Solid-State Donor–Acceptor Coaxial Heterojunction Nanowires via Living Crystallization-Driven Self-Assembly
The creation of organic heterojunctions from conjugated polymers on the nanoscale has attracted recent attention as a consequence of their considerable potential in optoelectronic devices. Herein, we report proof-of-concept results on a versatile synthetic strategy to access various linearly segment...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 31; pp. 13469 - 13480 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The creation of organic heterojunctions from conjugated polymers on the nanoscale has attracted recent attention as a consequence of their considerable potential in optoelectronic devices. Herein, we report proof-of-concept results on a versatile synthetic strategy to access various linearly segmented nanowire heterojunctions with controlled dimensions using the seeded growth “living crystallization-driven self-assembly” method followed by a secondary crystallization step. Specifically, we describe the creation of coaxial and also segmented coaxial B–A–B and A–B–A nanowires with a solvophilic poly(ethylene glycol) (PEG) corona, an inner crystalline core that consists of poly(di-n-hexylfluorene) (PDHF), which functions as a donor, and an outer crystalline core of poly(3-(2′-ethylhexyl)thiophene) (P3EHT), which acts as an acceptor. The latter is present either along the entire nanowire or solely in the central or terminal segments. These assemblies were created by seeded growth of two types of π-conjugated polymeric building blocks, the triblock copolymer PDHF-b-P3EHT-b-PEG and the diblock copolymer PDHF-b-PEG, by using fiber-like seeds derived from either material. The nanowires with both solid-state donor and acceptor blocks exhibit Förster resonance energy transfer (FRET) from the PDHF inner core to the P3EHT outer core which was characterized by fluorescence spectroscopy and laser confocal scanning fluorescence microscopy (LCSM). The FRET in the solid-state coaxial heterojunctions with an inner PDHF core and an outer P3EHT core was enhanced relative to the directly analogous system in which the P3EHT block was solvated. |
---|---|
AbstractList | The creation of organic heterojunctions from conjugated polymers on the nanoscale has attracted recent attention as a consequence of their considerable potential in optoelectronic devices. Herein, we report proof-of-concept results on a versatile synthetic strategy to access various linearly segmented nanowire heterojunctions with controlled dimensions using the seeded growth “living crystallization-driven self-assembly” method followed by a secondary crystallization step. Specifically, we describe the creation of coaxial and also segmented coaxial B–A–B and A–B–A nanowires with a solvophilic poly(ethylene glycol) (PEG) corona, an inner crystalline core that consists of poly(di-n-hexylfluorene) (PDHF), which functions as a donor, and an outer crystalline core of poly(3-(2′-ethylhexyl)thiophene) (P3EHT), which acts as an acceptor. The latter is present either along the entire nanowire or solely in the central or terminal segments. These assemblies were created by seeded growth of two types of π-conjugated polymeric building blocks, the triblock copolymer PDHF-b-P3EHT-b-PEG and the diblock copolymer PDHF-b-PEG, by using fiber-like seeds derived from either material. The nanowires with both solid-state donor and acceptor blocks exhibit Förster resonance energy transfer (FRET) from the PDHF inner core to the P3EHT outer core which was characterized by fluorescence spectroscopy and laser confocal scanning fluorescence microscopy (LCSM). The FRET in the solid-state coaxial heterojunctions with an inner PDHF core and an outer P3EHT core was enhanced relative to the directly analogous system in which the P3EHT block was solvated. The creation of organic heterojunctions from conjugated polymers on the nanoscale has attracted recent attention as a consequence of their considerable potential in optoelectronic devices. Herein, we report proof-of-concept results on a versatile synthetic strategy to access various linearly segmented nanowire heterojunctions with controlled dimensions using the seeded growth "living crystallization-driven self-assembly" method followed by a secondary crystallization step. Specifically, we describe the creation of coaxial and also segmented coaxial B-A-B and A-B-A nanowires with a solvophilic poly(ethylene glycol) (PEG) corona, an inner crystalline core that consists of poly(di- -hexylfluorene) (PDHF), which functions as a donor, and an outer crystalline core of poly(3-(2'-ethylhexyl)thiophene) (P3EHT), which acts as an acceptor. The latter is present either along the entire nanowire or solely in the central or terminal segments. These assemblies were created by seeded growth of two types of π-conjugated polymeric building blocks, the triblock copolymer PDHF- -P3EHT- -PEG and the diblock copolymer PDHF- -PEG, by using fiber-like seeds derived from either material. The nanowires with both solid-state donor and acceptor blocks exhibit Förster resonance energy transfer (FRET) from the PDHF inner core to the P3EHT outer core which was characterized by fluorescence spectroscopy and laser confocal scanning fluorescence microscopy (LCSM). The FRET in the solid-state coaxial heterojunctions with an inner PDHF core and an outer P3EHT core was enhanced relative to the directly analogous system in which the P3EHT block was solvated. |
Author | Harniman, Robert L Jin, Xu-Hui Whittell, George R Manners, Ian Richardson, Robert M Shaikh, Huda |
AuthorAffiliation | Department of Chemistry School of Physics School of Chemistry |
AuthorAffiliation_xml | – name: School of Physics – name: Department of Chemistry – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Huda orcidid: 0000-0003-1397-9935 surname: Shaikh fullname: Shaikh, Huda organization: School of Chemistry – sequence: 2 givenname: Xu-Hui orcidid: 0000-0002-5100-5704 surname: Jin fullname: Jin, Xu-Hui organization: School of Chemistry – sequence: 3 givenname: Robert L orcidid: 0000-0002-3452-1213 surname: Harniman fullname: Harniman, Robert L organization: School of Chemistry – sequence: 4 givenname: Robert M orcidid: 0000-0002-5084-2463 surname: Richardson fullname: Richardson, Robert M organization: School of Physics – sequence: 5 givenname: George R surname: Whittell fullname: Whittell, George R organization: School of Chemistry – sequence: 6 givenname: Ian orcidid: 0000-0002-3794-967X surname: Manners fullname: Manners, Ian email: imanners@uvic.ca organization: School of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32594739$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0LtOwzAUBmALgegFNmbkkQEXO7faY5UCRapgKMyR4wtylNiVnRbKxDvwhjwJiVqYmI6O9J1fR_8IHFtnFQAXBE8IjshNxUWYYIETNk2PwJCkEUYpibJjMMQYR2hKs3gARiFU3ZpElJyCQRylLJnGbAialauNRKuWtwrOnXX--_NrJoRat87D3PF3w2u4UK3yrtpY0Rpn4SO37s14FeDWcLg0W2NfYe53oeV1bT54j9Dcm62ycKVqjWYhqKasd2fgRPM6qPPDHIOXu9vnfIGWT_cP-WyJeMxwi2iSRYxmJcdUSamlzLhOtVIJLXUqqShF1glJMhpTLUipqUhEGVOFGckSxuIxuN7nCu9C8EoXa28a7ncFwUXfWtG3Vhxa6_jlnq83ZaPkH_6tqQNXe9BfVW7jbff9_1k_uRx7ZQ |
CitedBy_id | crossref_primary_10_1186_s12951_022_01449_y crossref_primary_10_1002_ange_202116572 crossref_primary_10_1002_ange_202310022 crossref_primary_10_1007_s12274_022_5222_5 crossref_primary_10_1016_j_eurpolymj_2023_112384 crossref_primary_10_1021_acs_macromol_3c00781 crossref_primary_10_1021_acsmacrolett_2c00752 crossref_primary_10_1021_acs_molpharmaceut_0c01099 crossref_primary_10_1039_D2PY00370H crossref_primary_10_1088_1361_6528_ac3f54 crossref_primary_10_1021_jacs_1c01571 crossref_primary_10_1021_jacs_2c12894 crossref_primary_10_1039_D1CC04825B crossref_primary_10_1002_anie_202315740 crossref_primary_10_1039_D0SC06878K crossref_primary_10_1021_acs_macromol_2c00406 crossref_primary_10_1039_D4PY00154K crossref_primary_10_1021_jacs_1c06020 crossref_primary_10_1021_acs_macromol_1c02005 crossref_primary_10_1021_acs_macromol_1c02402 crossref_primary_10_1021_jacs_3c09370 crossref_primary_10_1002_pol_20210866 crossref_primary_10_3390_polym13091481 crossref_primary_10_1002_adma_202006287 crossref_primary_10_1002_anie_202116572 crossref_primary_10_1002_adma_202101487 crossref_primary_10_1021_acsnano_3c09130 crossref_primary_10_1021_jacs_1c08076 crossref_primary_10_1002_admi_202201823 crossref_primary_10_1021_acs_macromol_3c00374 crossref_primary_10_1038_s44160_024_00554_0 crossref_primary_10_1016_j_matt_2023_04_019 crossref_primary_10_1002_anie_202310022 crossref_primary_10_1002_macp_202200151 crossref_primary_10_1016_j_polymer_2024_126897 crossref_primary_10_1002_ange_202315740 crossref_primary_10_1021_jacs_1c11209 crossref_primary_10_1016_j_chempr_2022_05_017 crossref_primary_10_1021_acs_chemrev_0c01334 crossref_primary_10_1021_acs_macromol_3c02357 crossref_primary_10_1007_s12274_021_3944_4 crossref_primary_10_1002_chem_202100940 crossref_primary_10_1063_5_0083099 crossref_primary_10_1002_cplu_202200254 crossref_primary_10_1039_D0PY01389G crossref_primary_10_1021_acs_macromol_2c01273 crossref_primary_10_1021_jacs_2c04984 |
