Gas Hydrate Formation in a Variable Volume Bed of Silica Sand Particles

Gas hydrate formation was studied in a new apparatus designed to accommodate three different size volume beds of silica sand particles. The sand particles have an average diameter equal to 329 μm. The hydrate was formed in the water, which occupied the interstitial space of the water-saturated silic...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 23; no. 11; pp. 5496 - 5507
Main Authors Linga, Praveen, Haligva, Cef, Nam, Sung Chan, Ripmeester, John A, Englezos, Peter
Format Journal Article
LanguageEnglish
Published American Chemical Society 19.11.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gas hydrate formation was studied in a new apparatus designed to accommodate three different size volume beds of silica sand particles. The sand particles have an average diameter equal to 329 μm. The hydrate was formed in the water, which occupied the interstitial space of the water-saturated silica sand bed. A bulk gas phase was present above the bed (gas cap). Gas uptake measurements were carried out during experiments at constant temperature. More than 74.0% of water conversion to hydrate was achieved in all experiments conducted with methane at 4.0 and 1.0 °C. An initial slow growth was followed by a rapid hydrate growth rate of equal magnitude for nearly all experiments until 43−53% of water was converted to hydrate. During the third and final growth stage, the final conversions were between 74 and 98% and the conversion dynamics changed. Independent verification of hydrate formation in the sand was achieved via Raman spectroscopy and morphology observations in experiments using the same sand/water system.
AbstractList Gas hydrate formation was studied in a new apparatus designed to accommodate three different size volume beds of silica sand particles. The sand particles have an average diameter equal to 329 μm. The hydrate was formed in the water, which occupied the interstitial space of the water-saturated silica sand bed. A bulk gas phase was present above the bed (gas cap). Gas uptake measurements were carried out during experiments at constant temperature. More than 74.0% of water conversion to hydrate was achieved in all experiments conducted with methane at 4.0 and 1.0 °C. An initial slow growth was followed by a rapid hydrate growth rate of equal magnitude for nearly all experiments until 43−53% of water was converted to hydrate. During the third and final growth stage, the final conversions were between 74 and 98% and the conversion dynamics changed. Independent verification of hydrate formation in the sand was achieved via Raman spectroscopy and morphology observations in experiments using the same sand/water system.
Author Haligva, Cef
Englezos, Peter
Ripmeester, John A
Linga, Praveen
Nam, Sung Chan
Author_xml – sequence: 1
  givenname: Praveen
  surname: Linga
  fullname: Linga, Praveen
– sequence: 2
  givenname: Cef
  surname: Haligva
  fullname: Haligva, Cef
– sequence: 3
  givenname: Sung Chan
  surname: Nam
  fullname: Nam, Sung Chan
– sequence: 4
  givenname: John A
  surname: Ripmeester
  fullname: Ripmeester, John A
– sequence: 5
  givenname: Peter
  surname: Englezos
  fullname: Englezos, Peter
  email: englezos@interchange.ubc.ca
BookMark eNptkLFOwzAURS1UJNLCwB94YWAIPCdxYo9Q0RapEkiFrtGL8yy5SmJkp0P_nqAiJqY73KOrqzNns8EPxNitgAcBmXgkqwFkkfUXLBEyg1RCpmcsAaWqFMqsuGLzGA8AUOZKJmy9xsg3pzbgSHzlQ4-j8wN3A0e-x-Cw6YjvfXfsiT9Ty73lO9c5g3yHQ8vfMYzOdBSv2aXFLtLNby7Y5-rlY7lJt2_r1-XTNsVcw5jKpq1sKYoit2CzQsvGVPnU2EYIrUqLZEAJMKrRGoSpSEtRUNnYSpIqjc0X7P68a4KPMZCtv4LrMZxqAfWPgfrPwMTenVk0sT74YximZ_9w3zACWmw
CitedBy_id crossref_primary_10_1016_j_jngse_2018_06_018
crossref_primary_10_1021_acs_energyfuels_0c01291
crossref_primary_10_1016_j_jngse_2022_104528
crossref_primary_10_1016_j_jngse_2016_03_043
crossref_primary_10_1016_j_fuel_2018_01_010
crossref_primary_10_1021_acs_energyfuels_8b02021
crossref_primary_10_1016_j_apenergy_2016_03_101
crossref_primary_10_1021_ef400397x
crossref_primary_10_1016_j_ijggc_2014_03_008
crossref_primary_10_1016_j_cjche_2019_02_032
crossref_primary_10_1016_j_jngse_2016_07_065
crossref_primary_10_1016_j_fuel_2022_125722
crossref_primary_10_1016_j_applthermaleng_2022_118747
crossref_primary_10_1021_acs_energyfuels_8b00874
crossref_primary_10_1039_D1NR00751C
crossref_primary_10_1142_S2010132515500303
crossref_primary_10_3390_en15020485
crossref_primary_10_1021_acs_energyfuels_8b00195
crossref_primary_10_1016_j_fuel_2014_10_041
crossref_primary_10_1016_j_fuel_2022_123795
crossref_primary_10_1016_j_energy_2012_10_046
crossref_primary_10_1016_j_energy_2018_05_124
crossref_primary_10_1252_jcej_13we206
crossref_primary_10_1021_ie502684j
crossref_primary_10_1016_j_apenergy_2019_113635
crossref_primary_10_1021_acsnano_2c04640
crossref_primary_10_1021_ef3001357
crossref_primary_10_1016_j_cej_2018_01_120
crossref_primary_10_1021_ef5009133
crossref_primary_10_1002_ghg_1861
crossref_primary_10_1021_ef201641v
crossref_primary_10_1139_cjc_2014_0537
crossref_primary_10_1016_j_apenergy_2019_114275
crossref_primary_10_1139_cjc_2014_0543
crossref_primary_10_1007_s11708_021_0740_5
crossref_primary_10_1016_j_energy_2015_03_103
crossref_primary_10_1016_j_fuel_2014_11_083
crossref_primary_10_1021_acs_iecr_7b03256
crossref_primary_10_1016_j_cjche_2018_12_016
crossref_primary_10_1016_j_rser_2024_114695
crossref_primary_10_1021_acsami_0c15675
crossref_primary_10_1021_ef901220m
crossref_primary_10_1016_j_apenergy_2019_03_160
crossref_primary_10_1016_j_ijhydene_2013_01_123
crossref_primary_10_1021_acssuschemeng_1c07024
crossref_primary_10_1016_j_jct_2013_02_003
crossref_primary_10_1016_j_jngse_2012_11_004
crossref_primary_10_3390_en10040561
crossref_primary_10_1016_j_fuel_2018_06_055
crossref_primary_10_1021_acs_energyfuels_3c03820
crossref_primary_10_1016_j_mri_2014_12_010
crossref_primary_10_1021_acs_energyfuels_2c03053
crossref_primary_10_1016_j_energy_2018_07_054
crossref_primary_10_1016_j_desal_2022_115662
crossref_primary_10_1016_j_fuel_2016_04_017
crossref_primary_10_1021_acs_iecr_9b01952
crossref_primary_10_1016_j_ces_2016_01_027
crossref_primary_10_1016_j_fuel_2018_01_067
crossref_primary_10_1021_ie500580y
crossref_primary_10_1016_j_energy_2023_128315
crossref_primary_10_1088_1755_1315_802_1_012006
crossref_primary_10_1080_00194506_2017_1378129
crossref_primary_10_1088_1755_1315_802_1_012005
crossref_primary_10_1007_s10553_023_01570_0
crossref_primary_10_1016_j_ijggc_2013_02_008
crossref_primary_10_1029_2023JB027333
crossref_primary_10_3390_en15124261
crossref_primary_10_1021_acs_energyfuels_2c01533
crossref_primary_10_1016_j_enmf_2020_11_003
crossref_primary_10_1016_j_energy_2023_130032
crossref_primary_10_1021_ef400720h
crossref_primary_10_1021_acssuschemeng_7b03238
crossref_primary_10_1016_j_energy_2016_02_135
crossref_primary_10_1080_15567036_2018_1496203
crossref_primary_10_1016_j_jngse_2016_04_026
crossref_primary_10_1016_j_cjche_2019_02_017
crossref_primary_10_1016_j_apenergy_2023_122120
crossref_primary_10_3390_en6052468
crossref_primary_10_1016_j_ces_2021_117100
crossref_primary_10_1021_ef402445k
crossref_primary_10_1021_ie5042885
crossref_primary_10_1016_j_marpetgeo_2014_08_010
crossref_primary_10_1016_j_ces_2021_117349
crossref_primary_10_1016_j_ijheatmasstransfer_2015_08_077
crossref_primary_10_1021_acs_jpcc_9b06366
crossref_primary_10_1007_s11430_012_4546_5
crossref_primary_10_1016_j_cej_2020_126955
crossref_primary_10_1016_j_apt_2021_02_026
crossref_primary_10_1016_j_jgsce_2023_204898
crossref_primary_10_1016_j_fuel_2021_121021
crossref_primary_10_1021_ef101651b
crossref_primary_10_1007_s10765_021_02920_y
crossref_primary_10_1177_0144598720974159
crossref_primary_10_1016_j_fuel_2022_124269
crossref_primary_10_1016_j_jngse_2015_07_011
crossref_primary_10_1016_j_jngse_2021_104162
crossref_primary_10_1016_j_petrol_2019_106235
crossref_primary_10_1021_acs_jpclett_1c03857
crossref_primary_10_1016_j_cej_2021_130706
crossref_primary_10_1021_acs_energyfuels_1c03709
crossref_primary_10_1021_acs_energyfuels_2c03255
crossref_primary_10_1016_j_heliyon_2023_e17662
crossref_primary_10_1016_j_ces_2011_10_030
crossref_primary_10_1021_ef401491e
crossref_primary_10_1016_j_fuel_2023_129403
crossref_primary_10_1016_j_apenergy_2018_03_075
crossref_primary_10_1016_j_apenergy_2019_05_077
crossref_primary_10_1016_j_ces_2014_12_047
crossref_primary_10_1002_ep_13953
crossref_primary_10_1016_j_apenergy_2013_05_079
crossref_primary_10_1021_jp305529d
crossref_primary_10_1039_C9RA01973A
crossref_primary_10_1016_j_energy_2018_03_126
crossref_primary_10_1021_ef3008954
crossref_primary_10_1016_j_ces_2023_119023
crossref_primary_10_1021_acs_energyfuels_5b01970
crossref_primary_10_1016_j_energy_2023_126902
crossref_primary_10_3390_en14071803
crossref_primary_10_1007_s10450_020_00259_8
crossref_primary_10_1016_j_molliq_2022_121109
crossref_primary_10_3390_molecules26123615
crossref_primary_10_1029_2019JB018572
crossref_primary_10_1016_j_jct_2014_06_025
crossref_primary_10_1016_j_cej_2018_12_051
crossref_primary_10_1016_j_apenergy_2013_04_018
crossref_primary_10_1016_j_cej_2019_02_139
crossref_primary_10_1016_j_ces_2022_118108
crossref_primary_10_1007_s13202_017_0415_2
crossref_primary_10_1002_cjce_24554
crossref_primary_10_1016_j_apenergy_2018_06_062
crossref_primary_10_1021_ie500256z
crossref_primary_10_1016_j_rser_2019_109492
crossref_primary_10_1016_j_apenergy_2015_10_082
crossref_primary_10_1021_acs_energyfuels_8b01351
crossref_primary_10_1016_j_petrol_2019_05_060
crossref_primary_10_1016_j_cej_2020_127174
crossref_primary_10_1016_j_cjche_2019_12_021
crossref_primary_10_1021_acs_jpcc_1c00337
crossref_primary_10_1016_j_apenergy_2018_02_059
crossref_primary_10_1021_acs_energyfuels_2c02257
crossref_primary_10_1021_ef200399a
crossref_primary_10_1021_ie4036737
crossref_primary_10_1016_j_marpetgeo_2020_104296
crossref_primary_10_1016_j_fluid_2012_01_012
crossref_primary_10_1021_acs_energyfuels_9b01693
crossref_primary_10_1021_acs_energyfuels_3c00174
crossref_primary_10_1016_j_ces_2022_117714
crossref_primary_10_1016_j_ces_2023_118945
crossref_primary_10_1007_s00894_014_2311_8
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_120
crossref_primary_10_1016_j_jngse_2019_03_005
crossref_primary_10_1016_j_fuel_2019_04_021
crossref_primary_10_1021_ef101731g
crossref_primary_10_1016_j_jngse_2022_104848
crossref_primary_10_1016_j_jechem_2022_07_019
crossref_primary_10_1039_D4GC00390J
crossref_primary_10_1002_cphc_201701250
crossref_primary_10_1016_j_apenergy_2014_12_071
crossref_primary_10_1016_j_jngse_2016_03_081
crossref_primary_10_3390_pr9091529
crossref_primary_10_1016_j_ensm_2021_05_044
crossref_primary_10_1139_cjc_2014_0443
crossref_primary_10_1016_j_fuel_2022_123344
crossref_primary_10_1016_j_ces_2014_08_025
crossref_primary_10_1016_j_jngse_2016_07_027
crossref_primary_10_1016_j_jngse_2015_05_014
crossref_primary_10_1080_15435075_2021_1875473
crossref_primary_10_1016_j_egypro_2014_12_210
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_081
crossref_primary_10_1155_2011_791815
crossref_primary_10_1016_j_jngse_2020_103520
crossref_primary_10_1016_j_energy_2023_129013
crossref_primary_10_1021_acs_energyfuels_0c04075
crossref_primary_10_1021_acs_langmuir_6b01601
crossref_primary_10_1021_ef4004818
crossref_primary_10_1016_j_apenergy_2013_10_054
crossref_primary_10_1021_acsomega_9b02157
crossref_primary_10_1021_acs_iecr_5b03989
crossref_primary_10_1016_j_fuel_2013_09_088
crossref_primary_10_1088_1674_1056_accd4a
crossref_primary_10_1021_jp411873m
crossref_primary_10_1021_acs_jced_7b00785
crossref_primary_10_1016_j_desal_2023_117279
crossref_primary_10_1016_j_jngse_2020_103631
crossref_primary_10_1021_ef502429n
crossref_primary_10_1016_j_ces_2013_02_011
crossref_primary_10_1016_j_apenergy_2015_02_040
crossref_primary_10_1021_acs_energyfuels_6b02304
crossref_primary_10_1002_2014JB011190
crossref_primary_10_1007_s11814_016_0039_0
crossref_primary_10_1016_j_cej_2017_12_020
crossref_primary_10_1016_j_apenergy_2016_08_023
crossref_primary_10_1021_jz100340e
crossref_primary_10_1016_j_apenergy_2014_11_052
crossref_primary_10_3390_jmse12040619
crossref_primary_10_1016_j_apenergy_2015_05_106
crossref_primary_10_2139_ssrn_4156668
crossref_primary_10_1021_ef400676g
crossref_primary_10_1021_acssuschemeng_2c00028
crossref_primary_10_1021_acs_energyfuels_4c01323
crossref_primary_10_1021_acsomega_9b02497
crossref_primary_10_1021_acs_energyfuels_1c00162
crossref_primary_10_1016_j_petrol_2020_107486
crossref_primary_10_1016_j_fuel_2023_128645
crossref_primary_10_1016_j_petrol_2016_09_017
crossref_primary_10_1016_j_cej_2022_135617
crossref_primary_10_1016_j_cej_2024_152777
crossref_primary_10_1016_j_ijggc_2013_05_010
crossref_primary_10_1002_aic_16820
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
Copyright_xml – notice: Copyright © 2009 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/ef900542m
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 5507
ExternalDocumentID 10_1021_ef900542m
c690321580
GroupedDBID 02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
AAHBH
AAYXX
ABJNI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
ZCA
~02
ID FETCH-LOGICAL-a390t-5bd7f61443f0f2495bc73390fb11986faec0810c8b9901c7e9514e6bf75e86cf3
IEDL.DBID ACS
ISSN 0887-0624
IngestDate Fri Aug 23 03:50:58 EDT 2024
Thu Aug 27 13:42:24 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a390t-5bd7f61443f0f2495bc73390fb11986faec0810c8b9901c7e9514e6bf75e86cf3
PageCount 12
ParticipantIDs crossref_primary_10_1021_ef900542m
acs_journals_10_1021_ef900542m
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2009-11-19
PublicationDateYYYYMMDD 2009-11-19
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-19
  day: 19
PublicationDecade 2000
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2009
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0006385
Score 2.4714534
Snippet Gas hydrate formation was studied in a new apparatus designed to accommodate three different size volume beds of silica sand particles. The sand particles have...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 5496
SubjectTerms Fossil Fuels
Title Gas Hydrate Formation in a Variable Volume Bed of Silica Sand Particles
URI http://dx.doi.org/10.1021/ef900542m
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB5qPagHH1WxPkpQr6u7eezjWKttERShtvS25AlF3IrdHvTXm2y7ZaGo5zwIkyHzTWbmG4BrqpwaxdTTTGiPYj_yeCJDTxLJCFeGE-kcxafnsD-kj2M2rsHVLxF8HNxqkzhcgd83YBNbe-g8rHZnsHpurQKxks7TDzEt6YOqS53pkbOK6anYkO4e3JeVOIvUkbebeS5u5Pc6MeNfx9uH3SWGRO3FpR9ATWcN2OqUrdsasFNhGTyEXo_PUP9LOVII1C2LFdEkQxyNrKvsiqfQqHil0J1WaGrQYOL-8tCAZwq9lLlzRzDsPrx2-t6yf4LHSeLnHhMqMs7hI8Y3rse0kBGxI0YEQRKHhmtpAYEvY-GCYzLSFm1RHQoTMR2H0pBjqGfTTJ8AipldhUXADdEUG85JYOw8LESkpPGjJrSsgNOl_s_SIrSNg3QlnSZclrJPPxY8GuuTTv_b5Qy2i2iOS8NLzqGef871hQUFuWgVSvED7aqvcA
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgHAYHHgPEeIwIce1om7ZpjzCxFdgmpD20W5WkiTQhOkS7A_x6kq4dFRzg3CSyUif-HNufAa6dWKuR7xjCZcJwbJMYNOCewTF3MY0lxVw7ioOhF06cx5k7K2hydC2MEiJVK6V5EP-bXcC6ETLQ8MJ-3YQtlygrp2FQZ7S-dZUeuSWrp-nZTskiVJ2qLRBPKxaoYkq6e6ueRLkQeQbJS3uZsTb__MHP-D8p92G3QJTodqUCB7AhkgbUO2UjtwbsVDgHD6HXoykKP2JNEYG6ZekimieIoqlynHUpFZrmdxa6EzFaSDSa65c9NKJJjJ7LTLojmHTvx53QKLopGBQHZma4LCZSu39YmlJ3nGacYPVFMssKfE9SwRU8MLnPdKiME6GwlyM8JokrfI9LfAy1ZJGIE0C-q2bZzKISC8eWlGJLqnE2YyTm0iRNaKnNiYrTkEZ5oNu2ovXuNOGq_AXR24pV4_eg079WuYR6OB70o_7D8OkMtvM4j07QC86hlr0vxYWCCxlr5XryBUTtt9s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgSDwOPAaI8RgR4trRNk0fxzHoxmtMGpu4VUmaSBOim2h3gF9P0rVTBQc45yErsWM7tj8DXDqxZiPfMQRhwnBs0zNowF2DY04wjSXFXDuKT323N3LuX8lr4SjqWhhFRKp2SvMgvpbqWSwLhAHrSshAmxj2-yqsEc9ytCC2O8Ply6t4iZTInqZrOyWSUHWp1kI8rWihijoJd-B5SUieRfLWmmesxb9-YDT-n9Jd2C4sS9ResMIerIikDhudsqFbHbYq2IP70O3SFPU-Yw0VgcKyhBFNEkTRWDnQuqQKjfO3C12LGE0lGk70Dx8a0iRGgzKj7gBG4e1Lp2cUXRUMigMzMwiLPandQCxNqTtPM-5hNSKZZQW-K6ngykwwuc90yIx7QtlgjnCZ9IjwXS7xIdSSaSKOAPlErbKZRSUWji0pxZZU82zGvJhL02tAUx1QVEhFGuUBb9uKlqfTgIvyGqLZAl3j96Tjv3Y5h_XBTRg93vUfTmAzD_foPL3gFGrZx1ycKashY82cVb4BcbC6VQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+Hydrate+Formation+in+a+Variable+Volume+Bed+of+Silica+Sand+Particles&rft.jtitle=Energy+%26+fuels&rft.au=Linga%2C+Praveen&rft.au=Haligva%2C+Cef&rft.au=Nam%2C+Sung+Chan&rft.au=Ripmeester%2C+John+A.&rft.date=2009-11-19&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=23&rft.issue=11&rft.spage=5496&rft.epage=5507&rft_id=info:doi/10.1021%2Fef900542m&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ef900542m
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon