Refined ensemble-based waterflooding optimization subject to field-wide constraints

In this work, we present a modification (refinement) of the ensemble-based method for constrained waterflooding optimization. The problem of determining life-cycle rate controls for both producer and injector wells that maximize the net present value, NPV, subject to well and field-wide capacity con...

Full description

Saved in:
Bibliographic Details
Published inComputational geosciences Vol. 24; no. 2; pp. 871 - 887
Main Authors Tueros, Juan Alberto Rojas, Horowitz, Bernardo, Willmersdorf, Ramiro Brito, de Oliveira, Diego Felipe Barbosa
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1420-0597
1573-1499
DOI10.1007/s10596-019-09866-z

Cover

Loading…
Abstract In this work, we present a modification (refinement) of the ensemble-based method for constrained waterflooding optimization. The problem of determining life-cycle rate controls for both producer and injector wells that maximize the net present value, NPV, subject to well and field-wide capacity constraints is formulated and solved using sequential quadratic programming, SQP. The required gradient is approximately computed by an ensemble-based method. Field NPV is decomposed as the sum of the NPVs of each well. Sensitivity matrix of well NPVs with respect to controls of all wells is obtained from ensemble-based covariance matrices of controls and of well NPVs to controls. For efficiency reasons, ensemble size should be kept small which results in sampling errors. The approximate gradient is the sum of the columns of the refined sensitivity matrix. Using small-sized ensembles introduces spurious correlations that degrade gradient quality. Novel nondistance-based localization technique is employed to mitigate the deleterious effects of spurious correlations to refine the sensitivity of NPV of production wells with respect to injector controls. The localization technique is based on the connectivity of each injector/producer pair using a producer-based capacitance resistance model (CRMP). Competitiveness coefficients are developed to refine sensitivity of NPV of production wells with respect to producer controls, obtained using an interference test. A new procedure is proposed for consideration of maximum water-cut limit resulting in producer shut-in during the optimization process. Smoothing techniques are also introduced to avoid excessive abrupt jumps in well controls and to improve the overall optimization efficiency. Procedures and refinements are applied to a realistic reservoir taken from the literature, TNO Brugge Field, to demonstrate the resulting level of objective function improvement and variability reduction of the obtained solutions. NPV solution statistics are obtained for 20 independent runs. Using proposed refinements, smoothing and water cutting techniques, NPV is improved by up to 25.4% above the traditional ensemble-based methods.
AbstractList In this work, we present a modification (refinement) of the ensemble-based method for constrained waterflooding optimization. The problem of determining life-cycle rate controls for both producer and injector wells that maximize the net present value, NPV, subject to well and field-wide capacity constraints is formulated and solved using sequential quadratic programming, SQP. The required gradient is approximately computed by an ensemble-based method. Field NPV is decomposed as the sum of the NPVs of each well. Sensitivity matrix of well NPVs with respect to controls of all wells is obtained from ensemble-based covariance matrices of controls and of well NPVs to controls. For efficiency reasons, ensemble size should be kept small which results in sampling errors. The approximate gradient is the sum of the columns of the refined sensitivity matrix. Using small-sized ensembles introduces spurious correlations that degrade gradient quality. Novel nondistance-based localization technique is employed to mitigate the deleterious effects of spurious correlations to refine the sensitivity of NPV of production wells with respect to injector controls. The localization technique is based on the connectivity of each injector/producer pair using a producer-based capacitance resistance model (CRMP). Competitiveness coefficients are developed to refine sensitivity of NPV of production wells with respect to producer controls, obtained using an interference test. A new procedure is proposed for consideration of maximum water-cut limit resulting in producer shut-in during the optimization process. Smoothing techniques are also introduced to avoid excessive abrupt jumps in well controls and to improve the overall optimization efficiency. Procedures and refinements are applied to a realistic reservoir taken from the literature, TNO Brugge Field, to demonstrate the resulting level of objective function improvement and variability reduction of the obtained solutions. NPV solution statistics are obtained for 20 independent runs. Using proposed refinements, smoothing and water cutting techniques, NPV is improved by up to 25.4% above the traditional ensemble-based methods.
