Mercury Isotopes Track the Causes of Carbon Perturbations in the Early Permian Ocean and Continent

The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and t...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 52; no. 2
Main Authors Fang, Qiang, Wu, Huaichun, Chen, Jiubin, Grasby, Stephen E., Zheng, Wang, Shen, Shu‐zhong, Huang, Wentao, Xu, Junjie, Zhang, Shihong
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.01.2025
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and the climatic impact. Our results indicate that small‐scale volcanism promoted marine organic C burial, and the concomitant extreme cooling triggered the waning of wetland ecosystems in North China block at ∼296.2 Ma. Subsequently, the mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and C isotopes synchronously decline in the deep‐marine succession, likely supporting progressive oxidation of terrestrial biomass and airborne release of Hg and C. Lowered C sequestration (as coal swamps) on land and dampened continental weathering limited the drawdown of CO2 emissions from wildfires, initiating deglaciation. Our findings highlight that the climate forcing on terrestrial ecosystems could activate additional C reservoirs, driving Earth into a warmer state. Plain Language Summary We tracked the causes of global carbon perturbation during the onset of the demise of the Late Paleozoic Ice Age using Hg concentration and isotope data from low‐latitude marine and continental successions. Our study indicates that small‐scale volcanic activity facilitated marine organic carbon burial, and that the concomitant cooling pulse promoted the waning of tropical wetland ecosystem at ∼296.2 Ma. Subsequently, oxidation of terrestrial biomass and airborne release of Hg and C resulted in decreased mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and carbon isotopes in the deep‐marine succession. Lowered terrestrial C sequestration and continental weathering limited the drawdown of the CO2 emissions from wildfires, acting as the important forcing of global warming and deglaciation during the early Permian. Key Points Small‐scale volcanic activity mediated the carbon perturbation at the apex of the Late Paleozoic Ice Age Extreme cooling promoted the waning of tropical wetland ecosystems at 296.2 Ma CO2 emissions from wildfires may play an important role in the deglaciation event beginning at ~294 Ma
AbstractList The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and the climatic impact. Our results indicate that small‐scale volcanism promoted marine organic C burial, and the concomitant extreme cooling triggered the waning of wetland ecosystems in North China block at ∼296.2 Ma. Subsequently, the mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and C isotopes synchronously decline in the deep‐marine succession, likely supporting progressive oxidation of terrestrial biomass and airborne release of Hg and C. Lowered C sequestration (as coal swamps) on land and dampened continental weathering limited the drawdown of CO2 emissions from wildfires, initiating deglaciation. Our findings highlight that the climate forcing on terrestrial ecosystems could activate additional C reservoirs, driving Earth into a warmer state. Plain Language Summary We tracked the causes of global carbon perturbation during the onset of the demise of the Late Paleozoic Ice Age using Hg concentration and isotope data from low‐latitude marine and continental successions. Our study indicates that small‐scale volcanic activity facilitated marine organic carbon burial, and that the concomitant cooling pulse promoted the waning of tropical wetland ecosystem at ∼296.2 Ma. Subsequently, oxidation of terrestrial biomass and airborne release of Hg and C resulted in decreased mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and carbon isotopes in the deep‐marine succession. Lowered terrestrial C sequestration and continental weathering limited the drawdown of the CO2 emissions from wildfires, acting as the important forcing of global warming and deglaciation during the early Permian. Key Points Small‐scale volcanic activity mediated the carbon perturbation at the apex of the Late Paleozoic Ice Age Extreme cooling promoted the waning of tropical wetland ecosystems at 296.2 Ma CO2 emissions from wildfires may play an important role in the deglaciation event beginning at ~294 Ma
Abstract The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and the climatic impact. Our results indicate that small‐scale volcanism promoted marine organic C burial, and the concomitant extreme cooling triggered the waning of wetland ecosystems in North China block at ∼296.2 Ma. Subsequently, the mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and C isotopes synchronously decline in the deep‐marine succession, likely supporting progressive oxidation of terrestrial biomass and airborne release of Hg and C. Lowered C sequestration (as coal swamps) on land and dampened continental weathering limited the drawdown of CO2 emissions from wildfires, initiating deglaciation. Our findings highlight that the climate forcing on terrestrial ecosystems could activate additional C reservoirs, driving Earth into a warmer state.
The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and the climatic impact. Our results indicate that small‐scale volcanism promoted marine organic C burial, and the concomitant extreme cooling triggered the waning of wetland ecosystems in North China block at ∼296.2 Ma. Subsequently, the mass‐independent fractionation of odd Hg isotopes (Δ 199 Hg) and C isotopes synchronously decline in the deep‐marine succession, likely supporting progressive oxidation of terrestrial biomass and airborne release of Hg and C. Lowered C sequestration (as coal swamps) on land and dampened continental weathering limited the drawdown of CO 2 emissions from wildfires, initiating deglaciation. Our findings highlight that the climate forcing on terrestrial ecosystems could activate additional C reservoirs, driving Earth into a warmer state. We tracked the causes of global carbon perturbation during the onset of the demise of the Late Paleozoic Ice Age using Hg concentration and isotope data from low‐latitude marine and continental successions. Our study indicates that small‐scale volcanic activity facilitated marine organic carbon burial, and that the concomitant cooling pulse promoted the waning of tropical wetland ecosystem at ∼296.2 Ma. Subsequently, oxidation of terrestrial biomass and airborne release of Hg and C resulted in decreased mass‐independent fractionation of odd Hg isotopes (Δ 199 Hg) and carbon isotopes in the deep‐marine succession. Lowered terrestrial C sequestration and continental weathering limited the drawdown of the CO 2 emissions from wildfires, acting as the important forcing of global warming and deglaciation during the early Permian. Small‐scale volcanic activity mediated the carbon perturbation at the apex of the Late Paleozoic Ice Age Extreme cooling promoted the waning of tropical wetland ecosystems at 296.2 Ma CO 2 emissions from wildfires may play an important role in the deglaciation event beginning at ~294 Ma
The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and the climatic impact. Our results indicate that small‐scale volcanism promoted marine organic C burial, and the concomitant extreme cooling triggered the waning of wetland ecosystems in North China block at ∼296.2 Ma. Subsequently, the mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and C isotopes synchronously decline in the deep‐marine succession, likely supporting progressive oxidation of terrestrial biomass and airborne release of Hg and C. Lowered C sequestration (as coal swamps) on land and dampened continental weathering limited the drawdown of CO2 emissions from wildfires, initiating deglaciation. Our findings highlight that the climate forcing on terrestrial ecosystems could activate additional C reservoirs, driving Earth into a warmer state.
Author Shen, Shu‐zhong
Zheng, Wang
Zhang, Shihong
Wu, Huaichun
Fang, Qiang
Chen, Jiubin
Grasby, Stephen E.
Huang, Wentao
Xu, Junjie
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0002-9023-020X
  surname: Fang
  fullname: Fang, Qiang
  organization: China University of Geosciences (Beijing)
– sequence: 2
  givenname: Huaichun
  orcidid: 0000-0002-7708-0788
  surname: Wu
  fullname: Wu, Huaichun
  email: whcgeo@cugb.edu.cn
  organization: China University of Geosciences (Beijing)
– sequence: 3
  givenname: Jiubin
  surname: Chen
  fullname: Chen, Jiubin
  organization: Tianjin University
– sequence: 4
  givenname: Stephen E.
  orcidid: 0000-0002-3910-4443
  surname: Grasby
  fullname: Grasby, Stephen E.
  organization: Natural Resources Canada
– sequence: 5
  givenname: Wang
  surname: Zheng
  fullname: Zheng, Wang
  organization: Tianjin University
– sequence: 6
  givenname: Shu‐zhong
  orcidid: 0000-0001-8380-0692
  surname: Shen
  fullname: Shen, Shu‐zhong
  organization: Nanjing University
– sequence: 7
  givenname: Wentao
  surname: Huang
  fullname: Huang, Wentao
  organization: China University of Geosciences
– sequence: 8
  givenname: Junjie
  surname: Xu
  fullname: Xu, Junjie
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Shihong
  orcidid: 0000-0001-6030-1612
  surname: Zhang
  fullname: Zhang, Shihong
  organization: China University of Geosciences
BookMark eNp9kU9rGzEQxUVxoY7bWz_AQq5xM5J29edYjOMaHFyKexaSPNuuY0uOtEvwt69sh5JTLjPD6Md7I94NGYUYkJCvFL5RYPqeAasXK0o5pewDGVNd11MFIEdkDKDLzKT4RG5y3gEAB07HxD1i8kM6Vcsc-3jEXG2S9U9V_xermR1yWcS2TMnFUP3E1A_J2b6LIVdduFBzm_an89Ohs6FaeyzVhm01i6HvAob-M_nY2n3GL699Qn4_zDezH9PVerGcfV9NLdcAU04bxQUIiQ6gYZK6VoqaUVULj7pFKrVlViiO5SvYtLBtGuZq5bcgqLKcT8jyqruNdmeOqTvYdDLRduayiOmPsanv_B6Ndyi5dI12xYJbdIwL6rQEL9viikXr9qp1TPF5wNybXRxSKOcbTs9HKq5Zoe6ulE8x54Ttf1cK5pyIeZtIwdkVf-n2eHqXNYtfK6FUyegf5JqL3w
Cites_doi 10.1039/c4ja00438h
10.1130/G45461.1
10.1126/science.aad5787
10.1016/j.palaeo.2016.07.031
10.6084/m9.figshare.27134151.v1
10.1016/j.epsl.2006.08.010
10.1130/G37226.1
10.1016/j.jseaes.2015.06.013
10.1130/G46740.1
10.1371/journal.pone.0213854
10.1016/j.palaeo.2010.12.015
10.1086/675235
10.1039/C0JA00014K
10.1038/ngeo2822
10.1130/G48051.1
10.1016/j.gloplacha.2023.104051
10.1126/science.271.5252.1105
10.5194/cp‐16‐1759‐2020
10.1126/science.1134207
10.1038/s41467‐022‐27965‐x
10.1002/gbc.20021
10.1130/L638.1
10.1016/j.epsl.2007.12.004
10.1002/2015GB005323
10.1021/es801444b
10.1146/annurev‐earth‐050212‐124107
10.1029/2011GL049032
10.1038/s41467‐022‐28891‐8
10.1175/1520‐0442(1997)010<2147:AMTETS>2.0.CO;2
10.1029/2021PA004340
10.1130/G38487.1
10.1038/ncomms11147
10.1016/j.cretres.2016.05.006
10.1016/j.atmosenv.2017.10.061
10.1016/j.epsl.2020.116333
10.1038/s43017‐021‐00146‐y
10.1016/j.earscirev.2019.102880
10.1038/srep18686
10.1073/pnas.2000095117
10.3389/fpls.2015.00756
10.1073/pnas.202304999
10.1146/annurev‐earth‐081320‐064052
10.1016/j.gloplacha.2023.104126
10.1126/science.1148050
10.1130/g46349.1
10.1038/ngeo2931
10.1016/j.lithos.2014.02.015
10.1038/s41561‐024‐01610‐2
10.1073/pnas.2025227118
10.1144/0016‐76492010‐042
10.1130/B31775.1
ContentType Journal Article
Copyright 2025. The Author(s).
2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. The Author(s).
– notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2024GL113112
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList

CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_cbe737b59b7643aeb2361b970c7ff76e
10_1029_2024GL113112
GRL68830
Genre article
GrantInformation_xml – fundername: Chinese “111” project
  funderid: B20011
– fundername: Central Universities
  funderid: 2652023001; 3‐7‐8‐2023‐02; 2‐9‐2022‐201
– fundername: Deep‐time Digital Earth
– fundername: National Natural Science Foundation of China
  funderid: 41925010; 42072039; 42293280
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
GROUPED_DOAJ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
7TG
7TN
8FD
AFPKN
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a3900-315836067eb005271bf76421846ce9fe179a2a683e094e5f0d552b48cd0618a33
IEDL.DBID 24P
ISSN 0094-8276
IngestDate Wed Aug 27 01:26:54 EDT 2025
Fri Jul 25 12:18:09 EDT 2025
Thu Jul 03 08:29:18 EDT 2025
Wed Jan 29 10:50:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3900-315836067eb005271bf76421846ce9fe179a2a683e094e5f0d552b48cd0618a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3910-4443
0000-0001-8380-0692
0000-0002-7708-0788
0000-0001-6030-1612
0000-0002-9023-020X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL113112
PQID 3160678392
PQPubID 54723
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_cbe737b59b7643aeb2361b970c7ff76e
proquest_journals_3160678392
crossref_primary_10_1029_2024GL113112
wiley_primary_10_1029_2024GL113112_GRL68830
PublicationCentury 2000
PublicationDate 28 January 2025
PublicationDateYYYYMMDD 2025-01-28
PublicationDate_xml – month: 01
  year: 2025
  text: 28 January 2025
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2013; 27
2015; 30
2023; 221
2002; 99
2019; 14
2017; 45
2006; 250
2020; 16
2023; 225
2016; 30
2024
2008; 267
2014; 175
2017; 9
2021; 36
2018; 130
2014; 204
2011; 168
2010; 25
2018; 173
1997; 10
2021; 118
2015; 43
2016; 352
2019; 196
1996; 6
2021; 49
2015; 6
2021; 2
2025; 18
2020; 543
2011; 38
2014; 42
2011; 301
2016; 6
2016; 7
2007; 315
2020
2016; 459
2015; 111
2017; 10
2019; 47
1996; 271
2022; 13
2020; 117
2008; 42
2007; 318
2016; 9
2016; 66
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Gastaldo R. A. (e_1_2_10_15_1) 1996; 6
Gradstein F. M. (e_1_2_10_18_1) 2020
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 47
  start-page: 600
  issue: 7
  year: 2019
  end-page: 604
  article-title: Explosive volcanism as a key driver of the late Paleozoic ice age
  publication-title: Geology
– volume: 130
  start-page: 848
  issue: 5–6
  year: 2018
  end-page: 858
  article-title: A new stratigraphic framework built on U‐Pb single‐zircon TIMS ages and implications for the timing of the penultimate icehouse (Paraná Basin, Brazil)
  publication-title: Geological Society of America Bulletin
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  end-page: 8
  article-title: Mercury evidence for combustion of organic‐rich sediments during the end‐Triassic Crisi
  publication-title: Nature Communications
– volume: 14
  start-page: 1
  issue: 3
  year: 2019
  end-page: 18
  article-title: Recurrent Palaeo‐wildfires in a Cisuralian coal seam: A palaeobotanical view on high‐inertinite coals from the lower Permian of the Paraná basin, Brazil
  publication-title: PLoS One
– volume: 301
  start-page: 18
  issue: 1–4
  year: 2011
  end-page: 38
  article-title: Carboniferous–Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow basin and Urals)
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– year: 2024
– volume: 47
  start-page: 1146
  issue: 12
  year: 2019
  end-page: 1150
  article-title: Coupled stratigraphic and U‐Pb zircon age constraints on the late Paleozoic icehouse‐to‐greenhouse turnover in south‐central Gondwana
  publication-title: Geology
– volume: 2
  start-page: 1
  issue: 4
  year: 2021
  end-page: 16
  article-title: Vegetation uptake of mercury and impacts on global cycling
  publication-title: Nature Reviews Earth & Environment
– volume: 42
  start-page: 249
  issue: 1
  year: 2014
  end-page: 269
  article-title: Mercury isotopes in Earth and environmental sciences
  publication-title: Annual Review of Earth and Planetary Sciences
– start-page: 1
  year: 2020
  end-page: 1357
– volume: 543
  year: 2020
  article-title: Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy
  publication-title: Earth and Planetary Science Letters
– volume: 318
  start-page: 417
  issue: 5849
  year: 2007
  end-page: 420
  article-title: Mass‐dependent and ‐independent fractionation of Hg isotopes by photoreduction in Aquatic systems
  publication-title: Science
– volume: 352
  start-page: 444
  issue: 6284
  year: 2016
  end-page: 447
  article-title: Continental arc volcanism as the principal driver of icehouse‐greenhouse variability
  publication-title: Science
– volume: 27
  start-page: 222
  issue: 1
  year: 2013
  end-page: 238
  article-title: Mercury isotopes in a forested ecosystem: Implications for air‐surface exchange dynamics and the global mercury cycle
  publication-title: Global Biogeochemical Cycles
– volume: 168
  start-page: 607
  issue: 2
  year: 2011
  end-page: 619
  article-title: Radiation and extinction patterns in Permian floras from North China as indicators for environmental and climate change
  publication-title: Journal of the Geological Society
– volume: 36
  issue: 12
  year: 2021
  article-title: Trends and rhythms in climate change during the early Permian icehouse
  publication-title: Paleoceanography and Paleoclimatology
– volume: 99
  start-page: 12567
  issue: 20
  year: 2002
  end-page: 12571
  article-title: Low atmospheric CO levels during the Permo‐Carboniferous glaciation inferred from fossil Lycopsids
  publication-title: Proceedings of the National Academy of Sciences
– volume: 9
  start-page: 824
  issue: 11
  year: 2016
  end-page: 828
  article-title: Climate, pCO and terrestrial carbon cycle linkages during late Palaeozoic glacial‐interglacial cycles
  publication-title: Nature Geoscience
– volume: 45
  start-page: 55
  issue: 1
  year: 2017
  end-page: 58
  article-title: Isotopic signatures of mercury contamination in latest Permian oceans
  publication-title: Geology
– volume: 118
  issue: 42
  year: 2021
  article-title: Freeze tolerance influenced forest cover and hydrology during the Pennsylvanian
  publication-title: Proceedings of the National Academy of Sciences
– volume: 49
  start-page: 679
  issue: 1
  year: 2021
  end-page: 728
  article-title: An atlas of phanerozoic paleogeographic maps: The seas come in and the seas go out
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 6
  start-page: 1
  issue: 10
  year: 1996
  end-page: 7
  article-title: Out of the icehouse into the greenhouse: A late paleozoic analogue for modern global vegetational change
  publication-title: Geological Society of America Today
– volume: 221
  year: 2023
  article-title: Sedimentary Facies and carbon isotopes of the upper carboniferous to lower Permian in south China: Implications for icehouse to greenhouse transition
  publication-title: Global and Planetary Change
– volume: 10
  start-page: 2147
  issue: 9
  year: 1997
  end-page: 2153
  article-title: A method to Rstimate the statistical significance of a correlation when the data are serially correlated
  publication-title: Journal of Climate
– volume: 111
  start-page: 528
  year: 2015
  end-page: 552
  article-title: Late pennsylvanian to Wuchiapingian palynostratigraphy of the Baode section in the Ordos basin, North China
  publication-title: Journal of Asian Earth Sciences
– volume: 117
  start-page: 11968
  issue: 22
  year: 2020
  end-page: 11974
  article-title: Thermogenic carbon release from the Central Atlantic magmatic province caused major end‐Triassic carbon cycle perturbations
  publication-title: Proceedings of the National Academy of Sciences
– volume: 13
  issue: 1
  year: 2022
  article-title: Intensified continental chemical weathering and Carbon‐cycle perturbations linked to volcanism during the Triassic‐Jurassic transition
  publication-title: Nature Communications
– volume: 38
  issue: 19
  year: 2011
  article-title: No link between the Panjal Traps (Kashmir) and the late Permian mass extinctions
  publication-title: Geophysical Research Letters
– volume: 196
  issue: 0
  year: 2019
  article-title: Mercury as a proxy for volcanic emissions in the geologic record
  publication-title: Earth‐Science Reviews
– volume: 173
  start-page: 6
  year: 2018
  end-page: 15
  article-title: Mercury from wildfires: Global emission inventories and sensitivity to 2000–2050 global change
  publication-title: Atmospheric Environment
– volume: 250
  start-page: 501
  issue: 3
  year: 2006
  end-page: 510
  article-title: Can biomass burning produce a globally significant carbon‐isotope excursion in the sedimentary record?
  publication-title: Earth and Planetary Science Letters
– volume: 30
  start-page: 1475
  issue: 10
  year: 2016
  end-page: 1492
  article-title: Mercury isotope compositions across North American forests
  publication-title: Global Biogeochemical Cycles
– volume: 459
  start-page: 394
  year: 2016
  end-page: 408
  article-title: First report of Cisuralian (early Permian) charcoal layers within a coal bed from Baode, North China with reference to global wildfire distribution
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– volume: 42
  start-page: 8303
  issue: 22
  year: 2008
  end-page: 8309
  article-title: Natural mercury isotope variation in coal deposits and organic soils
  publication-title: Environmental Science & Technology
– volume: 271
  start-page: 1105
  issue: 5252
  year: 1996
  end-page: 1107
  article-title: Middle to late Paleozoic atmospheric CO levels from soil carbonate and organic matter
  publication-title: Science
– volume: 204
  start-page: 20
  year: 2014
  end-page: 35
  article-title: The early Permian Tarim large igneous province: Main characteristics and a plume incubation model
  publication-title: Lithos
– volume: 25
  start-page: 1402
  issue: 9
  year: 2010
  end-page: 1409
  article-title: Chromatographic pre‐concentration of Hg from dilute aqueous solutions for isotopic measurement by MC‐ICP‐MS
  publication-title: Journal of Analytical Atomic Spectrometry
– volume: 30
  start-page: 957
  issue: 4
  year: 2015
  end-page: 966
  article-title: An improved dual‐stage protocol to pre‐concentrate mercury from airborne particles for precise isotopic measurement
  publication-title: Journal of Analytical Atomic Spectrometry
– volume: 49
  start-page: 677
  issue: 6
  year: 2021
  end-page: 681
  article-title: High‐precision U‐Pb age constraints on the Permian floral turnovers, paleoclimate change, and tectonics of the North China block
  publication-title: Geology
– volume: 175
  start-page: 123
  issue: 2
  year: 2014
  end-page: 164
  article-title: Wetland‐dryland vegetational dynamics in the Pennsylvanian ice age tropics
  publication-title: International Journal of Plant Sciences
– volume: 6
  issue: 6
  year: 2016
  article-title: Mercury isotopes as proxies to identify sources and environmental impacts of mercury in Sphalerites
  publication-title: Scientific Reports
– volume: 6
  issue: 9
  year: 2015
  article-title: The impact of fire on the Late Paleozoic Earth system
  publication-title: Frontiers in Plant Science
– volume: 9
  start-page: 595
  issue: 4
  year: 2017
  end-page: 608
  article-title: Evidence of widespread wildfires in a coal seam from the middle Permian of the North China Basin
  publication-title: Lithosphere
– volume: 267
  start-page: 444
  issue: 3
  year: 2008
  end-page: 452
  article-title: Long term stability in deep mantle structure: Evidence from the ∼300 Ma Skagerrak‐Centered Large Igneous Province (the SCLIP)
  publication-title: Earth and Planetary Science Letters
– volume: 16
  start-page: 1759
  issue: 5
  year: 2020
  end-page: 1775
  article-title: Influence of temporally varying weatherability on CO ‐climate coupling and ecosystem change in the late Paleozoic
  publication-title: Climate of the Past
– volume: 10
  start-page: 382
  issue: 5
  year: 2017
  end-page: 386
  article-title: Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering
  publication-title: Nature Geoscience
– volume: 66
  start-page: 60
  year: 2016
  end-page: 81
  article-title: Mercury enrichment and Hg isotopes in Cretaceous–Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts
  publication-title: Cretaceous Research
– volume: 7
  issue: 1
  year: 2016
  article-title: Mercury anomalies and the timing of biotic recovery following the end‐Triassic mass extinction
  publication-title: Nature Communications
– volume: 315
  start-page: 87
  issue: 5808
  year: 2007
  end-page: 91
  article-title: CO ‐forced climate and vegetation instability during Late Paleozoic deglaciation
  publication-title: Science
– volume: 225
  year: 2023
  article-title: Volcanism and wildfire associated with deep‐time deglaciation during the Artinskian (early Permian)
  publication-title: Global and Planetary Change
– volume: 18
  start-page: 91
  issue: 1
  year: 2025
  end-page: 97
  article-title: Rapid rise in atmospheric CO marked the end of the Late Palaeozoic Ice Age
  publication-title: Nature Geoscience
– volume: 47
  start-page: 83
  issue: 1
  year: 2019
  end-page: 86
  article-title: An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo‐Tethyan realm
  publication-title: Geology
– volume: 43
  start-page: 1099
  issue: 12
  year: 2015
  end-page: 1102
  article-title: Extreme Eolian delivery of reactive iron to late Paleozoic icehouse seas
  publication-title: Geology
– ident: e_1_2_10_24_1
  doi: 10.1039/c4ja00438h
– start-page: 1
  volume-title: Geologic time scale 2020
  year: 2020
  ident: e_1_2_10_18_1
– volume: 6
  start-page: 1
  issue: 10
  year: 1996
  ident: e_1_2_10_15_1
  article-title: Out of the icehouse into the greenhouse: A late paleozoic analogue for modern global vegetational change
  publication-title: Geological Society of America Today
– ident: e_1_2_10_47_1
  doi: 10.1130/G45461.1
– ident: e_1_2_10_29_1
  doi: 10.1126/science.aad5787
– ident: e_1_2_10_50_1
  doi: 10.1016/j.palaeo.2016.07.031
– ident: e_1_2_10_12_1
  doi: 10.6084/m9.figshare.27134151.v1
– ident: e_1_2_10_14_1
  doi: 10.1016/j.epsl.2006.08.010
– ident: e_1_2_10_43_1
  doi: 10.1130/G37226.1
– ident: e_1_2_10_27_1
  doi: 10.1016/j.jseaes.2015.06.013
– ident: e_1_2_10_21_1
  doi: 10.1130/G46740.1
– ident: e_1_2_10_3_1
  doi: 10.1371/journal.pone.0213854
– ident: e_1_2_10_7_1
  doi: 10.1016/j.palaeo.2010.12.015
– ident: e_1_2_10_10_1
  doi: 10.1086/675235
– ident: e_1_2_10_8_1
  doi: 10.1039/C0JA00014K
– ident: e_1_2_10_30_1
  doi: 10.1038/ngeo2822
– ident: e_1_2_10_48_1
  doi: 10.1130/G48051.1
– ident: e_1_2_10_51_1
  doi: 10.1016/j.gloplacha.2023.104051
– ident: e_1_2_10_32_1
  doi: 10.1126/science.271.5252.1105
– ident: e_1_2_10_33_1
  doi: 10.5194/cp‐16‐1759‐2020
– ident: e_1_2_10_31_1
  doi: 10.1126/science.1134207
– ident: e_1_2_10_38_1
  doi: 10.1038/s41467‐022‐27965‐x
– ident: e_1_2_10_9_1
  doi: 10.1002/gbc.20021
– ident: e_1_2_10_42_1
  doi: 10.1130/L638.1
– ident: e_1_2_10_45_1
  doi: 10.1016/j.epsl.2007.12.004
– ident: e_1_2_10_53_1
  doi: 10.1002/2015GB005323
– ident: e_1_2_10_5_1
  doi: 10.1021/es801444b
– ident: e_1_2_10_6_1
  doi: 10.1146/annurev‐earth‐050212‐124107
– ident: e_1_2_10_35_1
  doi: 10.1029/2011GL049032
– ident: e_1_2_10_37_1
  doi: 10.1038/s41467‐022‐28891‐8
– ident: e_1_2_10_11_1
  doi: 10.1175/1520‐0442(1997)010<2147:AMTETS>2.0.CO;2
– ident: e_1_2_10_13_1
  doi: 10.1029/2021PA004340
– ident: e_1_2_10_19_1
  doi: 10.1130/G38487.1
– ident: e_1_2_10_44_1
  doi: 10.1038/ncomms11147
– ident: e_1_2_10_39_1
  doi: 10.1016/j.cretres.2016.05.006
– ident: e_1_2_10_26_1
  doi: 10.1016/j.atmosenv.2017.10.061
– ident: e_1_2_10_36_1
  doi: 10.1016/j.epsl.2020.116333
– ident: e_1_2_10_54_1
  doi: 10.1038/s43017‐021‐00146‐y
– ident: e_1_2_10_20_1
  doi: 10.1016/j.earscirev.2019.102880
– ident: e_1_2_10_52_1
  doi: 10.1038/srep18686
– ident: e_1_2_10_23_1
  doi: 10.1073/pnas.2000095117
– ident: e_1_2_10_16_1
  doi: 10.3389/fpls.2015.00756
– ident: e_1_2_10_2_1
  doi: 10.1073/pnas.202304999
– ident: e_1_2_10_34_1
  doi: 10.1146/annurev‐earth‐081320‐064052
– ident: e_1_2_10_46_1
  doi: 10.1016/j.gloplacha.2023.104126
– ident: e_1_2_10_4_1
  doi: 10.1126/science.1148050
– ident: e_1_2_10_40_1
  doi: 10.1130/g46349.1
– ident: e_1_2_10_17_1
  doi: 10.1038/ngeo2931
– ident: e_1_2_10_49_1
  doi: 10.1016/j.lithos.2014.02.015
– ident: e_1_2_10_25_1
  doi: 10.1038/s41561‐024‐01610‐2
– ident: e_1_2_10_28_1
  doi: 10.1073/pnas.2025227118
– ident: e_1_2_10_41_1
  doi: 10.1144/0016‐76492010‐042
– ident: e_1_2_10_22_1
  doi: 10.1130/B31775.1
SSID ssj0003031
Score 2.4670472
Snippet The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury...
Abstract The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Aquatic ecosystems
Biomass
Carbon
Carbon cycle
Carbon dioxide
Carbon dioxide emissions
Carbon isotopes
carbon perturbations
Climate
Climate change
Cooling
Deglaciation
Drawdown
early Permian
Ecosystems
Emissions
Fractionation
Global warming
Ice ages
Isotopes
late Paleozoic deglaciation
Latitude
Marine ecosystems
Meltwater
Mercury
Mercury (metal)
Mercury isotopes
Organic carbon
Oxidation
Paleozoic
Permian
Perturbation
Perturbations
small‐scale volcanism
Swamps
Terrestrial ecosystems
Terrestrial environments
Volcanic activity
Volcanism
Weathering
Wetlands
Wildfires
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQUiUuiLYglkflQzmhiMRvHwvqLq0WWiGQuEW2M5YQIkGb5cC_79jJouXSXnqJLMcH5xt75htnPEPIVyl4uvBZFqxB-iaY8IVzPBYgHUTlnAi5GMzVtbq8Ez_v5f1aqa8UEzakBx6AOwseNNdeWq_ReDp0BLmqvNVl0DFqBUn7os1bOVOjDkbFPNTKs6IwTKsx5L1kNnn7YjavUpoZ9s4Y5Zz974jmOl3N9ma6Q7ZHoki_DRP8SDag_UQ-zHIh3lds5dDN0H8m_goWAZGhP_pu2T1DT9H-hEeKzI5euJceO7qIrYXvWvobFmhj_HBMRx_aPConOU6vnnCt0F8B8OnahqbMVUhC2-UuuZt-v724LMbKCYXjtkyKVabLGUpDPvfVlUeoRPLmVAAbAXehY04ZDggQyFg2UjIvTGjQvBvH-R7ZbLsW9gmNTQRhoxPcSxEaMJaV0VTRBIbUkasJOVlBWD8PCTLq_GOb2Xod6gk5T_i-jUlprXMHCrsehV3_S9gTcrSSTj3utb7mVfrSRPQm5DRL7K8TqWc3c2UMLw_-x4wOyRZLFYHLqmDmiGwuFy9wjDRl6b_kFfkHCJDepA
  priority: 102
  providerName: Directory of Open Access Journals
Title Mercury Isotopes Track the Causes of Carbon Perturbations in the Early Permian Ocean and Continent
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL113112
https://www.proquest.com/docview/3160678392
https://doaj.org/article/cbe737b59b7643aeb2361b970c7ff76e
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA9yi-CLnF-4ui550Ccptvlo08f18PaUW13ElcOXkqST4xDbpd19uP_embS37L0IvpTQJpBMMjO_pJnfMPZWK0kBn2kiaoRvSiiXWCtDAtpCyK1VPiaDWX3NLzbqy5W-Gg_cKBZm4Ic4HLiRZkR7TQpuXT-SDRBHJu7a1fIyI7oYNMETiq6lK31CrQ-WGM3zkDGvVIkRRT5efMf2H45b33NJkbn_Htw8Bq3R65yfsscjXOSLYX6fsAfQPGUPlzEd7y2W4gVO3z9jbgWdR_nwz327a7fQc_RC_jdHfMfP7L7HF23AUufahq-hQ0_jhsM6ftPEWpHqmD79wRXDv3nAp21qTvxVKKxm95xtzj_9OLtIxvwJiZVlSuZVU4hGXkA8_S0yFwqKa0XI4aEMgLpohc2NBBQQ6JDWWgunjK_RyRsr5Qt20rQNvGQ81AFUGaySTitfgylFGkwWjBcIIGU-Ze_uRFhtB5qMKv7eFmV1LOop-0jyPdQhcuv4ou2uq1FXKu-gkIXTpcPuSot7f5lnrixSXwQcAUzZ7G52qlHj-kpmNFKCe1P2Ps7YPztSLb9f5sbI9NV_1X7NHglKAJxmiTAzdrLr9vAGUcnOzePSm7PJ4ufm12Ye9_Z_Ac1e2G4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQKwSXiqfYUsAHOKGIxI_EOZaK7hZ2C0JdVHGxbGeMECKpku2Bf8-Mk662FyQukZU4kT32zHye2N8w9lorSQc-80w0CN-UUD5zTsYMtINYOqdCSgazOi8Xa_XxUl9OeU7pLMzID7ENuJFmJHtNCk4B6YltgEgycdmu5suC-GLQBu8TsMFpvX_8bf19vTXGaKHHpHm1yoyoymnvO37h3e77t7xSIu-_hTh3cWtyPKcP2MGEGPnxOMQP2R1oH7G785SR9w-W0h7OMDxmfgV9QBHxs6HbdFcwcHRE4RdHiMdP3PWAN7qIpd53Lf8CPTobP8br-M821Upsx_ToN04a_jkAXl3bcKKwQnm1mydsffrh4mSRTSkUMifrnCysplMaZQUpAFwVPlZ0tBVRR4A6AqqjE640ElBAoGPeaC28MqFBP2-clE_ZXtu18Izx2ERQdXRKeq1CA6YWeTRFNEEghpTljL25EaG9GpkybPrDLWq7K-oZe0_y3dYhfut0o-t_2EldbPBQycrr2mNzpcPlvywLX1d5qCL2AGbs6GZ07KR0g5UF9ZQQ34y9TSP2z4bY-ddlaYzMD_-r9it2b3GxWtrl2fmn5-y-oHzAeZEJc8T2Nv01vECQsvEvp4n4F_CO2vY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQViAuVVtAbJ8-wAlFJH4kzrEt7LawLRViUcXFsp1xhVCTVbI99N937KSr7QWpl8hKnMgee2Y-T-xvCPkgBQ8HPtOEVQjfBBM2MYb7BKQBnxsjXEwGc3GZn83Ft2t5PQTcwlmYnh9iFXALmhHtdVDwReUHsoHAkYmrdjGdZYEuBk3whkTHlI7IxvHv-Z_5yhajge5z5pUiUazIh63v-IXP6-8_cUqRu_8J4FyHrdHvTLbI5gAY6XE_wtvkBdQ75OU0JuS9x1Lcwum6N8ReQOtQQvS8a5bNAjqKfsj9o4jw6Km56_BG47HU2qamV9Cir7F9uI7-rWOtSHYcHt3inKE_HODV1BUNDFYornr5lswnX3-dniVDBoXE8DINBlaGQxp5ATH-W2TWF-FkK4IOB6UH1EbDTK44oIBA-rSSklmhXIXSVIbzd2RUNzW8J9RXHkTpjeBWCleBKlnqVeaVYwgheT4mHx9FqBc9UYaOP7hZqddFPSYnQb6rOoHeOt5o2hs9aIt2FgpeWFlabC43uPrneWbLInWFxx7AmOw_jo4edK7TPAs9DYBvTD7FEftvQ_T05yxXiqe7z6p9RF5dfZno2fnl9z3ymoVswGmWMLVPRsv2Dg4Qoizt4TAPHwCSy9oW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mercury+Isotopes+Track+the+Causes+of+Carbon+Perturbations+in+the+Early+Permian+Ocean+and+Continent&rft.jtitle=Geophysical+research+letters&rft.au=Fang%2C+Qiang&rft.au=Wu%2C+Huaichun&rft.au=Chen%2C+Jiubin&rft.au=Grasby%2C+Stephen+E.&rft.date=2025-01-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=2&rft_id=info:doi/10.1029%2F2024GL113112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024GL113112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon