Mercury isotope evidence for a non-volcanic origin of Hg spikes at the Ordovician-Silurian boundary, South China

Ordovician-Silurian transition (OST) sections of South China contain extremely high mercury (Hg) concentrations (>1000 ppb) of uncertain provenance. The main hypotheses concerning their origin are: (1) contemporaneous elevated seawater Hg concentrations (e.g., due to volcanogenic inputs) combined...

Full description

Saved in:
Bibliographic Details
Published inEarth and planetary science letters Vol. 594; p. 117705
Main Authors Shen, Jun, Algeo, Thomas J., Feng, Qinglai
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ordovician-Silurian transition (OST) sections of South China contain extremely high mercury (Hg) concentrations (>1000 ppb) of uncertain provenance. The main hypotheses concerning their origin are: (1) contemporaneous elevated seawater Hg concentrations (e.g., due to volcanogenic inputs) combined with normal Hg-uptake processes by marine sediments, and (2) normal seawater Hg concentrations combined with enhanced Hg uptake by marine sediments (e.g., due to strong adsorption by sulfides). Here, we investigate Hg isotopes, which are a promising tool to track the sources of Hg in sediments, in OST strata of the Jiaoye drillcore from the Yangtze Platform of South China. Black shales and pyritic beds exhibit mass-independent fractionations of odd Hg isotopes (odd-MIF, i.e., Δ199Hg) of +0.13±0.05‰ and +0.13±0.03‰, respectively. These values are similar to those of modern and ancient marine sediments, supporting a seawater source of Hg in the study units and providing evidence against a volcanic source. We infer that the extreme Hg enrichment of the OST beds was due to elevated rates of Hg uptake from seawater through adsorption to pyrite. Local environmental conditions (e.g., intense euxinia and microbial sulfate reduction) played a dominant role in Hg enrichment of OST strata in South China. •Hg isotope data for highly Hg-enriched Ordovician-Silurian boundary strata, China.•(Chalcophilic) Hg taken up by pyrite under anoxic bottomwater conditions.•Hg peaks around OSB were sourced from seawater, not from volcanic inputs.•Mass-independent fractionation (Δ199Hg=+0.13±0.03‰) supports seawater source.
AbstractList Ordovician-Silurian transition (OST) sections of South China contain extremely high mercury (Hg) concentrations (>1000 ppb) of uncertain provenance. The main hypotheses concerning their origin are: (1) contemporaneous elevated seawater Hg concentrations (e.g., due to volcanogenic inputs) combined with normal Hg-uptake processes by marine sediments, and (2) normal seawater Hg concentrations combined with enhanced Hg uptake by marine sediments (e.g., due to strong adsorption by sulfides). Here, we investigate Hg isotopes, which are a promising tool to track the sources of Hg in sediments, in OST strata of the Jiaoye drillcore from the Yangtze Platform of South China. Black shales and pyritic beds exhibit mass-independent fractionations of odd Hg isotopes (odd-MIF, i.e., Δ199Hg) of +0.13±0.05‰ and +0.13±0.03‰, respectively. These values are similar to those of modern and ancient marine sediments, supporting a seawater source of Hg in the study units and providing evidence against a volcanic source. We infer that the extreme Hg enrichment of the OST beds was due to elevated rates of Hg uptake from seawater through adsorption to pyrite. Local environmental conditions (e.g., intense euxinia and microbial sulfate reduction) played a dominant role in Hg enrichment of OST strata in South China. •Hg isotope data for highly Hg-enriched Ordovician-Silurian boundary strata, China.•(Chalcophilic) Hg taken up by pyrite under anoxic bottomwater conditions.•Hg peaks around OSB were sourced from seawater, not from volcanic inputs.•Mass-independent fractionation (Δ199Hg=+0.13±0.03‰) supports seawater source.
ArticleNumber 117705
Author Shen, Jun
Algeo, Thomas J.
Feng, Qinglai
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0003-3759-6533
  surname: Shen
  fullname: Shen, Jun
  email: shenjun@cug.edu.cn
  organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, PR China
– sequence: 2
  givenname: Thomas J.
  surname: Algeo
  fullname: Algeo, Thomas J.
  organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, PR China
– sequence: 3
  givenname: Qinglai
  surname: Feng
  fullname: Feng, Qinglai
  organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, PR China
BookMark eNp9kE1LAzEQhoNUsFX_gKf8ALdmsu1-gBcpagXFgwreQjY7sVPXZEnSQv-9W-rJQ0_zXp6Zd54JGznvkLErEFMQUNysp9jHbiqFlFOAshTzEzaGvJpnAvLPERsLATKrJHyesUmMayFEMS_qMetfMJhN2HGKPvkeOW6pRWeQWx-45sOdbOs7ox0Z7gN9kePe8uUXjz19Y-Q68bRC_hpavyVD2mVv1G3CEHjjN67VYXfN3_wmrfhiRU5fsFOru4iXf_OcfTzcvy-W2fPr49Pi7jnTeVWnzAqcWSxrKDTMtbSmrXNdIhSFkTavZrKEpkABgFA3ONNo26ZpS2yqPG-k0Pk5k4e9JvgYA1rVB_oZ2igQau9MrdXemdo7UwdnA1T9gwwlnci7FDR1x9HbA4rDU1vCoKKhvciWApqkWk_H8F_WR4xE
CitedBy_id crossref_primary_10_1016_j_chemgeo_2024_122566
crossref_primary_10_1016_j_epsl_2023_118565
crossref_primary_10_1016_j_chemgeo_2025_122724
crossref_primary_10_1016_j_epsl_2024_118956
crossref_primary_10_1016_j_earscirev_2023_104497
crossref_primary_10_1144_jgs2023_195
crossref_primary_10_1016_j_epsl_2024_118862
crossref_primary_10_1016_j_epsl_2023_118195
crossref_primary_10_1007_s11430_023_1236_8
crossref_primary_10_1016_j_earscirev_2023_104667
crossref_primary_10_1016_j_palaeo_2023_111634
crossref_primary_10_1016_j_earscirev_2023_104647
crossref_primary_10_1016_j_epsl_2023_118075
crossref_primary_10_1038_s41467_022_35272_8
crossref_primary_10_1360_TB_2023_0187
crossref_primary_10_1016_j_gsf_2023_101537
crossref_primary_10_1016_j_palaeo_2023_111572
crossref_primary_10_3724_EE_1672_9250_2024_52_040
crossref_primary_10_1016_j_gca_2024_12_010
crossref_primary_10_1016_j_gloplacha_2022_104023
crossref_primary_10_1093_nsr_nwad237
crossref_primary_10_1144_jgs2023_024
Cites_doi 10.1016/j.chemgeo.2003.12.009
10.1016/j.chemosphere.2003.11.011
10.1016/j.crte.2015.04.001
10.1038/s41467-022-27965-x
10.1029/2019GC008707
10.1130/G23543A.1
10.1016/j.epsl.2020.116333
10.1038/s41586-021-03859-8
10.1016/j.epsl.2022.117412
10.1126/science.1200803
10.1016/j.gloplacha.2020.103374
10.1016/j.atmosenv.2003.07.011
10.1130/G48132.1
10.1146/annurev-earth-050212-124107
10.1130/G38487.1
10.1073/pnas.1705378114
10.1038/s41598-019-39333-9
10.1016/j.epsl.2013.12.020
10.1021/acs.est.8b04865
10.1038/s41467-022-28891-8
10.1016/j.epsl.2019.04.020
10.1038/s41598-017-05524-5
10.1016/j.earscirev.2019.102880
10.1016/j.palaeo.2017.03.014
10.1038/s41467-019-09620-0
10.1016/j.envpol.2008.01.011
10.1016/j.gr.2008.06.004
10.1016/j.epsl.2019.01.028
10.1016/j.epsl.2018.11.029
10.1130/G48501.1
10.1016/j.gca.2020.05.008
10.1016/j.earscirev.2020.103111
10.1016/S0031-0182(03)00736-3
10.1021/acs.est.8b06736
10.3390/min11070751
10.1016/j.epsl.2008.10.023
10.1126/science.1148050
10.2475/08.2018.01
10.1130/G40121.1
10.1146/annurev.environ.051308.084314
10.1130/G38940.1
10.1016/j.earscirev.2014.11.002
10.1130/G47377.1
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.epsl.2022.117705
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1385-013X
ExternalDocumentID 10_1016_j_epsl_2022_117705
S0012821X22003417
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABLJU
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SHN
SPC
SPCBC
SSE
SSZ
T5K
TN5
WH7
XSW
ZMT
~02
~G-
1RT
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HME
HVGLF
HZ~
H~9
LPU
OHT
R2-
RIG
SEP
SEW
SSH
VH1
VJK
VOH
WUQ
XJT
XOL
ZKB
ZY4
ID FETCH-LOGICAL-a389t-f0e4fe7916a15a2fcd93a7e166c2f384271b6e011e19be4aefdbbd7eb833b20a3
IEDL.DBID .~1
ISSN 0012-821X
IngestDate Thu Apr 24 22:53:28 EDT 2025
Tue Jul 01 03:35:26 EDT 2025
Fri Feb 23 02:40:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords black shale
mass extinction
large igneous province
anoxia
isotopic fractionation
volcanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a389t-f0e4fe7916a15a2fcd93a7e166c2f384271b6e011e19be4aefdbbd7eb833b20a3
ORCID 0000-0003-3759-6533
ParticipantIDs crossref_primary_10_1016_j_epsl_2022_117705
crossref_citationtrail_10_1016_j_epsl_2022_117705
elsevier_sciencedirect_doi_10_1016_j_epsl_2022_117705
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-15
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Earth and planetary science letters
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bergquist, Blum (br0020) 2007; 318
Shen, Schoepfer, Feng, Zhou, Yu, Song, Wei, Algeo (br0310) 2015; 149
Shen, Feng, Algeo, Liu, Zhou, Wei, Liu, Them, Gill, Chen (br0340) 2020; 543
Smolarek-Lach, Marynowski, Trela, Wignall (br0380) 2019; 9
Blum, Sherman, Johnson (br0030) 2014; 42
Bower, Savage, Weinman, Barnett, Hamilton, Harper (br0050) 2008; 156
Gong, Wang, Zhao, Grasby, Chen, Zhang, Li, Cao, Li (br0140) 2017; 7
Yang, Hu, Wang, Jiang, Yao, Sun, Huang, Zhu (br0440) 2019; 518
Jones, Martini, Fike, Kaiho (br0210) 2017; 45
Zhao, Shen, Algeo, Racki, Chen, Huang, Song, Qie, Gong (br0510) 2022; 581
Finnegan, Bergmann, Eiler, Jones, Fike, Eisenman, Hughes, Tripati, Fischer (br0110) 2011; 331
Algeo, Maynard (br0010) 2004; 206
Shen, Yin, Algeo, Svensen, Schoepfer (br0370) 2022; 13
Zambardi, Sonke, Toutain, Sortino, Shinohara (br0470) 2009; 277
Ravichandran (br0290) 2004; 55
Charbonnier, Adatte, Föllmi, Suan (br0060) 2020; 21
Turekian (br0430) 2010
Gadd, Peter (br0130) 2018; vol. 8358
Grasby, Shen, Yin, Gleason, Blum, Lepak, Hurley, Beauchamp (br0150) 2017; 45
Shen, Chen, Algeo, Feng, Yu, Xu, Xu, Lei, Planavsky, Xie (br0350) 2021; 49
Štrok, Baya, Hintelmann (br0390) 2015; 347
Shen, Chen, Algeo, Yuan, Feng, Yu, Zhou, O'Connell, Planavsky (br0320) 2019; 10
Kokh, Sokol, Gustaytis (br0220) 2021; 11
Su, Huff, Ettensohn, Liu, Zhang, Li (br0400) 2009; 15
Hu, Li, Chen, Luo, Grasby, Zhang, Yuan, Xu, Finney, Sun, Shen (br0190) 2021; 196
Large, Halpin, Danyushevsky, Maslennikov, Bull, Long, Gregory, Lounejeva, Lyons, Sack, McGoldrick, Calver (br0240) 2014; 389
Jiskra, Heimbürger-Boavida, Desgranges, Petrova, Dufour, Ferreira-Araujo, Masbou, Chmeleff, Thyssen, Point, Sonke (br0200) 2021; 597
Hu, Li, Zhang, Turchyn, Gong, Shen (br0180) 2020; 11
Taylor, McLennan (br0410) 1985
Yuan, Sommar, Lin, Wang, Li, Liu, Zhang, Lu, Wu, Feng (br0460) 2019; 53
Percival, Jenkyns, Mather, Dickson, Batenburg, Ruhl, Hesselbo, Barclay, Jarvis, Robinson (br0270) 2018; 318
Ernst, Youbi (br0100) 2017; 478
Lehmann, Nägler, Holland, Wille, Mao, Pan, Ma, Dulski (br0250) 2007; 35
Zhu, Tao, Yin, Liao, Yang, Liu, Barriga (br0490) 2020; 281
Grasby, Them, Chen, Yin, Ardakani (br0160) 2019; 196
Yin, Feng, Hurley, Krabbenhoft, Lepak, Hu, Zhang, Li, Bi (br0450) 2016; 6
Shen, Yin, Zhang, Algeo, Bottjer, Yu, Xu, Penman, Wang, Li, Shi, Planavsky, Feng, Xie (br0360) 2022; 13
Percival, Ruhl, Hesselbo, Jenkyns, Mather, Whiteside (br0260) 2017; 114
Zou, Qiu, Poulton, Dong, Wang, Chen, Lu, Shi, Tao (br0500) 2018; 46
Pyle, Mather (br0280) 2003; 37
Selin (br0300) 2009; 34
Shen, Algeo, Chen, Planavsky, Feng, Yu, Liu (br0330) 2019; 511
Deng, Sun, Rong, Sun, Sun, Lehmann, Yin (br0090) 2021; 49
Them, Jagoe, Caruthers, Gill, Grasby, Gröcke, Yin, Owens (br0420) 2019; 507
Kwon, Blum, Yin, Tsui, Yang, Choi (br0230) 2020; 203
Bond, Grasby (br0040) 2020; 48
Chen, Rong, Li, Boucot (br0080) 2004; 204
Fu, Zhang, Feng, Tan, Ming, Liu, Zhang (br0120) 2019; 53
Zou (10.1016/j.epsl.2022.117705_br0500) 2018; 46
Selin (10.1016/j.epsl.2022.117705_br0300) 2009; 34
Su (10.1016/j.epsl.2022.117705_br0400) 2009; 15
Smolarek-Lach (10.1016/j.epsl.2022.117705_br0380) 2019; 9
Turekian (10.1016/j.epsl.2022.117705_br0430) 2010
Bergquist (10.1016/j.epsl.2022.117705_br0020) 2007; 318
Lehmann (10.1016/j.epsl.2022.117705_br0250) 2007; 35
Shen (10.1016/j.epsl.2022.117705_br0340) 2020; 543
Zambardi (10.1016/j.epsl.2022.117705_br0470) 2009; 277
Algeo (10.1016/j.epsl.2022.117705_br0010) 2004; 206
Shen (10.1016/j.epsl.2022.117705_br0330) 2019; 511
Zhao (10.1016/j.epsl.2022.117705_br0510) 2022; 581
Deng (10.1016/j.epsl.2022.117705_br0090) 2021; 49
Fu (10.1016/j.epsl.2022.117705_br0120) 2019; 53
Hu (10.1016/j.epsl.2022.117705_br0180) 2020; 11
Jones (10.1016/j.epsl.2022.117705_br0210) 2017; 45
Kokh (10.1016/j.epsl.2022.117705_br0220) 2021; 11
Kwon (10.1016/j.epsl.2022.117705_br0230) 2020; 203
Shen (10.1016/j.epsl.2022.117705_br0310) 2015; 149
Shen (10.1016/j.epsl.2022.117705_br0370) 2022; 13
Ernst (10.1016/j.epsl.2022.117705_br0100) 2017; 478
Shen (10.1016/j.epsl.2022.117705_br0320) 2019; 10
Charbonnier (10.1016/j.epsl.2022.117705_br0060) 2020; 21
Gadd (10.1016/j.epsl.2022.117705_br0130) 2018; vol. 8358
Grasby (10.1016/j.epsl.2022.117705_br0150) 2017; 45
Štrok (10.1016/j.epsl.2022.117705_br0390) 2015; 347
Yang (10.1016/j.epsl.2022.117705_br0440) 2019; 518
Percival (10.1016/j.epsl.2022.117705_br0270) 2018; 318
Yin (10.1016/j.epsl.2022.117705_br0450) 2016; 6
Bond (10.1016/j.epsl.2022.117705_br0040) 2020; 48
Grasby (10.1016/j.epsl.2022.117705_br0160) 2019; 196
Chen (10.1016/j.epsl.2022.117705_br0080) 2004; 204
Pyle (10.1016/j.epsl.2022.117705_br0280) 2003; 37
Shen (10.1016/j.epsl.2022.117705_br0360) 2022; 13
Large (10.1016/j.epsl.2022.117705_br0240) 2014; 389
Taylor (10.1016/j.epsl.2022.117705_br0410) 1985
Bower (10.1016/j.epsl.2022.117705_br0050) 2008; 156
Ravichandran (10.1016/j.epsl.2022.117705_br0290) 2004; 55
Finnegan (10.1016/j.epsl.2022.117705_br0110) 2011; 331
Shen (10.1016/j.epsl.2022.117705_br0350) 2021; 49
Yuan (10.1016/j.epsl.2022.117705_br0460) 2019; 53
Zhu (10.1016/j.epsl.2022.117705_br0490) 2020; 281
Jiskra (10.1016/j.epsl.2022.117705_br0200) 2021; 597
Gong (10.1016/j.epsl.2022.117705_br0140) 2017; 7
Them (10.1016/j.epsl.2022.117705_br0420) 2019; 507
Hu (10.1016/j.epsl.2022.117705_br0190) 2021; 196
Percival (10.1016/j.epsl.2022.117705_br0260) 2017; 114
Blum (10.1016/j.epsl.2022.117705_br0030) 2014; 42
References_xml – volume: 206
  start-page: 289
  year: 2004
  end-page: 318
  ident: br0010
  article-title: Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems
  publication-title: Chem. Geol.
– volume: 46
  start-page: 535
  year: 2018
  end-page: 538
  ident: br0500
  article-title: Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction
  publication-title: Geology
– volume: 7
  year: 2017
  ident: br0140
  article-title: Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction
  publication-title: Sci. Rep.
– volume: 114
  start-page: 7929
  year: 2017
  end-page: 7934
  ident: br0260
  article-title: Mercury evidence for pulsed volcanism during the end-Triassic mass extinction
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 111
  year: 2009
  end-page: 130
  ident: br0400
  article-title: K-bentonite, black-shale and flysch successions at the Ordovician–Silurian transition, South China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana
  publication-title: Gondwana Res.
– volume: 347
  start-page: 368
  year: 2015
  end-page: 376
  ident: br0390
  article-title: The mercury isotope composition of Arctic coastal seawater
  publication-title: C. R. Geosci.
– volume: 6
  year: 2016
  ident: br0450
  article-title: Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites
  publication-title: Sci. Rep.
– volume: 478
  start-page: 30
  year: 2017
  end-page: 52
  ident: br0100
  article-title: How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 53
  start-page: 1947
  year: 2019
  end-page: 1957
  ident: br0120
  article-title: Domestic and transboundary sources of atmospheric particulate bound mercury in remote areas of China: evidence from mercury isotopes
  publication-title: Environ. Sci. Technol.
– year: 2010
  ident: br0430
  article-title: Marine Chemistry and Geochemistry
– volume: 49
  start-page: 309
  year: 2021
  end-page: 313
  ident: br0090
  article-title: Recycling of mercury from the atmosphere-ocean system into volcanic-arc–associated epithermal gold systems
  publication-title: Geology
– volume: 597
  start-page: 678
  year: 2021
  end-page: 682
  ident: br0200
  article-title: Mercury stable isotopes constrain atmospheric sources to the ocean
  publication-title: Nature
– volume: 507
  start-page: 62
  year: 2019
  end-page: 72
  ident: br0420
  article-title: Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic)
  publication-title: Earth Planet. Sci. Lett.
– volume: 518
  start-page: 13
  year: 2019
  end-page: 25
  ident: br0440
  article-title: Duration, evolution, and implications of volcanic activity across the Ordovician–Silurian transition in the Lower Yangtze region, South China
  publication-title: Earth Planet. Sci. Lett.
– volume: 37
  start-page: 5115
  year: 2003
  end-page: 5124
  ident: br0280
  article-title: The importance of volcanic emissions for the global atmospheric mercury cycle
  publication-title: Atmos. Environ.
– volume: 196
  year: 2019
  ident: br0160
  article-title: Mercury as a proxy for volcanic emissions in the geologic record
  publication-title: Earth-Sci. Rev.
– volume: 156
  start-page: 504
  year: 2008
  end-page: 514
  ident: br0050
  article-title: Immobilization of mercury by pyrite (FeS
  publication-title: Environ. Pollut.
– volume: vol. 8358
  start-page: 193
  year: 2018
  end-page: 206
  ident: br0130
  article-title: Field observations, mineralogy and geochemistry of Middle Devonian Ni-Zn-Mo-PGE hyper-enriched black shale deposits, Yukon
  publication-title: Targeted Geoscience Initiative: 2017 Report of Activities, vol. 1
– volume: 196
  year: 2021
  ident: br0190
  article-title: Major volcanic eruptions linked to the Late Ordovician mass extinction: evidence from mercury enrichment and Hg isotopes
  publication-title: Glob. Planet. Change
– volume: 149
  start-page: 136
  year: 2015
  end-page: 162
  ident: br0310
  article-title: Marine productivity changes during the end-Permian crisis and Early Triassic recovery
  publication-title: Earth-Sci. Rev.
– volume: 318
  start-page: 417
  year: 2007
  end-page: 420
  ident: br0020
  article-title: Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems
  publication-title: Science
– volume: 203
  year: 2020
  ident: br0230
  article-title: Mercury stable isotopes for monitoring the effectiveness of the Minamata Convention on Mercury
  publication-title: Earth-Sci. Rev.
– volume: 389
  start-page: 209
  year: 2014
  end-page: 220
  ident: br0240
  article-title: Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution
  publication-title: Earth Planet. Sci. Lett.
– volume: 21
  year: 2020
  ident: br0060
  article-title: Effect of intense weathering and postdepositional degradation of organic matter on Hg/TOC proxy in organic-rich sediments and its implications for deep-time investigations
  publication-title: Geochem. Geophys. Geosyst.
– volume: 48
  start-page: 777
  year: 2020
  end-page: 781
  ident: br0040
  article-title: Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation
  publication-title: Geology
– volume: 10
  start-page: 1563
  year: 2019
  ident: br0320
  article-title: Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1307
  year: 2022
  ident: br0370
  article-title: Mercury evidence for combustion of organic-rich sediments during the end-Triassic crisis
  publication-title: Nat. Commun.
– volume: 42
  start-page: 249
  year: 2014
  end-page: 269
  ident: br0030
  article-title: Mercury isotopes in earth and environmental sciences
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 35
  start-page: 403
  year: 2007
  end-page: 406
  ident: br0250
  article-title: Highly metalliferous carbonaceous shale and Early Cambrian seawater
  publication-title: Geology
– volume: 45
  start-page: 631
  year: 2017
  end-page: 634
  ident: br0210
  article-title: A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia
  publication-title: Geology
– volume: 13
  start-page: 299
  year: 2022
  ident: br0360
  article-title: Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic–Jurassic transition
  publication-title: Nat. Commun.
– year: 1985
  ident: br0410
  article-title: The Continental Crust: Its Composition and Evolution
– volume: 581
  year: 2022
  ident: br0510
  article-title: Mercury isotope evidence for regional volcanism during the Frasnian-Famennian transition
  publication-title: Earth Planet. Sci. Lett.
– volume: 511
  start-page: 130
  year: 2019
  end-page: 140
  ident: br0330
  article-title: Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin
  publication-title: Earth Planet. Sci. Lett.
– volume: 34
  start-page: 43
  year: 2009
  end-page: 63
  ident: br0300
  article-title: Global biogeochemical cycling of mercury: a review
  publication-title: Ann. Rev. Environ. Res.
– volume: 53
  start-page: 651
  year: 2019
  end-page: 660
  ident: br0460
  article-title: Stable isotope evidence shows re-emission of elemental mercury vapor occurring after reductive loss from foliage
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 751
  year: 2021
  ident: br0220
  article-title: Mercury anomaly in Oligocene–Miocene Maykop Group sediments (Caucasus Continental Collision Zone): mercury hosts, distribution, and sources
  publication-title: Minerals
– volume: 55
  start-page: 319
  year: 2004
  end-page: 331
  ident: br0290
  article-title: Interactions between mercury and dissolved organic matter—a review
  publication-title: Chemosphere
– volume: 49
  start-page: 452
  year: 2021
  end-page: 456
  ident: br0350
  article-title: Mercury fluxes record regional volcanism in the South China craton prior to the end-Permian mass extinction
  publication-title: Geology
– volume: 331
  start-page: 903
  year: 2011
  end-page: 906
  ident: br0110
  article-title: The magnitude and duration of Late Ordovician–Early Silurian glaciation
  publication-title: Science
– volume: 277
  start-page: 236
  year: 2009
  end-page: 243
  ident: br0470
  article-title: Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)
  publication-title: Earth Planet. Sci. Lett.
– volume: 9
  start-page: 3139
  year: 2019
  ident: br0380
  article-title: Mercury spikes indicate a volcanic trigger for the late Ordovician mass extinction event: an example from a deep shelf of the peri-Baltic region
  publication-title: Sci. Rep.
– volume: 45
  start-page: 55
  year: 2017
  end-page: 58
  ident: br0150
  article-title: Isotopic signatures of mercury contamination in latest Permian oceans
  publication-title: Geology
– volume: 11
  year: 2020
  ident: br0180
  article-title: Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction
  publication-title: Nat. Commun.
– volume: 204
  start-page: 353
  year: 2004
  end-page: 372
  ident: br0080
  article-title: Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 281
  start-page: 91
  year: 2020
  end-page: 101
  ident: br0490
  article-title: Seawater versus mantle sources of mercury in sulfide-rich seafloor hydrothermal systems, Southwest Indian Ridge
  publication-title: Geochim. Cosmochim. Acta
– volume: 543
  year: 2020
  ident: br0340
  article-title: Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy
  publication-title: Earth Planet. Sci. Lett.
– volume: 318
  start-page: 799
  year: 2018
  end-page: 860
  ident: br0270
  article-title: Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events
  publication-title: Am. J. Sci.
– volume: 206
  start-page: 289
  year: 2004
  ident: 10.1016/j.epsl.2022.117705_br0010
  article-title: Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2003.12.009
– volume: 55
  start-page: 319
  year: 2004
  ident: 10.1016/j.epsl.2022.117705_br0290
  article-title: Interactions between mercury and dissolved organic matter—a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2003.11.011
– volume: 347
  start-page: 368
  year: 2015
  ident: 10.1016/j.epsl.2022.117705_br0390
  article-title: The mercury isotope composition of Arctic coastal seawater
  publication-title: C. R. Geosci.
  doi: 10.1016/j.crte.2015.04.001
– volume: 13
  start-page: 299
  year: 2022
  ident: 10.1016/j.epsl.2022.117705_br0360
  article-title: Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic–Jurassic transition
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-27965-x
– volume: 21
  year: 2020
  ident: 10.1016/j.epsl.2022.117705_br0060
  article-title: Effect of intense weathering and postdepositional degradation of organic matter on Hg/TOC proxy in organic-rich sediments and its implications for deep-time investigations
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2019GC008707
– volume: 35
  start-page: 403
  year: 2007
  ident: 10.1016/j.epsl.2022.117705_br0250
  article-title: Highly metalliferous carbonaceous shale and Early Cambrian seawater
  publication-title: Geology
  doi: 10.1130/G23543A.1
– volume: 543
  year: 2020
  ident: 10.1016/j.epsl.2022.117705_br0340
  article-title: Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2020.116333
– volume: 597
  start-page: 678
  year: 2021
  ident: 10.1016/j.epsl.2022.117705_br0200
  article-title: Mercury stable isotopes constrain atmospheric sources to the ocean
  publication-title: Nature
  doi: 10.1038/s41586-021-03859-8
– volume: 581
  year: 2022
  ident: 10.1016/j.epsl.2022.117705_br0510
  article-title: Mercury isotope evidence for regional volcanism during the Frasnian-Famennian transition
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2022.117412
– volume: 331
  start-page: 903
  year: 2011
  ident: 10.1016/j.epsl.2022.117705_br0110
  article-title: The magnitude and duration of Late Ordovician–Early Silurian glaciation
  publication-title: Science
  doi: 10.1126/science.1200803
– volume: 196
  year: 2021
  ident: 10.1016/j.epsl.2022.117705_br0190
  article-title: Major volcanic eruptions linked to the Late Ordovician mass extinction: evidence from mercury enrichment and Hg isotopes
  publication-title: Glob. Planet. Change
  doi: 10.1016/j.gloplacha.2020.103374
– volume: 37
  start-page: 5115
  year: 2003
  ident: 10.1016/j.epsl.2022.117705_br0280
  article-title: The importance of volcanic emissions for the global atmospheric mercury cycle
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2003.07.011
– volume: 49
  start-page: 309
  year: 2021
  ident: 10.1016/j.epsl.2022.117705_br0090
  article-title: Recycling of mercury from the atmosphere-ocean system into volcanic-arc–associated epithermal gold systems
  publication-title: Geology
  doi: 10.1130/G48132.1
– year: 2010
  ident: 10.1016/j.epsl.2022.117705_br0430
– volume: 42
  start-page: 249
  year: 2014
  ident: 10.1016/j.epsl.2022.117705_br0030
  article-title: Mercury isotopes in earth and environmental sciences
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-050212-124107
– volume: 45
  start-page: 55
  year: 2017
  ident: 10.1016/j.epsl.2022.117705_br0150
  article-title: Isotopic signatures of mercury contamination in latest Permian oceans
  publication-title: Geology
  doi: 10.1130/G38487.1
– volume: 114
  start-page: 7929
  year: 2017
  ident: 10.1016/j.epsl.2022.117705_br0260
  article-title: Mercury evidence for pulsed volcanism during the end-Triassic mass extinction
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1705378114
– volume: 9
  start-page: 3139
  year: 2019
  ident: 10.1016/j.epsl.2022.117705_br0380
  article-title: Mercury spikes indicate a volcanic trigger for the late Ordovician mass extinction event: an example from a deep shelf of the peri-Baltic region
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39333-9
– volume: 389
  start-page: 209
  year: 2014
  ident: 10.1016/j.epsl.2022.117705_br0240
  article-title: Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2013.12.020
– volume: 53
  start-page: 651
  year: 2019
  ident: 10.1016/j.epsl.2022.117705_br0460
  article-title: Stable isotope evidence shows re-emission of elemental mercury vapor occurring after reductive loss from foliage
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04865
– volume: 13
  start-page: 1307
  year: 2022
  ident: 10.1016/j.epsl.2022.117705_br0370
  article-title: Mercury evidence for combustion of organic-rich sediments during the end-Triassic crisis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28891-8
– volume: 518
  start-page: 13
  year: 2019
  ident: 10.1016/j.epsl.2022.117705_br0440
  article-title: Duration, evolution, and implications of volcanic activity across the Ordovician–Silurian transition in the Lower Yangtze region, South China
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2019.04.020
– volume: 7
  year: 2017
  ident: 10.1016/j.epsl.2022.117705_br0140
  article-title: Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05524-5
– volume: 196
  year: 2019
  ident: 10.1016/j.epsl.2022.117705_br0160
  article-title: Mercury as a proxy for volcanic emissions in the geologic record
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2019.102880
– volume: 478
  start-page: 30
  year: 2017
  ident: 10.1016/j.epsl.2022.117705_br0100
  article-title: How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/j.palaeo.2017.03.014
– volume: 11
  year: 2020
  ident: 10.1016/j.epsl.2022.117705_br0180
  article-title: Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction
  publication-title: Nat. Commun.
– volume: 6
  year: 2016
  ident: 10.1016/j.epsl.2022.117705_br0450
  article-title: Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites
  publication-title: Sci. Rep.
– volume: 10
  start-page: 1563
  year: 2019
  ident: 10.1016/j.epsl.2022.117705_br0320
  article-title: Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09620-0
– volume: 156
  start-page: 504
  year: 2008
  ident: 10.1016/j.epsl.2022.117705_br0050
  article-title: Immobilization of mercury by pyrite (FeS2)
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.01.011
– volume: 15
  start-page: 111
  year: 2009
  ident: 10.1016/j.epsl.2022.117705_br0400
  article-title: K-bentonite, black-shale and flysch successions at the Ordovician–Silurian transition, South China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2008.06.004
– volume: 511
  start-page: 130
  year: 2019
  ident: 10.1016/j.epsl.2022.117705_br0330
  article-title: Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2019.01.028
– volume: 507
  start-page: 62
  year: 2019
  ident: 10.1016/j.epsl.2022.117705_br0420
  article-title: Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic)
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2018.11.029
– volume: 49
  start-page: 452
  year: 2021
  ident: 10.1016/j.epsl.2022.117705_br0350
  article-title: Mercury fluxes record regional volcanism in the South China craton prior to the end-Permian mass extinction
  publication-title: Geology
  doi: 10.1130/G48501.1
– volume: 281
  start-page: 91
  year: 2020
  ident: 10.1016/j.epsl.2022.117705_br0490
  article-title: Seawater versus mantle sources of mercury in sulfide-rich seafloor hydrothermal systems, Southwest Indian Ridge
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2020.05.008
– volume: 203
  year: 2020
  ident: 10.1016/j.epsl.2022.117705_br0230
  article-title: Mercury stable isotopes for monitoring the effectiveness of the Minamata Convention on Mercury
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103111
– volume: 204
  start-page: 353
  year: 2004
  ident: 10.1016/j.epsl.2022.117705_br0080
  article-title: Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/S0031-0182(03)00736-3
– volume: 53
  start-page: 1947
  year: 2019
  ident: 10.1016/j.epsl.2022.117705_br0120
  article-title: Domestic and transboundary sources of atmospheric particulate bound mercury in remote areas of China: evidence from mercury isotopes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b06736
– volume: 11
  start-page: 751
  year: 2021
  ident: 10.1016/j.epsl.2022.117705_br0220
  article-title: Mercury anomaly in Oligocene–Miocene Maykop Group sediments (Caucasus Continental Collision Zone): mercury hosts, distribution, and sources
  publication-title: Minerals
  doi: 10.3390/min11070751
– year: 1985
  ident: 10.1016/j.epsl.2022.117705_br0410
– volume: 277
  start-page: 236
  year: 2009
  ident: 10.1016/j.epsl.2022.117705_br0470
  article-title: Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2008.10.023
– volume: 318
  start-page: 417
  year: 2007
  ident: 10.1016/j.epsl.2022.117705_br0020
  article-title: Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems
  publication-title: Science
  doi: 10.1126/science.1148050
– volume: vol. 8358
  start-page: 193
  year: 2018
  ident: 10.1016/j.epsl.2022.117705_br0130
  article-title: Field observations, mineralogy and geochemistry of Middle Devonian Ni-Zn-Mo-PGE hyper-enriched black shale deposits, Yukon
– volume: 318
  start-page: 799
  year: 2018
  ident: 10.1016/j.epsl.2022.117705_br0270
  article-title: Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events
  publication-title: Am. J. Sci.
  doi: 10.2475/08.2018.01
– volume: 46
  start-page: 535
  year: 2018
  ident: 10.1016/j.epsl.2022.117705_br0500
  article-title: Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction
  publication-title: Geology
  doi: 10.1130/G40121.1
– volume: 34
  start-page: 43
  year: 2009
  ident: 10.1016/j.epsl.2022.117705_br0300
  article-title: Global biogeochemical cycling of mercury: a review
  publication-title: Ann. Rev. Environ. Res.
  doi: 10.1146/annurev.environ.051308.084314
– volume: 45
  start-page: 631
  year: 2017
  ident: 10.1016/j.epsl.2022.117705_br0210
  article-title: A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia
  publication-title: Geology
  doi: 10.1130/G38940.1
– volume: 149
  start-page: 136
  year: 2015
  ident: 10.1016/j.epsl.2022.117705_br0310
  article-title: Marine productivity changes during the end-Permian crisis and Early Triassic recovery
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2014.11.002
– volume: 48
  start-page: 777
  year: 2020
  ident: 10.1016/j.epsl.2022.117705_br0040
  article-title: Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation
  publication-title: Geology
  doi: 10.1130/G47377.1
SSID ssj0006569
Score 2.5059485
Snippet Ordovician-Silurian transition (OST) sections of South China contain extremely high mercury (Hg) concentrations (>1000 ppb) of uncertain provenance. The main...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117705
SubjectTerms anoxia
black shale
isotopic fractionation
large igneous province
mass extinction
volcanism
Title Mercury isotope evidence for a non-volcanic origin of Hg spikes at the Ordovician-Silurian boundary, South China
URI https://dx.doi.org/10.1016/j.epsl.2022.117705
Volume 594
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS-QwFA6iLHgRdRXdVXkHb2t08qNN5ziI7qjoHlSYW0naV6kOTplWYS7-7b6kHXVBPHhrSwLh9f342nwvH2P7VOVsP0LDnYwTrhXGvC_ziBsfeVQQdax8c_LlVTy81eejaLTAjue9MJ5W2eX-NqeHbN09OeqseVSVpe_xpdwqxUh6fpUWvqNca-O9_PDlneZBeKWFwIIin0Z3jTMtxwur2m8_SBn2Lr2E3WfF6UPBOV1lKx1ShEG7mDW2gI_r7MffoMQ7o6vA3czqn6y6xGlGpoGynjSTCgE7pVAgQAoW6AOfUxIiG5YZtEJYMClgeAd1VT5gDbYBgoHwb5pPnsNfDn5djp_IMx_BBdWl6ewAgtYeBLntDXZ7enJzPOSdkAK3hEcaXvRQF2gICVoRWVlkeV9ZgyKOM1moREsjXIwU6Sj6DrXFIncuN-gSpZzsWbXJFmmtuMXAWDS5TTKtLAEDSykq6UmMlI0zwhZJss3E3IJp1p0y7sUuxumcTnafequn3uppa_Vt9udtTtWesfHl6Gj-YtL_PCWlIvDFvF_fnPebLfs7zxER0Q5bbKZPuEtApHF7wdP22NLg7GJ49QrGyNxl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIXxFO0vOYAJzBdPxJnDz0goGxptxxopb0FO5mgtNUm2qSgvfCn-gcZO14eEuoBqbcoiSNnZvzNl3jsj7HnlOXsOEHDnUwzrhWmfCzLhBs_8igh6lT5xcnTw3RyrD_Oktkau1ithfFllRH7B0wPaB3PbEdrbrd17df4ErZKMZO-vkoLEysr93H5nb7bup29d-TkF1Luvj96O-FRWoBbytA9r0aoKzTEjaxIrKyKcqysQZGmhaxUpqURLkWKfRRjh9piVTpXGnSZUk6OrKLnXmPXNcGFl014_eN3XQkRpIFzC4Ia6l5cqTMUlWHb-fkOKcNkqdfM-1c2_CPD7d5mtyI1hTfD299hazi_y258CNK_SzoKxaJFd4-1U1wU5Auou6ZvWgSM0qRADBgszJs5J9Qjp9UFDMpb0FQw-QpdW59iB7YH4p3waVE238JvFf65PjunoTAHF2SeFstXEMT9IOh732fHV2LeB2yd-ooPGRiLprRZoZUlJmIJE7ORxETZtCAyk2WbTKwsmBdxW3OvrnGWr-rXTnJv9dxbPR-svsle_mrTDpt6XHp3snJM_ldo5pR1Lmm39Z_tnrGbk6PpQX6wd7j_iG34K75ARSSP2Xq_OMcnxIJ69zREHbAvVx3mPwEicBmk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mercury+isotope+evidence+for+a+non-volcanic+origin+of+Hg+spikes+at+the+Ordovician-Silurian+boundary%2C+South+China&rft.jtitle=Earth+and+planetary+science+letters&rft.au=Shen%2C+Jun&rft.au=Algeo%2C+Thomas+J.&rft.au=Feng%2C+Qinglai&rft.date=2022-09-15&rft.issn=0012-821X&rft.volume=594&rft.spage=117705&rft_id=info:doi/10.1016%2Fj.epsl.2022.117705&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsl_2022_117705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-821X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-821X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-821X&client=summon