Cites_doi | 10.1126/science.aad9521 10.1039/C9PY01342C 10.1021/ja202408w 10.1038/nnano.2016.125 10.1002/(SICI)1521-4095(199903)11:3<250::AID-ADMA250>3.0.CO;2-J 10.1038/nchem.664 10.1021/jacs.8b01954 10.1021/jacs.9b10904 10.1021/ma302463d 10.1002/anie.202000327 10.1021/jacs.5b12735 10.1021/ma301267k 10.1021/ja510946c 10.1021/nn3043836 10.1039/C6CS00155F 10.1039/C5CC06606A 10.1021/jacs.7b10199 10.1039/D0SC00806K 10.1021/acs.macromol.6b02295 10.1021/ma971073e 10.1126/science.1141382 10.1038/nmat4837 10.1002/polb.23904 10.1021/acs.chemmater.7b01393 10.1002/anie.201408831 10.1126/science.1261816 10.1021/ma020140o 10.1021/acs.macromol.7b01616 10.1038/s41578-019-0127-y 10.1016/j.polymer.2006.11.012 10.1021/jacs.7b04006 10.1021/jacs.0c01822 10.1002/chem.201300463 10.1021/ja0475353 10.1021/ma101697m 10.1021/ja306264d 10.1002/adma.200500461 10.1146/annurev-physchem-040513-103639 10.1021/ma901955c 10.1021/ja002205d 10.1021/ja2035317 10.1002/pola.1993.080311006 10.1038/s41467-019-10341-7 10.1021/ja500661k 10.1039/b805643a 10.1021/ma070977p 10.1038/s41467-018-03195-y 10.1039/C7SC00641A 10.1038/ncomms15909 10.1021/ma001677+ 10.1002/polb.1991.090291007 10.1039/C4CS00227J 10.1021/jacs.7b02208 10.1126/science.1210369 10.1038/nphoton.2013.82 10.1021/jacs.8b09861 10.1021/jacs.9b09885 10.1021/ja511952c 10.1021/acs.macromol.9b01947 10.1021/ma300263a 10.1038/nchem.1849 10.1021/jacs.5b02785 10.1038/nchem.2383 10.1021/jp510520m 10.1021/acs.macromol.7b02317 10.1021/ja0621905 10.1038/s41570-019-0153-8 10.1021/acs.accounts.6b00576 10.1038/nchem.2684 10.1021/acs.macromol.6b00330 10.1002/anie.201905724 10.1126/science.aar8104 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1021/jacs.0c04975 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 13480 |
ExternalDocumentID | 10_1021_jacs_0c04975 32594739 c701377836 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV AGXLV AHGAQ CGR CUPRZ CUY CVF ECM EIF GGK IH2 NPM XSW YQT ZCA ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-a390t-8462986ba08eddfdd6af5fee48bf5d8cbc6462d16838fc1bf8c4cb38e09164993 |
IEDL.DBID | ACS |
ISSN | 0002-7863 |
IngestDate | Thu Sep 26 19:32:08 EDT 2024 Sat Sep 28 08:27:30 EDT 2024 Thu Aug 27 13:41:55 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a390t-8462986ba08eddfdd6af5fee48bf5d8cbc6462d16838fc1bf8c4cb38e09164993 |
ORCID | 0000-0002-3452-1213 0000-0002-5100-5704 0000-0002-5084-2463 0000-0002-3794-967X 0000-0003-1397-9935 |
PMID | 32594739 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1021_jacs_0c04975 pubmed_primary_32594739 acs_journals_10_1021_jacs_0c04975 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-05 |
PublicationDateYYYYMMDD | 2020-08-05 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.1126/science.aad9521 – ident: ref34/cit34 doi: 10.1039/C9PY01342C – ident: ref38/cit38 doi: 10.1021/ja202408w – ident: ref4/cit4 doi: 10.1038/nnano.2016.125 – ident: ref51/cit51 doi: 10.1002/(SICI)1521-4095(199903)11:3<250::AID-ADMA250>3.0.CO;2-J – ident: ref15/cit15 doi: 10.1038/nchem.664 – ident: ref41/cit41 doi: 10.1021/jacs.8b01954 – ident: ref45/cit45 doi: 10.1021/jacs.9b10904 – ident: ref62/cit62 doi: 10.1021/ma302463d – ident: ref44/cit44 doi: 10.1002/anie.202000327 – ident: ref28/cit28 doi: 10.1021/jacs.5b12735 – ident: ref24/cit24 doi: 10.1021/ma301267k – ident: ref7/cit7 doi: 10.1021/ja510946c – ident: ref8/cit8 doi: 10.1021/nn3043836 – ident: ref12/cit12 doi: 10.1039/C6CS00155F – ident: ref29/cit29 doi: 10.1039/C5CC06606A – ident: ref17/cit17 doi: 10.1021/jacs.7b10199 – ident: ref47/cit47 doi: 10.1039/D0SC00806K – ident: ref58/cit58 doi: 10.1021/acs.macromol.6b02295 – ident: ref70/cit70 doi: 10.1021/ma971073e – ident: ref14/cit14 doi: 10.1126/science.1141382 – ident: ref25/cit25 doi: 10.1038/nmat4837 – ident: ref68/cit68 doi: 10.1002/polb.23904 – ident: ref64/cit64 doi: 10.1021/acs.chemmater.7b01393 – ident: ref11/cit11 doi: 10.1002/anie.201408831 – ident: ref27/cit27 doi: 10.1126/science.1261816 – ident: ref66/cit66 doi: 10.1021/ma020140o – ident: ref60/cit60 doi: 10.1021/acs.macromol.7b01616 – ident: ref3/cit3 doi: 10.1038/s41578-019-0127-y – ident: ref71/cit71 doi: 10.1016/j.polymer.2006.11.012 – ident: ref10/cit10 doi: 10.1021/jacs.7b04006 – ident: ref37/cit37 doi: 10.1021/jacs.0c01822 – ident: ref39/cit39 doi: 10.1002/chem.201300463 – ident: ref6/cit6 doi: 10.1021/ja0475353 – ident: ref53/cit53 doi: 10.1021/ma101697m – ident: ref20/cit20 doi: 10.1021/ja306264d – ident: ref67/cit67 doi: 10.1002/adma.200500461 – ident: ref56/cit56 doi: 10.1146/annurev-physchem-040513-103639 – ident: ref59/cit59 doi: 10.1021/ma901955c – ident: ref13/cit13 doi: 10.1021/ja002205d – ident: ref54/cit54 doi: 10.1021/ja2035317 – ident: ref69/cit69 doi: 10.1002/pola.1993.080311006 – ident: ref21/cit21 doi: 10.1038/s41467-019-10341-7 – ident: ref40/cit40 doi: 10.1021/ja500661k – ident: ref65/cit65 doi: 10.1039/b805643a – ident: ref23/cit23 doi: 10.1021/ma070977p – ident: ref42/cit42 doi: 10.1038/s41467-018-03195-y – ident: ref16/cit16 doi: 10.1039/C7SC00641A – ident: ref48/cit48 doi: 10.1038/ncomms15909 – ident: ref52/cit52 doi: 10.1021/ma001677+ – ident: ref61/cit61 doi: 10.1002/polb.1991.090291007 – ident: ref1/cit1 doi: 10.1039/C4CS00227J – ident: ref43/cit43 doi: 10.1021/jacs.7b02208 – ident: ref5/cit5 doi: 10.1126/science.1210369 – ident: ref2/cit2 doi: 10.1038/nphoton.2013.82 – ident: ref18/cit18 doi: 10.1021/jacs.8b09861 – ident: ref19/cit19 doi: 10.1021/jacs.9b09885 – ident: ref31/cit31 doi: 10.1021/ja511952c – ident: ref50/cit50 doi: 10.1021/acs.macromol.9b01947 – ident: ref72/cit72 doi: 10.1021/ma300263a – ident: ref30/cit30 doi: 10.1038/nchem.1849 – ident: ref63/cit63 doi: 10.1021/jacs.5b02785 – ident: ref32/cit32 doi: 10.1038/nchem.2383 – ident: ref55/cit55 doi: 10.1021/jp510520m – ident: ref46/cit46 doi: 10.1021/acs.macromol.7b02317 – ident: ref9/cit9 doi: 10.1021/ja0621905 – ident: ref35/cit35 doi: 10.1038/s41570-019-0153-8 – ident: ref57/cit57 doi: 10.1021/acs.accounts.6b00576 – ident: ref36/cit36 doi: 10.1038/nchem.2684 – ident: ref22/cit22 doi: 10.1021/acs.macromol.6b00330 – ident: ref33/cit33 doi: 10.1002/anie.201905724 – ident: ref49/cit49 doi: 10.1126/science.aar8104 |
SSID | ssj0004281 |
Score | 2.555383 |
Snippet | The creation of organic heterojunctions from conjugated polymers on the nanoscale has attracted recent attention as a consequence of their considerable... |
SourceID | crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 13469 |
SubjectTerms | Crystallization Molecular Structure Nanowires - chemistry Particle Size Polymers - chemical synthesis Polymers - chemistry Surface Properties |
Title | Solid-State Donor–Acceptor Coaxial Heterojunction Nanowires via Living Crystallization-Driven Self-Assembly |
URI | http://dx.doi.org/10.1021/jacs.0c04975 https://www.ncbi.nlm.nih.gov/pubmed/32594739 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHvTi-4GvrIkel_Td7ZEUkRj1giTeyD4TtLSmgBFP_gf_ob_E2VIkYIxem2m22Znd-abzzQxC51KE0lcRJcz3GfF4qAm1FSXa9iDcYMLjxeiE27ug1fGuH_yHGUF2MYPvmP5AYlCzBCDZ0F9GK04I58JAoLg9q390qD2FuSEN3JLgvvi2cUBiMOeA5qBk4VKaG-hqWpgzYZI81UZDXhNvP_s0_vG1m2i9RJW4PjGDLbSk0m20Gk-Hue2gfjtLepIU0BI3sjTLP98_6sJwWrIcxxl7BTvELcONyR7B1Rl1Ybh5M9PKeIBfegzf9My_BxznYwCUSVLWb5JGbu5L3FaJJiaD3OfJeBd1mpf3cYuUkxYIcyNrSACEOBENOLOoklJLGTDta6U8yrUvqeAiAAlpB9SlWthcU-EJ7lIFaCOAmMndQ5U0S9UBwtqyuaAOF4yaadYWj5grwQECDPGkZEEVncEWdcuTMugWSXAHghDztNy4KrqYqqj7PGm68Yvc_kR_31IuRHNe6EaH_1jlCK05Jng2_A__GFWG-UidAMIY8tPCvL4AYXbNQw |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57070,57120 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpTVSHA0yubEOaJAVaD0UpC4VV6lQtqgpEWUE__AH_IljNMURCUkrtbEGXkmnjeZDaETJSNFdcwIp5STQESGMFczYtwA3A0uA1GOTrhth8374PqBPlTF6rYWBpgoYKeiDOL_dBewbYJg0ZEAaCM6jxZoBLpqkVDS-SmD9Jg7RbsRC_0qz332aWuHZPHLDv1ClKVlaayg9jdPZULJ09loKM7k20y7xn8zvYqWK4yJzydKsYbm9GAdLSbT0W4bqN_J0p4iJdDEF9kgyz_fP86lzXDJcpxk_BW0Ejdtpkz2CIbPCg_DPZzZxsYFfulx3OrZPxE4yccAL9O0quYkF7m9PXFHp4bYeHJfpONNdN-4vEuapJq7QLgfO0MCkMSLWSi4w7RSRqmQG2q0DpgwVDEpZAgUyg2Zz4x0hWEykMJnGrBHCB6Uv4Vqg2ygdxA2jisk84TkzM62dkTMfQXmEEBJoBQP6-gYjqhbfTdFtwyJe-CS2NXq4OrodCqp7vOkBccfdNsTMX5T-eDbBZEf7_7jLUdosXl32-q2rto3e2jJs261zQyh-6g2zEf6ALDHUByWGvcFoxjVow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9tAEB5xSLQvlKMUKMciweMiX2uvHyOHKJxCBCTeoj2lgImRHRD0qf-Bf9hf0lnHAYFUqbzaY3u0M7vzjecC2NUq0cyknArGBI1kYin3DafWj9DdECqS9eiE07O4exUdXbPrKfAntTDIRIVvquogvtvV99o2HQZcqyC84SkEtQmbhlmW-IGb1tDKem-lkAH3J4g34XHY5Lp_fNrZIlW9s0XvUGVtXTrf4OKVrzqp5Hb_YST31a8PLRs_xfgCzDdYk7TGyrEIU2a4BF-yyYi3ZbjrFflA0xpwknYxLMo_v19aymW6FCXJCvGE2km6LmOmuEED6IRI8DwuXIPjijwOBDkZuD8SJCufEWbmeVPVSdulO0VJz-SWurjyncyfv8NV5-Ay69Jm_gIVYeqNKEKTIOWxFB43WlutY2GZNSbi0jLNlVQxUmg_5iG3ypeWq0jJkBvEIDF6UuEKzAyLoVkFYj1fKh5IJbibce3JVIQazSKCk0hrEa_BDi5Rv9k_Vb8OjQfomrirzcKtwd5EWv37cSuOf9D9GIvylSpEHy9KwnT9P76yDXPn7U7_5PDs-Cd8DZx37RJE2AbMjMoHs4kQZCS3aqX7C4mn2B0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid-State+Donor%E2%80%93Acceptor+Coaxial+Heterojunction+Nanowires+via+Living+Crystallization-Driven+Self-Assembly&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Shaikh%2C+Huda&rft.au=Jin%2C+Xu-Hui&rft.au=Harniman%2C+Robert+L.&rft.au=Richardson%2C+Robert+M.&rft.date=2020-08-05&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=31&rft.spage=13469&rft.epage=13480&rft_id=info:doi/10.1021%2Fjacs.0c04975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_0c04975 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |