Solid-State Donor–Acceptor Coaxial Heterojunction Nanowires via Living Crystallization-Driven Self-Assembly

The creation of organic heterojunctions from conjugated polymers on the nanoscale has attracted recent attention as a consequence of their considerable potential in optoelectronic devices. Herein, we report proof-of-concept results on a versatile synthetic strategy to access various linearly segment...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 31; pp. 13469 - 13480
Main Authors Shaikh, Huda, Jin, Xu-Hui, Harniman, Robert L, Richardson, Robert M, Whittell, George R, Manners, Ian
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The creation of organic heterojunctions from conjugated polymers on the nanoscale has attracted recent attention as a consequence of their considerable potential in optoelectronic devices. Herein, we report proof-of-concept results on a versatile synthetic strategy to access various linearly segmented nanowire heterojunctions with controlled dimensions using the seeded growth “living crystallization-driven self-assembly” method followed by a secondary crystallization step. Specifically, we describe the creation of coaxial and also segmented coaxial B–A–B and A–B–A nanowires with a solvophilic poly­(ethylene glycol) (PEG) corona, an inner crystalline core that consists of poly­(di-n-hexyl­fluorene) (PDHF), which functions as a donor, and an outer crystalline core of poly­(3-(2′-ethylhexyl)­thiophene) (P3EHT), which acts as an acceptor. The latter is present either along the entire nanowire or solely in the central or terminal segments. These assemblies were created by seeded growth of two types of π-conjugated polymeric building blocks, the triblock copolymer PDHF-b-P3EHT-b-PEG and the diblock copolymer PDHF-b-PEG, by using fiber-like seeds derived from either material. The nanowires with both solid-state donor and acceptor blocks exhibit Förster resonance energy transfer (FRET) from the PDHF inner core to the P3EHT outer core which was characterized by fluorescence spectroscopy and laser confocal scanning fluorescence microscopy (LCSM). The FRET in the solid-state coaxial heterojunctions with an inner PDHF core and an outer P3EHT core was enhanced relative to the directly analogous system in which the P3EHT block was solvated.
AbstractList The creation of organic heterojunctions from conjugated polymers on the nanoscale has attracted recent attention as a consequence of their considerable potential in optoelectronic devices. Herein, we report proof-of-concept results on a versatile synthetic strategy to access various linearly segmented nanowire heterojunctions with controlled dimensions using the seeded growth “living crystallization-driven self-assembly” method followed by a secondary crystallization step. Specifically, we describe the creation of coaxial and also segmented coaxial B–A–B and A–B–A nanowires with a solvophilic poly­(ethylene glycol) (PEG) corona, an inner crystalline core that consists of poly­(di-n-hexyl­fluorene) (PDHF), which functions as a donor, and an outer crystalline core of poly­(3-(2′-ethylhexyl)­thiophene) (P3EHT), which acts as an acceptor. The latter is present either along the entire nanowire or solely in the central or terminal segments. These assemblies were created by seeded growth of two types of π-conjugated polymeric building blocks, the triblock copolymer PDHF-b-P3EHT-b-PEG and the diblock copolymer PDHF-b-PEG, by using fiber-like seeds derived from either material. The nanowires with both solid-state donor and acceptor blocks exhibit Förster resonance energy transfer (FRET) from the PDHF inner core to the P3EHT outer core which was characterized by fluorescence spectroscopy and laser confocal scanning fluorescence microscopy (LCSM). The FRET in the solid-state coaxial heterojunctions with an inner PDHF core and an outer P3EHT core was enhanced relative to the directly analogous system in which the P3EHT block was solvated.
The creation of organic heterojunctions from conjugated polymers on the nanoscale has attracted recent attention as a consequence of their considerable potential in optoelectronic devices. Herein, we report proof-of-concept results on a versatile synthetic strategy to access various linearly segmented nanowire heterojunctions with controlled dimensions using the seeded growth "living crystallization-driven self-assembly" method followed by a secondary crystallization step. Specifically, we describe the creation of coaxial and also segmented coaxial B-A-B and A-B-A nanowires with a solvophilic poly(ethylene glycol) (PEG) corona, an inner crystalline core that consists of poly(di- -hexylfluorene) (PDHF), which functions as a donor, and an outer crystalline core of poly(3-(2'-ethylhexyl)thiophene) (P3EHT), which acts as an acceptor. The latter is present either along the entire nanowire or solely in the central or terminal segments. These assemblies were created by seeded growth of two types of π-conjugated polymeric building blocks, the triblock copolymer PDHF- -P3EHT- -PEG and the diblock copolymer PDHF- -PEG, by using fiber-like seeds derived from either material. The nanowires with both solid-state donor and acceptor blocks exhibit Förster resonance energy transfer (FRET) from the PDHF inner core to the P3EHT outer core which was characterized by fluorescence spectroscopy and laser confocal scanning fluorescence microscopy (LCSM). The FRET in the solid-state coaxial heterojunctions with an inner PDHF core and an outer P3EHT core was enhanced relative to the directly analogous system in which the P3EHT block was solvated.
Author Harniman, Robert L
Jin, Xu-Hui
Whittell, George R
Manners, Ian
Richardson, Robert M
Shaikh, Huda
AuthorAffiliation Department of Chemistry
School of Physics
School of Chemistry
AuthorAffiliation_xml – name: School of Physics
– name: Department of Chemistry
– name: School of Chemistry
Author_xml – sequence: 1
  givenname: Huda
  orcidid: 0000-0003-1397-9935
  surname: Shaikh
  fullname: Shaikh, Huda
  organization: School of Chemistry
– sequence: 2
  givenname: Xu-Hui
  orcidid: 0000-0002-5100-5704
  surname: Jin
  fullname: Jin, Xu-Hui
  organization: School of Chemistry
– sequence: 3
  givenname: Robert L
  orcidid: 0000-0002-3452-1213
  surname: Harniman
  fullname: Harniman, Robert L
  organization: School of Chemistry
– sequence: 4
  givenname: Robert M
  orcidid: 0000-0002-5084-2463
  surname: Richardson
  fullname: Richardson, Robert M
  organization: School of Physics
– sequence: 5
  givenname: George R
  surname: Whittell
  fullname: Whittell, George R
  organization: School of Chemistry
– sequence: 6
  givenname: Ian
  orcidid: 0000-0002-3794-967X
  surname: Manners
  fullname: Manners, Ian
  email: imanners@uvic.ca
  organization: School of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32594739$$D View this record in MEDLINE/PubMed
BookMark eNpt0LtOwzAUBmALgegFNmbkkQEXO7faY5UCRapgKMyR4wtylNiVnRbKxDvwhjwJiVqYmI6O9J1fR_8IHFtnFQAXBE8IjshNxUWYYIETNk2PwJCkEUYpibJjMMQYR2hKs3gARiFU3ZpElJyCQRylLJnGbAialauNRKuWtwrOnXX--_NrJoRat87D3PF3w2u4UK3yrtpY0Rpn4SO37s14FeDWcLg0W2NfYe53oeV1bT54j9Dcm62ycKVqjWYhqKasd2fgRPM6qPPDHIOXu9vnfIGWT_cP-WyJeMxwi2iSRYxmJcdUSamlzLhOtVIJLXUqqShF1glJMhpTLUipqUhEGVOFGckSxuIxuN7nCu9C8EoXa28a7ncFwUXfWtG3Vhxa6_jlnq83ZaPkH_6tqQNXe9BfVW7jbff9_1k_uRx7ZQ
CitedBy_id crossref_primary_10_1186_s12951_022_01449_y
crossref_primary_10_1002_ange_202116572
crossref_primary_10_1002_ange_202310022
crossref_primary_10_1007_s12274_022_5222_5
crossref_primary_10_1016_j_eurpolymj_2023_112384
crossref_primary_10_1021_acs_macromol_3c00781
crossref_primary_10_1021_acsmacrolett_2c00752
crossref_primary_10_1021_acs_molpharmaceut_0c01099
crossref_primary_10_1039_D2PY00370H
crossref_primary_10_1088_1361_6528_ac3f54
crossref_primary_10_1021_jacs_1c01571
crossref_primary_10_1021_jacs_2c12894
crossref_primary_10_1039_D1CC04825B
crossref_primary_10_1002_anie_202315740
crossref_primary_10_1039_D0SC06878K
crossref_primary_10_1021_acs_macromol_2c00406
crossref_primary_10_1039_D4PY00154K
crossref_primary_10_1021_jacs_1c06020
crossref_primary_10_1021_acs_macromol_1c02005
crossref_primary_10_1021_acs_macromol_1c02402
crossref_primary_10_1021_jacs_3c09370
crossref_primary_10_1002_pol_20210866
crossref_primary_10_3390_polym13091481
crossref_primary_10_1002_adma_202006287
crossref_primary_10_1002_anie_202116572
crossref_primary_10_1002_adma_202101487
crossref_primary_10_1021_acsnano_3c09130
crossref_primary_10_1021_jacs_1c08076
crossref_primary_10_1002_admi_202201823
crossref_primary_10_1021_acs_macromol_3c00374
crossref_primary_10_1038_s44160_024_00554_0
crossref_primary_10_1016_j_matt_2023_04_019
crossref_primary_10_1002_anie_202310022
crossref_primary_10_1002_macp_202200151
crossref_primary_10_1016_j_polymer_2024_126897
crossref_primary_10_1002_ange_202315740
crossref_primary_10_1021_jacs_1c11209
crossref_primary_10_1016_j_chempr_2022_05_017
crossref_primary_10_1021_acs_chemrev_0c01334
crossref_primary_10_1021_acs_macromol_3c02357
crossref_primary_10_1007_s12274_021_3944_4
crossref_primary_10_1002_chem_202100940
crossref_primary_10_1063_5_0083099
crossref_primary_10_1002_cplu_202200254
crossref_primary_10_1039_D0PY01389G
crossref_primary_10_1021_acs_macromol_2c01273
crossref_primary_10_1021_jacs_2c04984
Cites_doi 10.1126/science.aad9521
10.1039/C9PY01342C
10.1021/ja202408w
10.1038/nnano.2016.125
10.1002/(SICI)1521-4095(199903)11:3<250::AID-ADMA250>3.0.CO;2-J
10.1038/nchem.664
10.1021/jacs.8b01954
10.1021/jacs.9b10904
10.1021/ma302463d
10.1002/anie.202000327
10.1021/jacs.5b12735
10.1021/ma301267k
10.1021/ja510946c
10.1021/nn3043836
10.1039/C6CS00155F
10.1039/C5CC06606A
10.1021/jacs.7b10199
10.1039/D0SC00806K
10.1021/acs.macromol.6b02295
10.1021/ma971073e
10.1126/science.1141382
10.1038/nmat4837
10.1002/polb.23904
10.1021/acs.chemmater.7b01393
10.1002/anie.201408831
10.1126/science.1261816
10.1021/ma020140o
10.1021/acs.macromol.7b01616
10.1038/s41578-019-0127-y
10.1016/j.polymer.2006.11.012
10.1021/jacs.7b04006
10.1021/jacs.0c01822
10.1002/chem.201300463
10.1021/ja0475353
10.1021/ma101697m
10.1021/ja306264d
10.1002/adma.200500461
10.1146/annurev-physchem-040513-103639
10.1021/ma901955c
10.1021/ja002205d
10.1021/ja2035317
10.1002/pola.1993.080311006
10.1038/s41467-019-10341-7
10.1021/ja500661k
10.1039/b805643a
10.1021/ma070977p
10.1038/s41467-018-03195-y
10.1039/C7SC00641A
10.1038/ncomms15909
10.1021/ma001677+
10.1002/polb.1991.090291007
10.1039/C4CS00227J
10.1021/jacs.7b02208
10.1126/science.1210369
10.1038/nphoton.2013.82
10.1021/jacs.8b09861
10.1021/jacs.9b09885
10.1021/ja511952c
10.1021/acs.macromol.9b01947
10.1021/ma300263a
10.1038/nchem.1849
10.1021/jacs.5b02785
10.1038/nchem.2383
10.1021/jp510520m
10.1021/acs.macromol.7b02317
10.1021/ja0621905
10.1038/s41570-019-0153-8
10.1021/acs.accounts.6b00576
10.1038/nchem.2684
10.1021/acs.macromol.6b00330
10.1002/anie.201905724
10.1126/science.aar8104
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1021/jacs.0c04975
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 13480
ExternalDocumentID 10_1021_jacs_0c04975
32594739
c701377836
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHGAQ
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
IH2
NPM
XSW
YQT
ZCA
~02
AAYXX
CITATION
ID FETCH-LOGICAL-a390t-8462986ba08eddfdd6af5fee48bf5d8cbc6462d16838fc1bf8c4cb38e09164993
IEDL.DBID ACS
ISSN 0002-7863
IngestDate Thu Sep 26 19:32:08 EDT 2024
Sat Sep 28 08:27:30 EDT 2024
Thu Aug 27 13:41:55 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a390t-8462986ba08eddfdd6af5fee48bf5d8cbc6462d16838fc1bf8c4cb38e09164993
ORCID 0000-0002-3452-1213
0000-0002-5100-5704
0000-0002-5084-2463
0000-0002-3794-967X
0000-0003-1397-9935
PMID 32594739
PageCount 12
ParticipantIDs crossref_primary_10_1021_jacs_0c04975
pubmed_primary_32594739
acs_journals_10_1021_jacs_0c04975
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2020-08-05
PublicationDateYYYYMMDD 2020-08-05
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1126/science.aad9521
– ident: ref34/cit34
  doi: 10.1039/C9PY01342C
– ident: ref38/cit38
  doi: 10.1021/ja202408w
– ident: ref4/cit4
  doi: 10.1038/nnano.2016.125
– ident: ref51/cit51
  doi: 10.1002/(SICI)1521-4095(199903)11:3<250::AID-ADMA250>3.0.CO;2-J
– ident: ref15/cit15
  doi: 10.1038/nchem.664
– ident: ref41/cit41
  doi: 10.1021/jacs.8b01954
– ident: ref45/cit45
  doi: 10.1021/jacs.9b10904
– ident: ref62/cit62
  doi: 10.1021/ma302463d
– ident: ref44/cit44
  doi: 10.1002/anie.202000327
– ident: ref28/cit28
  doi: 10.1021/jacs.5b12735
– ident: ref24/cit24
  doi: 10.1021/ma301267k
– ident: ref7/cit7
  doi: 10.1021/ja510946c
– ident: ref8/cit8
  doi: 10.1021/nn3043836
– ident: ref12/cit12
  doi: 10.1039/C6CS00155F
– ident: ref29/cit29
  doi: 10.1039/C5CC06606A
– ident: ref17/cit17
  doi: 10.1021/jacs.7b10199
– ident: ref47/cit47
  doi: 10.1039/D0SC00806K
– ident: ref58/cit58
  doi: 10.1021/acs.macromol.6b02295
– ident: ref70/cit70
  doi: 10.1021/ma971073e
– ident: ref14/cit14
  doi: 10.1126/science.1141382
– ident: ref25/cit25
  doi: 10.1038/nmat4837
– ident: ref68/cit68
  doi: 10.1002/polb.23904
– ident: ref64/cit64
  doi: 10.1021/acs.chemmater.7b01393
– ident: ref11/cit11
  doi: 10.1002/anie.201408831
– ident: ref27/cit27
  doi: 10.1126/science.1261816
– ident: ref66/cit66
  doi: 10.1021/ma020140o
– ident: ref60/cit60
  doi: 10.1021/acs.macromol.7b01616
– ident: ref3/cit3
  doi: 10.1038/s41578-019-0127-y
– ident: ref71/cit71
  doi: 10.1016/j.polymer.2006.11.012
– ident: ref10/cit10
  doi: 10.1021/jacs.7b04006
– ident: ref37/cit37
  doi: 10.1021/jacs.0c01822
– ident: ref39/cit39
  doi: 10.1002/chem.201300463
– ident: ref6/cit6
  doi: 10.1021/ja0475353
– ident: ref53/cit53
  doi: 10.1021/ma101697m
– ident: ref20/cit20
  doi: 10.1021/ja306264d
– ident: ref67/cit67
  doi: 10.1002/adma.200500461
– ident: ref56/cit56
  doi: 10.1146/annurev-physchem-040513-103639
– ident: ref59/cit59
  doi: 10.1021/ma901955c
– ident: ref13/cit13
  doi: 10.1021/ja002205d
– ident: ref54/cit54
  doi: 10.1021/ja2035317
– ident: ref69/cit69
  doi: 10.1002/pola.1993.080311006
– ident: ref21/cit21
  doi: 10.1038/s41467-019-10341-7
– ident: ref40/cit40
  doi: 10.1021/ja500661k
– ident: ref65/cit65
  doi: 10.1039/b805643a
– ident: ref23/cit23
  doi: 10.1021/ma070977p
– ident: ref42/cit42
  doi: 10.1038/s41467-018-03195-y
– ident: ref16/cit16
  doi: 10.1039/C7SC00641A
– ident: ref48/cit48
  doi: 10.1038/ncomms15909
– ident: ref52/cit52
  doi: 10.1021/ma001677+
– ident: ref61/cit61
  doi: 10.1002/polb.1991.090291007
– ident: ref1/cit1
  doi: 10.1039/C4CS00227J
– ident: ref43/cit43
  doi: 10.1021/jacs.7b02208
– ident: ref5/cit5
  doi: 10.1126/science.1210369
– ident: ref2/cit2
  doi: 10.1038/nphoton.2013.82
– ident: ref18/cit18
  doi: 10.1021/jacs.8b09861
– ident: ref19/cit19
  doi: 10.1021/jacs.9b09885
– ident: ref31/cit31
  doi: 10.1021/ja511952c
– ident: ref50/cit50
  doi: 10.1021/acs.macromol.9b01947
– ident: ref72/cit72
  doi: 10.1021/ma300263a
– ident: ref30/cit30
  doi: 10.1038/nchem.1849
– ident: ref63/cit63
  doi: 10.1021/jacs.5b02785
– ident: ref32/cit32
  doi: 10.1038/nchem.2383
– ident: ref55/cit55
  doi: 10.1021/jp510520m
– ident: ref46/cit46
  doi: 10.1021/acs.macromol.7b02317
– ident: ref9/cit9
  doi: 10.1021/ja0621905
– ident: ref35/cit35
  doi: 10.1038/s41570-019-0153-8
– ident: ref57/cit57
  doi: 10.1021/acs.accounts.6b00576
– ident: ref36/cit36
  doi: 10.1038/nchem.2684
– ident: ref22/cit22
  doi: 10.1021/acs.macromol.6b00330
– ident: ref33/cit33
  doi: 10.1002/anie.201905724
– ident: ref49/cit49
  doi: 10.1126/science.aar8104
SSID ssj0004281
Score 2.555383
Snippet The creation of organic heterojunctions from conjugated polymers on the nanoscale has attracted recent attention as a consequence of their considerable...
SourceID crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 13469
SubjectTerms Crystallization
Molecular Structure
Nanowires - chemistry
Particle Size
Polymers - chemical synthesis
Polymers - chemistry
Surface Properties
Title Solid-State Donor–Acceptor Coaxial Heterojunction Nanowires via Living Crystallization-Driven Self-Assembly
URI http://dx.doi.org/10.1021/jacs.0c04975
https://www.ncbi.nlm.nih.gov/pubmed/32594739
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHvTi-4GvrIkel_Td7ZEUkRj1giTeyD4TtLSmgBFP_gf_ob_E2VIkYIxem2m22Znd-abzzQxC51KE0lcRJcz3GfF4qAm1FSXa9iDcYMLjxeiE27ug1fGuH_yHGUF2MYPvmP5AYlCzBCDZ0F9GK04I58JAoLg9q390qD2FuSEN3JLgvvi2cUBiMOeA5qBk4VKaG-hqWpgzYZI81UZDXhNvP_s0_vG1m2i9RJW4PjGDLbSk0m20Gk-Hue2gfjtLepIU0BI3sjTLP98_6sJwWrIcxxl7BTvELcONyR7B1Rl1Ybh5M9PKeIBfegzf9My_BxznYwCUSVLWb5JGbu5L3FaJJiaD3OfJeBd1mpf3cYuUkxYIcyNrSACEOBENOLOoklJLGTDta6U8yrUvqeAiAAlpB9SlWthcU-EJ7lIFaCOAmMndQ5U0S9UBwtqyuaAOF4yaadYWj5grwQECDPGkZEEVncEWdcuTMugWSXAHghDztNy4KrqYqqj7PGm68Yvc_kR_31IuRHNe6EaH_1jlCK05Jng2_A__GFWG-UidAMIY8tPCvL4AYXbNQw
link.rule.ids 315,783,787,2772,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpTVSHA0yubEOaJAVaD0UpC4VV6lQtqgpEWUE__AH_IljNMURCUkrtbEGXkmnjeZDaETJSNFdcwIp5STQESGMFczYtwA3A0uA1GOTrhth8374PqBPlTF6rYWBpgoYKeiDOL_dBewbYJg0ZEAaCM6jxZoBLpqkVDS-SmD9Jg7RbsRC_0qz332aWuHZPHLDv1ClKVlaayg9jdPZULJ09loKM7k20y7xn8zvYqWK4yJzydKsYbm9GAdLSbT0W4bqN_J0p4iJdDEF9kgyz_fP86lzXDJcpxk_BW0Ejdtpkz2CIbPCg_DPZzZxsYFfulx3OrZPxE4yccAL9O0quYkF7m9PXFHp4bYeHJfpONNdN-4vEuapJq7QLgfO0MCkMSLWSi4w7RSRqmQG2q0DpgwVDEpZAgUyg2Zz4x0hWEykMJnGrBHCB6Uv4Vqg2ygdxA2jisk84TkzM62dkTMfQXmEEBJoBQP6-gYjqhbfTdFtwyJe-CS2NXq4OrodCqp7vOkBccfdNsTMX5T-eDbBZEf7_7jLUdosXl32-q2rto3e2jJs261zQyh-6g2zEf6ALDHUByWGvcFoxjVow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9tAEB5xSLQvlKMUKMciweMiX2uvHyOHKJxCBCTeoj2lgImRHRD0qf-Bf9hf0lnHAYFUqbzaY3u0M7vzjecC2NUq0cyknArGBI1kYin3DafWj9DdECqS9eiE07O4exUdXbPrKfAntTDIRIVvquogvtvV99o2HQZcqyC84SkEtQmbhlmW-IGb1tDKem-lkAH3J4g34XHY5Lp_fNrZIlW9s0XvUGVtXTrf4OKVrzqp5Hb_YST31a8PLRs_xfgCzDdYk7TGyrEIU2a4BF-yyYi3ZbjrFflA0xpwknYxLMo_v19aymW6FCXJCvGE2km6LmOmuEED6IRI8DwuXIPjijwOBDkZuD8SJCufEWbmeVPVSdulO0VJz-SWurjyncyfv8NV5-Ay69Jm_gIVYeqNKEKTIOWxFB43WlutY2GZNSbi0jLNlVQxUmg_5iG3ypeWq0jJkBvEIDF6UuEKzAyLoVkFYj1fKh5IJbibce3JVIQazSKCk0hrEa_BDi5Rv9k_Vb8OjQfomrirzcKtwd5EWv37cSuOf9D9GIvylSpEHy9KwnT9P76yDXPn7U7_5PDs-Cd8DZx37RJE2AbMjMoHs4kQZCS3aqX7C4mn2B0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid-State+Donor%E2%80%93Acceptor+Coaxial+Heterojunction+Nanowires+via+Living+Crystallization-Driven+Self-Assembly&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Shaikh%2C+Huda&rft.au=Jin%2C+Xu-Hui&rft.au=Harniman%2C+Robert+L.&rft.au=Richardson%2C+Robert+M.&rft.date=2020-08-05&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=31&rft.spage=13469&rft.epage=13480&rft_id=info:doi/10.1021%2Fjacs.0c04975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_0c04975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon