Mechanisms of hydroxyl radicals production from pyrite oxidation by hydrogen peroxide: Surface versus aqueous reactions

Pyrite oxidation by hydrogen peroxide (H2O2) occurs in both natural and engineered systems. Hydroxyl radical (OH) is a key reactive intermediate for pyrite and coexisting substances oxidation. In acidic H2O2/pyrite systems, H2O2 decomposition by aqueous Fe2+ is documented to predominate for OH produ...

Full description

Saved in:
Bibliographic Details
Published inGeochimica et cosmochimica acta Vol. 238; no. C; pp. 394 - 410
Main Authors Zhang, Peng, Huang, Wan, Ji, Zhuan, Zhou, Chenggang, Yuan, Songhu
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pyrite oxidation by hydrogen peroxide (H2O2) occurs in both natural and engineered systems. Hydroxyl radical (OH) is a key reactive intermediate for pyrite and coexisting substances oxidation. In acidic H2O2/pyrite systems, H2O2 decomposition by aqueous Fe2+ is documented to predominate for OH production, whereas here we show that H2O2 decomposition by surface Fe(II) sites contributes considerably to OH production under certain conditions. Pyrite oxidation by H2O2 under anoxic conditions was performed under different conditions (2–12 g/L pyrite, 0.025–1 mM H2O2 and pH 2–4), and OH and aqueous Fe2+/Fe3+ production as well as H2O2 consumption were measured during the oxidation. In order to evaluate the contribution of surface reaction to OH production, 1 mM 2, 2′-bipyridine (BPY) was added to inhibit H2O2 decomposition by aqueous Fe2+. The rate constants of OH production decreased by 44.4–65.6% with addition of 1 mM BPY, which suggests that both surface and aqueous reactions contributed to OH production. Regarding the surface reaction, density functional theory (DFT) calculation reveals that H2O2 was adsorbed onto the Fe(II) sites on pyrite surface and transformed to surface adsorbed OH which desorbed subsequently into the aqueous solution. On the basis of mechanistic understanding, a kinetic model was developed to assess the relative contributions of surface and aqueous reactions to OH production. The relative contribution of surface reaction is dependent on the ratio of pyrite surface concentration to aqueous Fe2+ concentration, which decreases with the progress of pyrite oxidation due to the increase in aqueous Fe2+. When the ratio is higher than the threshold value of 1.6 × 103 m2/mM, surface reaction becomes predominant for OH production. Typical systems necessitating consideration of surface reaction involve pyritic rocks and shale leaching and pollutants treatment by H2O2/pyrite. The mechanisms unraveled in this study supplement the fundamental of OH production from pyrite oxidation by both H2O2 and O2 in natural and engineered systems.
AbstractList Pyrite oxidation by hydrogen peroxide (H2O2) occurs in both natural and engineered systems. Hydroxyl radical (OH) is a key reactive intermediate for pyrite and coexisting substances oxidation. In acidic H2O2/pyrite systems, H2O2 decomposition by aqueous Fe2+ is documented to predominate for OH production, whereas here we show that H2O2 decomposition by surface Fe(II) sites contributes considerably to OH production under certain conditions. Pyrite oxidation by H2O2 under anoxic conditions was performed under different conditions (2–12 g/L pyrite, 0.025–1 mM H2O2 and pH 2–4), and OH and aqueous Fe2+/Fe3+ production as well as H2O2 consumption were measured during the oxidation. In order to evaluate the contribution of surface reaction to OH production, 1 mM 2, 2′-bipyridine (BPY) was added to inhibit H2O2 decomposition by aqueous Fe2+. The rate constants of OH production decreased by 44.4–65.6% with addition of 1 mM BPY, which suggests that both surface and aqueous reactions contributed to OH production. Regarding the surface reaction, density functional theory (DFT) calculation reveals that H2O2 was adsorbed onto the Fe(II) sites on pyrite surface and transformed to surface adsorbed OH which desorbed subsequently into the aqueous solution. On the basis of mechanistic understanding, a kinetic model was developed to assess the relative contributions of surface and aqueous reactions to OH production. The relative contribution of surface reaction is dependent on the ratio of pyrite surface concentration to aqueous Fe2+ concentration, which decreases with the progress of pyrite oxidation due to the increase in aqueous Fe2+. When the ratio is higher than the threshold value of 1.6 × 103 m2/mM, surface reaction becomes predominant for OH production. Typical systems necessitating consideration of surface reaction involve pyritic rocks and shale leaching and pollutants treatment by H2O2/pyrite. The mechanisms unraveled in this study supplement the fundamental of OH production from pyrite oxidation by both H2O2 and O2 in natural and engineered systems.
Author Zhou, Chenggang
Zhang, Peng
Huang, Wan
Ji, Zhuan
Yuan, Songhu
Author_xml – sequence: 1
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
– sequence: 2
  givenname: Wan
  surname: Huang
  fullname: Huang, Wan
  organization: School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
– sequence: 3
  givenname: Zhuan
  surname: Ji
  fullname: Ji, Zhuan
  organization: Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
– sequence: 4
  givenname: Chenggang
  surname: Zhou
  fullname: Zhou, Chenggang
  organization: Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
– sequence: 5
  givenname: Songhu
  surname: Yuan
  fullname: Yuan, Songhu
  email: yuansonghu622@cug.edu.cn
  organization: State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
BackLink https://www.osti.gov/biblio/1548093$$D View this record in Osti.gov
BookMark eNp9kE9PAjEQxRuDiYB-AG-Nd9Z2l6VdPRnivwTjQT033dkplMAW2wXZb28XPHng0pd03m_y5g1Ir3Y1EnLNWcIZn9wukznoJGVcJkwkUc5In0uRjoo8y3qkz6JpJFgmLsgghCVjTOQ565OfN4SFrm1YB-oMXbSVd_t2Rb2uLOhVoBvvqi001tXUeLemm9bbBqnb20offsv2SM2xphv03QDv6MfWGw1Id-jDNlD9vUUX1aM-7AqX5NzE9Xj1p0Py9fT4OX0Zzd6fX6cPs5HOCtbEN4eU85KJciIm0sCYF4hmLI2UVYpFCaVIU6EBxggTENpITJmU3GhElGk2JDfHvS40VgWI2WEBrq4RGsXzsWRFFk3iaALvQvBoVPQdrmu8tivFmepKVksVS1ZdyYoJFSWS_B-58XatfXuSuT8yGO_eWfRdLKwBK-u7VJWzJ-hfiUaa3w
CitedBy_id crossref_primary_10_1039_D4AY01469C
crossref_primary_10_1016_j_scitotenv_2024_170275
crossref_primary_10_1016_j_chemgeo_2024_121981
crossref_primary_10_1016_j_jhazmat_2019_120998
crossref_primary_10_1016_j_watres_2022_118048
crossref_primary_10_1007_s10653_023_01583_y
crossref_primary_10_1016_j_envres_2024_118198
crossref_primary_10_1080_10643389_2024_2411793
crossref_primary_10_1016_j_cej_2024_152080
crossref_primary_10_1016_j_jhazmat_2021_125704
crossref_primary_10_1016_j_jwpe_2025_107141
crossref_primary_10_3724_j_1000_4734_2024_44_071
crossref_primary_10_1021_acs_est_9b07604
crossref_primary_10_1016_j_chemgeo_2021_120537
crossref_primary_10_1016_j_jhazmat_2023_132962
crossref_primary_10_1021_acs_est_3c09316
crossref_primary_10_2139_ssrn_3997662
crossref_primary_10_1016_j_jhazmat_2023_131798
crossref_primary_10_1016_j_jece_2021_105368
crossref_primary_10_1016_j_jhazmat_2022_128693
crossref_primary_10_1016_j_jenvman_2020_110835
crossref_primary_10_1088_2058_6272_ac7639
crossref_primary_10_1016_j_scitotenv_2023_168143
crossref_primary_10_1016_j_orggeochem_2024_104877
crossref_primary_10_1016_j_eti_2021_101582
crossref_primary_10_1016_j_jhazmat_2024_135340
crossref_primary_10_1016_j_watres_2021_117484
crossref_primary_10_1016_j_catcom_2023_106661
crossref_primary_10_1016_j_scitotenv_2019_134293
crossref_primary_10_1016_j_watres_2022_119164
crossref_primary_10_3390_catal12060669
crossref_primary_10_1016_j_apcatb_2019_117876
crossref_primary_10_1016_j_apcatb_2021_120051
crossref_primary_10_1016_j_seppur_2024_130610
crossref_primary_10_3390_min13111461
crossref_primary_10_1021_acsestwater_3c00002
crossref_primary_10_1016_j_chemgeo_2023_121443
crossref_primary_10_1029_2023GC011223
crossref_primary_10_1016_j_epsl_2023_118464
crossref_primary_10_1016_j_seppur_2021_118680
crossref_primary_10_1016_j_seppur_2022_122189
crossref_primary_10_1016_j_jcis_2022_03_057
crossref_primary_10_1016_j_mineng_2021_107356
crossref_primary_10_1016_j_scitotenv_2022_154441
crossref_primary_10_1016_j_scitotenv_2021_147117
crossref_primary_10_1016_j_jhydrol_2024_132568
crossref_primary_10_1016_j_seppur_2023_123150
crossref_primary_10_1016_j_scitotenv_2020_142387
crossref_primary_10_1016_j_cclet_2019_09_003
crossref_primary_10_1016_j_cej_2019_122667
crossref_primary_10_1016_j_chemosphere_2021_131565
crossref_primary_10_1016_j_jes_2022_02_012
crossref_primary_10_1016_j_jhazmat_2021_127783
crossref_primary_10_1016_j_apgeochem_2021_104893
crossref_primary_10_1002_jctb_7375
crossref_primary_10_1016_j_jwpe_2024_105353
crossref_primary_10_1021_acsestengg_3c00248
crossref_primary_10_1039_D1DT03645A
crossref_primary_10_1016_j_scitotenv_2024_175833
crossref_primary_10_1016_j_chemosphere_2021_130335
crossref_primary_10_1021_acs_inorgchem_3c03934
crossref_primary_10_1016_j_apsusc_2023_157673
crossref_primary_10_2139_ssrn_4176856
crossref_primary_10_1016_j_chemosphere_2021_129883
crossref_primary_10_1016_j_scitotenv_2024_171072
crossref_primary_10_1002_qua_27388
crossref_primary_10_1016_j_mineng_2019_106168
crossref_primary_10_1021_acs_energyfuels_0c02432
crossref_primary_10_1039_D3EM00221G
crossref_primary_10_1016_j_envres_2021_112326
crossref_primary_10_1016_j_jece_2022_108841
crossref_primary_10_1016_j_jwpe_2025_107193
crossref_primary_10_1016_j_watres_2023_120071
Cites_doi 10.1021/jz300996c
10.1021/es048983d
10.1186/1467-4866-7-3
10.1021/acs.jpcc.5b10949
10.1021/es800649p
10.1016/j.gca.2017.08.032
10.1016/S0016-7037(00)00384-7
10.1007/s12583-016-0688-2
10.1016/j.apcatb.2012.12.031
10.1021/es801720d
10.1021/es050717s
10.1021/j100269a035
10.1016/j.gca.2006.07.026
10.1126/science.250.4981.661
10.1186/1467-4866-11-2
10.1016/0304-4203(90)90062-H
10.1063/1.1566936
10.1016/j.gca.2007.08.022
10.1016/j.seppur.2015.09.016
10.1016/j.jes.2016.01.012
10.1021/cr0503658
10.1016/j.watres.2015.02.006
10.1021/es505584r
10.1016/0016-7037(86)90325-X
10.1016/j.gca.2012.01.006
10.1016/0304-386X(95)00094-W
10.1107/S0567739476001198
10.1016/0927-0256(96)00008-0
10.1016/j.epsl.2010.01.020
10.1016/S0039-6028(02)01849-6
10.1021/acs.est.5b04323
10.1016/j.chemosphere.2013.06.082
10.1016/0016-7037(94)90199-6
10.2166/wh.2014.013
10.1016/0016-7037(94)90241-0
10.1021/la0300479
10.1016/0016-7037(95)00025-U
10.1016/j.gca.2017.03.011
10.1103/PhysRevLett.77.3865
10.1186/1467-4866-10-8
10.1021/es801310y
10.1063/1.555843
10.1186/1467-4866-13-4
10.1016/j.apcatb.2015.06.061
10.1103/PhysRevB.54.11169
10.1016/S0304-386X(96)00096-5
10.1016/j.jhazmat.2010.10.055
10.1016/j.hydromet.2015.04.003
10.1016/j.cej.2014.01.088
10.1021/acs.est.6b05906
10.1016/S0016-7037(01)00745-1
10.1016/j.gca.2015.10.015
10.1016/0016-7037(91)90005-P
10.1016/j.gca.2014.02.037
10.1186/1467-4866-13-3
10.1007/s10653-011-9438-7
10.1016/j.watres.2004.01.033
10.1063/1.555805
10.1016/0039-9140(74)80012-3
10.1016/j.gca.2010.05.028
10.1016/0304-4203(92)90049-G
10.1016/S0016-7037(02)01222-X
10.1016/j.gca.2011.09.020
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.gca.2018.07.018
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9533
EndPage 410
ExternalDocumentID 1548093
10_1016_j_gca_2018_07_018
S0016703718303946
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SPC
SSE
SSZ
T5K
TN5
TWZ
XSW
ZMT
~02
~G-
29H
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
MVM
OHT
R2-
SEW
SSH
UQL
VH1
VOH
WUQ
XJT
XOL
ZKB
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-a390t-a35c211b07b6768fc419eef48f88d2e9bcb7227acc4ec6c7af8e20881faeee823
IEDL.DBID .~1
ISSN 0016-7037
IngestDate Fri May 19 00:40:12 EDT 2023
Tue Jul 01 03:36:14 EDT 2025
Thu Apr 24 23:05:40 EDT 2025
Fri Feb 23 02:30:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Oxidation
Pyrite
Hydrogen peroxide
Hydroxyl radical
Surface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a390t-a35c211b07b6768fc419eef48f88d2e9bcb7227acc4ec6c7af8e20881faeee823
Notes USDOE Office of Electricity (OE), Advanced Grid Research & Development. Power Systems Engineering Research
2016B020240008
OpenAccessLink https://www.osti.gov/biblio/1548093
PageCount 17
ParticipantIDs osti_scitechconnect_1548093
crossref_citationtrail_10_1016_j_gca_2018_07_018
crossref_primary_10_1016_j_gca_2018_07_018
elsevier_sciencedirect_doi_10_1016_j_gca_2018_07_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
2018-10-00
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Geochimica et cosmochimica acta
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Kong, Hu, He (b0175) 2015; 49
Qiu, Luo, Chen, Lv, Tan, Liu, Liu (b0265) 2016; 45
Ianni, J. (2015) Kintecus. Windows version 5.5
Rush, Bielski (b0275) 1985; 89
Zhou, Zhu, Zhang, Yuan (b0365) 2017; 42
Mopper, Zhou (b0235) 1990; 250
Lefticariu, Pratt, LaVerne, Schimmelmann (b0190) 2010; 292
Williamson, Rimstidt (b0330) 1994; 58
Tamura, Goto, Yotsuyanagi, Nagayama (b0310) 1974; 21
Nesbitt, Muir (b0245) 1994; 58
Zhou, Mopper (b0360) 1990; 30
Che, Bae, Lee (b0040) 2011; 185
Dimitrijevic, Antonijevic, Jankovic (b0075) 1996; 42
Antonijević, Dimitrijević, Janković (b0010) 1997; 46
Kamei, Ohmoto (b0150) 2000; 64
Cohn, Fisher, Brownawell, Schoonen (b0050) 2010; 11
Zhang, Yuan, Liao (b0345) 2016; 172
Knipe, Mycroft, Pratt, Nesbitt, Bancroff (b0165) 1995; 59
Schilt (b0280) 2013
Hung, Muscat, Yarovsky, Russo (b0135) 2002; 513
Katsoyiannis, Ruettimann, Hug (b0155) 2008; 42
Chirita (b0045) 2007; 21
.
Kresse, Furthmüller (b0185) 1996; 6
Huang, Hou, Zhao, Zhang (b0130) 2016; 181
Lefticariu, Pratt, Ripley (b0195) 2006; 70
Hou, Huang, Jia, Ai, Zhao, Zhang (b0125) 2017; 51
Borda, Elsetinow, Strongin, Schoonen (b0020) 2003; 67
Bae, Kim, Lee (b0015) 2013; 134
Cohn, Mueller, Wimmer, Leifer, Greenbaum, Strongin, Schoonen (b0055) 2006; 7
Stirling, Bernasconi, Parrinello (b0300) 2003; 118
Duesterberg, Mylon, Waite (b0085) 2008; 42
Ammar, Oturan, Labiadh, Guersalli, Abdelhedi, Oturan, Brillas (b0005) 2015; 74
Buxton, Greenstock, Helman, Ross (b0025) 1988; 17
Rickard, Luther (b0270) 2007; 107
Wu, Chen, Zhang, Feng, Shih (b0335) 2015; 154
Qiao, Lang, Peng, Jiang, Chen, Huang, Shen (b0260) 2016; 27
Sun, Chen, Zou, Shu, Ruan (b0305) 2015; 155
Graham, Bouwer (b0105) 2012; 83
Fisher, Schoonen, Brownawell (b0095) 2012; 13
Moses, Herman (b0240) 1991; 55
Wardman (b0325) 1989; 18
Li, Chandra, Gerson (b0205) 2014; 133
Tong, Yuan, Ma, Jin, Liu, Cheng, Liu, Gan, Wang (b0315) 2016; 50
McKibben, Barnes (b0225) 1986; 50
Schoonen, Harrington, Laffers, Strongin (b0290) 2010; 74
Finklea, Cathey, Amma (b0090) 1976; 32
Harrington, Hylton, Schoonen (b0110) 2012; 34
Harrington, Tsirka, Schoonen (b0115) 2012; 13
Cohn, Pedigo, Hylton, Simon, Schoonen (b0060) 2009; 10
Pham, Kitsuneduka, Hara, Suto, Inoue (b0255) 2008; 42
Luther, Kostka, Church, Sulzberger, Stumm (b0215) 1992; 40
Perdew, Burke, Ernzerhof (b0250) 1996; 77
Joo, Feitz, Sedlak, Waite (b0145) 2005; 39
Zhang, Yuan (b0340) 2017; 218
Demoisson, Mullet, Humbert (b0070) 2005; 39
Kresse, Furthmüller (b0180) 1996; 54
Zhang, Borda, Schoonen, Strongin (b0350) 2003; 19
Lefticariu, Schimmelmann, Pratt, Ripley (b0200) 2007; 71
Truong, De Laat, Legube (b0320) 2004; 38
Friedlander, Puri, Schoonen, Karzai (b0100) 2015; 13
Zhang, Zhang, Dai, Zhou, Si (b0355) 2014; 244
Sit, Cohen, Selloni (b0295) 2012; 3
Schippers, Jørgensen (b0285) 2002; 66
Dos Santos, de Mendonca Silva, Duarte (b0080) 2016; 120
Chandra, Gerson (b0035) 2011; 75
Harrington, Tsirka, Schoonen (b0120) 2013; 93
Kaur, Schoonen (b0160) 2017; 206
Kresse (10.1016/j.gca.2018.07.018_b0180) 1996; 54
McKibben (10.1016/j.gca.2018.07.018_b0225) 1986; 50
Zhang (10.1016/j.gca.2018.07.018_b0340) 2017; 218
Zhou (10.1016/j.gca.2018.07.018_b0360) 1990; 30
Rush (10.1016/j.gca.2018.07.018_b0275) 1985; 89
Zhang (10.1016/j.gca.2018.07.018_b0355) 2014; 244
Harrington (10.1016/j.gca.2018.07.018_b0110) 2012; 34
10.1016/j.gca.2018.07.018_b0140
Qiu (10.1016/j.gca.2018.07.018_b0265) 2016; 45
Chirita (10.1016/j.gca.2018.07.018_b0045) 2007; 21
Schoonen (10.1016/j.gca.2018.07.018_b0290) 2010; 74
Wu (10.1016/j.gca.2018.07.018_b0335) 2015; 154
Zhang (10.1016/j.gca.2018.07.018_b0350) 2003; 19
Ammar (10.1016/j.gca.2018.07.018_b0005) 2015; 74
Cohn (10.1016/j.gca.2018.07.018_b0060) 2009; 10
Demoisson (10.1016/j.gca.2018.07.018_b0070) 2005; 39
Nesbitt (10.1016/j.gca.2018.07.018_b0245) 1994; 58
Wardman (10.1016/j.gca.2018.07.018_b0325) 1989; 18
Finklea (10.1016/j.gca.2018.07.018_b0090) 1976; 32
Harrington (10.1016/j.gca.2018.07.018_b0115) 2012; 13
Schilt (10.1016/j.gca.2018.07.018_b0280) 2013
Truong (10.1016/j.gca.2018.07.018_b0320) 2004; 38
Qiao (10.1016/j.gca.2018.07.018_b0260) 2016; 27
Zhou (10.1016/j.gca.2018.07.018_b0365) 2017; 42
Perdew (10.1016/j.gca.2018.07.018_b0250) 1996; 77
Friedlander (10.1016/j.gca.2018.07.018_b0100) 2015; 13
Mopper (10.1016/j.gca.2018.07.018_b0235) 1990; 250
Lefticariu (10.1016/j.gca.2018.07.018_b0200) 2007; 71
Che (10.1016/j.gca.2018.07.018_b0040) 2011; 185
Tamura (10.1016/j.gca.2018.07.018_b0310) 1974; 21
Bae (10.1016/j.gca.2018.07.018_b0015) 2013; 134
Schippers (10.1016/j.gca.2018.07.018_b0285) 2002; 66
Lefticariu (10.1016/j.gca.2018.07.018_b0195) 2006; 70
Buxton (10.1016/j.gca.2018.07.018_b0025) 1988; 17
Huang (10.1016/j.gca.2018.07.018_b0130) 2016; 181
Duesterberg (10.1016/j.gca.2018.07.018_b0085) 2008; 42
Kaur (10.1016/j.gca.2018.07.018_b0160) 2017; 206
Knipe (10.1016/j.gca.2018.07.018_b0165) 1995; 59
Sit (10.1016/j.gca.2018.07.018_b0295) 2012; 3
Li (10.1016/j.gca.2018.07.018_b0205) 2014; 133
Kong (10.1016/j.gca.2018.07.018_b0175) 2015; 49
Kresse (10.1016/j.gca.2018.07.018_b0185) 1996; 6
Lefticariu (10.1016/j.gca.2018.07.018_b0190) 2010; 292
Borda (10.1016/j.gca.2018.07.018_b0020) 2003; 67
Katsoyiannis (10.1016/j.gca.2018.07.018_b0155) 2008; 42
Dos Santos (10.1016/j.gca.2018.07.018_b0080) 2016; 120
Williamson (10.1016/j.gca.2018.07.018_b0330) 1994; 58
Fisher (10.1016/j.gca.2018.07.018_b0095) 2012; 13
Sun (10.1016/j.gca.2018.07.018_b0305) 2015; 155
Kamei (10.1016/j.gca.2018.07.018_b0150) 2000; 64
Moses (10.1016/j.gca.2018.07.018_b0240) 1991; 55
Pham (10.1016/j.gca.2018.07.018_b0255) 2008; 42
Zhang (10.1016/j.gca.2018.07.018_b0345) 2016; 172
Tong (10.1016/j.gca.2018.07.018_b0315) 2016; 50
Luther (10.1016/j.gca.2018.07.018_b0215) 1992; 40
Joo (10.1016/j.gca.2018.07.018_b0145) 2005; 39
Chandra (10.1016/j.gca.2018.07.018_b0035) 2011; 75
Cohn (10.1016/j.gca.2018.07.018_b0055) 2006; 7
Hung (10.1016/j.gca.2018.07.018_b0135) 2002; 513
Hou (10.1016/j.gca.2018.07.018_b0125) 2017; 51
Cohn (10.1016/j.gca.2018.07.018_b0050) 2010; 11
Dimitrijevic (10.1016/j.gca.2018.07.018_b0075) 1996; 42
Harrington (10.1016/j.gca.2018.07.018_b0120) 2013; 93
Stirling (10.1016/j.gca.2018.07.018_b0300) 2003; 118
Antonijević (10.1016/j.gca.2018.07.018_b0010) 1997; 46
Rickard (10.1016/j.gca.2018.07.018_b0270) 2007; 107
Graham (10.1016/j.gca.2018.07.018_b0105) 2012; 83
References_xml – volume: 11
  start-page: 1
  year: 2010
  end-page: 8
  ident: b0050
  article-title: Adenine oxidation by pyrite-generated hydroxyl radicals
  publication-title: Geochem. Trans.
– volume: 58
  start-page: 4667
  year: 1994
  end-page: 4679
  ident: b0245
  article-title: X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water-vapor and air
  publication-title: Geochim. Cosmochim. Acta
– volume: 71
  start-page: 5072
  year: 2007
  end-page: 5088
  ident: b0200
  article-title: Oxygen isotope partitioning during oxidation of pyrite by H
  publication-title: Geochim. Cosmochim. Acta
– volume: 89
  start-page: 5062
  year: 1985
  end-page: 5066
  ident: b0275
  article-title: Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O
  publication-title: J. Phys. Chem.
– volume: 107
  start-page: 514
  year: 2007
  end-page: 562
  ident: b0270
  article-title: Chemistry of iron sulfides
  publication-title: Chem. Rev.
– volume: 39
  start-page: 1263
  year: 2005
  end-page: 1268
  ident: b0145
  article-title: Quantification of the oxidizing capacity of nanoparticulate zero-valent iron
  publication-title: Environ. Sci. Technol.
– volume: 13
  start-page: 42
  year: 2015
  end-page: 53
  ident: b0100
  article-title: The effect of pyrite on
  publication-title: J. Water Health
– volume: 18
  start-page: 1637
  year: 1989
  end-page: 1755
  ident: b0325
  article-title: Reduction potentials of one-electron couples involving free-radicals in aqueous-solution
  publication-title: J. Phys. Chem. Ref. Data
– volume: 206
  start-page: 364
  year: 2017
  end-page: 378
  ident: b0160
  article-title: Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles
  publication-title: Geochim. Cosmochim. Acta
– volume: 154
  start-page: 60
  year: 2015
  end-page: 67
  ident: b0335
  article-title: Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS
  publication-title: Sep. Purif. Technol.
– volume: 134
  start-page: 93
  year: 2013
  end-page: 102
  ident: b0015
  article-title: Degradation of diclofenac by pyrite catalyzed Fenton oxidation
  publication-title: Appl. Catal. B-Environ.
– volume: 83
  start-page: 379
  year: 2012
  end-page: 396
  ident: b0105
  article-title: Oxidative dissolution of pyrite surfaces by hexavalent chromium: Surface site saturation and surface renewal
  publication-title: Geochim. Cosmochim. Acta
– volume: 185
  start-page: 1355
  year: 2011
  end-page: 1361
  ident: b0040
  article-title: Degradation of trichloroethylene by Fenton reaction in pyrite suspension
  publication-title: J. Hazard. Mater.
– volume: 10
  start-page: 8
  year: 2009
  ident: b0060
  article-title: Evaluating the use of 3'-(p-Aminophenyl) fluorescein for determining the formation of highly reactive oxygen species in particle suspensions
  publication-title: Geochem. Trans.
– year: 2013
  ident: b0280
  article-title: Analytical applications of 1, 10-phenanthroline and related compounds: international series of monographs in analytical chemistry
– volume: 3
  start-page: 2409
  year: 2012
  end-page: 2414
  ident: b0295
  article-title: Interaction of oxygen and water with the (100) surface of pyrite: mechanism of sulfur oxidation
  publication-title: J. Phys. Chem. Lett.
– volume: 74
  start-page: 4971
  year: 2010
  end-page: 4987
  ident: b0290
  article-title: Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen
  publication-title: Geochim. Cosmochim. Acta
– volume: 50
  start-page: 214
  year: 2016
  end-page: 221
  ident: b0315
  article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 471
  year: 1991
  end-page: 482
  ident: b0240
  article-title: Pyrite oxidation at circumneutral pH
  publication-title: Geochim. Cosmochim. Acta
– volume: 19
  start-page: 8787
  year: 2003
  end-page: 8792
  ident: b0350
  article-title: Adsorption of phospholipids on pyrite and their effect on surface oxidation
  publication-title: Langmuir
– volume: 58
  start-page: 5443
  year: 1994
  end-page: 5454
  ident: b0330
  article-title: The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation
  publication-title: Geochim. Cosmochim. Acta
– volume: 13
  start-page: 4
  year: 2012
  ident: b0115
  article-title: Quantification of particle-induced inflammatory stress response: a novel approach for toxicity testing of earth materials
  publication-title: Geochem. Trans.
– volume: 181
  start-page: 127
  year: 2016
  end-page: 137
  ident: b0130
  article-title: Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H
  publication-title: Appl. Catal. B-Environ.
– volume: 66
  start-page: 85
  year: 2002
  end-page: 92
  ident: b0285
  article-title: Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments
  publication-title: Geochim. Cosmochim. Acta
– reference: Ianni, J. (2015) Kintecus. Windows version 5.5 <
– volume: 74
  start-page: 77
  year: 2015
  end-page: 87
  ident: b0005
  article-title: Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst
  publication-title: Water Res.
– volume: 292
  start-page: 57
  year: 2010
  end-page: 67
  ident: b0190
  article-title: Anoxic pyrite oxidation by water radiolysis products—a potential source of biosustaining energy
  publication-title: Earth. Planet. Sci. Lett.
– volume: 17
  start-page: 513
  year: 1988
  end-page: 886
  ident: b0025
  article-title: Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (
  publication-title: J. Phys. Chem. Ref. Data
– volume: 46
  start-page: 71
  year: 1997
  end-page: 83
  ident: b0010
  article-title: Leaching of pyrite with hydrogen peroxide in sulphuric acid
  publication-title: Hydrometallurgy
– volume: 30
  start-page: 71
  year: 1990
  end-page: 88
  ident: b0360
  article-title: Determination of photochemically produced hydroxyl radicals in seawater and fresh-water
  publication-title: Mar. Chem.
– volume: 7
  start-page: 3
  year: 2006
  ident: b0055
  article-title: Pyrite-induced hydroxyl radical formation and its effect on nucleic acids
  publication-title: Geochem. Trans.
– volume: 67
  start-page: 935
  year: 2003
  end-page: 939
  ident: b0020
  article-title: A mechanism for the production of hydroxyl radical at surface defect sites on pyrite
  publication-title: Geochim. Cosmochim. Acta
– volume: 42
  start-page: 377
  year: 1996
  end-page: 386
  ident: b0075
  article-title: Kinetics of pyrite dissolution by hydrogen peroxide in perchloric acid
  publication-title: Hydrometallurgy
– volume: 59
  start-page: 1079
  year: 1995
  end-page: 1090
  ident: b0165
  article-title: X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals
  publication-title: Geochim. Cosmochim. Acta
– volume: 70
  start-page: 4889
  year: 2006
  end-page: 4905
  ident: b0195
  article-title: Mineralogic and sulfur isotopic effects accompanying oxidation of pyrite in millimolar solutions of hydrogen peroxide at temperatures from 4 to 150 degrees C
  publication-title: Geochim. Cosmochim. Acta
– volume: 64
  start-page: 2585
  year: 2000
  end-page: 2601
  ident: b0150
  article-title: The kinetics of reactions between pyrite and O
  publication-title: Geochim. Cosmochim. Acta
– volume: 133
  start-page: 372
  year: 2014
  end-page: 386
  ident: b0205
  article-title: Scanning photoelectron microscopy studies of freshly fractured chalcopyrite exposed to O
  publication-title: Geochim. Cosmochim. Acta
– volume: 513
  start-page: 511
  year: 2002
  end-page: 524
  ident: b0135
  article-title: Density-functional theory studies of pyrite FeS
  publication-title: Surf. Sci.
– volume: 32
  start-page: 529
  year: 1976
  end-page: 537
  ident: b0090
  article-title: Investigation of the bonding mechanism in pyrite using the Mossbauer effect and X-ray crystallography
  publication-title: Acta Crystallogr Sect. A
– volume: 93
  start-page: 1216
  year: 2013
  end-page: 1221
  ident: b0120
  article-title: Inflammatory stress response in A549 cells as a result of exposure to coal: evidence for the role of pyrite in coal workers' pneumoconiosis pathogenesis
  publication-title: Chemosphere
– volume: 244
  start-page: 438
  year: 2014
  end-page: 445
  ident: b0355
  article-title: An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution
  publication-title: Chem. Eng. J.
– volume: 40
  start-page: 81
  year: 1992
  end-page: 103
  ident: b0215
  article-title: Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively
  publication-title: Mar. Chem.
– volume: 42
  start-page: 7470
  year: 2008
  end-page: 7475
  ident: b0255
  article-title: Trichloroethylene transformation by natural mineral pyrite: the deciding role of oxygen
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 314
  year: 1974
  end-page: 318
  ident: b0310
  article-title: Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III)
  publication-title: Talanta
– volume: 38
  start-page: 2383
  year: 2004
  end-page: 2393
  ident: b0320
  article-title: Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H
  publication-title: Water Res.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b0250
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 34
  start-page: 527
  year: 2012
  end-page: 538
  ident: b0110
  article-title: Pyrite-driven reactive oxygen species formation in simulated lung fluid: implications for coal workers' pneumoconiosis
  publication-title: Environ. Geochem. Health
– volume: 250
  start-page: 661
  year: 1990
  end-page: 664
  ident: b0235
  article-title: Hydroxyl radical photoproduction in the sea and its potential impact on marine processes
  publication-title: Science
– reference: >.
– volume: 218
  start-page: 153
  year: 2017
  end-page: 166
  ident: b0340
  article-title: Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids
  publication-title: Geochim. Cosmochim. Acta
– volume: 50
  start-page: 1509
  year: 1986
  end-page: 1520
  ident: b0225
  article-title: Oxidation of pyrite in low-temperature acidic solutions-rate laws and surface textures
  publication-title: Geochim. Cosmochim. Acta
– volume: 120
  start-page: 2760
  year: 2016
  end-page: 2768
  ident: b0080
  article-title: Pyrite oxidation mechanism by oxygen in aqueous medium
  publication-title: J. Phys. Chem. C
– volume: 42
  start-page: 7424
  year: 2008
  end-page: 7430
  ident: b0155
  article-title: pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: b0185
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 49
  start-page: 3499
  year: 2015
  end-page: 3505
  ident: b0175
  article-title: Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide
  publication-title: Environ. Sci. Technol.
– volume: 172
  start-page: 444
  year: 2016
  end-page: 457
  ident: b0345
  article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions
  publication-title: Geochim. Cosmochim. Acta
– volume: 13
  start-page: 3
  year: 2012
  ident: b0095
  article-title: Phenylalanine as a hydroxyl radical-specific probe in pyrite slurries
  publication-title: Geochem. Trans.
– volume: 118
  start-page: 8917
  year: 2003
  end-page: 8926
  ident: b0300
  article-title: Ab initio simulation of water interaction with the (100) surface of pyrite
  publication-title: J. Chem. Phys.
– volume: 75
  start-page: 6893
  year: 2011
  end-page: 6911
  ident: b0035
  article-title: Redox potential (Eh) and anion effects of pyrite (FeS
  publication-title: Geochim. Cosmochim. Acta
– volume: 27
  start-page: 170
  year: 2016
  end-page: 179
  ident: b0260
  article-title: Sulfur and oxygen isotopes of sulfate extracted from Early Cambrian phosphorite nodules: implications for marine redox evolution in the Yangtze Platform
  publication-title: J. Earth Sci.
– volume: 54
  start-page: 11169
  year: 1996
  ident: b0180
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 42
  start-page: 1039
  year: 2017
  end-page: 1044
  ident: b0365
  article-title: Effect of groundwater components on hydroxyl radical production by Fe(II) oxygenation
  publication-title: Earth Sci.
– volume: 39
  start-page: 8747
  year: 2005
  end-page: 8752
  ident: b0070
  article-title: Pyrite oxidation by hexavalent chromium: investigation of the chemical processes by monitoring of aqueous metal species
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 5118
  year: 2017
  end-page: 5126
  ident: b0125
  article-title: Hydroxylamine promoted goethite surface Fenton degradation of organic pollutants
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 257
  year: 2007
  end-page: 264
  ident: b0045
  article-title: A kinetic study of hydrogen peroxide decomposition in presence of pyrite
  publication-title: Chem. Biochem. Eng. Q
– volume: 155
  start-page: 13
  year: 2015
  end-page: 19
  ident: b0305
  article-title: Study of the kinetics of pyrite oxidation under controlled redox potential
  publication-title: Hydrometallurgy
– volume: 42
  start-page: 8522
  year: 2008
  end-page: 8527
  ident: b0085
  article-title: pH Effects on iron-catalyzed oxidation using Fenton's reagent
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 164
  year: 2016
  end-page: 176
  ident: b0265
  article-title: Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems
  publication-title: J. Environ. Sci.
– volume: 3
  start-page: 2409
  year: 2012
  ident: 10.1016/j.gca.2018.07.018_b0295
  article-title: Interaction of oxygen and water with the (100) surface of pyrite: mechanism of sulfur oxidation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300996c
– volume: 39
  start-page: 1263
  year: 2005
  ident: 10.1016/j.gca.2018.07.018_b0145
  article-title: Quantification of the oxidizing capacity of nanoparticulate zero-valent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048983d
– volume: 7
  start-page: 3
  year: 2006
  ident: 10.1016/j.gca.2018.07.018_b0055
  article-title: Pyrite-induced hydroxyl radical formation and its effect on nucleic acids
  publication-title: Geochem. Trans.
  doi: 10.1186/1467-4866-7-3
– volume: 120
  start-page: 2760
  year: 2016
  ident: 10.1016/j.gca.2018.07.018_b0080
  article-title: Pyrite oxidation mechanism by oxygen in aqueous medium
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10949
– volume: 42
  start-page: 7424
  year: 2008
  ident: 10.1016/j.gca.2018.07.018_b0155
  article-title: pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800649p
– volume: 218
  start-page: 153
  year: 2017
  ident: 10.1016/j.gca.2018.07.018_b0340
  article-title: Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2017.08.032
– volume: 64
  start-page: 2585
  year: 2000
  ident: 10.1016/j.gca.2018.07.018_b0150
  article-title: The kinetics of reactions between pyrite and O2-bearing water revealed from in situ monitoring of DO, Eh and pH in a closed system
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(00)00384-7
– volume: 27
  start-page: 170
  year: 2016
  ident: 10.1016/j.gca.2018.07.018_b0260
  article-title: Sulfur and oxygen isotopes of sulfate extracted from Early Cambrian phosphorite nodules: implications for marine redox evolution in the Yangtze Platform
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-016-0688-2
– ident: 10.1016/j.gca.2018.07.018_b0140
– volume: 134
  start-page: 93
  year: 2013
  ident: 10.1016/j.gca.2018.07.018_b0015
  article-title: Degradation of diclofenac by pyrite catalyzed Fenton oxidation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2012.12.031
– volume: 42
  start-page: 8522
  year: 2008
  ident: 10.1016/j.gca.2018.07.018_b0085
  article-title: pH Effects on iron-catalyzed oxidation using Fenton's reagent
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801720d
– volume: 39
  start-page: 8747
  year: 2005
  ident: 10.1016/j.gca.2018.07.018_b0070
  article-title: Pyrite oxidation by hexavalent chromium: investigation of the chemical processes by monitoring of aqueous metal species
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050717s
– volume: 89
  start-page: 5062
  year: 1985
  ident: 10.1016/j.gca.2018.07.018_b0275
  article-title: Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2-with iron(II)/iron(III) ions. The reactivity of HO2/O2 with ferric ions and its implication on the occurrence of the Haber-Weiss reaction
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100269a035
– volume: 21
  start-page: 257
  year: 2007
  ident: 10.1016/j.gca.2018.07.018_b0045
  article-title: A kinetic study of hydrogen peroxide decomposition in presence of pyrite
  publication-title: Chem. Biochem. Eng. Q
– volume: 70
  start-page: 4889
  year: 2006
  ident: 10.1016/j.gca.2018.07.018_b0195
  article-title: Mineralogic and sulfur isotopic effects accompanying oxidation of pyrite in millimolar solutions of hydrogen peroxide at temperatures from 4 to 150 degrees C
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.07.026
– volume: 250
  start-page: 661
  year: 1990
  ident: 10.1016/j.gca.2018.07.018_b0235
  article-title: Hydroxyl radical photoproduction in the sea and its potential impact on marine processes
  publication-title: Science
  doi: 10.1126/science.250.4981.661
– volume: 11
  start-page: 1
  year: 2010
  ident: 10.1016/j.gca.2018.07.018_b0050
  article-title: Adenine oxidation by pyrite-generated hydroxyl radicals
  publication-title: Geochem. Trans.
  doi: 10.1186/1467-4866-11-2
– volume: 30
  start-page: 71
  year: 1990
  ident: 10.1016/j.gca.2018.07.018_b0360
  article-title: Determination of photochemically produced hydroxyl radicals in seawater and fresh-water
  publication-title: Mar. Chem.
  doi: 10.1016/0304-4203(90)90062-H
– volume: 118
  start-page: 8917
  year: 2003
  ident: 10.1016/j.gca.2018.07.018_b0300
  article-title: Ab initio simulation of water interaction with the (100) surface of pyrite
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1566936
– volume: 71
  start-page: 5072
  year: 2007
  ident: 10.1016/j.gca.2018.07.018_b0200
  article-title: Oxygen isotope partitioning during oxidation of pyrite by H2O2 and its dependence on temperature
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2007.08.022
– volume: 154
  start-page: 60
  year: 2015
  ident: 10.1016/j.gca.2018.07.018_b0335
  article-title: Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS2) induced Fenton-like reactions
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.09.016
– volume: 45
  start-page: 164
  year: 2016
  ident: 10.1016/j.gca.2018.07.018_b0265
  article-title: Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2016.01.012
– volume: 107
  start-page: 514
  year: 2007
  ident: 10.1016/j.gca.2018.07.018_b0270
  article-title: Chemistry of iron sulfides
  publication-title: Chem. Rev.
  doi: 10.1021/cr0503658
– volume: 74
  start-page: 77
  year: 2015
  ident: 10.1016/j.gca.2018.07.018_b0005
  article-title: Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.02.006
– volume: 49
  start-page: 3499
  year: 2015
  ident: 10.1016/j.gca.2018.07.018_b0175
  article-title: Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505584r
– volume: 50
  start-page: 1509
  year: 1986
  ident: 10.1016/j.gca.2018.07.018_b0225
  article-title: Oxidation of pyrite in low-temperature acidic solutions-rate laws and surface textures
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(86)90325-X
– year: 2013
  ident: 10.1016/j.gca.2018.07.018_b0280
– volume: 83
  start-page: 379
  year: 2012
  ident: 10.1016/j.gca.2018.07.018_b0105
  article-title: Oxidative dissolution of pyrite surfaces by hexavalent chromium: Surface site saturation and surface renewal
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.01.006
– volume: 42
  start-page: 377
  year: 1996
  ident: 10.1016/j.gca.2018.07.018_b0075
  article-title: Kinetics of pyrite dissolution by hydrogen peroxide in perchloric acid
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(95)00094-W
– volume: 32
  start-page: 529
  year: 1976
  ident: 10.1016/j.gca.2018.07.018_b0090
  article-title: Investigation of the bonding mechanism in pyrite using the Mossbauer effect and X-ray crystallography
  publication-title: Acta Crystallogr Sect. A
  doi: 10.1107/S0567739476001198
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.gca.2018.07.018_b0185
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 292
  start-page: 57
  year: 2010
  ident: 10.1016/j.gca.2018.07.018_b0190
  article-title: Anoxic pyrite oxidation by water radiolysis products—a potential source of biosustaining energy
  publication-title: Earth. Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2010.01.020
– volume: 513
  start-page: 511
  year: 2002
  ident: 10.1016/j.gca.2018.07.018_b0135
  article-title: Density-functional theory studies of pyrite FeS2(100) and (110) surfaces
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(02)01849-6
– volume: 50
  start-page: 214
  year: 2016
  ident: 10.1016/j.gca.2018.07.018_b0315
  article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04323
– volume: 93
  start-page: 1216
  year: 2013
  ident: 10.1016/j.gca.2018.07.018_b0120
  article-title: Inflammatory stress response in A549 cells as a result of exposure to coal: evidence for the role of pyrite in coal workers' pneumoconiosis pathogenesis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.06.082
– volume: 58
  start-page: 4667
  year: 1994
  ident: 10.1016/j.gca.2018.07.018_b0245
  article-title: X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water-vapor and air
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90199-6
– volume: 13
  start-page: 42
  year: 2015
  ident: 10.1016/j.gca.2018.07.018_b0100
  article-title: The effect of pyrite on Escherichia coli in water: proof-of-concept for the elimination of waterborne bacteria by reactive minerals
  publication-title: J. Water Health
  doi: 10.2166/wh.2014.013
– volume: 42
  start-page: 1039
  year: 2017
  ident: 10.1016/j.gca.2018.07.018_b0365
  article-title: Effect of groundwater components on hydroxyl radical production by Fe(II) oxygenation
  publication-title: Earth Sci.
– volume: 58
  start-page: 5443
  year: 1994
  ident: 10.1016/j.gca.2018.07.018_b0330
  article-title: The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90241-0
– volume: 19
  start-page: 8787
  year: 2003
  ident: 10.1016/j.gca.2018.07.018_b0350
  article-title: Adsorption of phospholipids on pyrite and their effect on surface oxidation
  publication-title: Langmuir
  doi: 10.1021/la0300479
– volume: 59
  start-page: 1079
  year: 1995
  ident: 10.1016/j.gca.2018.07.018_b0165
  article-title: X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(95)00025-U
– volume: 206
  start-page: 364
  year: 2017
  ident: 10.1016/j.gca.2018.07.018_b0160
  article-title: Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2017.03.011
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.gca.2018.07.018_b0250
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 10
  start-page: 8
  year: 2009
  ident: 10.1016/j.gca.2018.07.018_b0060
  article-title: Evaluating the use of 3'-(p-Aminophenyl) fluorescein for determining the formation of highly reactive oxygen species in particle suspensions
  publication-title: Geochem. Trans.
  doi: 10.1186/1467-4866-10-8
– volume: 42
  start-page: 7470
  year: 2008
  ident: 10.1016/j.gca.2018.07.018_b0255
  article-title: Trichloroethylene transformation by natural mineral pyrite: the deciding role of oxygen
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801310y
– volume: 18
  start-page: 1637
  year: 1989
  ident: 10.1016/j.gca.2018.07.018_b0325
  article-title: Reduction potentials of one-electron couples involving free-radicals in aqueous-solution
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555843
– volume: 13
  start-page: 4
  year: 2012
  ident: 10.1016/j.gca.2018.07.018_b0115
  article-title: Quantification of particle-induced inflammatory stress response: a novel approach for toxicity testing of earth materials
  publication-title: Geochem. Trans.
  doi: 10.1186/1467-4866-13-4
– volume: 181
  start-page: 127
  year: 2016
  ident: 10.1016/j.gca.2018.07.018_b0130
  article-title: Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2015.06.061
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.gca.2018.07.018_b0180
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 46
  start-page: 71
  year: 1997
  ident: 10.1016/j.gca.2018.07.018_b0010
  article-title: Leaching of pyrite with hydrogen peroxide in sulphuric acid
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(96)00096-5
– volume: 185
  start-page: 1355
  year: 2011
  ident: 10.1016/j.gca.2018.07.018_b0040
  article-title: Degradation of trichloroethylene by Fenton reaction in pyrite suspension
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.10.055
– volume: 155
  start-page: 13
  year: 2015
  ident: 10.1016/j.gca.2018.07.018_b0305
  article-title: Study of the kinetics of pyrite oxidation under controlled redox potential
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.04.003
– volume: 244
  start-page: 438
  year: 2014
  ident: 10.1016/j.gca.2018.07.018_b0355
  article-title: An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.01.088
– volume: 51
  start-page: 5118
  year: 2017
  ident: 10.1016/j.gca.2018.07.018_b0125
  article-title: Hydroxylamine promoted goethite surface Fenton degradation of organic pollutants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05906
– volume: 66
  start-page: 85
  year: 2002
  ident: 10.1016/j.gca.2018.07.018_b0285
  article-title: Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(01)00745-1
– volume: 172
  start-page: 444
  year: 2016
  ident: 10.1016/j.gca.2018.07.018_b0345
  article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2015.10.015
– volume: 55
  start-page: 471
  year: 1991
  ident: 10.1016/j.gca.2018.07.018_b0240
  article-title: Pyrite oxidation at circumneutral pH
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(91)90005-P
– volume: 133
  start-page: 372
  year: 2014
  ident: 10.1016/j.gca.2018.07.018_b0205
  article-title: Scanning photoelectron microscopy studies of freshly fractured chalcopyrite exposed to O2 and H2O
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2014.02.037
– volume: 13
  start-page: 3
  year: 2012
  ident: 10.1016/j.gca.2018.07.018_b0095
  article-title: Phenylalanine as a hydroxyl radical-specific probe in pyrite slurries
  publication-title: Geochem. Trans.
  doi: 10.1186/1467-4866-13-3
– volume: 34
  start-page: 527
  year: 2012
  ident: 10.1016/j.gca.2018.07.018_b0110
  article-title: Pyrite-driven reactive oxygen species formation in simulated lung fluid: implications for coal workers' pneumoconiosis
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-011-9438-7
– volume: 38
  start-page: 2383
  year: 2004
  ident: 10.1016/j.gca.2018.07.018_b0320
  article-title: Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.01.033
– volume: 17
  start-page: 513
  year: 1988
  ident: 10.1016/j.gca.2018.07.018_b0025
  article-title: Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (.OH/.O) in aqueous-solution
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555805
– volume: 21
  start-page: 314
  year: 1974
  ident: 10.1016/j.gca.2018.07.018_b0310
  article-title: Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III)
  publication-title: Talanta
  doi: 10.1016/0039-9140(74)80012-3
– volume: 74
  start-page: 4971
  year: 2010
  ident: 10.1016/j.gca.2018.07.018_b0290
  article-title: Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2010.05.028
– volume: 40
  start-page: 81
  year: 1992
  ident: 10.1016/j.gca.2018.07.018_b0215
  article-title: Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively
  publication-title: Mar. Chem.
  doi: 10.1016/0304-4203(92)90049-G
– volume: 67
  start-page: 935
  year: 2003
  ident: 10.1016/j.gca.2018.07.018_b0020
  article-title: A mechanism for the production of hydroxyl radical at surface defect sites on pyrite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(02)01222-X
– volume: 75
  start-page: 6893
  year: 2011
  ident: 10.1016/j.gca.2018.07.018_b0035
  article-title: Redox potential (Eh) and anion effects of pyrite (FeS2) leaching at pH 1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.09.020
SSID ssj0007550
Score 2.5433547
Snippet Pyrite oxidation by hydrogen peroxide (H2O2) occurs in both natural and engineered systems. Hydroxyl radical (OH) is a key reactive intermediate for pyrite and...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 394
SubjectTerms Hydrogen peroxide
Hydroxyl radical
Oxidation
Pyrite
Surface
Title Mechanisms of hydroxyl radicals production from pyrite oxidation by hydrogen peroxide: Surface versus aqueous reactions
URI https://dx.doi.org/10.1016/j.gca.2018.07.018
https://www.osti.gov/biblio/1548093
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-yIvgifuLHKXnwSeiZbNMmvTcRdVX0RQXfSpJO7vbQ7bLd5W5f_Nud6YencPjgS0ObTiiTdGZCfvMbxg6lDzpLkjiSRQiRchlEDkQRSWsK9PahsI7ynW9u08GDunpMHhfYaZcLQ7DK1vY3Nr221u2T41abx-PhkHJ8ZaqJcc6gGc4U0W4rpWmVf3_5B_PQSdKkocg0ore7k80a4_XTE_WQNDV_J9X9-L9v6pX4u71zO-erbKWNF_lJ80lrbAFG62zpoq7HO99gf26AUneH1XPFy8B_zQuCpTzxia3PXyo-bhhdUfucMkn4eD7BIJOXf4dNMSXu5o0ULiROpOHYAT_43WwSrAdOoI1ZxS16jxJbjDDrsapN9nB-dn86iNpaCpGNMzHFa-Jxr-eEdinuMIJXMgMIygSDkwKZ8073-9p6r8CnXttgoI8WSAYLAKYfb7HeqBzBNuO2UAGjPiOwQ2GAYBMUjiWIILzxuthhotNi7luicap38ZR3iLLfOSo-J8XnQufY7LCjN5Fxw7Lx2cuqm5r8w1LJ0Qt8JrZH00giRI_rCUeEMrRlE1m8-7VB99gy3TXovm-sN53MYB-jlKk7qJfhAVs8ubwe3L4Cg17qeQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaW9lKYP8mgaHXIqmEhr2ZJ7C6Hp5rF7aQK5CUmWmg3pelnvku6_74wfIYWSQy8WWB5jZuSZEfrmG4BD4aMqsixNRBljIl0REhd4mQirS4z2sbSO6p3Hk3x0Lc9vspsNOOlrYQhW2fn-1qc33rq7c9Rp82g-nVKNr8gVMc5pdMOFzF_AJrFTZQPYPD67GE0eHbLKsrYSReQJCfSHmw3M66cn9iGhGwpPav3x7_A0qPCPexJ5Tt_Cmy5lZMftV23BRpi9g5ffm5a86_fwMA5UvTutf9Wsiux2XRIy5Z4tbHMEU7N5S-qKBmBUTMLm6wXmmaz6PW37KTG3bqVwLTHiDceJ8JX9WC2i9YERbmNVM4sBpMIRk8zmXfUHuD79dnUySrp2ColNC77Ea-Zxu-e4cjluMqKXogghSh012iUUzjs1HCrrvQw-98pGHYbohES0IQQ9TD_CYFbNwjYwW8qIiZ_mOCExR7AZCqci8Mi99qrcAd5r0fiOa5xaXtybHlR2Z1DxhhRvuDI47MCXR5F5S7Tx3MOyN435a7UYDATPie2RGUmEGHI9QYlQhnZtvEh3_--lB_BqdDW-NJdnk4s9eE0zLdjvEwyWi1XYx6Rl6T53i_IPi4TtKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+hydroxyl+radicals+production+from+pyrite+oxidation+by+hydrogen+peroxide%3A+Surface+versus+aqueous+reactions&rft.jtitle=Geochimica+et+cosmochimica+acta&rft.au=Zhang%2C+Peng&rft.au=Huang%2C+Wan&rft.au=Ji%2C+Zhuan&rft.au=Zhou%2C+Chenggang&rft.date=2018-10-01&rft.issn=0016-7037&rft.volume=238&rft.spage=394&rft.epage=410&rft_id=info:doi/10.1016%2Fj.gca.2018.07.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gca_2018_07_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7037&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7037&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7037&client=summon