Global Analysis of Topographic and Climatic Controls on Drainage Basin Shapes

Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (ave...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 51; no. 8
Main Authors Li, Minhui, Seybold, Hansjörg, Wu, Baosheng, Chen, Yi, Fu, Xudong, Kirchner, James W.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.04.2024
Wiley
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1029/2023GL105804

Cover

Loading…
Abstract Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (average area ∼157 km2), covering all continents except Antarctica and Greenland. Global variations in WLRs are correlated with climatic aridity, whole‐basin slope, and local topographic roughness. Basins in arid landscapes tend to be narrower, potentially reflecting a higher prevalence of surface runoff and therefore a stronger slope‐parallel component of the transporting flow. Local topographic roughness is associated with wider basins, potentially reflecting greater dispersion of flow directions. Conversely, whole‐basin topographic gradients, potentially reflecting gradients in uplift, are associated with narrower basins. However, steeper basins are also often rougher, so revealing the effects of whole‐basin slope requires correcting for the confounding effects of roughness variations. Plain Language Summary Drainage basins are essential features that help us understand how water accumulates and flows across Earth's landscapes. In this study, we examined the width‐to‐length ratios of 386,931 drainage basins from all continents except Antarctica and Greenland. We found that basins tend to be narrower in more arid climates. We also observed that, all else equal, basins with greater local roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower. Our results thus indicate that on the global scale, basin shapes are strongly influenced by topographic roughness, whole‐basin slope and climatic aridity. Our findings hold across different basin scales, encompassing smaller basins with a mean area of approximately 157 km2 to larger basins with a mean area of around 1,000 km2. These results advance our understanding of global patterns of basin shapes and the tectonic and climatic drivers behind them. Key Points Globally, basins with greater topographic roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower In arid regions (aridity index <0.65), basins tend to widen as climate becomes more humid Basin shape is strongly correlated with topographic roughness, whole‐basin slope and climatic aridity on a global scale
AbstractList Abstract Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (average area ∼157 km2), covering all continents except Antarctica and Greenland. Global variations in WLRs are correlated with climatic aridity, whole‐basin slope, and local topographic roughness. Basins in arid landscapes tend to be narrower, potentially reflecting a higher prevalence of surface runoff and therefore a stronger slope‐parallel component of the transporting flow. Local topographic roughness is associated with wider basins, potentially reflecting greater dispersion of flow directions. Conversely, whole‐basin topographic gradients, potentially reflecting gradients in uplift, are associated with narrower basins. However, steeper basins are also often rougher, so revealing the effects of whole‐basin slope requires correcting for the confounding effects of roughness variations.
Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (average area ∼157 km2), covering all continents except Antarctica and Greenland. Global variations in WLRs are correlated with climatic aridity, whole‐basin slope, and local topographic roughness. Basins in arid landscapes tend to be narrower, potentially reflecting a higher prevalence of surface runoff and therefore a stronger slope‐parallel component of the transporting flow. Local topographic roughness is associated with wider basins, potentially reflecting greater dispersion of flow directions. Conversely, whole‐basin topographic gradients, potentially reflecting gradients in uplift, are associated with narrower basins. However, steeper basins are also often rougher, so revealing the effects of whole‐basin slope requires correcting for the confounding effects of roughness variations.
Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (average area ∼157 km2), covering all continents except Antarctica and Greenland. Global variations in WLRs are correlated with climatic aridity, whole‐basin slope, and local topographic roughness. Basins in arid landscapes tend to be narrower, potentially reflecting a higher prevalence of surface runoff and therefore a stronger slope‐parallel component of the transporting flow. Local topographic roughness is associated with wider basins, potentially reflecting greater dispersion of flow directions. Conversely, whole‐basin topographic gradients, potentially reflecting gradients in uplift, are associated with narrower basins. However, steeper basins are also often rougher, so revealing the effects of whole‐basin slope requires correcting for the confounding effects of roughness variations. Plain Language Summary Drainage basins are essential features that help us understand how water accumulates and flows across Earth's landscapes. In this study, we examined the width‐to‐length ratios of 386,931 drainage basins from all continents except Antarctica and Greenland. We found that basins tend to be narrower in more arid climates. We also observed that, all else equal, basins with greater local roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower. Our results thus indicate that on the global scale, basin shapes are strongly influenced by topographic roughness, whole‐basin slope and climatic aridity. Our findings hold across different basin scales, encompassing smaller basins with a mean area of approximately 157 km2 to larger basins with a mean area of around 1,000 km2. These results advance our understanding of global patterns of basin shapes and the tectonic and climatic drivers behind them. Key Points Globally, basins with greater topographic roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower In arid regions (aridity index <0.65), basins tend to widen as climate becomes more humid Basin shape is strongly correlated with topographic roughness, whole‐basin slope and climatic aridity on a global scale
Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and climatic forces alter Earth's surface morphology. Here, we measure the width‐to‐length ratios (WLRs) of 386,931 drainage basins (average area ∼157 km 2 ), covering all continents except Antarctica and Greenland. Global variations in WLRs are correlated with climatic aridity, whole‐basin slope, and local topographic roughness. Basins in arid landscapes tend to be narrower, potentially reflecting a higher prevalence of surface runoff and therefore a stronger slope‐parallel component of the transporting flow. Local topographic roughness is associated with wider basins, potentially reflecting greater dispersion of flow directions. Conversely, whole‐basin topographic gradients, potentially reflecting gradients in uplift, are associated with narrower basins. However, steeper basins are also often rougher, so revealing the effects of whole‐basin slope requires correcting for the confounding effects of roughness variations. Drainage basins are essential features that help us understand how water accumulates and flows across Earth's landscapes. In this study, we examined the width‐to‐length ratios of 386,931 drainage basins from all continents except Antarctica and Greenland. We found that basins tend to be narrower in more arid climates. We also observed that, all else equal, basins with greater local roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower. Our results thus indicate that on the global scale, basin shapes are strongly influenced by topographic roughness, whole‐basin slope and climatic aridity. Our findings hold across different basin scales, encompassing smaller basins with a mean area of approximately 157 km 2 to larger basins with a mean area of around 1,000 km 2 . These results advance our understanding of global patterns of basin shapes and the tectonic and climatic drivers behind them. Globally, basins with greater topographic roughness tend to be wider, and those with steeper whole‐basin slopes tend to be narrower In arid regions (aridity index <0.65), basins tend to widen as climate becomes more humid Basin shape is strongly correlated with topographic roughness, whole‐basin slope and climatic aridity on a global scale
Author Seybold, Hansjörg
Wu, Baosheng
Chen, Yi
Kirchner, James W.
Li, Minhui
Fu, Xudong
Author_xml – sequence: 1
  givenname: Minhui
  orcidid: 0000-0002-5974-4632
  surname: Li
  fullname: Li, Minhui
  organization: ETH Zurich
– sequence: 2
  givenname: Hansjörg
  orcidid: 0000-0002-3793-1904
  surname: Seybold
  fullname: Seybold, Hansjörg
  organization: ETH Zurich
– sequence: 3
  givenname: Baosheng
  orcidid: 0000-0002-7149-0276
  surname: Wu
  fullname: Wu, Baosheng
  organization: Tsinghua University
– sequence: 4
  givenname: Yi
  surname: Chen
  fullname: Chen, Yi
  organization: Tsinghua University
– sequence: 5
  givenname: Xudong
  orcidid: 0000-0003-0744-0546
  surname: Fu
  fullname: Fu, Xudong
  email: xdfu@tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 6
  givenname: James W.
  orcidid: 0000-0001-6577-3619
  surname: Kirchner
  fullname: Kirchner, James W.
  email: kirchner@ethz.ch
  organization: University of California
BookMark eNp9kEtLAzEUhYNUsK3u_AEDbh29ecxkstSqVagIPtbhziSpU8bJmLRI_73RirhydR98nHM4EzLqfW8JOaZwRoGpcwaMzxcUigrEHhlTJUReAcgRGQOotDNZHpBJjCsA4MDpmNzPO19jl1302G1jGzPvsmc_-GXA4bVtMuxNNuvaN1ynY-b7dfBdgvrsKmDb49JmlxjbPnt6xcHGQ7LvsIv26GdOycvN9fPsNl88zO9mF4scuQKZ1yig5kxwrBUrJWeFVNZRClI4KAUoJUxDKTJWudJQNK4WZcWAVrUpmqLhU3K30zUeV3oIKV_Yao-t_n74sNQYUuLOauewMbIyQK0RhruaNbJRtUveUBX2S-tkpzUE_76xca1XfhNSHVFzEAVVskxVTcnpjmqCjzFY9-tKQX-Vr_-Wn3C2wz_azm7_ZfX8cVFKxiX_BKMmhas
Cites_doi 10.1130/0091‐7613(1987)15<813:eorsod>2.0.co;2
10.1086/623976
10.1029/94wr01050
10.1029/2003wr002583
10.1038/s41467‐018‐06210‐4
10.1038/s41561‐021‐00720‐5
10.1016/j.geomorph.2013.03.022
10.5194/esurf‐6‐779‐2018
10.1038/nature11672
10.1038/s41561‐022‐00900‐x
10.1016/j.geomorph.2011.05.014
10.1002/hyp.9740
10.1073/pnas.2015770118
10.1306/5d25c26d‐16c1‐11d7‐8645000102c1865d
10.1130/rf.l003.1
10.1111/j.1365‐2117.2006.00293.x
10.1029/2020gl091777
10.1103/physrevlett.109.218701
10.1016/j.jaridenv.2017.04.013
10.1029/tc008i005p01079
10.1029/90wr02501
10.1029/2002tc001402
10.6084/m9.figshare.25308565.v1
10.1038/s41586‐018‐0532‐1
10.1016/s0022‐1694(99)00011‐6
10.1016/j.geomorph.2017.10.029
10.1029/2018gl080172
10.1073/pnas.1215218109
10.1029/94wr03290
10.1029/2023gl104121
10.1073/pnas.2211942119
10.1016/j.epsl.2019.06.018
10.1029/96wr02397
10.1002/2017gl072874
10.1002/esp.3290010302
10.1111/j.1365‐3121.2009.00880.x
10.1111/j.1365‐2117.1996.tb00113.x
10.5194/esurf‐8‐245‐2020
10.1002/2016gl072089
10.1029/97wr00409
10.1126/science.1248765
10.1029/2022gl099010
10.1029/2023gl103599
10.1016/j.epsl.2004.05.019
10.1098/rspa.2018.0081
10.1126/sciadv.aar6692
ContentType Journal Article
Copyright 2024. The Authors.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Authors.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2023GL105804
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ffacd78d01ed4d3fb2c7c9bf3ab085ec
10_1029_2023GL105804
GRL67237
Genre article
GeographicLocations Antarctica
Greenland
GeographicLocations_xml – name: Greenland
– name: Antarctica
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U2243218; 91747207
– fundername: State Key Laboratory of Hydroscience and Engineering
  funderid: 2023‐KY‐02
– fundername: Chinese Scholarship Council
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
PUEGO
ID FETCH-LOGICAL-a3907-ba40b3243ab926732579ef11074f0640994dc11a228f6d1adfb4682018bd5c5c3
IEDL.DBID 24P
ISSN 0094-8276
IngestDate Wed Aug 27 01:29:02 EDT 2025
Fri Jul 25 12:23:45 EDT 2025
Tue Jul 01 01:05:30 EDT 2025
Wed Aug 20 07:24:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3907-ba40b3243ab926732579ef11074f0640994dc11a228f6d1adfb4682018bd5c5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0744-0546
0000-0002-3793-1904
0000-0002-7149-0276
0000-0002-5974-4632
0000-0001-6577-3619
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105804
PQID 3045197630
PQPubID 54723
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_ffacd78d01ed4d3fb2c7c9bf3ab085ec
proquest_journals_3045197630
crossref_primary_10_1029_2023GL105804
wiley_primary_10_1029_2023GL105804_GRL67237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 April 2024
PublicationDateYYYYMMDD 2024-04-28
PublicationDate_xml – month: 04
  year: 2024
  text: 28 April 2024
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_8_1_12_1
e_1_2_8_1_35_1
e_1_2_8_1_11_1
e_1_2_8_1_36_1
e_1_2_8_1_14_1
e_1_2_8_1_33_1
e_1_2_8_1_13_1
e_1_2_8_1_34_1
e_1_2_8_1_31_1
e_1_2_8_1_32_1
e_1_2_8_1_10_1
e_1_2_8_1_30_1
e_1_2_8_1_8_1
e_1_2_8_1_9_1
e_1_2_8_1_27_1
e_1_2_8_1_26_1
e_1_2_8_1_29_1
e_1_2_8_1_48_1
e_1_2_8_1_28_1
e_1_2_8_1_23_1
e_1_2_8_1_46_1
e_1_2_8_1_22_1
e_1_2_8_1_47_1
e_1_2_8_1_25_1
e_1_2_8_1_44_1
e_1_2_8_1_24_1
e_1_2_8_1_45_1
e_1_2_8_2_2_1
e_1_2_8_1_42_1
e_1_2_8_1_43_1
e_1_2_8_1_21_1
e_1_2_8_1_40_1
e_1_2_8_1_20_1
e_1_2_8_1_41_1
e_1_2_8_1_2_1
e_1_2_8_1_3_1
e_1_2_8_1_6_1
e_1_2_8_1_7_1
e_1_2_8_1_4_1
e_1_2_8_1_5_1
e_1_2_8_1_19_1
e_1_2_8_1_16_1
e_1_2_8_1_39_1
e_1_2_8_1_15_1
e_1_2_8_1_18_1
e_1_2_8_1_37_1
e_1_2_8_1_17_1
e_1_2_8_1_38_1
References_xml – ident: e_1_2_8_1_24_1
  doi: 10.1130/0091‐7613(1987)15<813:eorsod>2.0.co;2
– ident: e_1_2_8_1_38_1
– ident: e_1_2_8_1_48_1
  doi: 10.1086/623976
– ident: e_1_2_8_1_36_1
  doi: 10.1029/94wr01050
– ident: e_1_2_8_1_2_1
  doi: 10.1029/2003wr002583
– ident: e_1_2_8_1_29_1
  doi: 10.1038/s41467‐018‐06210‐4
– ident: e_1_2_8_1_31_1
  doi: 10.1038/s41561‐021‐00720‐5
– ident: e_1_2_8_1_6_1
  doi: 10.1016/j.geomorph.2013.03.022
– ident: e_1_2_8_2_2_1
  doi: 10.5194/esurf‐6‐779‐2018
– ident: e_1_2_8_1_23_1
  doi: 10.1038/nature11672
– ident: e_1_2_8_1_37_1
  doi: 10.1038/s41561‐022‐00900‐x
– ident: e_1_2_8_1_15_1
  doi: 10.1016/j.geomorph.2011.05.014
– ident: e_1_2_8_1_19_1
  doi: 10.1002/hyp.9740
– ident: e_1_2_8_1_18_1
  doi: 10.1073/pnas.2015770118
– ident: e_1_2_8_1_13_1
  doi: 10.1306/5d25c26d‐16c1‐11d7‐8645000102c1865d
– ident: e_1_2_8_1_43_1
  doi: 10.1130/rf.l003.1
– ident: e_1_2_8_1_4_1
  doi: 10.1111/j.1365‐2117.2006.00293.x
– ident: e_1_2_8_1_11_1
  doi: 10.1029/2020gl091777
– ident: e_1_2_8_1_8_1
  doi: 10.1103/physrevlett.109.218701
– ident: e_1_2_8_1_16_1
  doi: 10.1016/j.jaridenv.2017.04.013
– ident: e_1_2_8_1_22_1
  doi: 10.1029/tc008i005p01079
– ident: e_1_2_8_1_40_1
– ident: e_1_2_8_1_27_1
  doi: 10.1029/90wr02501
– ident: e_1_2_8_1_7_1
  doi: 10.1029/2002tc001402
– ident: e_1_2_8_1_20_1
  doi: 10.6084/m9.figshare.25308565.v1
– ident: e_1_2_8_1_44_1
  doi: 10.1038/s41586‐018‐0532‐1
– ident: e_1_2_8_1_41_1
  doi: 10.1016/s0022‐1694(99)00011‐6
– ident: e_1_2_8_1_42_1
  doi: 10.1016/j.geomorph.2017.10.029
– ident: e_1_2_8_1_34_1
  doi: 10.1029/2018gl080172
– ident: e_1_2_8_1_9_1
  doi: 10.1073/pnas.1215218109
– ident: e_1_2_8_1_28_1
  doi: 10.1029/94wr03290
– ident: e_1_2_8_1_21_1
  doi: 10.1029/2023gl104121
– ident: e_1_2_8_1_35_1
  doi: 10.1073/pnas.2211942119
– ident: e_1_2_8_1_14_1
  doi: 10.1016/j.epsl.2019.06.018
– ident: e_1_2_8_1_26_1
  doi: 10.1029/96wr02397
– ident: e_1_2_8_1_46_1
  doi: 10.1002/2017gl072874
– ident: e_1_2_8_1_17_1
  doi: 10.1002/esp.3290010302
– ident: e_1_2_8_1_5_1
  doi: 10.1111/j.1365‐3121.2009.00880.x
– ident: e_1_2_8_1_12_1
  doi: 10.1111/j.1365‐2117.1996.tb00113.x
– ident: e_1_2_8_1_30_1
  doi: 10.5194/esurf‐8‐245‐2020
– ident: e_1_2_8_1_33_1
  doi: 10.1002/2016gl072089
– ident: e_1_2_8_1_39_1
  doi: 10.1029/97wr00409
– ident: e_1_2_8_1_45_1
  doi: 10.1126/science.1248765
– ident: e_1_2_8_1_3_1
  doi: 10.1029/2022gl099010
– ident: e_1_2_8_1_10_1
  doi: 10.1029/2023gl103599
– ident: e_1_2_8_1_25_1
  doi: 10.1016/j.epsl.2004.05.019
– ident: e_1_2_8_1_47_1
  doi: 10.1098/rspa.2018.0081
– ident: e_1_2_8_1_32_1
  doi: 10.1126/sciadv.aar6692
SSID ssj0003031
Score 2.445487
Snippet Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how tectonics and...
Abstract Drainage basins are fundamental units of Earth's surface, describing how flows accumulate across landscapes. They are direct expressions of how...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Area
Arid climates
Arid zones
Aridity
Basins
Climate control
Climatic analysis
Continents
Drainage
Drainage basins
Earth
Earth surface
Gradients
River basins
Roughness
Slope
Slopes
Surface runoff
Tectonics
Topography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn7i-yEFPUmyTNI-jrroi6kF3YW8lT1yQ7uLqwX_vJG1lvejFWymhDPMlM9-Q6TcIndBQ-tJqmXHYLFkU7MqMJjzTApaLwqiCxR-FHx757ZjdTcrJ0qiv2BPWyAM3jjsPQVsnpMsL75ijwRArrDKBagNswdsYfSHndcVUG4MhMDez8hTLJBG8bXnPiYrVPh3eA62Q7XC2Lhklzf4fRHOZrqZ8c7OB1luiiC8aAzfRiq-30OowDeL9hKfUumkX2-ihke3HnbwIngU8ms0bKeqpxbp2ePA6TdKseNB0psOiGl_F6RAQTvClXkxr_Pyi536xg8Y316PBbdYOScg0hcIWPMtyA6wI_KEIFxSOoPIhVnUsxFs6pZizRaEJkYG7QrtgGI9pXxpX2tLSXdSrZ7XfQzhSPW29FtRrxi01RURM5sbJAKiFPjrtvFXNGy2MKt1hE1Ute7WPLqMrv9dEBev0AnCtWlyrv3Dto8MOiKo9VouKJjUcCIl5H50lcH41pBo-3XNBqNj_D4sO0Bp8PLXtEHmIeu9vH_4IGMm7OU6b7wthLtsC
  priority: 102
  providerName: Directory of Open Access Journals
Title Global Analysis of Topographic and Climatic Controls on Drainage Basin Shapes
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105804
https://www.proquest.com/docview/3045197630
https://doaj.org/article/ffacd78d01ed4d3fb2c7c9bf3ab085ec
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEA6LsuBFVldxXB1y2D1J43SSTtJHZ9SRRUV8gLcmTx2QnmFaD_57q9I9w3gRvDWhAumqVOVLUvmKkL88FqFwRmcSJkuGhF2ZNUxmRoG4ym2ZC3wofHUtLx7E_8fisTtww7cwLT_E8sANPSPFa3RwY5uObAA5MrHu9_gS4IFGOtB1fF2L85yJm2UkhvDcVswrRaaZkl3iO_Q_Xu39aUlKzP2f4OYqaE2rzvkvstnBRXrS2neL_Aj1Nvk5TuV43-ErJXC65je5asn76YJkhE4jvZ_OWkLqiaOm9nT0MkkErXTU5qeDUE1PsUYEBBU6NM2kpnfPZhaaHfJwfnY_usi6UgmZ4bC9Bf2KgQVsxI0tmVQcHLEMEfd2IuJdXVkK7_LcMKaj9Lnx0QqJi7-2vnCF47tkrZ7WYY9QBHzGBaN4MEI6bnO0mx5YryPYLvbIv4W2qlnLiFGlm2xWVqta7ZEhqnIpgzzWqWE6f6o6t6hiNM4r7Qd58MLzaJlTrrQR_gOwYHA9crAwRNU5V1PxxIkDgXHQI0fJOF8OpBrfXkrFuNr_lvQfsgHtKUuH6QOy9jp_C4cAQF5tP82yPlkfnl3f3PbTNv4DTT7Slg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYqqgouVR8gUmjrA5yqFVnba3uPkJakbYKqEiRulp80UrWJEnrg3zPj3UThgtTbajWWdmc8M5_t8TeEnPBUxcpbXUiYLAUSdhXOMllYBeKqdHUp8KLw5EqObsSP2-q263OKd2FafojNhht6Ro7X6OC4Id2xDSBJJjb-Ho4BH2jkA30pJFPYu4GJX5tQDPG5bZlXi0IzJbvKdxh_tj36SU7K1P1P8OY2as1p5_INed3hRXreGvgteRGbd-TVMPfjfYCnXMHpV-_JpGXvp2uWETpPdDpftIzUM09tE-jg7ywztNJBW6AOQg39ik0iIKrQC7uaNfT6j13E1T65ufw2HYyKrldCYTmsb0HBou8AHHHraiYVB0-sY8LFnUh4WFfXIviytIzpJENpQ3JCYvbXLlS-8vyA7DTzJh4SiojP-mgVj1ZIz12JhtN9F3QC46UeOV1ryyxaSgyTj7JZbba12iMXqMqNDBJZ5xfz5Z3p_MKkZH1QOvTLGETgyTGvfO0S_AeAweh75HhtCNN518rwTIoDkbHfI1-ycZ79EDP8PZaKcfXhv6Q_k93RdDI24-9XP4_IHsjkkh2mj8nO_fJf_Aho5N59yjPuESrh03M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYqqqJeUFtADdDWBzihFVnba3uPJTShJSDEQ-Jm-UkjVZuIwIF_z4x3E4ULUm-r1VjanfGMP3vG3xCyz1MVK291IWGyFEjYVTjLZGEViKvS1aXAi8LnF_L0Vvy5q-66Aze8C9PyQywP3NAzcrxGB5-F1JENIEcm9v0ejQEeaKQDfY_5PpzhTFwuIzGE57ZjXi0KzZTsCt9h_NHq6FdLUmbufwU3V0FrXnWGn8hGBxfpz9a-n8m72HwhH0a5He8zPOUCTj_fJOcteT9dkIzQaaI301lLSD3x1DaBDv5NMkErHbT16SDU0BPsEQFBhR7b-aSh13_tLM63yO3w183gtOhaJRSWw_YW9Cv6DrARt65mUnFwxDom3NuJhLm6uhbBl6VlTCcZShuSExIXf-1C5SvPt8laM23iV0IR8FkfreLRCum5K9Fuuu-CTmC71CMHC22ZWcuIYXImm9VmVas9coyqXMogj3V-MX24N51bmJSsD0qHfhmDCDw55pWvXYL_ACwYfY_sLQxhOueaG545cSAw9nvkMBvnzQ8xo6uxVIyrnf-S_kHWL0-GZvz74myXfASRXLDD9B5Ze3x4it8Aizy673nCvQANw9Kl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Analysis+of+Topographic+and+Climatic+Controls+on+Drainage+Basin+Shapes&rft.jtitle=Geophysical+research+letters&rft.au=Li%2C+Minhui&rft.au=Seybold%2C+Hansj%C3%B6rg&rft.au=Wu%2C+Baosheng&rft.au=Chen%2C+Yi&rft.date=2024-04-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023GL105804&rft.externalDBID=10.1029%252F2023GL105804&rft.externalDocID=GRL67237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon