Global Analysis of Topographic and Climatic Controls on Drainage Basin Shapes
Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (ave...
Saved in:
Published in | Geophysical research letters Vol. 51; no. 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.04.2024
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0094-8276 1944-8007 |
DOI | 10.1029/2023GL105804 |
Cover
Loading…
Abstract | Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (average area ∼157 km2), covering all continents except Antarctica and Greenland. Global variations in WLRs are correlated with climatic aridity, whole‐basin slope, and local topographic roughness. Basins in arid landscapes tend to be narrower, potentially reflecting a higher prevalence of surface runoff and therefore a stronger slope‐parallel component of the transporting flow. Local topographic roughness is associated with wider basins, potentially reflecting greater dispersion of flow directions. Conversely, whole‐basin topographic gradients, potentially reflecting gradients in uplift, are associated with narrower basins. However, steeper basins are also often rougher, so revealing the effects of whole‐basin slope requires correcting for the confounding effects of roughness variations.
Plain Language Summary
Drainage basins are essential features that help us understand how water accumulates and flows across Earth's landscapes. In this study, we examined the width‐to‐length ratios of 386,931 drainage basins from all continents except Antarctica and Greenland. We found that basins tend to be narrower in more arid climates. We also observed that, all else equal, basins with greater local roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower. Our results thus indicate that on the global scale, basin shapes are strongly influenced by topographic roughness, whole‐basin slope and climatic aridity. Our findings hold across different basin scales, encompassing smaller basins with a mean area of approximately 157 km2 to larger basins with a mean area of around 1,000 km2. These results advance our understanding of global patterns of basin shapes and the tectonic and climatic drivers behind them.
Key Points
Globally, basins with greater topographic roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower
In arid regions (aridity index <0.65), basins tend to widen as climate becomes more humid
Basin shape is strongly correlated with topographic roughness, whole‐basin slope and climatic aridity on a global scale |
---|---|
AbstractList | Abstract Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (average area ∼157 km2), covering all continents except Antarctica and Greenland. Global variations in WLRs are correlated with climatic aridity, whole‐basin slope, and local topographic roughness. Basins in arid landscapes tend to be narrower, potentially reflecting a higher prevalence of surface runoff and therefore a stronger slope‐parallel component of the transporting flow. Local topographic roughness is associated with wider basins, potentially reflecting greater dispersion of flow directions. Conversely, whole‐basin topographic gradients, potentially reflecting gradients in uplift, are associated with narrower basins. However, steeper basins are also often rougher, so revealing the effects of whole‐basin slope requires correcting for the confounding effects of roughness variations. Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (average area ∼157 km2), covering all continents except Antarctica and Greenland. Global variations in WLRs are correlated with climatic aridity, whole‐basin slope, and local topographic roughness. Basins in arid landscapes tend to be narrower, potentially reflecting a higher prevalence of surface runoff and therefore a stronger slope‐parallel component of the transporting flow. Local topographic roughness is associated with wider basins, potentially reflecting greater dispersion of flow directions. Conversely, whole‐basin topographic gradients, potentially reflecting gradients in uplift, are associated with narrower basins. However, steeper basins are also often rougher, so revealing the effects of whole‐basin slope requires correcting for the confounding effects of roughness variations. Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (average area ∼157 km2), covering all continents except Antarctica and Greenland. Global variations in WLRs are correlated with climatic aridity, whole‐basin slope, and local topographic roughness. Basins in arid landscapes tend to be narrower, potentially reflecting a higher prevalence of surface runoff and therefore a stronger slope‐parallel component of the transporting flow. Local topographic roughness is associated with wider basins, potentially reflecting greater dispersion of flow directions. Conversely, whole‐basin topographic gradients, potentially reflecting gradients in uplift, are associated with narrower basins. However, steeper basins are also often rougher, so revealing the effects of whole‐basin slope requires correcting for the confounding effects of roughness variations. Plain Language Summary Drainage basins are essential features that help us understand how water accumulates and flows across Earth's landscapes. In this study, we examined the width‐to‐length ratios of 386,931 drainage basins from all continents except Antarctica and Greenland. We found that basins tend to be narrower in more arid climates. We also observed that, all else equal, basins with greater local roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower. Our results thus indicate that on the global scale, basin shapes are strongly influenced by topographic roughness, whole‐basin slope and climatic aridity. Our findings hold across different basin scales, encompassing smaller basins with a mean area of approximately 157 km2 to larger basins with a mean area of around 1,000 km2. These results advance our understanding of global patterns of basin shapes and the tectonic and climatic drivers behind them. Key Points Globally, basins with greater topographic roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower In arid regions (aridity index <0.65), basins tend to widen as climate becomes more humid Basin shape is strongly correlated with topographic roughness, whole‐basin slope and climatic aridity on a global scale Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (average area ∼157 km 2 ), covering all continents except Antarctica and Greenland. Global variations in WLRs are correlated with climatic aridity, whole‐basin slope, and local topographic roughness. Basins in arid landscapes tend to be narrower, potentially reflecting a higher prevalence of surface runoff and therefore a stronger slope‐parallel component of the transporting flow. Local topographic roughness is associated with wider basins, potentially reflecting greater dispersion of flow directions. Conversely, whole‐basin topographic gradients, potentially reflecting gradients in uplift, are associated with narrower basins. However, steeper basins are also often rougher, so revealing the effects of whole‐basin slope requires correcting for the confounding effects of roughness variations. Drainage basins are essential features that help us understand how water accumulates and flows across Earth's landscapes. In this study, we examined the width‐to‐length ratios of 386,931 drainage basins from all continents except Antarctica and Greenland. We found that basins tend to be narrower in more arid climates. We also observed that, all else equal, basins with greater local roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower. Our results thus indicate that on the global scale, basin shapes are strongly influenced by topographic roughness, whole‐basin slope and climatic aridity. Our findings hold across different basin scales, encompassing smaller basins with a mean area of approximately 157 km 2 to larger basins with a mean area of around 1,000 km 2 . These results advance our understanding of global patterns of basin shapes and the tectonic and climatic drivers behind them. Globally, basins with greater topographic roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower In arid regions (aridity index <0.65), basins tend to widen as climate becomes more humid Basin shape is strongly correlated with topographic roughness, whole‐basin slope and climatic aridity on a global scale |
Author | Seybold, Hansjörg Wu, Baosheng Chen, Yi Kirchner, James W. Li, Minhui Fu, Xudong |
Author_xml | – sequence: 1 givenname: Minhui orcidid: 0000-0002-5974-4632 surname: Li fullname: Li, Minhui organization: ETH Zurich – sequence: 2 givenname: Hansjörg orcidid: 0000-0002-3793-1904 surname: Seybold fullname: Seybold, Hansjörg organization: ETH Zurich – sequence: 3 givenname: Baosheng orcidid: 0000-0002-7149-0276 surname: Wu fullname: Wu, Baosheng organization: Tsinghua University – sequence: 4 givenname: Yi surname: Chen fullname: Chen, Yi organization: Tsinghua University – sequence: 5 givenname: Xudong orcidid: 0000-0003-0744-0546 surname: Fu fullname: Fu, Xudong email: xdfu@tsinghua.edu.cn organization: Tsinghua University – sequence: 6 givenname: James W. orcidid: 0000-0001-6577-3619 surname: Kirchner fullname: Kirchner, James W. email: kirchner@ethz.ch organization: University of California |
BookMark | eNp9kEtLAzEUhYNUsK3u_AEDbh29ecxkstSqVagIPtbhziSpU8bJmLRI_73RirhydR98nHM4EzLqfW8JOaZwRoGpcwaMzxcUigrEHhlTJUReAcgRGQOotDNZHpBJjCsA4MDpmNzPO19jl1302G1jGzPvsmc_-GXA4bVtMuxNNuvaN1ynY-b7dfBdgvrsKmDb49JmlxjbPnt6xcHGQ7LvsIv26GdOycvN9fPsNl88zO9mF4scuQKZ1yig5kxwrBUrJWeFVNZRClI4KAUoJUxDKTJWudJQNK4WZcWAVrUpmqLhU3K30zUeV3oIKV_Yao-t_n74sNQYUuLOauewMbIyQK0RhruaNbJRtUveUBX2S-tkpzUE_76xca1XfhNSHVFzEAVVskxVTcnpjmqCjzFY9-tKQX-Vr_-Wn3C2wz_azm7_ZfX8cVFKxiX_BKMmhas |
Cites_doi | 10.1130/0091‐7613(1987)15<813:eorsod>2.0.co;2 10.1086/623976 10.1029/94wr01050 10.1029/2003wr002583 10.1038/s41467‐018‐06210‐4 10.1038/s41561‐021‐00720‐5 10.1016/j.geomorph.2013.03.022 10.5194/esurf‐6‐779‐2018 10.1038/nature11672 10.1038/s41561‐022‐00900‐x 10.1016/j.geomorph.2011.05.014 10.1002/hyp.9740 10.1073/pnas.2015770118 10.1306/5d25c26d‐16c1‐11d7‐8645000102c1865d 10.1130/rf.l003.1 10.1111/j.1365‐2117.2006.00293.x 10.1029/2020gl091777 10.1103/physrevlett.109.218701 10.1016/j.jaridenv.2017.04.013 10.1029/tc008i005p01079 10.1029/90wr02501 10.1029/2002tc001402 10.6084/m9.figshare.25308565.v1 10.1038/s41586‐018‐0532‐1 10.1016/s0022‐1694(99)00011‐6 10.1016/j.geomorph.2017.10.029 10.1029/2018gl080172 10.1073/pnas.1215218109 10.1029/94wr03290 10.1029/2023gl104121 10.1073/pnas.2211942119 10.1016/j.epsl.2019.06.018 10.1029/96wr02397 10.1002/2017gl072874 10.1002/esp.3290010302 10.1111/j.1365‐3121.2009.00880.x 10.1111/j.1365‐2117.1996.tb00113.x 10.5194/esurf‐8‐245‐2020 10.1002/2016gl072089 10.1029/97wr00409 10.1126/science.1248765 10.1029/2022gl099010 10.1029/2023gl103599 10.1016/j.epsl.2004.05.019 10.1098/rspa.2018.0081 10.1126/sciadv.aar6692 |
ContentType | Journal Article |
Copyright | 2024. The Authors. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Authors. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2023GL105804 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_ffacd78d01ed4d3fb2c7c9bf3ab085ec 10_1029_2023GL105804 GRL67237 |
Genre | article |
GeographicLocations | Antarctica Greenland |
GeographicLocations_xml | – name: Greenland – name: Antarctica |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U2243218; 91747207 – fundername: State Key Laboratory of Hydroscience and Engineering funderid: 2023‐KY‐02 – fundername: Chinese Scholarship Council |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 88I 8G5 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABJCF ABPPZ ABUWG ACAHQ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFPKN AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ATCPS AVUZU AZFZN AZQEC AZVAB BENPR BGLVJ BHPHI BKSAR BMXJE BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS F5P G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PATMY PCBAR PHGZM PHGZT PQGLB PTHSS PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M PUEGO |
ID | FETCH-LOGICAL-a3907-ba40b3243ab926732579ef11074f0640994dc11a228f6d1adfb4682018bd5c5c3 |
IEDL.DBID | 24P |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:29:02 EDT 2025 Fri Jul 25 12:23:45 EDT 2025 Tue Jul 01 01:05:30 EDT 2025 Wed Aug 20 07:24:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3907-ba40b3243ab926732579ef11074f0640994dc11a228f6d1adfb4682018bd5c5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0744-0546 0000-0002-3793-1904 0000-0002-7149-0276 0000-0002-5974-4632 0000-0001-6577-3619 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105804 |
PQID | 3045197630 |
PQPubID | 54723 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ffacd78d01ed4d3fb2c7c9bf3ab085ec proquest_journals_3045197630 crossref_primary_10_1029_2023GL105804 wiley_primary_10_1029_2023GL105804_GRL67237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 April 2024 |
PublicationDateYYYYMMDD | 2024-04-28 |
PublicationDate_xml | – month: 04 year: 2024 text: 28 April 2024 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_8_1_12_1 e_1_2_8_1_35_1 e_1_2_8_1_11_1 e_1_2_8_1_36_1 e_1_2_8_1_14_1 e_1_2_8_1_33_1 e_1_2_8_1_13_1 e_1_2_8_1_34_1 e_1_2_8_1_31_1 e_1_2_8_1_32_1 e_1_2_8_1_10_1 e_1_2_8_1_30_1 e_1_2_8_1_8_1 e_1_2_8_1_9_1 e_1_2_8_1_27_1 e_1_2_8_1_26_1 e_1_2_8_1_29_1 e_1_2_8_1_48_1 e_1_2_8_1_28_1 e_1_2_8_1_23_1 e_1_2_8_1_46_1 e_1_2_8_1_22_1 e_1_2_8_1_47_1 e_1_2_8_1_25_1 e_1_2_8_1_44_1 e_1_2_8_1_24_1 e_1_2_8_1_45_1 e_1_2_8_2_2_1 e_1_2_8_1_42_1 e_1_2_8_1_43_1 e_1_2_8_1_21_1 e_1_2_8_1_40_1 e_1_2_8_1_20_1 e_1_2_8_1_41_1 e_1_2_8_1_2_1 e_1_2_8_1_3_1 e_1_2_8_1_6_1 e_1_2_8_1_7_1 e_1_2_8_1_4_1 e_1_2_8_1_5_1 e_1_2_8_1_19_1 e_1_2_8_1_16_1 e_1_2_8_1_39_1 e_1_2_8_1_15_1 e_1_2_8_1_18_1 e_1_2_8_1_37_1 e_1_2_8_1_17_1 e_1_2_8_1_38_1 |
References_xml | – ident: e_1_2_8_1_24_1 doi: 10.1130/0091‐7613(1987)15<813:eorsod>2.0.co;2 – ident: e_1_2_8_1_38_1 – ident: e_1_2_8_1_48_1 doi: 10.1086/623976 – ident: e_1_2_8_1_36_1 doi: 10.1029/94wr01050 – ident: e_1_2_8_1_2_1 doi: 10.1029/2003wr002583 – ident: e_1_2_8_1_29_1 doi: 10.1038/s41467‐018‐06210‐4 – ident: e_1_2_8_1_31_1 doi: 10.1038/s41561‐021‐00720‐5 – ident: e_1_2_8_1_6_1 doi: 10.1016/j.geomorph.2013.03.022 – ident: e_1_2_8_2_2_1 doi: 10.5194/esurf‐6‐779‐2018 – ident: e_1_2_8_1_23_1 doi: 10.1038/nature11672 – ident: e_1_2_8_1_37_1 doi: 10.1038/s41561‐022‐00900‐x – ident: e_1_2_8_1_15_1 doi: 10.1016/j.geomorph.2011.05.014 – ident: e_1_2_8_1_19_1 doi: 10.1002/hyp.9740 – ident: e_1_2_8_1_18_1 doi: 10.1073/pnas.2015770118 – ident: e_1_2_8_1_13_1 doi: 10.1306/5d25c26d‐16c1‐11d7‐8645000102c1865d – ident: e_1_2_8_1_43_1 doi: 10.1130/rf.l003.1 – ident: e_1_2_8_1_4_1 doi: 10.1111/j.1365‐2117.2006.00293.x – ident: e_1_2_8_1_11_1 doi: 10.1029/2020gl091777 – ident: e_1_2_8_1_8_1 doi: 10.1103/physrevlett.109.218701 – ident: e_1_2_8_1_16_1 doi: 10.1016/j.jaridenv.2017.04.013 – ident: e_1_2_8_1_22_1 doi: 10.1029/tc008i005p01079 – ident: e_1_2_8_1_40_1 – ident: e_1_2_8_1_27_1 doi: 10.1029/90wr02501 – ident: e_1_2_8_1_7_1 doi: 10.1029/2002tc001402 – ident: e_1_2_8_1_20_1 doi: 10.6084/m9.figshare.25308565.v1 – ident: e_1_2_8_1_44_1 doi: 10.1038/s41586‐018‐0532‐1 – ident: e_1_2_8_1_41_1 doi: 10.1016/s0022‐1694(99)00011‐6 – ident: e_1_2_8_1_42_1 doi: 10.1016/j.geomorph.2017.10.029 – ident: e_1_2_8_1_34_1 doi: 10.1029/2018gl080172 – ident: e_1_2_8_1_9_1 doi: 10.1073/pnas.1215218109 – ident: e_1_2_8_1_28_1 doi: 10.1029/94wr03290 – ident: e_1_2_8_1_21_1 doi: 10.1029/2023gl104121 – ident: e_1_2_8_1_35_1 doi: 10.1073/pnas.2211942119 – ident: e_1_2_8_1_14_1 doi: 10.1016/j.epsl.2019.06.018 – ident: e_1_2_8_1_26_1 doi: 10.1029/96wr02397 – ident: e_1_2_8_1_46_1 doi: 10.1002/2017gl072874 – ident: e_1_2_8_1_17_1 doi: 10.1002/esp.3290010302 – ident: e_1_2_8_1_5_1 doi: 10.1111/j.1365‐3121.2009.00880.x – ident: e_1_2_8_1_12_1 doi: 10.1111/j.1365‐2117.1996.tb00113.x – ident: e_1_2_8_1_30_1 doi: 10.5194/esurf‐8‐245‐2020 – ident: e_1_2_8_1_33_1 doi: 10.1002/2016gl072089 – ident: e_1_2_8_1_39_1 doi: 10.1029/97wr00409 – ident: e_1_2_8_1_45_1 doi: 10.1126/science.1248765 – ident: e_1_2_8_1_3_1 doi: 10.1029/2022gl099010 – ident: e_1_2_8_1_10_1 doi: 10.1029/2023gl103599 – ident: e_1_2_8_1_25_1 doi: 10.1016/j.epsl.2004.05.019 – ident: e_1_2_8_1_47_1 doi: 10.1098/rspa.2018.0081 – ident: e_1_2_8_1_32_1 doi: 10.1126/sciadv.aar6692 |
SSID | ssj0003031 |
Score | 2.445487 |
Snippet | Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and... Abstract Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Area Arid climates Arid zones Aridity Basins Climate control Climatic analysis Continents Drainage Drainage basins Earth Earth surface Gradients River basins Roughness Slope Slopes Surface runoff Tectonics Topography |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn7i-yEFPUmyTNI-jrroi6kF3YW8lT1yQ7uLqwX_vJG1lvejFWymhDPMlM9-Q6TcIndBQ-tJqmXHYLFkU7MqMJjzTApaLwqiCxR-FHx757ZjdTcrJ0qiv2BPWyAM3jjsPQVsnpMsL75ijwRArrDKBagNswdsYfSHndcVUG4MhMDez8hTLJBG8bXnPiYrVPh3eA62Q7XC2Lhklzf4fRHOZrqZ8c7OB1luiiC8aAzfRiq-30OowDeL9hKfUumkX2-ihke3HnbwIngU8ms0bKeqpxbp2ePA6TdKseNB0psOiGl_F6RAQTvClXkxr_Pyi536xg8Y316PBbdYOScg0hcIWPMtyA6wI_KEIFxSOoPIhVnUsxFs6pZizRaEJkYG7QrtgGI9pXxpX2tLSXdSrZ7XfQzhSPW29FtRrxi01RURM5sbJAKiFPjrtvFXNGy2MKt1hE1Ute7WPLqMrv9dEBev0AnCtWlyrv3Dto8MOiKo9VouKJjUcCIl5H50lcH41pBo-3XNBqNj_D4sO0Bp8PLXtEHmIeu9vH_4IGMm7OU6b7wthLtsC priority: 102 providerName: Directory of Open Access Journals |
Title | Global Analysis of Topographic and Climatic Controls on Drainage Basin Shapes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105804 https://www.proquest.com/docview/3045197630 https://doaj.org/article/ffacd78d01ed4d3fb2c7c9bf3ab085ec |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEA6LsuBFVldxXB1y2D1J43SSTtJHZ9SRRUV8gLcmTx2QnmFaD_57q9I9w3gRvDWhAumqVOVLUvmKkL88FqFwRmcSJkuGhF2ZNUxmRoG4ym2ZC3wofHUtLx7E_8fisTtww7cwLT_E8sANPSPFa3RwY5uObAA5MrHu9_gS4IFGOtB1fF2L85yJm2UkhvDcVswrRaaZkl3iO_Q_Xu39aUlKzP2f4OYqaE2rzvkvstnBRXrS2neL_Aj1Nvk5TuV43-ErJXC65je5asn76YJkhE4jvZ_OWkLqiaOm9nT0MkkErXTU5qeDUE1PsUYEBBU6NM2kpnfPZhaaHfJwfnY_usi6UgmZ4bC9Bf2KgQVsxI0tmVQcHLEMEfd2IuJdXVkK7_LcMKaj9Lnx0QqJi7-2vnCF47tkrZ7WYY9QBHzGBaN4MEI6bnO0mx5YryPYLvbIv4W2qlnLiFGlm2xWVqta7ZEhqnIpgzzWqWE6f6o6t6hiNM4r7Qd58MLzaJlTrrQR_gOwYHA9crAwRNU5V1PxxIkDgXHQI0fJOF8OpBrfXkrFuNr_lvQfsgHtKUuH6QOy9jp_C4cAQF5tP82yPlkfnl3f3PbTNv4DTT7Slg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYqqgouVR8gUmjrA5yqFVnba3uPkJakbYKqEiRulp80UrWJEnrg3zPj3UThgtTbajWWdmc8M5_t8TeEnPBUxcpbXUiYLAUSdhXOMllYBeKqdHUp8KLw5EqObsSP2-q263OKd2FafojNhht6Ro7X6OC4Id2xDSBJJjb-Ho4BH2jkA30pJFPYu4GJX5tQDPG5bZlXi0IzJbvKdxh_tj36SU7K1P1P8OY2as1p5_INed3hRXreGvgteRGbd-TVMPfjfYCnXMHpV-_JpGXvp2uWETpPdDpftIzUM09tE-jg7ywztNJBW6AOQg39ik0iIKrQC7uaNfT6j13E1T65ufw2HYyKrldCYTmsb0HBou8AHHHraiYVB0-sY8LFnUh4WFfXIviytIzpJENpQ3JCYvbXLlS-8vyA7DTzJh4SiojP-mgVj1ZIz12JhtN9F3QC46UeOV1ryyxaSgyTj7JZbba12iMXqMqNDBJZ5xfz5Z3p_MKkZH1QOvTLGETgyTGvfO0S_AeAweh75HhtCNN518rwTIoDkbHfI1-ycZ79EDP8PZaKcfXhv6Q_k93RdDI24-9XP4_IHsjkkh2mj8nO_fJf_Aho5N59yjPuESrh03M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYqqqJeUFtADdDWBzihFVnba3uPJTShJSDEQ-Jm-UkjVZuIwIF_z4x3E4ULUm-r1VjanfGMP3vG3xCyz1MVK291IWGyFEjYVTjLZGEViKvS1aXAi8LnF_L0Vvy5q-66Aze8C9PyQywP3NAzcrxGB5-F1JENIEcm9v0ejQEeaKQDfY_5PpzhTFwuIzGE57ZjXi0KzZTsCt9h_NHq6FdLUmbufwU3V0FrXnWGn8hGBxfpz9a-n8m72HwhH0a5He8zPOUCTj_fJOcteT9dkIzQaaI301lLSD3x1DaBDv5NMkErHbT16SDU0BPsEQFBhR7b-aSh13_tLM63yO3w183gtOhaJRSWw_YW9Cv6DrARt65mUnFwxDom3NuJhLm6uhbBl6VlTCcZShuSExIXf-1C5SvPt8laM23iV0IR8FkfreLRCum5K9Fuuu-CTmC71CMHC22ZWcuIYXImm9VmVas9coyqXMogj3V-MX24N51bmJSsD0qHfhmDCDw55pWvXYL_ACwYfY_sLQxhOueaG545cSAw9nvkMBvnzQ8xo6uxVIyrnf-S_kHWL0-GZvz74myXfASRXLDD9B5Ze3x4it8Aizy673nCvQANw9Kl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Analysis+of+Topographic+and+Climatic+Controls+on+Drainage+Basin+Shapes&rft.jtitle=Geophysical+research+letters&rft.au=Li%2C+Minhui&rft.au=Seybold%2C+Hansj%C3%B6rg&rft.au=Wu%2C+Baosheng&rft.au=Chen%2C+Yi&rft.date=2024-04-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023GL105804&rft.externalDBID=10.1029%252F2023GL105804&rft.externalDocID=GRL67237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |