oxidation by water radiolysis products—a potential source of biosustaining energy publication-title: Earth. Planet. Sci. Lett. – volume: 17 start-page: 513 year: 1988 end-page: 886 ident: b0025 article-title: Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals ( publication-title: J. Phys. Chem. Ref. Data – volume: 46 start-page: 71 year: 1997 end-page: 83 ident: b0010 article-title: Leaching of pyrite with hydrogen peroxide in sulphuric acid publication-title: Hydrometallurgy – volume: 30 start-page: 71 year: 1990 end-page: 88 ident: b0360 article-title: Determination of photochemically produced hydroxyl radicals in seawater and fresh-water publication-title: Mar. Chem. – volume: 7 start-page: 3 year: 2006 ident: b0055 article-title: Pyrite-induced hydroxyl radical formation and its effect on nucleic acids publication-title: Geochem. Trans. – volume: 67 start-page: 935 year: 2003 end-page: 939 ident: b0020 article-title: A mechanism for the production of hydroxyl radical at surface defect sites on pyrite publication-title: Geochim. Cosmochim. Acta – volume: 42 start-page: 377 year: 1996 end-page: 386 ident: b0075 article-title: Kinetics of pyrite dissolution by hydrogen peroxide in perchloric acid publication-title: Hydrometallurgy – volume: 59 start-page: 1079 year: 1995 end-page: 1090 ident: b0165 article-title: X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals publication-title: Geochim. Cosmochim. Acta – volume: 70 start-page: 4889 year: 2006 end-page: 4905 ident: b0195 article-title: Mineralogic and sulfur isotopic effects accompanying oxidation of pyrite in millimolar solutions of hydrogen peroxide at temperatures from 4 to 150 degrees C publication-title: Geochim. Cosmochim. Acta – volume: 64 start-page: 2585 year: 2000 end-page: 2601 ident: b0150 article-title: The kinetics of reactions between pyrite and O publication-title: Geochim. Cosmochim. Acta – volume: 133 start-page: 372 year: 2014 end-page: 386 ident: b0205 article-title: Scanning photoelectron microscopy studies of freshly fractured chalcopyrite exposed to O publication-title: Geochim. Cosmochim. Acta – volume: 513 start-page: 511 year: 2002 end-page: 524 ident: b0135 article-title: Density-functional theory studies of pyrite FeS publication-title: Surf. Sci. – volume: 32 start-page: 529 year: 1976 end-page: 537 ident: b0090 article-title: Investigation of the bonding mechanism in pyrite using the Mossbauer effect and X-ray crystallography publication-title: Acta Crystallogr Sect. A – volume: 93 start-page: 1216 year: 2013 end-page: 1221 ident: b0120 article-title: Inflammatory stress response in A549 cells as a result of exposure to coal: evidence for the role of pyrite in coal workers' pneumoconiosis pathogenesis publication-title: Chemosphere – volume: 244 start-page: 438 year: 2014 end-page: 445 ident: b0355 article-title: An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution publication-title: Chem. Eng. J. – volume: 40 start-page: 81 year: 1992 end-page: 103 ident: b0215 article-title: Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively publication-title: Mar. Chem. – volume: 42 start-page: 7470 year: 2008 end-page: 7475 ident: b0255 article-title: Trichloroethylene transformation by natural mineral pyrite: the deciding role of oxygen publication-title: Environ. Sci. Technol. – volume: 21 start-page: 314 year: 1974 end-page: 318 ident: b0310 article-title: Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III) publication-title: Talanta – volume: 38 start-page: 2383 year: 2004 end-page: 2393 ident: b0320 article-title: Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H publication-title: Water Res. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: b0250 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 34 start-page: 527 year: 2012 end-page: 538 ident: b0110 article-title: Pyrite-driven reactive oxygen species formation in simulated lung fluid: implications for coal workers' pneumoconiosis publication-title: Environ. Geochem. Health – volume: 250 start-page: 661 year: 1990 end-page: 664 ident: b0235 article-title: Hydroxyl radical photoproduction in the sea and its potential impact on marine processes publication-title: Science – reference: >. – volume: 218 start-page: 153 year: 2017 end-page: 166 ident: b0340 article-title: Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids publication-title: Geochim. Cosmochim. Acta – volume: 50 start-page: 1509 year: 1986 end-page: 1520 ident: b0225 article-title: Oxidation of pyrite in low-temperature acidic solutions-rate laws and surface textures publication-title: Geochim. Cosmochim. Acta – volume: 120 start-page: 2760 year: 2016 end-page: 2768 ident: b0080 article-title: Pyrite oxidation mechanism by oxygen in aqueous medium publication-title: J. Phys. Chem. C – volume: 42 start-page: 7424 year: 2008 end-page: 7430 ident: b0155 article-title: pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water publication-title: Environ. Sci. Technol. – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: b0185 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 49 start-page: 3499 year: 2015 end-page: 3505 ident: b0175 article-title: Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide publication-title: Environ. Sci. Technol. – volume: 172 start-page: 444 year: 2016 end-page: 457 ident: b0345 article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions publication-title: Geochim. Cosmochim. Acta – volume: 13 start-page: 3 year: 2012 ident: b0095 article-title: Phenylalanine as a hydroxyl radical-specific probe in pyrite slurries publication-title: Geochem. Trans. – volume: 118 start-page: 8917 year: 2003 end-page: 8926 ident: b0300 article-title: Ab initio simulation of water interaction with the (100) surface of pyrite publication-title: J. Chem. Phys. – volume: 75 start-page: 6893 year: 2011 end-page: 6911 ident: b0035 article-title: Redox potential (Eh) and anion effects of pyrite (FeS publication-title: Geochim. Cosmochim. Acta – volume: 27 start-page: 170 year: 2016 end-page: 179 ident: b0260 article-title: Sulfur and oxygen isotopes of sulfate extracted from Early Cambrian phosphorite nodules: implications for marine redox evolution in the Yangtze Platform publication-title: J. Earth Sci. – volume: 54 start-page: 11169 year: 1996 ident: b0180 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 42 start-page: 1039 year: 2017 end-page: 1044 ident: b0365 article-title: Effect of groundwater components on hydroxyl radical production by Fe(II) oxygenation publication-title: Earth Sci. – volume: 39 start-page: 8747 year: 2005 end-page: 8752 ident: b0070 article-title: Pyrite oxidation by hexavalent chromium: investigation of the chemical processes by monitoring of aqueous metal species publication-title: Environ. Sci. Technol. – volume: 51 start-page: 5118 year: 2017 end-page: 5126 ident: b0125 article-title: Hydroxylamine promoted goethite surface Fenton degradation of organic pollutants publication-title: Environ. Sci. Technol. – volume: 21 start-page: 257 year: 2007 end-page: 264 ident: b0045 article-title: A kinetic study of hydrogen peroxide decomposition in presence of pyrite publication-title: Chem. Biochem. Eng. Q – volume: 155 start-page: 13 year: 2015 end-page: 19 ident: b0305 article-title: Study of the kinetics of pyrite oxidation under controlled redox potential publication-title: Hydrometallurgy – volume: 42 start-page: 8522 year: 2008 end-page: 8527 ident: b0085 article-title: pH Effects on iron-catalyzed oxidation using Fenton's reagent publication-title: Environ. Sci. Technol. – volume: 45 start-page: 164 year: 2016 end-page: 176 ident: b0265 article-title: Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems publication-title: J. Environ. Sci. – volume: 3 start-page: 2409 year: 2012 ident: 10.1016/j.gca.2018.07.018_b0295 article-title: Interaction of oxygen and water with the (100) surface of pyrite: mechanism of sulfur oxidation publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300996c – volume: 39 start-page: 1263 year: 2005 ident: 10.1016/j.gca.2018.07.018_b0145 article-title: Quantification of the oxidizing capacity of nanoparticulate zero-valent iron publication-title: Environ. Sci. Technol. doi: 10.1021/es048983d – volume: 7 start-page: 3 year: 2006 ident: 10.1016/j.gca.2018.07.018_b0055 article-title: Pyrite-induced hydroxyl radical formation and its effect on nucleic acids publication-title: Geochem. Trans. doi: 10.1186/1467-4866-7-3 – volume: 120 start-page: 2760 year: 2016 ident: 10.1016/j.gca.2018.07.018_b0080 article-title: Pyrite oxidation mechanism by oxygen in aqueous medium publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10949 – volume: 42 start-page: 7424 year: 2008 ident: 10.1016/j.gca.2018.07.018_b0155 article-title: pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water publication-title: Environ. Sci. Technol. doi: 10.1021/es800649p – volume: 218 start-page: 153 year: 2017 ident: 10.1016/j.gca.2018.07.018_b0340 article-title: Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.08.032 – volume: 64 start-page: 2585 year: 2000 ident: 10.1016/j.gca.2018.07.018_b0150 article-title: The kinetics of reactions between pyrite and O2-bearing water revealed from in situ monitoring of DO, Eh and pH in a closed system publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(00)00384-7 – volume: 27 start-page: 170 year: 2016 ident: 10.1016/j.gca.2018.07.018_b0260 article-title: Sulfur and oxygen isotopes of sulfate extracted from Early Cambrian phosphorite nodules: implications for marine redox evolution in the Yangtze Platform publication-title: J. Earth Sci. doi: 10.1007/s12583-016-0688-2 – ident: 10.1016/j.gca.2018.07.018_b0140 – volume: 134 start-page: 93 year: 2013 ident: 10.1016/j.gca.2018.07.018_b0015 article-title: Degradation of diclofenac by pyrite catalyzed Fenton oxidation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2012.12.031 – volume: 42 start-page: 8522 year: 2008 ident: 10.1016/j.gca.2018.07.018_b0085 article-title: pH Effects on iron-catalyzed oxidation using Fenton's reagent publication-title: Environ. Sci. Technol. doi: 10.1021/es801720d – volume: 39 start-page: 8747 year: 2005 ident: 10.1016/j.gca.2018.07.018_b0070 article-title: Pyrite oxidation by hexavalent chromium: investigation of the chemical processes by monitoring of aqueous metal species publication-title: Environ. Sci. Technol. doi: 10.1021/es050717s – volume: 89 start-page: 5062 year: 1985 ident: 10.1016/j.gca.2018.07.018_b0275 article-title: Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2-with iron(II)/iron(III) ions. The reactivity of HO2/O2 with ferric ions and its implication on the occurrence of the Haber-Weiss reaction publication-title: J. Phys. Chem. doi: 10.1021/j100269a035 – volume: 21 start-page: 257 year: 2007 ident: 10.1016/j.gca.2018.07.018_b0045 article-title: A kinetic study of hydrogen peroxide decomposition in presence of pyrite publication-title: Chem. Biochem. Eng. Q – volume: 70 start-page: 4889 year: 2006 ident: 10.1016/j.gca.2018.07.018_b0195 article-title: Mineralogic and sulfur isotopic effects accompanying oxidation of pyrite in millimolar solutions of hydrogen peroxide at temperatures from 4 to 150 degrees C publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.07.026 – volume: 250 start-page: 661 year: 1990 ident: 10.1016/j.gca.2018.07.018_b0235 article-title: Hydroxyl radical photoproduction in the sea and its potential impact on marine processes publication-title: Science doi: 10.1126/science.250.4981.661 – volume: 11 start-page: 1 year: 2010 ident: 10.1016/j.gca.2018.07.018_b0050 article-title: Adenine oxidation by pyrite-generated hydroxyl radicals publication-title: Geochem. Trans. doi: 10.1186/1467-4866-11-2 – volume: 30 start-page: 71 year: 1990 ident: 10.1016/j.gca.2018.07.018_b0360 article-title: Determination of photochemically produced hydroxyl radicals in seawater and fresh-water publication-title: Mar. Chem. doi: 10.1016/0304-4203(90)90062-H – volume: 118 start-page: 8917 year: 2003 ident: 10.1016/j.gca.2018.07.018_b0300 article-title: Ab initio simulation of water interaction with the (100) surface of pyrite publication-title: J. Chem. Phys. doi: 10.1063/1.1566936 – volume: 71 start-page: 5072 year: 2007 ident: 10.1016/j.gca.2018.07.018_b0200 article-title: Oxygen isotope partitioning during oxidation of pyrite by H2O2 and its dependence on temperature publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.08.022 – volume: 154 start-page: 60 year: 2015 ident: 10.1016/j.gca.2018.07.018_b0335 article-title: Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS2) induced Fenton-like reactions publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.09.016 – volume: 45 start-page: 164 year: 2016 ident: 10.1016/j.gca.2018.07.018_b0265 article-title: Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2016.01.012 – volume: 107 start-page: 514 year: 2007 ident: 10.1016/j.gca.2018.07.018_b0270 article-title: Chemistry of iron sulfides publication-title: Chem. Rev. doi: 10.1021/cr0503658 – volume: 74 start-page: 77 year: 2015 ident: 10.1016/j.gca.2018.07.018_b0005 article-title: Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst publication-title: Water Res. doi: 10.1016/j.watres.2015.02.006 – volume: 49 start-page: 3499 year: 2015 ident: 10.1016/j.gca.2018.07.018_b0175 article-title: Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide publication-title: Environ. Sci. Technol. doi: 10.1021/es505584r – volume: 50 start-page: 1509 year: 1986 ident: 10.1016/j.gca.2018.07.018_b0225 article-title: Oxidation of pyrite in low-temperature acidic solutions-rate laws and surface textures publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(86)90325-X – year: 2013 ident: 10.1016/j.gca.2018.07.018_b0280 – volume: 83 start-page: 379 year: 2012 ident: 10.1016/j.gca.2018.07.018_b0105 article-title: Oxidative dissolution of pyrite surfaces by hexavalent chromium: Surface site saturation and surface renewal publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.01.006 – volume: 42 start-page: 377 year: 1996 ident: 10.1016/j.gca.2018.07.018_b0075 article-title: Kinetics of pyrite dissolution by hydrogen peroxide in perchloric acid publication-title: Hydrometallurgy doi: 10.1016/0304-386X(95)00094-W – volume: 32 start-page: 529 year: 1976 ident: 10.1016/j.gca.2018.07.018_b0090 article-title: Investigation of the bonding mechanism in pyrite using the Mossbauer effect and X-ray crystallography publication-title: Acta Crystallogr Sect. A doi: 10.1107/S0567739476001198 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.gca.2018.07.018_b0185 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 292 start-page: 57 year: 2010 ident: 10.1016/j.gca.2018.07.018_b0190 article-title: Anoxic pyrite oxidation by water radiolysis products—a potential source of biosustaining energy publication-title: Earth. Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.01.020 – volume: 513 start-page: 511 year: 2002 ident: 10.1016/j.gca.2018.07.018_b0135 article-title: Density-functional theory studies of pyrite FeS2(100) and (110) surfaces publication-title: Surf. Sci. doi: 10.1016/S0039-6028(02)01849-6 – volume: 50 start-page: 214 year: 2016 ident: 10.1016/j.gca.2018.07.018_b0315 article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04323 – volume: 93 start-page: 1216 year: 2013 ident: 10.1016/j.gca.2018.07.018_b0120 article-title: Inflammatory stress response in A549 cells as a result of exposure to coal: evidence for the role of pyrite in coal workers' pneumoconiosis pathogenesis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.06.082 – volume: 58 start-page: 4667 year: 1994 ident: 10.1016/j.gca.2018.07.018_b0245 article-title: X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water-vapor and air publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90199-6 – volume: 13 start-page: 42 year: 2015 ident: 10.1016/j.gca.2018.07.018_b0100 article-title: The effect of pyrite on Escherichia coli in water: proof-of-concept for the elimination of waterborne bacteria by reactive minerals publication-title: J. Water Health doi: 10.2166/wh.2014.013 – volume: 42 start-page: 1039 year: 2017 ident: 10.1016/j.gca.2018.07.018_b0365 article-title: Effect of groundwater components on hydroxyl radical production by Fe(II) oxygenation publication-title: Earth Sci. – volume: 58 start-page: 5443 year: 1994 ident: 10.1016/j.gca.2018.07.018_b0330 article-title: The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90241-0 – volume: 19 start-page: 8787 year: 2003 ident: 10.1016/j.gca.2018.07.018_b0350 article-title: Adsorption of phospholipids on pyrite and their effect on surface oxidation publication-title: Langmuir doi: 10.1021/la0300479 – volume: 59 start-page: 1079 year: 1995 ident: 10.1016/j.gca.2018.07.018_b0165 article-title: X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(95)00025-U – volume: 206 start-page: 364 year: 2017 ident: 10.1016/j.gca.2018.07.018_b0160 article-title: Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.03.011 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.gca.2018.07.018_b0250 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 10 start-page: 8 year: 2009 ident: 10.1016/j.gca.2018.07.018_b0060 article-title: Evaluating the use of 3'-(p-Aminophenyl) fluorescein for determining the formation of highly reactive oxygen species in particle suspensions publication-title: Geochem. Trans. doi: 10.1186/1467-4866-10-8 – volume: 42 start-page: 7470 year: 2008 ident: 10.1016/j.gca.2018.07.018_b0255 article-title: Trichloroethylene transformation by natural mineral pyrite: the deciding role of oxygen publication-title: Environ. Sci. Technol. doi: 10.1021/es801310y – volume: 18 start-page: 1637 year: 1989 ident: 10.1016/j.gca.2018.07.018_b0325 article-title: Reduction potentials of one-electron couples involving free-radicals in aqueous-solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555843 – volume: 13 start-page: 4 year: 2012 ident: 10.1016/j.gca.2018.07.018_b0115 article-title: Quantification of particle-induced inflammatory stress response: a novel approach for toxicity testing of earth materials publication-title: Geochem. Trans. doi: 10.1186/1467-4866-13-4 – volume: 181 start-page: 127 year: 2016 ident: 10.1016/j.gca.2018.07.018_b0130 article-title: Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.06.061 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.gca.2018.07.018_b0180 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 46 start-page: 71 year: 1997 ident: 10.1016/j.gca.2018.07.018_b0010 article-title: Leaching of pyrite with hydrogen peroxide in sulphuric acid publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(96)00096-5 – volume: 185 start-page: 1355 year: 2011 ident: 10.1016/j.gca.2018.07.018_b0040 article-title: Degradation of trichloroethylene by Fenton reaction in pyrite suspension publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.055 – volume: 155 start-page: 13 year: 2015 ident: 10.1016/j.gca.2018.07.018_b0305 article-title: Study of the kinetics of pyrite oxidation under controlled redox potential publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.04.003 – volume: 244 start-page: 438 year: 2014 ident: 10.1016/j.gca.2018.07.018_b0355 article-title: An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.01.088 – volume: 51 start-page: 5118 year: 2017 ident: 10.1016/j.gca.2018.07.018_b0125 article-title: Hydroxylamine promoted goethite surface Fenton degradation of organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05906 – volume: 66 start-page: 85 year: 2002 ident: 10.1016/j.gca.2018.07.018_b0285 article-title: Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(01)00745-1 – volume: 172 start-page: 444 year: 2016 ident: 10.1016/j.gca.2018.07.018_b0345 article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2015.10.015 – volume: 55 start-page: 471 year: 1991 ident: 10.1016/j.gca.2018.07.018_b0240 article-title: Pyrite oxidation at circumneutral pH publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(91)90005-P – volume: 133 start-page: 372 year: 2014 ident: 10.1016/j.gca.2018.07.018_b0205 article-title: Scanning photoelectron microscopy studies of freshly fractured chalcopyrite exposed to O2 and H2O publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2014.02.037 – volume: 13 start-page: 3 year: 2012 ident: 10.1016/j.gca.2018.07.018_b0095 article-title: Phenylalanine as a hydroxyl radical-specific probe in pyrite slurries publication-title: Geochem. Trans. doi: 10.1186/1467-4866-13-3 – volume: 34 start-page: 527 year: 2012 ident: 10.1016/j.gca.2018.07.018_b0110 article-title: Pyrite-driven reactive oxygen species formation in simulated lung fluid: implications for coal workers' pneumoconiosis publication-title: Environ. Geochem. Health doi: 10.1007/s10653-011-9438-7 – volume: 38 start-page: 2383 year: 2004 ident: 10.1016/j.gca.2018.07.018_b0320 article-title: Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2 publication-title: Water Res. doi: 10.1016/j.watres.2004.01.033 – volume: 17 start-page: 513 year: 1988 ident: 10.1016/j.gca.2018.07.018_b0025 article-title: Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (.OH/.O) in aqueous-solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555805 – volume: 21 start-page: 314 year: 1974 ident: 10.1016/j.gca.2018.07.018_b0310 article-title: Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III) publication-title: Talanta doi: 10.1016/0039-9140(74)80012-3 – volume: 74 start-page: 4971 year: 2010 ident: 10.1016/j.gca.2018.07.018_b0290 article-title: Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2010.05.028 – volume: 40 start-page: 81 year: 1992 ident: 10.1016/j.gca.2018.07.018_b0215 article-title: Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively publication-title: Mar. Chem. doi: 10.1016/0304-4203(92)90049-G – volume: 67 start-page: 935 year: 2003 ident: 10.1016/j.gca.2018.07.018_b0020 article-title: A mechanism for the production of hydroxyl radical at surface defect sites on pyrite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(02)01222-X – volume: 75 start-page: 6893 year: 2011 ident: 10.1016/j.gca.2018.07.018_b0035 article-title: Redox potential (Eh) and anion effects of pyrite (FeS2) leaching at pH 1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.09.020 |
SSID | ssj0007550 |
Score | 2.5433547 |
Snippet | Pyrite oxidation by hydrogen peroxide (H2O2) occurs in both natural and engineered systems. Hydroxyl radical (OH) is a key reactive intermediate for pyrite and... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 394 |
SubjectTerms | Hydrogen peroxide Hydroxyl radical Oxidation Pyrite Surface |
Title | Mechanisms of hydroxyl radicals production from pyrite oxidation by hydrogen peroxide: Surface versus aqueous reactions |
URI | https://dx.doi.org/10.1016/j.gca.2018.07.018 https://www.osti.gov/biblio/1548093 |
Volume | 238 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-yIvgifuLHKXnwSeiZbNMmvTcRdVX0RQXfSpJO7vbQ7bLd5W5f_Nud6YencPjgS0ObTiiTdGZCfvMbxg6lDzpLkjiSRQiRchlEDkQRSWsK9PahsI7ynW9u08GDunpMHhfYaZcLQ7DK1vY3Nr221u2T41abx-PhkHJ8ZaqJcc6gGc4U0W4rpWmVf3_5B_PQSdKkocg0ore7k80a4_XTE_WQNDV_J9X9-L9v6pX4u71zO-erbKWNF_lJ80lrbAFG62zpoq7HO99gf26AUneH1XPFy8B_zQuCpTzxia3PXyo-bhhdUfucMkn4eD7BIJOXf4dNMSXu5o0ULiROpOHYAT_43WwSrAdOoI1ZxS16jxJbjDDrsapN9nB-dn86iNpaCpGNMzHFa-Jxr-eEdinuMIJXMgMIygSDkwKZ8073-9p6r8CnXttgoI8WSAYLAKYfb7HeqBzBNuO2UAGjPiOwQ2GAYBMUjiWIILzxuthhotNi7luicap38ZR3iLLfOSo-J8XnQufY7LCjN5Fxw7Lx2cuqm5r8w1LJ0Qt8JrZH00giRI_rCUeEMrRlE1m8-7VB99gy3TXovm-sN53MYB-jlKk7qJfhAVs8ubwe3L4Cg17qeQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaW9lKYP8mgaHXIqmEhr2ZJ7C6Hp5rF7aQK5CUmWmg3pelnvku6_74wfIYWSQy8WWB5jZuSZEfrmG4BD4aMqsixNRBljIl0REhd4mQirS4z2sbSO6p3Hk3x0Lc9vspsNOOlrYQhW2fn-1qc33rq7c9Rp82g-nVKNr8gVMc5pdMOFzF_AJrFTZQPYPD67GE0eHbLKsrYSReQJCfSHmw3M66cn9iGhGwpPav3x7_A0qPCPexJ5Tt_Cmy5lZMftV23BRpi9g5ffm5a86_fwMA5UvTutf9Wsiux2XRIy5Z4tbHMEU7N5S-qKBmBUTMLm6wXmmaz6PW37KTG3bqVwLTHiDceJ8JX9WC2i9YERbmNVM4sBpMIRk8zmXfUHuD79dnUySrp2ColNC77Ea-Zxu-e4cjluMqKXogghSh012iUUzjs1HCrrvQw-98pGHYbohES0IQQ9TD_CYFbNwjYwW8qIiZ_mOCExR7AZCqci8Mi99qrcAd5r0fiOa5xaXtybHlR2Z1DxhhRvuDI47MCXR5F5S7Tx3MOyN435a7UYDATPie2RGUmEGHI9QYlQhnZtvEh3_--lB_BqdDW-NJdnk4s9eE0zLdjvEwyWi1XYx6Rl6T53i_IPi4TtKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+hydroxyl+radicals+production+from+pyrite+oxidation+by+hydrogen+peroxide%3A+Surface+versus+aqueous+reactions&rft.jtitle=Geochimica+et+cosmochimica+acta&rft.au=Zhang%2C+Peng&rft.au=Huang%2C+Wan&rft.au=Ji%2C+Zhuan&rft.au=Zhou%2C+Chenggang&rft.date=2018-10-01&rft.issn=0016-7037&rft.volume=238&rft.spage=394&rft.epage=410&rft_id=info:doi/10.1016%2Fj.gca.2018.07.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gca_2018_07_018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7037&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7037&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7037&client=summon |