Author Willmersdorf, Ramiro Brito
Tueros, Juan Alberto Rojas
Horowitz, Bernardo
de Oliveira, Diego Felipe Barbosa
Author_xml – sequence: 1
  givenname: Juan Alberto Rojas
  orcidid: 0000-0002-1021-0189
  surname: Tueros
  fullname: Tueros, Juan Alberto Rojas
  email: albert_rojast@hotmail.com
  organization: Department of Civil Engineering, Federal University of Pernambuco
– sequence: 2
  givenname: Bernardo
  surname: Horowitz
  fullname: Horowitz, Bernardo
  organization: Department of Civil Engineering, Federal University of Pernambuco
– sequence: 3
  givenname: Ramiro Brito
  surname: Willmersdorf
  fullname: Willmersdorf, Ramiro Brito
  organization: Department of Civil Engineering, Federal University of Pernambuco
– sequence: 4
  givenname: Diego Felipe Barbosa
  surname: de Oliveira
  fullname: de Oliveira, Diego Felipe Barbosa
  organization: PETROBRAS Petróleo Brasileiro S.A
BookMark eNp9kE1rAyEURaW00DTtH-hqoGtbnXFmdFlKv6BQ6MdaHH0Gw0RTNYTm19ckhUIXWT0fnKPXe4aOffCA0CUl15SQ_iZR0ooOEyowEbzr8OYITWjbN5gyIY7LmdUEF6Y_RWcpzQkhom_oBL2_gXUeTAU-wWIYAQ8qlXWtMkQ7hmCcn1Vhmd3CbVR2wVdpNcxB5yqHyjoYDV47A5UOPuWonM_pHJ1YNSa4-J1T9Plw_3H3hF9eH5_vbl-wagTJmFFugGumlFCa10xQZk1XG61bMVjbcDq0bVdr3TNKrKAwFMZSMGQomuHNFF3t713G8LWClOU8rKIvT8q67jhrectEofie0jGkFMFK7fLuJ9u4o6REbiuU-wplqVDuKpSbotb_1GV0CxW_D0vNXkoF9jOIf6kOWD96BYjs
CitedBy_id crossref_primary_10_2118_220105_PA
crossref_primary_10_2516_ogst_2020090
crossref_primary_10_2118_199355_PA
crossref_primary_10_2118_212237_PA
Cites_doi 10.1007/s10596-013-9368-9
10.1016/j.compchemeng.2017.02.020
10.1016/j.petrol.2018.06.063
10.1016/j.compchemeng.2018.03.006
10.1007/s11004-015-9598-6
10.1016/j.compfluid.2010.09.039
10.2118/173217-PA
10.1016/j.petrol.2012.11.013
10.2118/178918-PA
10.1137/1.9780898719383
10.1007/s10596-010-9181-7
10.2118/88901-MS
10.1016/j.petrol.2009.09.006
10.2118/141589-PA
10.1016/j.petrol.2018.06.089
10.2118/112873-PA
10.1016/j.petrol.2013.11.006
10.1016/j.petrol.2018.03.028
10.1016/j.petrol.2013.12.004
10.2118/189457-PA
10.1144/petgeo.7.S.S87
10.2118/78278-PA
10.2118/83381-PA
10.20906/CPS/CILAMCE2015-0498
10.2118/169223-MS
10.2118/177106-MS
10.1007/s10596-017-9634-3
10.2118/150908-MS
10.2118/191314-MS
10.20906/CPS/CILAMCE2017-0282
10.2118/182597-MS
10.2118/119094-MS
10.2118/125331-MS
10.3997/2214-4609.201601872
10.2118/173829-MS
10.2118/173236-MS
10.2118/125042-PA
10.2118/99690-MS
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
Springer Nature Switzerland AG 2019.
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: Springer Nature Switzerland AG 2019.
DBID AAYXX
CITATION
3V.
7SC
7UA
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
JQ2
K7-
L.G
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10596-019-09866-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1573-1499
EndPage 887
ExternalDocumentID 10_1007_s10596_019_09866_z
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LK5
LLZTM
M0N
M2P
M4Y
M7R
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9R
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z81
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7UA
7XB
8AL
8FD
8FK
ABRTQ
C1K
F1W
H8D
H96
JQ2
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-a390t-418de8c4aa9ac824914fd62dcc59bff381b5562cc7410f91eb249f1ed0be8cd83
IEDL.DBID U2A
ISSN 1420-0597
IngestDate Sat Jul 26 00:53:36 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Tue Jul 01 04:04:54 EDT 2025
Fri Feb 21 02:36:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Refined sensitivity matrix
Waterflooding optimization
Ensemble-based method
Sequential quadratic programming
Large-scale algorithm
Constrained optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a390t-418de8c4aa9ac824914fd62dcc59bff381b5562cc7410f91eb249f1ed0be8cd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1021-0189
PQID 2268458549
PQPubID 55381
PageCount 17
ParticipantIDs proquest_journals_2268458549
crossref_citationtrail_10_1007_s10596_019_09866_z
crossref_primary_10_1007_s10596_019_09866_z
springer_journals_10_1007_s10596_019_09866_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle Modeling, Simulation and Data Analysis
PublicationTitle Computational geosciences
PublicationTitleAbbrev Comput Geosci
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Stordal, Szklarz, Leeuwenburgh (CR41) 2016; 48
Zhang, Lu, Forouzanfar, Reynolds (CR50) 2017; 101
CR39
CR38
Chen, Wang, Li, Reynolds (CR14) 2010; 14
CR37
CR36
CR34
Tueros, Horowitz, Willmersdorf, Oliveira (CR45) 2018; 170
CR31
CR30
Su, Oliver (CR42) 2010; 13
Currie, Wilson (CR16) 2012
CR2
Chen, Reynolds (CR12) 2018; 113
CR3
CR6
CR5
Albertoni, Lake (CR1) 2003; 6
Horowitz, Afonso, Mendonça (CR32) 2013; 112
CR49
CR48
Chen, Reynolds (CR11) 2016; 21
CR47
CR46
Do, Reynolds (CR19) 2013; 17
Sayarpour, Zuluaga, Kabir, Lake (CR40) 2009; 69
CR44
CR43
Biegler (CR7) 2010
(CR15) 2016
Jansen (CR33) 2011; 46
Asadollahi, Naevdal, Dadashpour, Kleppe (CR4) 2014; 114
Foroud, Baradaran, Seifi (CR25) 2018; 167
CR10
CR51
Biniaz, Pishvaie, Bozorgmehry (CR8) 2014; 33
Brouwer, Jansen (CR9) 2004; 9
Fu, Wen (CR26) 2018; 23
Haghighat Sefat, Muradov, Elsheikh, Davies (CR28) 2016; 19
Dehdari, Oliver, Deutsch (CR18) 2012; 100
CR29
Floris, Bush, Cuypes, Roggero, Syverveem (CR20) 2001; 7
CR27
Fonseca, Chen, Jansen, Reynolds (CR21) 1756; 109
CR24
CR23
CR22
Liu, Forouzanfar, Zhao (CR35) 2018; 171
Chen, Oliver, Zhang (CR13) 2009; 14
Dehdari, Oliver (CR17) 2012; 17
9866_CR22
J Currie (9866_CR16) 2012
FJT Floris (9866_CR20) 2001; 7
LT Biegler (9866_CR7) 2010
JAR Tueros (9866_CR45) 2018; 170
B Horowitz (9866_CR32) 2013; 112
DR Brouwer (9866_CR9) 2004; 9
ST Do (9866_CR19) 2013; 17
AS Stordal (9866_CR41) 2016; 48
9866_CR29
Y Zhang (9866_CR50) 2017; 101
T Foroud (9866_CR25) 2018; 167
9866_CR27
9866_CR24
9866_CR23
9866_CR31
9866_CR30
V Dehdari (9866_CR18) 2012; 100
9866_CR39
9866_CR38
9866_CR37
9866_CR36
JD Jansen (9866_CR33) 2011; 46
9866_CR34
B Chen (9866_CR11) 2016; 21
9866_CR44
Computer Modeling Group LTD (9866_CR15) 2016
9866_CR43
9866_CR2
M Haghighat Sefat (9866_CR28) 2016; 19
M Sayarpour (9866_CR40) 2009; 69
9866_CR5
9866_CR6
9866_CR3
V Dehdari (9866_CR17) 2012; 17
Y Chen (9866_CR13) 2009; 14
9866_CR49
9866_CR48
M Asadollahi (9866_CR4) 2014; 114
9866_CR47
9866_CR46
9866_CR10
9866_CR51
A Albertoni (9866_CR1) 2003; 6
DE Biniaz (9866_CR8) 2014; 33
Z Liu (9866_CR35) 2018; 171
C Chen (9866_CR14) 2010; 14
RR-M Fonseca (9866_CR21) 1756; 109
H-J Su (9866_CR42) 2010; 13
B Chen (9866_CR12) 2018; 113
J Fu (9866_CR26) 2018; 23
References_xml – ident: CR22
– volume: 17
  start-page: 959
  year: 2013
  ident: CR19
  article-title: Theoretical connections between optimization algorithms based on an approximate gradient
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-013-9368-9
– volume: 101
  start-page: 193
  year: 2017
  end-page: 209
  ident: CR50
  article-title: Well placement and control optimization for WAG/SAG processes using ensemble-based method
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.02.020
– ident: CR49
– ident: CR39
– ident: CR51
– volume: 171
  start-page: 542
  year: 2018
  end-page: 557
  ident: CR35
  article-title: Comparison of SQP and AL algorithms for deterministic constrained production optimization of hydrocarbon reservoirs
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.06.063
– volume: 113
  start-page: 44
  year: 2018
  end-page: 56
  ident: CR12
  article-title: CO2 water-alternating-gas injection for enhanced oil recovery: optimal well controls and half-cycle lengths
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.03.006
– ident: CR29
– volume: 48
  start-page: 399
  issue: 4
  year: 2016
  end-page: 417
  ident: CR41
  article-title: A Theoretical look at Ensemble-Based Optimization in Reservoir Management
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-015-9598-6
– ident: CR46
– year: 2012
  ident: CR16
  publication-title: OPTI: Lowering the Barrier Between Open Source Optimizers and the Industrial MATLAB User
– volume: 46
  start-page: 40
  issue: 1
  year: 2011
  end-page: 51
  ident: CR33
  article-title: Adjoint-based optimization of multiphase flow through porous media—a review
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2010.09.039
– volume: 21
  start-page: 786
  issue: 3
  year: 2016
  end-page: 798
  ident: CR11
  article-title: Ensemble-based optimization of the water alternating-gas-injection process
  publication-title: SPE J.
  doi: 10.2118/173217-PA
– ident: CR36
– ident: CR5
– volume: 100
  start-page: 41
  year: 2012
  end-page: 49
  ident: CR18
  article-title: Comparison of optimization algorithms for reservoir management with constraints—a case study
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2012.11.013
– volume: 19
  start-page: 239
  year: 2016
  end-page: 252
  ident: CR28
  article-title: Proactive optimization of intelligent-well production using stochastic gradient-based algorithms
  publication-title: Soc. Petrol. Eng.
  doi: 10.2118/178918-PA
– year: 2010
  ident: CR7
  publication-title: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes
  doi: 10.1137/1.9780898719383
– volume: 14
  start-page: 691
  issue: 4
  year: 2010
  end-page: 703
  ident: CR14
  article-title: Closed-Loop Reservoir Management on the Brugge Test Case
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-010-9181-7
– ident: CR43
– ident: CR47
– volume: 13
  start-page: 884
  issue: 6
  year: 2010
  end-page: 892
  ident: CR42
  article-title: Smart Well Production Optimization Using An Ensemble-Based Method
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/88901-MS
– volume: 69
  start-page: 227
  issue: 3–4
  year: 2009
  end-page: 238
  ident: CR40
  article-title: The use of capacitance-resistive models for rapid estimation of waterflood performance and optimization
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2009.09.006
– ident: CR2
– volume: 17
  start-page: 874
  year: 2012
  end-page: 884
  ident: CR17
  article-title: Sequential quadratic programming for solving constrained production optimization – case study from Brugge field
  publication-title: SPE J.
  doi: 10.2118/141589-PA
– ident: CR37
– volume: 109
  start-page: 2017
  issue: 13
  year: 1756
  ident: CR21
  article-title: A stochastic simplex approximate gradient (StoSAG) for optimization under uncertainty
  publication-title: Int. J. Numer. Methods Eng.
– ident: CR30
– ident: CR10
– ident: CR6
– year: 2016
  ident: CR15
  publication-title: IMEX: User’s Guide
– volume: 170
  start-page: 440
  year: 2018
  end-page: 452
  ident: CR45
  article-title: Non-distance-based localization techniques for ensemble-based waterflooding optimization
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.06.089
– volume: 14
  start-page: 634
  issue: 4
  year: 2009
  end-page: 645
  ident: CR13
  article-title: Efficient ensemble-based closed-loop production optimization
  publication-title: SPE J.
  doi: 10.2118/112873-PA
– ident: CR27
– ident: CR23
– volume: 112
  start-page: 206
  year: 2013
  end-page: 219
  ident: CR32
  article-title: Surrogate based optimal waterflooding management
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2013.11.006
– ident: CR44
– ident: CR48
– volume: 167
  start-page: 131
  year: 2018
  end-page: 151
  ident: CR25
  article-title: A comparative evaluation of global search algorithms in black box optimization of oil production: a case study on Brugge field
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.03.028
– volume: 33
  start-page: 75
  issue: 1
  year: 2014
  end-page: 91
  ident: CR8
  article-title: Distance dependent localization approach in oil reservoir history matching: a comparative study
  publication-title: Iran. J. Chem. Chem. Eng. (Int. Engl. Ed.)
– ident: CR3
– volume: 114
  start-page: 22
  year: 2014
  end-page: 37
  ident: CR4
  article-title: Production optimization using derivate free methods applied to Brugge field case
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2013.12.004
– ident: CR38
– ident: CR31
– volume: 23
  start-page: 467
  year: 2018
  end-page: 481
  ident: CR26
  article-title: A Regularized Production-Optimization Method for Improved Reservoir Management
  publication-title: Soc. Petrol. Eng.
  doi: 10.2118/189457-PA
– volume: 7
  start-page: 87
  year: 2001
  end-page: 96
  ident: CR20
  article-title: Method for quantifying the uncertainty of production forecasts
  publication-title: Pet. Geosci.
  doi: 10.1144/petgeo.7.S.S87
– volume: 9
  start-page: 391
  issue: 4
  year: 2004
  end-page: 402
  ident: CR9
  article-title: Dynamic Optimization of Water Flooding With Smart Wells Using Optimal Control Theory
  publication-title: SPE J.
  doi: 10.2118/78278-PA
– ident: CR34
– volume: 6
  start-page: 6
  issue: 1
  year: 2003
  end-page: 16
  ident: CR1
  article-title: Inferring interwell connectivity only from well-rate fluctuations in waterfloods
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/83381-PA
– ident: CR24
– ident: 9866_CR44
  doi: 10.20906/CPS/CILAMCE2015-0498
– volume: 69
  start-page: 227
  issue: 3–4
  year: 2009
  ident: 9866_CR40
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2009.09.006
– volume: 17
  start-page: 959
  year: 2013
  ident: 9866_CR19
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-013-9368-9
– ident: 9866_CR47
  doi: 10.2118/169223-MS
– volume: 6
  start-page: 6
  issue: 1
  year: 2003
  ident: 9866_CR1
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/83381-PA
– ident: 9866_CR31
  doi: 10.2118/177106-MS
– ident: 9866_CR48
  doi: 10.1007/s10596-017-9634-3
– ident: 9866_CR6
  doi: 10.2118/150908-MS
– volume: 112
  start-page: 206
  year: 2013
  ident: 9866_CR32
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2013.11.006
– volume: 14
  start-page: 691
  issue: 4
  year: 2010
  ident: 9866_CR14
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-010-9181-7
– volume: 114
  start-page: 22
  year: 2014
  ident: 9866_CR4
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2013.12.004
– ident: 9866_CR22
– ident: 9866_CR49
– ident: 9866_CR51
  doi: 10.2118/191314-MS
– volume: 19
  start-page: 239
  year: 2016
  ident: 9866_CR28
  publication-title: Soc. Petrol. Eng.
  doi: 10.2118/178918-PA
– volume: 109
  start-page: 2017
  issue: 13
  year: 1756
  ident: 9866_CR21
  publication-title: Int. J. Numer. Methods Eng.
– ident: 9866_CR34
  doi: 10.20906/CPS/CILAMCE2017-0282
– volume: 170
  start-page: 440
  year: 2018
  ident: 9866_CR45
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.06.089
– ident: 9866_CR30
  doi: 10.2118/182597-MS
– volume: 171
  start-page: 542
  year: 2018
  ident: 9866_CR35
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.06.063
– ident: 9866_CR38
  doi: 10.2118/119094-MS
– volume: 167
  start-page: 131
  year: 2018
  ident: 9866_CR25
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.03.028
– volume-title: IMEX: User’s Guide
  year: 2016
  ident: 9866_CR15
– ident: 9866_CR3
  doi: 10.2118/125331-MS
– volume: 33
  start-page: 75
  issue: 1
  year: 2014
  ident: 9866_CR8
  publication-title: Iran. J. Chem. Chem. Eng. (Int. Engl. Ed.)
– volume: 13
  start-page: 884
  issue: 6
  year: 2010
  ident: 9866_CR42
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/88901-MS
– volume: 14
  start-page: 634
  issue: 4
  year: 2009
  ident: 9866_CR13
  publication-title: SPE J.
  doi: 10.2118/112873-PA
– volume: 23
  start-page: 467
  year: 2018
  ident: 9866_CR26
  publication-title: Soc. Petrol. Eng.
  doi: 10.2118/189457-PA
– ident: 9866_CR46
– volume: 9
  start-page: 391
  issue: 4
  year: 2004
  ident: 9866_CR9
  publication-title: SPE J.
  doi: 10.2118/78278-PA
– volume: 17
  start-page: 874
  year: 2012
  ident: 9866_CR17
  publication-title: SPE J.
  doi: 10.2118/141589-PA
– volume-title: OPTI: Lowering the Barrier Between Open Source Optimizers and the Industrial MATLAB User
  year: 2012
  ident: 9866_CR16
– volume: 100
  start-page: 41
  year: 2012
  ident: 9866_CR18
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2012.11.013
– ident: 9866_CR37
– volume: 21
  start-page: 786
  issue: 3
  year: 2016
  ident: 9866_CR11
  publication-title: SPE J.
  doi: 10.2118/173217-PA
– volume: 48
  start-page: 399
  issue: 4
  year: 2016
  ident: 9866_CR41
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-015-9598-6
– ident: 9866_CR29
  doi: 10.3997/2214-4609.201601872
– volume-title: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes
  year: 2010
  ident: 9866_CR7
  doi: 10.1137/1.9780898719383
– ident: 9866_CR39
  doi: 10.2118/173829-MS
– ident: 9866_CR24
– ident: 9866_CR23
  doi: 10.2118/173236-MS
– ident: 9866_CR10
  doi: 10.2118/125042-PA
– ident: 9866_CR43
– ident: 9866_CR2
– ident: 9866_CR5
– volume: 113
  start-page: 44
  year: 2018
  ident: 9866_CR12
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.03.006
– volume: 46
  start-page: 40
  issue: 1
  year: 2011
  ident: 9866_CR33
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2010.09.039
– volume: 101
  start-page: 193
  year: 2017
  ident: 9866_CR50
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.02.020
– volume: 7
  start-page: 87
  year: 2001
  ident: 9866_CR20
  publication-title: Pet. Geosci.
  doi: 10.1144/petgeo.7.S.S87
– ident: 9866_CR27
– ident: 9866_CR36
  doi: 10.2118/99690-MS
SSID ssj0009731
Score 2.2532592
Snippet In this work, we present a modification (refinement) of the ensemble-based method for constrained waterflooding optimization. The problem of determining...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 871
SubjectTerms Capacitance
Coefficients
Competitiveness
Constraints
Covariance matrix
Earth and Environmental Science
Earth Sciences
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Injectors
Localization
Mathematical Modeling and Industrial Mathematics
Objective function
Optimization
Original Paper
Procedures
Quadratic programming
Sampling error
Sensitivity
Smoothing
Soil Science & Conservation
Statistical methods
Trans-Neptunian objects
Wells
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86EXwRP3E6JQ--abDt0jZ5EhG3IeiDOthbyVdB2Je2Y7i_3rsusyi45zShXJK7313u7kfIpQ2caAvhGBwXcFCwDaEMXMiUSlObRrnSCdYOPz0nvT5_HMQDH3ArfFrlSidWitpODMbIbyJsSwLYlsvb6QdD1ih8XfUUGptkKwRLgydcdLp109204iMMeYQPvjL1RTO-dC7G9Fss4ZEiSdjit2Gq0eafB9LK7nT2yK4HjPRuucP7ZMOND8h2tyLk_Tokry8uB6BoKbijbqSHjqFdsnSukH8as9JhVToBxTDyFZe0mGkMvtByQqv8NTZ_t44aBIrIF1EWR6TfeXi77zFPlMBUWwYl46GwThiulFRGgEMV8twmkTUmljrPwSjrGHCOMQAfglyG4E1zmYfOBhqmWdE-Jo3xZOxOCM0DB_ZLJzaKNZc6kgGMS2O14grAYdAk4UpKmfFdxPHnhlnd_xglm4Fks0qy2aJJrn7mTJc9NNZ-3VoJP_P3qcjq3W-S69WG1MP_r3a6frUzshOhA12l4rRIo_ycuXNAGaW-qI7SN63hzvU
  priority: 102
  providerName: ProQuest
Title Refined ensemble-based waterflooding optimization subject to field-wide constraints
URI https://link.springer.com/article/10.1007/s10596-019-09866-z
https://www.proquest.com/docview/2268458549
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5oRfAirliXMgdvGkjSSTJzbKWtKBZRC3oKswUE24pNKfrrfS9NrIoKnuYwC-HN8r4vbwM4tr4TTSGch8cFCQqlIZS-CzylksQmYaZ0TLHDV_34fMAv7qP7MihsUnm7VybJ4qX-FOwWkcMsBd1IEcfe2zKsRMjd6VwPwtYi1W5SVCEMeEhmXpmUoTI_r_FVHS0w5jezaKFtuhuwXsJE1prv6yYsudEWrPaKMryv23B74zKEh5YhCXVD_eQ80kaWzRRVnSZfdFyVjfE5GJZxlmwy1fTLheVjVnitebNH65gheEhVIvLJDgy6nbuzc68sj-CppvRzjwfCOmG4UlIZgTQq4JmNQ2tMJHWWoSrWEaIbYxA0-JkMkENzmQXO-hqnWdHchdpoPHJ7wDLfodbSsQ0jzaUOpY_90lituEJI6NchqKSUmjJ3OH3cU7rIekySTVGyaSHZ9K0OJx9znueZM_4cfVgJPy1v0SQNKRUN8hku63Babcii-_fV9v83_ADWQqLRhUPOIdTyl6k7QqyR6wYsi26vASutbrvdp7b3cNnBtt3pX980ioP3DvDr0gw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUNVeEFBQF2jxAU5gkXidxD6gqqIsy_NQQOIW_IpUCXYpG7SCH8Vv7Ew2ISoS3Dg7HkXjsecbe2Y-gHUfBdVVKnA0FwxQqA2hjkLMjckyn4nC2JRqh09O0_6FPLxMLqfgqamFobTK5kysDmo_dHRHvi2oLQliW6l_3P7lxBpFr6sNhcbELI7CwxhDttHOwS9c3w0henvnu31eswpwg_F9yWWsfFBOGqONUxh9xLLwqfDOJdoWBXowmyAocA59bVToGENPqYs4-MjiNK-6KPcDzMhuV1MKoertt01-s4r_MJaCHph1Vhfp1KV6CaX7UsmQVmnKH_93hC26ffEgW_m53hzM1gCV_ZxY1DxMhcECfNyvCIAfvsDZ71AgMPUMw99wY68DJz_o2dgQ3zVlwaNUNsSD6Kau8GSje0uXPawcsipfjo__-MAcAVPipyhHi3DxLipcgunBcBC-AiuigP7Spl4kVmordITj2nlrpEEwGnUgbrSUu7prOf3cdd72WybN5qjZvNJs_tiBzec5t5OeHW9-vdooP6_37yhvra0DW82CtMOvS1t-W9oafOqfnxznxwenRyvwWVDwXqUBrcJ0eXcfviHCKe33yqwYXL23Hf8DrYwNPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gRsML8QPiwal90Cdt2O11d9sHQoznAaLEKCS8Lf1MTOAOuCUX7k_zr3Nmb9eNJt4bz91ONtNp5zftzPwA3vgkqIFSgaO5YIBCbQh1ElJuTFH4QkRjc6od_nqcH5zKz2fZ2Qr8amthKK2yPRPrg9pPHN2R7whqS4LYVuqd2KRFfBuO9q6uOTFI0UtrS6exMJGjcDfD8G26ezjEtX4rxOjTyccD3jAMcIOxfsVlqnxQThqjjVMYiaQy-lx45zJtY0RvZjMECM6h302iTjEMlTqmwScWp3k1QLkP4GExUAmxJ6jRftfwt6i5EFMp6LFZF03BTlO2l1HqL5UPaZXnfP63U-yQ7j-Ps7XPGz2B9Qassg8L63oKK2H8DB7t12TAd8_hx_cQEaR6hqFwuLQXgZNP9GxmiPuaMuJRKpvgoXTZVHuy6a2lix9WTVidO8dnP31gjkAqcVVU0w04vRcVbsLqeDIOL4DFJKDvtLkXmZXaCp3guHbeGmkQmCY9SFstla7pYE4_d1F2vZdJsyVqtqw1W8578O7PnKtF_46lX_db5ZfNXp6WneX14H27IN3w_6VtLZf2Gh6jBZdfDo-PtmFNUBxfZwT1YbW6uQ0vEexU9lVtVQzO79uMfwPrrhFr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Refined+ensemble-based+waterflooding+optimization+subject+to+field-wide+constraints&rft.jtitle=Computational+geosciences&rft.au=Tueros%2C+Juan+Alberto+Rojas&rft.au=Horowitz%2C+Bernardo&rft.au=Willmersdorf%2C+Ramiro+Brito&rft.au=de+Oliveira%2C+Diego+Felipe+Barbosa&rft.date=2020-04-01&rft.pub=Springer+International+Publishing&rft.issn=1420-0597&rft.eissn=1573-1499&rft.volume=24&rft.issue=2&rft.spage=871&rft.epage=887&rft_id=info:doi/10.1007%2Fs10596-019-09866-z&rft.externalDocID=10_1007_s10596_019_09866_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon