Mercury Isotopes Track the Causes of Carbon Perturbations in the Early Permian Ocean and Continent
The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and t...
Saved in:
Published in | Geophysical research letters Vol. 52; no. 2 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.01.2025
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and the climatic impact. Our results indicate that small‐scale volcanism promoted marine organic C burial, and the concomitant extreme cooling triggered the waning of wetland ecosystems in North China block at ∼296.2 Ma. Subsequently, the mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and C isotopes synchronously decline in the deep‐marine succession, likely supporting progressive oxidation of terrestrial biomass and airborne release of Hg and C. Lowered C sequestration (as coal swamps) on land and dampened continental weathering limited the drawdown of CO2 emissions from wildfires, initiating deglaciation. Our findings highlight that the climate forcing on terrestrial ecosystems could activate additional C reservoirs, driving Earth into a warmer state.
Plain Language Summary
We tracked the causes of global carbon perturbation during the onset of the demise of the Late Paleozoic Ice Age using Hg concentration and isotope data from low‐latitude marine and continental successions. Our study indicates that small‐scale volcanic activity facilitated marine organic carbon burial, and that the concomitant cooling pulse promoted the waning of tropical wetland ecosystem at ∼296.2 Ma. Subsequently, oxidation of terrestrial biomass and airborne release of Hg and C resulted in decreased mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and carbon isotopes in the deep‐marine succession. Lowered terrestrial C sequestration and continental weathering limited the drawdown of the CO2 emissions from wildfires, acting as the important forcing of global warming and deglaciation during the early Permian.
Key Points
Small‐scale volcanic activity mediated the carbon perturbation at the apex of the Late Paleozoic Ice Age
Extreme cooling promoted the waning of tropical wetland ecosystems at 296.2 Ma
CO2 emissions from wildfires may play an important role in the deglaciation event beginning at ~294 Ma |
---|---|
AbstractList | The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and the climatic impact. Our results indicate that small‐scale volcanism promoted marine organic C burial, and the concomitant extreme cooling triggered the waning of wetland ecosystems in North China block at ∼296.2 Ma. Subsequently, the mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and C isotopes synchronously decline in the deep‐marine succession, likely supporting progressive oxidation of terrestrial biomass and airborne release of Hg and C. Lowered C sequestration (as coal swamps) on land and dampened continental weathering limited the drawdown of CO2 emissions from wildfires, initiating deglaciation. Our findings highlight that the climate forcing on terrestrial ecosystems could activate additional C reservoirs, driving Earth into a warmer state.
Plain Language Summary
We tracked the causes of global carbon perturbation during the onset of the demise of the Late Paleozoic Ice Age using Hg concentration and isotope data from low‐latitude marine and continental successions. Our study indicates that small‐scale volcanic activity facilitated marine organic carbon burial, and that the concomitant cooling pulse promoted the waning of tropical wetland ecosystem at ∼296.2 Ma. Subsequently, oxidation of terrestrial biomass and airborne release of Hg and C resulted in decreased mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and carbon isotopes in the deep‐marine succession. Lowered terrestrial C sequestration and continental weathering limited the drawdown of the CO2 emissions from wildfires, acting as the important forcing of global warming and deglaciation during the early Permian.
Key Points
Small‐scale volcanic activity mediated the carbon perturbation at the apex of the Late Paleozoic Ice Age
Extreme cooling promoted the waning of tropical wetland ecosystems at 296.2 Ma
CO2 emissions from wildfires may play an important role in the deglaciation event beginning at ~294 Ma Abstract The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and the climatic impact. Our results indicate that small‐scale volcanism promoted marine organic C burial, and the concomitant extreme cooling triggered the waning of wetland ecosystems in North China block at ∼296.2 Ma. Subsequently, the mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and C isotopes synchronously decline in the deep‐marine succession, likely supporting progressive oxidation of terrestrial biomass and airborne release of Hg and C. Lowered C sequestration (as coal swamps) on land and dampened continental weathering limited the drawdown of CO2 emissions from wildfires, initiating deglaciation. Our findings highlight that the climate forcing on terrestrial ecosystems could activate additional C reservoirs, driving Earth into a warmer state. The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and the climatic impact. Our results indicate that small‐scale volcanism promoted marine organic C burial, and the concomitant extreme cooling triggered the waning of wetland ecosystems in North China block at ∼296.2 Ma. Subsequently, the mass‐independent fractionation of odd Hg isotopes (Δ 199 Hg) and C isotopes synchronously decline in the deep‐marine succession, likely supporting progressive oxidation of terrestrial biomass and airborne release of Hg and C. Lowered C sequestration (as coal swamps) on land and dampened continental weathering limited the drawdown of CO 2 emissions from wildfires, initiating deglaciation. Our findings highlight that the climate forcing on terrestrial ecosystems could activate additional C reservoirs, driving Earth into a warmer state. We tracked the causes of global carbon perturbation during the onset of the demise of the Late Paleozoic Ice Age using Hg concentration and isotope data from low‐latitude marine and continental successions. Our study indicates that small‐scale volcanic activity facilitated marine organic carbon burial, and that the concomitant cooling pulse promoted the waning of tropical wetland ecosystem at ∼296.2 Ma. Subsequently, oxidation of terrestrial biomass and airborne release of Hg and C resulted in decreased mass‐independent fractionation of odd Hg isotopes (Δ 199 Hg) and carbon isotopes in the deep‐marine succession. Lowered terrestrial C sequestration and continental weathering limited the drawdown of the CO 2 emissions from wildfires, acting as the important forcing of global warming and deglaciation during the early Permian. Small‐scale volcanic activity mediated the carbon perturbation at the apex of the Late Paleozoic Ice Age Extreme cooling promoted the waning of tropical wetland ecosystems at 296.2 Ma CO 2 emissions from wildfires may play an important role in the deglaciation event beginning at ~294 Ma The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury (Hg) isotopes from pelagic and continental successions at low paleo‐latitudes to track the perturbations of the global carbon (C) cycle and the climatic impact. Our results indicate that small‐scale volcanism promoted marine organic C burial, and the concomitant extreme cooling triggered the waning of wetland ecosystems in North China block at ∼296.2 Ma. Subsequently, the mass‐independent fractionation of odd Hg isotopes (Δ199Hg) and C isotopes synchronously decline in the deep‐marine succession, likely supporting progressive oxidation of terrestrial biomass and airborne release of Hg and C. Lowered C sequestration (as coal swamps) on land and dampened continental weathering limited the drawdown of CO2 emissions from wildfires, initiating deglaciation. Our findings highlight that the climate forcing on terrestrial ecosystems could activate additional C reservoirs, driving Earth into a warmer state. |
Author | Shen, Shu‐zhong Zheng, Wang Zhang, Shihong Wu, Huaichun Fang, Qiang Chen, Jiubin Grasby, Stephen E. Huang, Wentao Xu, Junjie |
Author_xml | – sequence: 1 givenname: Qiang orcidid: 0000-0002-9023-020X surname: Fang fullname: Fang, Qiang organization: China University of Geosciences (Beijing) – sequence: 2 givenname: Huaichun orcidid: 0000-0002-7708-0788 surname: Wu fullname: Wu, Huaichun email: whcgeo@cugb.edu.cn organization: China University of Geosciences (Beijing) – sequence: 3 givenname: Jiubin surname: Chen fullname: Chen, Jiubin organization: Tianjin University – sequence: 4 givenname: Stephen E. orcidid: 0000-0002-3910-4443 surname: Grasby fullname: Grasby, Stephen E. organization: Natural Resources Canada – sequence: 5 givenname: Wang surname: Zheng fullname: Zheng, Wang organization: Tianjin University – sequence: 6 givenname: Shu‐zhong orcidid: 0000-0001-8380-0692 surname: Shen fullname: Shen, Shu‐zhong organization: Nanjing University – sequence: 7 givenname: Wentao surname: Huang fullname: Huang, Wentao organization: China University of Geosciences – sequence: 8 givenname: Junjie surname: Xu fullname: Xu, Junjie organization: Chinese Academy of Sciences – sequence: 9 givenname: Shihong orcidid: 0000-0001-6030-1612 surname: Zhang fullname: Zhang, Shihong organization: China University of Geosciences |
BookMark | eNp9kU9rGzEQxUVxoY7bWz_AQq5xM5J29edYjOMaHFyKexaSPNuuY0uOtEvwt69sh5JTLjPD6Md7I94NGYUYkJCvFL5RYPqeAasXK0o5pewDGVNd11MFIEdkDKDLzKT4RG5y3gEAB07HxD1i8kM6Vcsc-3jEXG2S9U9V_xermR1yWcS2TMnFUP3E1A_J2b6LIVdduFBzm_an89Ohs6FaeyzVhm01i6HvAob-M_nY2n3GL699Qn4_zDezH9PVerGcfV9NLdcAU04bxQUIiQ6gYZK6VoqaUVULj7pFKrVlViiO5SvYtLBtGuZq5bcgqLKcT8jyqruNdmeOqTvYdDLRduayiOmPsanv_B6Ndyi5dI12xYJbdIwL6rQEL9viikXr9qp1TPF5wNybXRxSKOcbTs9HKq5Zoe6ulE8x54Ttf1cK5pyIeZtIwdkVf-n2eHqXNYtfK6FUyegf5JqL3w |
Cites_doi | 10.1039/c4ja00438h 10.1130/G45461.1 10.1126/science.aad5787 10.1016/j.palaeo.2016.07.031 10.6084/m9.figshare.27134151.v1 10.1016/j.epsl.2006.08.010 10.1130/G37226.1 10.1016/j.jseaes.2015.06.013 10.1130/G46740.1 10.1371/journal.pone.0213854 10.1016/j.palaeo.2010.12.015 10.1086/675235 10.1039/C0JA00014K 10.1038/ngeo2822 10.1130/G48051.1 10.1016/j.gloplacha.2023.104051 10.1126/science.271.5252.1105 10.5194/cp‐16‐1759‐2020 10.1126/science.1134207 10.1038/s41467‐022‐27965‐x 10.1002/gbc.20021 10.1130/L638.1 10.1016/j.epsl.2007.12.004 10.1002/2015GB005323 10.1021/es801444b 10.1146/annurev‐earth‐050212‐124107 10.1029/2011GL049032 10.1038/s41467‐022‐28891‐8 10.1175/1520‐0442(1997)010<2147:AMTETS>2.0.CO;2 10.1029/2021PA004340 10.1130/G38487.1 10.1038/ncomms11147 10.1016/j.cretres.2016.05.006 10.1016/j.atmosenv.2017.10.061 10.1016/j.epsl.2020.116333 10.1038/s43017‐021‐00146‐y 10.1016/j.earscirev.2019.102880 10.1038/srep18686 10.1073/pnas.2000095117 10.3389/fpls.2015.00756 10.1073/pnas.202304999 10.1146/annurev‐earth‐081320‐064052 10.1016/j.gloplacha.2023.104126 10.1126/science.1148050 10.1130/g46349.1 10.1038/ngeo2931 10.1016/j.lithos.2014.02.015 10.1038/s41561‐024‐01610‐2 10.1073/pnas.2025227118 10.1144/0016‐76492010‐042 10.1130/B31775.1 |
ContentType | Journal Article |
Copyright | 2025. The Author(s). 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025. The Author(s). – notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2024GL113112 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_cbe737b59b7643aeb2361b970c7ff76e 10_1029_2024GL113112 GRL68830 |
Genre | article |
GrantInformation_xml | – fundername: Chinese “111” project funderid: B20011 – fundername: Central Universities funderid: 2652023001; 3‐7‐8‐2023‐02; 2‐9‐2022‐201 – fundername: Deep‐time Digital Earth – fundername: National Natural Science Foundation of China funderid: 41925010; 42072039; 42293280 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA GROUPED_DOAJ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAMMB AAYXX ACTHY AEFGJ AGXDD AIDQK AIDYY CITATION 7TG 7TN 8FD AFPKN F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-a3900-315836067eb005271bf76421846ce9fe179a2a683e094e5f0d552b48cd0618a33 |
IEDL.DBID | 24P |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:26:54 EDT 2025 Fri Jul 25 12:18:09 EDT 2025 Thu Jul 03 08:29:18 EDT 2025 Wed Jan 29 10:50:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3900-315836067eb005271bf76421846ce9fe179a2a683e094e5f0d552b48cd0618a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3910-4443 0000-0001-8380-0692 0000-0002-7708-0788 0000-0001-6030-1612 0000-0002-9023-020X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL113112 |
PQID | 3160678392 |
PQPubID | 54723 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cbe737b59b7643aeb2361b970c7ff76e proquest_journals_3160678392 crossref_primary_10_1029_2024GL113112 wiley_primary_10_1029_2024GL113112_GRL68830 |
PublicationCentury | 2000 |
PublicationDate | 28 January 2025 |
PublicationDateYYYYMMDD | 2025-01-28 |
PublicationDate_xml | – month: 01 year: 2025 text: 28 January 2025 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2013; 27 2015; 30 2023; 221 2002; 99 2019; 14 2017; 45 2006; 250 2020; 16 2023; 225 2016; 30 2024 2008; 267 2014; 175 2017; 9 2021; 36 2018; 130 2014; 204 2011; 168 2010; 25 2018; 173 1997; 10 2021; 118 2015; 43 2016; 352 2019; 196 1996; 6 2021; 49 2015; 6 2021; 2 2025; 18 2020; 543 2011; 38 2014; 42 2011; 301 2016; 6 2016; 7 2007; 315 2020 2016; 459 2015; 111 2017; 10 2019; 47 1996; 271 2022; 13 2020; 117 2008; 42 2007; 318 2016; 9 2016; 66 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Gastaldo R. A. (e_1_2_10_15_1) 1996; 6 Gradstein F. M. (e_1_2_10_18_1) 2020 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 47 start-page: 600 issue: 7 year: 2019 end-page: 604 article-title: Explosive volcanism as a key driver of the late Paleozoic ice age publication-title: Geology – volume: 130 start-page: 848 issue: 5–6 year: 2018 end-page: 858 article-title: A new stratigraphic framework built on U‐Pb single‐zircon TIMS ages and implications for the timing of the penultimate icehouse (Paraná Basin, Brazil) publication-title: Geological Society of America Bulletin – volume: 13 start-page: 1 issue: 1 year: 2022 end-page: 8 article-title: Mercury evidence for combustion of organic‐rich sediments during the end‐Triassic Crisi publication-title: Nature Communications – volume: 14 start-page: 1 issue: 3 year: 2019 end-page: 18 article-title: Recurrent Palaeo‐wildfires in a Cisuralian coal seam: A palaeobotanical view on high‐inertinite coals from the lower Permian of the Paraná basin, Brazil publication-title: PLoS One – volume: 301 start-page: 18 issue: 1–4 year: 2011 end-page: 38 article-title: Carboniferous–Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow basin and Urals) publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – year: 2024 – volume: 47 start-page: 1146 issue: 12 year: 2019 end-page: 1150 article-title: Coupled stratigraphic and U‐Pb zircon age constraints on the late Paleozoic icehouse‐to‐greenhouse turnover in south‐central Gondwana publication-title: Geology – volume: 2 start-page: 1 issue: 4 year: 2021 end-page: 16 article-title: Vegetation uptake of mercury and impacts on global cycling publication-title: Nature Reviews Earth & Environment – volume: 42 start-page: 249 issue: 1 year: 2014 end-page: 269 article-title: Mercury isotopes in Earth and environmental sciences publication-title: Annual Review of Earth and Planetary Sciences – start-page: 1 year: 2020 end-page: 1357 – volume: 543 year: 2020 article-title: Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy publication-title: Earth and Planetary Science Letters – volume: 318 start-page: 417 issue: 5849 year: 2007 end-page: 420 article-title: Mass‐dependent and ‐independent fractionation of Hg isotopes by photoreduction in Aquatic systems publication-title: Science – volume: 352 start-page: 444 issue: 6284 year: 2016 end-page: 447 article-title: Continental arc volcanism as the principal driver of icehouse‐greenhouse variability publication-title: Science – volume: 27 start-page: 222 issue: 1 year: 2013 end-page: 238 article-title: Mercury isotopes in a forested ecosystem: Implications for air‐surface exchange dynamics and the global mercury cycle publication-title: Global Biogeochemical Cycles – volume: 168 start-page: 607 issue: 2 year: 2011 end-page: 619 article-title: Radiation and extinction patterns in Permian floras from North China as indicators for environmental and climate change publication-title: Journal of the Geological Society – volume: 36 issue: 12 year: 2021 article-title: Trends and rhythms in climate change during the early Permian icehouse publication-title: Paleoceanography and Paleoclimatology – volume: 99 start-page: 12567 issue: 20 year: 2002 end-page: 12571 article-title: Low atmospheric CO levels during the Permo‐Carboniferous glaciation inferred from fossil Lycopsids publication-title: Proceedings of the National Academy of Sciences – volume: 9 start-page: 824 issue: 11 year: 2016 end-page: 828 article-title: Climate, pCO and terrestrial carbon cycle linkages during late Palaeozoic glacial‐interglacial cycles publication-title: Nature Geoscience – volume: 45 start-page: 55 issue: 1 year: 2017 end-page: 58 article-title: Isotopic signatures of mercury contamination in latest Permian oceans publication-title: Geology – volume: 118 issue: 42 year: 2021 article-title: Freeze tolerance influenced forest cover and hydrology during the Pennsylvanian publication-title: Proceedings of the National Academy of Sciences – volume: 49 start-page: 679 issue: 1 year: 2021 end-page: 728 article-title: An atlas of phanerozoic paleogeographic maps: The seas come in and the seas go out publication-title: Annual Review of Earth and Planetary Sciences – volume: 6 start-page: 1 issue: 10 year: 1996 end-page: 7 article-title: Out of the icehouse into the greenhouse: A late paleozoic analogue for modern global vegetational change publication-title: Geological Society of America Today – volume: 221 year: 2023 article-title: Sedimentary Facies and carbon isotopes of the upper carboniferous to lower Permian in south China: Implications for icehouse to greenhouse transition publication-title: Global and Planetary Change – volume: 10 start-page: 2147 issue: 9 year: 1997 end-page: 2153 article-title: A method to Rstimate the statistical significance of a correlation when the data are serially correlated publication-title: Journal of Climate – volume: 111 start-page: 528 year: 2015 end-page: 552 article-title: Late pennsylvanian to Wuchiapingian palynostratigraphy of the Baode section in the Ordos basin, North China publication-title: Journal of Asian Earth Sciences – volume: 117 start-page: 11968 issue: 22 year: 2020 end-page: 11974 article-title: Thermogenic carbon release from the Central Atlantic magmatic province caused major end‐Triassic carbon cycle perturbations publication-title: Proceedings of the National Academy of Sciences – volume: 13 issue: 1 year: 2022 article-title: Intensified continental chemical weathering and Carbon‐cycle perturbations linked to volcanism during the Triassic‐Jurassic transition publication-title: Nature Communications – volume: 38 issue: 19 year: 2011 article-title: No link between the Panjal Traps (Kashmir) and the late Permian mass extinctions publication-title: Geophysical Research Letters – volume: 196 issue: 0 year: 2019 article-title: Mercury as a proxy for volcanic emissions in the geologic record publication-title: Earth‐Science Reviews – volume: 173 start-page: 6 year: 2018 end-page: 15 article-title: Mercury from wildfires: Global emission inventories and sensitivity to 2000–2050 global change publication-title: Atmospheric Environment – volume: 250 start-page: 501 issue: 3 year: 2006 end-page: 510 article-title: Can biomass burning produce a globally significant carbon‐isotope excursion in the sedimentary record? publication-title: Earth and Planetary Science Letters – volume: 30 start-page: 1475 issue: 10 year: 2016 end-page: 1492 article-title: Mercury isotope compositions across North American forests publication-title: Global Biogeochemical Cycles – volume: 459 start-page: 394 year: 2016 end-page: 408 article-title: First report of Cisuralian (early Permian) charcoal layers within a coal bed from Baode, North China with reference to global wildfire distribution publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – volume: 42 start-page: 8303 issue: 22 year: 2008 end-page: 8309 article-title: Natural mercury isotope variation in coal deposits and organic soils publication-title: Environmental Science & Technology – volume: 271 start-page: 1105 issue: 5252 year: 1996 end-page: 1107 article-title: Middle to late Paleozoic atmospheric CO levels from soil carbonate and organic matter publication-title: Science – volume: 204 start-page: 20 year: 2014 end-page: 35 article-title: The early Permian Tarim large igneous province: Main characteristics and a plume incubation model publication-title: Lithos – volume: 25 start-page: 1402 issue: 9 year: 2010 end-page: 1409 article-title: Chromatographic pre‐concentration of Hg from dilute aqueous solutions for isotopic measurement by MC‐ICP‐MS publication-title: Journal of Analytical Atomic Spectrometry – volume: 30 start-page: 957 issue: 4 year: 2015 end-page: 966 article-title: An improved dual‐stage protocol to pre‐concentrate mercury from airborne particles for precise isotopic measurement publication-title: Journal of Analytical Atomic Spectrometry – volume: 49 start-page: 677 issue: 6 year: 2021 end-page: 681 article-title: High‐precision U‐Pb age constraints on the Permian floral turnovers, paleoclimate change, and tectonics of the North China block publication-title: Geology – volume: 175 start-page: 123 issue: 2 year: 2014 end-page: 164 article-title: Wetland‐dryland vegetational dynamics in the Pennsylvanian ice age tropics publication-title: International Journal of Plant Sciences – volume: 6 issue: 6 year: 2016 article-title: Mercury isotopes as proxies to identify sources and environmental impacts of mercury in Sphalerites publication-title: Scientific Reports – volume: 6 issue: 9 year: 2015 article-title: The impact of fire on the Late Paleozoic Earth system publication-title: Frontiers in Plant Science – volume: 9 start-page: 595 issue: 4 year: 2017 end-page: 608 article-title: Evidence of widespread wildfires in a coal seam from the middle Permian of the North China Basin publication-title: Lithosphere – volume: 267 start-page: 444 issue: 3 year: 2008 end-page: 452 article-title: Long term stability in deep mantle structure: Evidence from the ∼300 Ma Skagerrak‐Centered Large Igneous Province (the SCLIP) publication-title: Earth and Planetary Science Letters – volume: 16 start-page: 1759 issue: 5 year: 2020 end-page: 1775 article-title: Influence of temporally varying weatherability on CO ‐climate coupling and ecosystem change in the late Paleozoic publication-title: Climate of the Past – volume: 10 start-page: 382 issue: 5 year: 2017 end-page: 386 article-title: Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering publication-title: Nature Geoscience – volume: 66 start-page: 60 year: 2016 end-page: 81 article-title: Mercury enrichment and Hg isotopes in Cretaceous–Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts publication-title: Cretaceous Research – volume: 7 issue: 1 year: 2016 article-title: Mercury anomalies and the timing of biotic recovery following the end‐Triassic mass extinction publication-title: Nature Communications – volume: 315 start-page: 87 issue: 5808 year: 2007 end-page: 91 article-title: CO ‐forced climate and vegetation instability during Late Paleozoic deglaciation publication-title: Science – volume: 225 year: 2023 article-title: Volcanism and wildfire associated with deep‐time deglaciation during the Artinskian (early Permian) publication-title: Global and Planetary Change – volume: 18 start-page: 91 issue: 1 year: 2025 end-page: 97 article-title: Rapid rise in atmospheric CO marked the end of the Late Palaeozoic Ice Age publication-title: Nature Geoscience – volume: 47 start-page: 83 issue: 1 year: 2019 end-page: 86 article-title: An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo‐Tethyan realm publication-title: Geology – volume: 43 start-page: 1099 issue: 12 year: 2015 end-page: 1102 article-title: Extreme Eolian delivery of reactive iron to late Paleozoic icehouse seas publication-title: Geology – ident: e_1_2_10_24_1 doi: 10.1039/c4ja00438h – start-page: 1 volume-title: Geologic time scale 2020 year: 2020 ident: e_1_2_10_18_1 – volume: 6 start-page: 1 issue: 10 year: 1996 ident: e_1_2_10_15_1 article-title: Out of the icehouse into the greenhouse: A late paleozoic analogue for modern global vegetational change publication-title: Geological Society of America Today – ident: e_1_2_10_47_1 doi: 10.1130/G45461.1 – ident: e_1_2_10_29_1 doi: 10.1126/science.aad5787 – ident: e_1_2_10_50_1 doi: 10.1016/j.palaeo.2016.07.031 – ident: e_1_2_10_12_1 doi: 10.6084/m9.figshare.27134151.v1 – ident: e_1_2_10_14_1 doi: 10.1016/j.epsl.2006.08.010 – ident: e_1_2_10_43_1 doi: 10.1130/G37226.1 – ident: e_1_2_10_27_1 doi: 10.1016/j.jseaes.2015.06.013 – ident: e_1_2_10_21_1 doi: 10.1130/G46740.1 – ident: e_1_2_10_3_1 doi: 10.1371/journal.pone.0213854 – ident: e_1_2_10_7_1 doi: 10.1016/j.palaeo.2010.12.015 – ident: e_1_2_10_10_1 doi: 10.1086/675235 – ident: e_1_2_10_8_1 doi: 10.1039/C0JA00014K – ident: e_1_2_10_30_1 doi: 10.1038/ngeo2822 – ident: e_1_2_10_48_1 doi: 10.1130/G48051.1 – ident: e_1_2_10_51_1 doi: 10.1016/j.gloplacha.2023.104051 – ident: e_1_2_10_32_1 doi: 10.1126/science.271.5252.1105 – ident: e_1_2_10_33_1 doi: 10.5194/cp‐16‐1759‐2020 – ident: e_1_2_10_31_1 doi: 10.1126/science.1134207 – ident: e_1_2_10_38_1 doi: 10.1038/s41467‐022‐27965‐x – ident: e_1_2_10_9_1 doi: 10.1002/gbc.20021 – ident: e_1_2_10_42_1 doi: 10.1130/L638.1 – ident: e_1_2_10_45_1 doi: 10.1016/j.epsl.2007.12.004 – ident: e_1_2_10_53_1 doi: 10.1002/2015GB005323 – ident: e_1_2_10_5_1 doi: 10.1021/es801444b – ident: e_1_2_10_6_1 doi: 10.1146/annurev‐earth‐050212‐124107 – ident: e_1_2_10_35_1 doi: 10.1029/2011GL049032 – ident: e_1_2_10_37_1 doi: 10.1038/s41467‐022‐28891‐8 – ident: e_1_2_10_11_1 doi: 10.1175/1520‐0442(1997)010<2147:AMTETS>2.0.CO;2 – ident: e_1_2_10_13_1 doi: 10.1029/2021PA004340 – ident: e_1_2_10_19_1 doi: 10.1130/G38487.1 – ident: e_1_2_10_44_1 doi: 10.1038/ncomms11147 – ident: e_1_2_10_39_1 doi: 10.1016/j.cretres.2016.05.006 – ident: e_1_2_10_26_1 doi: 10.1016/j.atmosenv.2017.10.061 – ident: e_1_2_10_36_1 doi: 10.1016/j.epsl.2020.116333 – ident: e_1_2_10_54_1 doi: 10.1038/s43017‐021‐00146‐y – ident: e_1_2_10_20_1 doi: 10.1016/j.earscirev.2019.102880 – ident: e_1_2_10_52_1 doi: 10.1038/srep18686 – ident: e_1_2_10_23_1 doi: 10.1073/pnas.2000095117 – ident: e_1_2_10_16_1 doi: 10.3389/fpls.2015.00756 – ident: e_1_2_10_2_1 doi: 10.1073/pnas.202304999 – ident: e_1_2_10_34_1 doi: 10.1146/annurev‐earth‐081320‐064052 – ident: e_1_2_10_46_1 doi: 10.1016/j.gloplacha.2023.104126 – ident: e_1_2_10_4_1 doi: 10.1126/science.1148050 – ident: e_1_2_10_40_1 doi: 10.1130/g46349.1 – ident: e_1_2_10_17_1 doi: 10.1038/ngeo2931 – ident: e_1_2_10_49_1 doi: 10.1016/j.lithos.2014.02.015 – ident: e_1_2_10_25_1 doi: 10.1038/s41561‐024‐01610‐2 – ident: e_1_2_10_28_1 doi: 10.1073/pnas.2025227118 – ident: e_1_2_10_41_1 doi: 10.1144/0016‐76492010‐042 – ident: e_1_2_10_22_1 doi: 10.1130/B31775.1 |
SSID | ssj0003031 |
Score | 2.4670472 |
Snippet | The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used mercury... Abstract The Early Permian witnessed the first icehouse‐to‐greenhouse turnover of the vegetated Earth, yet its climate dynamics remain enigmatic. Here, we used... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Aquatic ecosystems Biomass Carbon Carbon cycle Carbon dioxide Carbon dioxide emissions Carbon isotopes carbon perturbations Climate Climate change Cooling Deglaciation Drawdown early Permian Ecosystems Emissions Fractionation Global warming Ice ages Isotopes late Paleozoic deglaciation Latitude Marine ecosystems Meltwater Mercury Mercury (metal) Mercury isotopes Organic carbon Oxidation Paleozoic Permian Perturbation Perturbations small‐scale volcanism Swamps Terrestrial ecosystems Terrestrial environments Volcanic activity Volcanism Weathering Wetlands Wildfires |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQUiUuiLYglkflQzmhiMRvHwvqLq0WWiGQuEW2M5YQIkGb5cC_79jJouXSXnqJLMcH5xt75htnPEPIVyl4uvBZFqxB-iaY8IVzPBYgHUTlnAi5GMzVtbq8Ez_v5f1aqa8UEzakBx6AOwseNNdeWq_ReDp0BLmqvNVl0DFqBUn7os1bOVOjDkbFPNTKs6IwTKsx5L1kNnn7YjavUpoZ9s4Y5Zz974jmOl3N9ma6Q7ZHoki_DRP8SDag_UQ-zHIh3lds5dDN0H8m_goWAZGhP_pu2T1DT9H-hEeKzI5euJceO7qIrYXvWvobFmhj_HBMRx_aPConOU6vnnCt0F8B8OnahqbMVUhC2-UuuZt-v724LMbKCYXjtkyKVabLGUpDPvfVlUeoRPLmVAAbAXehY04ZDggQyFg2UjIvTGjQvBvH-R7ZbLsW9gmNTQRhoxPcSxEaMJaV0VTRBIbUkasJOVlBWD8PCTLq_GOb2Xod6gk5T_i-jUlprXMHCrsehV3_S9gTcrSSTj3utb7mVfrSRPQm5DRL7K8TqWc3c2UMLw_-x4wOyRZLFYHLqmDmiGwuFy9wjDRl6b_kFfkHCJDepA priority: 102 providerName: Directory of Open Access Journals |
Title | Mercury Isotopes Track the Causes of Carbon Perturbations in the Early Permian Ocean and Continent |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL113112 https://www.proquest.com/docview/3160678392 https://doaj.org/article/cbe737b59b7643aeb2361b970c7ff76e |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA9yi-CLnF-4ui550Ccptvlo08f18PaUW13ElcOXkqST4xDbpd19uP_embS37L0IvpTQJpBMMjO_pJnfMPZWK0kBn2kiaoRvSiiXWCtDAtpCyK1VPiaDWX3NLzbqy5W-Gg_cKBZm4Ic4HLiRZkR7TQpuXT-SDRBHJu7a1fIyI7oYNMETiq6lK31CrQ-WGM3zkDGvVIkRRT5efMf2H45b33NJkbn_Htw8Bq3R65yfsscjXOSLYX6fsAfQPGUPlzEd7y2W4gVO3z9jbgWdR_nwz327a7fQc_RC_jdHfMfP7L7HF23AUufahq-hQ0_jhsM6ftPEWpHqmD79wRXDv3nAp21qTvxVKKxm95xtzj_9OLtIxvwJiZVlSuZVU4hGXkA8_S0yFwqKa0XI4aEMgLpohc2NBBQQ6JDWWgunjK_RyRsr5Qt20rQNvGQ81AFUGaySTitfgylFGkwWjBcIIGU-Ze_uRFhtB5qMKv7eFmV1LOop-0jyPdQhcuv4ou2uq1FXKu-gkIXTpcPuSot7f5lnrixSXwQcAUzZ7G52qlHj-kpmNFKCe1P2Ps7YPztSLb9f5sbI9NV_1X7NHglKAJxmiTAzdrLr9vAGUcnOzePSm7PJ4ufm12Ye9_Z_Ac1e2G4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQKwSXiqfYUsAHOKGIxI_EOZaK7hZ2C0JdVHGxbGeMECKpku2Bf8-Mk662FyQukZU4kT32zHye2N8w9lorSQc-80w0CN-UUD5zTsYMtINYOqdCSgazOi8Xa_XxUl9OeU7pLMzID7ENuJFmJHtNCk4B6YltgEgycdmu5suC-GLQBu8TsMFpvX_8bf19vTXGaKHHpHm1yoyoymnvO37h3e77t7xSIu-_hTh3cWtyPKcP2MGEGPnxOMQP2R1oH7G785SR9w-W0h7OMDxmfgV9QBHxs6HbdFcwcHRE4RdHiMdP3PWAN7qIpd53Lf8CPTobP8br-M821Upsx_ToN04a_jkAXl3bcKKwQnm1mydsffrh4mSRTSkUMifrnCysplMaZQUpAFwVPlZ0tBVRR4A6AqqjE640ElBAoGPeaC28MqFBP2-clE_ZXtu18Izx2ERQdXRKeq1CA6YWeTRFNEEghpTljL25EaG9GpkybPrDLWq7K-oZe0_y3dYhfut0o-t_2EldbPBQycrr2mNzpcPlvywLX1d5qCL2AGbs6GZ07KR0g5UF9ZQQ34y9TSP2z4bY-ddlaYzMD_-r9it2b3GxWtrl2fmn5-y-oHzAeZEJc8T2Nv01vECQsvEvp4n4F_CO2vY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQViAuVVtAbJ8-wAlFJH4kzrEt7LawLRViUcXFsp1xhVCTVbI99N937KSr7QWpl8hKnMgee2Y-T-xvCPkgBQ8HPtOEVQjfBBM2MYb7BKQBnxsjXEwGc3GZn83Ft2t5PQTcwlmYnh9iFXALmhHtdVDwReUHsoHAkYmrdjGdZYEuBk3whkTHlI7IxvHv-Z_5yhajge5z5pUiUazIh63v-IXP6-8_cUqRu_8J4FyHrdHvTLbI5gAY6XE_wtvkBdQ75OU0JuS9x1Lcwum6N8ReQOtQQvS8a5bNAjqKfsj9o4jw6Km56_BG47HU2qamV9Cir7F9uI7-rWOtSHYcHt3inKE_HODV1BUNDFYornr5lswnX3-dniVDBoXE8DINBlaGQxp5ATH-W2TWF-FkK4IOB6UH1EbDTK44oIBA-rSSklmhXIXSVIbzd2RUNzW8J9RXHkTpjeBWCleBKlnqVeaVYwgheT4mHx9FqBc9UYaOP7hZqddFPSYnQb6rOoHeOt5o2hs9aIt2FgpeWFlabC43uPrneWbLInWFxx7AmOw_jo4edK7TPAs9DYBvTD7FEftvQ_T05yxXiqe7z6p9RF5dfZno2fnl9z3ymoVswGmWMLVPRsv2Dg4Qoizt4TAPHwCSy9oW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mercury+Isotopes+Track+the+Causes+of+Carbon+Perturbations+in+the+Early+Permian+Ocean+and+Continent&rft.jtitle=Geophysical+research+letters&rft.au=Fang%2C+Qiang&rft.au=Wu%2C+Huaichun&rft.au=Chen%2C+Jiubin&rft.au=Grasby%2C+Stephen+E.&rft.date=2025-01-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=2&rft_id=info:doi/10.1029%2F2024GL113112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024GL113112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |