Mercury isotope evidence for a non-volcanic origin of Hg spikes at the Ordovician-Silurian boundary, South China
Ordovician-Silurian transition (OST) sections of South China contain extremely high mercury (Hg) concentrations (>1000 ppb) of uncertain provenance. The main hypotheses concerning their origin are: (1) contemporaneous elevated seawater Hg concentrations (e.g., due to volcanogenic inputs) combined...
Saved in:
Published in | Earth and planetary science letters Vol. 594; p. 117705 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ordovician-Silurian transition (OST) sections of South China contain extremely high mercury (Hg) concentrations (>1000 ppb) of uncertain provenance. The main hypotheses concerning their origin are: (1) contemporaneous elevated seawater Hg concentrations (e.g., due to volcanogenic inputs) combined with normal Hg-uptake processes by marine sediments, and (2) normal seawater Hg concentrations combined with enhanced Hg uptake by marine sediments (e.g., due to strong adsorption by sulfides). Here, we investigate Hg isotopes, which are a promising tool to track the sources of Hg in sediments, in OST strata of the Jiaoye drillcore from the Yangtze Platform of South China. Black shales and pyritic beds exhibit mass-independent fractionations of odd Hg isotopes (odd-MIF, i.e., Δ199Hg) of +0.13±0.05‰ and +0.13±0.03‰, respectively. These values are similar to those of modern and ancient marine sediments, supporting a seawater source of Hg in the study units and providing evidence against a volcanic source. We infer that the extreme Hg enrichment of the OST beds was due to elevated rates of Hg uptake from seawater through adsorption to pyrite. Local environmental conditions (e.g., intense euxinia and microbial sulfate reduction) played a dominant role in Hg enrichment of OST strata in South China.
•Hg isotope data for highly Hg-enriched Ordovician-Silurian boundary strata, China.•(Chalcophilic) Hg taken up by pyrite under anoxic bottomwater conditions.•Hg peaks around OSB were sourced from seawater, not from volcanic inputs.•Mass-independent fractionation (Δ199Hg=+0.13±0.03‰) supports seawater source. |
---|---|
AbstractList | Ordovician-Silurian transition (OST) sections of South China contain extremely high mercury (Hg) concentrations (>1000 ppb) of uncertain provenance. The main hypotheses concerning their origin are: (1) contemporaneous elevated seawater Hg concentrations (e.g., due to volcanogenic inputs) combined with normal Hg-uptake processes by marine sediments, and (2) normal seawater Hg concentrations combined with enhanced Hg uptake by marine sediments (e.g., due to strong adsorption by sulfides). Here, we investigate Hg isotopes, which are a promising tool to track the sources of Hg in sediments, in OST strata of the Jiaoye drillcore from the Yangtze Platform of South China. Black shales and pyritic beds exhibit mass-independent fractionations of odd Hg isotopes (odd-MIF, i.e., Δ199Hg) of +0.13±0.05‰ and +0.13±0.03‰, respectively. These values are similar to those of modern and ancient marine sediments, supporting a seawater source of Hg in the study units and providing evidence against a volcanic source. We infer that the extreme Hg enrichment of the OST beds was due to elevated rates of Hg uptake from seawater through adsorption to pyrite. Local environmental conditions (e.g., intense euxinia and microbial sulfate reduction) played a dominant role in Hg enrichment of OST strata in South China.
•Hg isotope data for highly Hg-enriched Ordovician-Silurian boundary strata, China.•(Chalcophilic) Hg taken up by pyrite under anoxic bottomwater conditions.•Hg peaks around OSB were sourced from seawater, not from volcanic inputs.•Mass-independent fractionation (Δ199Hg=+0.13±0.03‰) supports seawater source. |
ArticleNumber | 117705 |
Author | Shen, Jun Algeo, Thomas J. Feng, Qinglai |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0003-3759-6533 surname: Shen fullname: Shen, Jun email: shenjun@cug.edu.cn organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, PR China – sequence: 2 givenname: Thomas J. surname: Algeo fullname: Algeo, Thomas J. organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, PR China – sequence: 3 givenname: Qinglai surname: Feng fullname: Feng, Qinglai organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, PR China |
BookMark | eNp9kE1LAzEQhoNUsFX_gKf8ALdmsu1-gBcpagXFgwreQjY7sVPXZEnSQv-9W-rJQ0_zXp6Zd54JGznvkLErEFMQUNysp9jHbiqFlFOAshTzEzaGvJpnAvLPERsLATKrJHyesUmMayFEMS_qMetfMJhN2HGKPvkeOW6pRWeQWx-45sOdbOs7ox0Z7gN9kePe8uUXjz19Y-Q68bRC_hpavyVD2mVv1G3CEHjjN67VYXfN3_wmrfhiRU5fsFOru4iXf_OcfTzcvy-W2fPr49Pi7jnTeVWnzAqcWSxrKDTMtbSmrXNdIhSFkTavZrKEpkABgFA3ONNo26ZpS2yqPG-k0Pk5k4e9JvgYA1rVB_oZ2igQau9MrdXemdo7UwdnA1T9gwwlnci7FDR1x9HbA4rDU1vCoKKhvciWApqkWk_H8F_WR4xE |
CitedBy_id | crossref_primary_10_1016_j_chemgeo_2024_122566 crossref_primary_10_1016_j_epsl_2023_118565 crossref_primary_10_1016_j_chemgeo_2025_122724 crossref_primary_10_1016_j_epsl_2024_118956 crossref_primary_10_1016_j_earscirev_2023_104497 crossref_primary_10_1144_jgs2023_195 crossref_primary_10_1016_j_epsl_2024_118862 crossref_primary_10_1016_j_epsl_2023_118195 crossref_primary_10_1007_s11430_023_1236_8 crossref_primary_10_1016_j_earscirev_2023_104667 crossref_primary_10_1016_j_palaeo_2023_111634 crossref_primary_10_1016_j_earscirev_2023_104647 crossref_primary_10_1016_j_epsl_2023_118075 crossref_primary_10_1038_s41467_022_35272_8 crossref_primary_10_1360_TB_2023_0187 crossref_primary_10_1016_j_gsf_2023_101537 crossref_primary_10_1016_j_palaeo_2023_111572 crossref_primary_10_3724_EE_1672_9250_2024_52_040 crossref_primary_10_1016_j_gca_2024_12_010 crossref_primary_10_1016_j_gloplacha_2022_104023 crossref_primary_10_1093_nsr_nwad237 crossref_primary_10_1144_jgs2023_024 |
Cites_doi | 10.1016/j.chemgeo.2003.12.009 10.1016/j.chemosphere.2003.11.011 10.1016/j.crte.2015.04.001 10.1038/s41467-022-27965-x 10.1029/2019GC008707 10.1130/G23543A.1 10.1016/j.epsl.2020.116333 10.1038/s41586-021-03859-8 10.1016/j.epsl.2022.117412 10.1126/science.1200803 10.1016/j.gloplacha.2020.103374 10.1016/j.atmosenv.2003.07.011 10.1130/G48132.1 10.1146/annurev-earth-050212-124107 10.1130/G38487.1 10.1073/pnas.1705378114 10.1038/s41598-019-39333-9 10.1016/j.epsl.2013.12.020 10.1021/acs.est.8b04865 10.1038/s41467-022-28891-8 10.1016/j.epsl.2019.04.020 10.1038/s41598-017-05524-5 10.1016/j.earscirev.2019.102880 10.1016/j.palaeo.2017.03.014 10.1038/s41467-019-09620-0 10.1016/j.envpol.2008.01.011 10.1016/j.gr.2008.06.004 10.1016/j.epsl.2019.01.028 10.1016/j.epsl.2018.11.029 10.1130/G48501.1 10.1016/j.gca.2020.05.008 10.1016/j.earscirev.2020.103111 10.1016/S0031-0182(03)00736-3 10.1021/acs.est.8b06736 10.3390/min11070751 10.1016/j.epsl.2008.10.023 10.1126/science.1148050 10.2475/08.2018.01 10.1130/G40121.1 10.1146/annurev.environ.051308.084314 10.1130/G38940.1 10.1016/j.earscirev.2014.11.002 10.1130/G47377.1 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.epsl.2022.117705 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1385-013X |
ExternalDocumentID | 10_1016_j_epsl_2022_117705 S0012821X22003417 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABLJU ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SHN SPC SPCBC SSE SSZ T5K TN5 WH7 XSW ZMT ~02 ~G- 1RT 29G AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HME HVGLF HZ~ H~9 LPU OHT R2- RIG SEP SEW SSH VH1 VJK VOH WUQ XJT XOL ZKB ZY4 |
ID | FETCH-LOGICAL-a389t-f0e4fe7916a15a2fcd93a7e166c2f384271b6e011e19be4aefdbbd7eb833b20a3 |
IEDL.DBID | .~1 |
ISSN | 0012-821X |
IngestDate | Thu Apr 24 22:53:28 EDT 2025 Tue Jul 01 03:35:26 EDT 2025 Fri Feb 23 02:40:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | black shale mass extinction large igneous province anoxia isotopic fractionation volcanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a389t-f0e4fe7916a15a2fcd93a7e166c2f384271b6e011e19be4aefdbbd7eb833b20a3 |
ORCID | 0000-0003-3759-6533 |
ParticipantIDs | crossref_primary_10_1016_j_epsl_2022_117705 crossref_citationtrail_10_1016_j_epsl_2022_117705 elsevier_sciencedirect_doi_10_1016_j_epsl_2022_117705 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-15 |
PublicationDateYYYYMMDD | 2022-09-15 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Earth and planetary science letters |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bergquist, Blum (br0020) 2007; 318 Shen, Schoepfer, Feng, Zhou, Yu, Song, Wei, Algeo (br0310) 2015; 149 Shen, Feng, Algeo, Liu, Zhou, Wei, Liu, Them, Gill, Chen (br0340) 2020; 543 Smolarek-Lach, Marynowski, Trela, Wignall (br0380) 2019; 9 Blum, Sherman, Johnson (br0030) 2014; 42 Bower, Savage, Weinman, Barnett, Hamilton, Harper (br0050) 2008; 156 Gong, Wang, Zhao, Grasby, Chen, Zhang, Li, Cao, Li (br0140) 2017; 7 Yang, Hu, Wang, Jiang, Yao, Sun, Huang, Zhu (br0440) 2019; 518 Jones, Martini, Fike, Kaiho (br0210) 2017; 45 Zhao, Shen, Algeo, Racki, Chen, Huang, Song, Qie, Gong (br0510) 2022; 581 Finnegan, Bergmann, Eiler, Jones, Fike, Eisenman, Hughes, Tripati, Fischer (br0110) 2011; 331 Algeo, Maynard (br0010) 2004; 206 Shen, Yin, Algeo, Svensen, Schoepfer (br0370) 2022; 13 Zambardi, Sonke, Toutain, Sortino, Shinohara (br0470) 2009; 277 Ravichandran (br0290) 2004; 55 Charbonnier, Adatte, Föllmi, Suan (br0060) 2020; 21 Turekian (br0430) 2010 Gadd, Peter (br0130) 2018; vol. 8358 Grasby, Shen, Yin, Gleason, Blum, Lepak, Hurley, Beauchamp (br0150) 2017; 45 Shen, Chen, Algeo, Feng, Yu, Xu, Xu, Lei, Planavsky, Xie (br0350) 2021; 49 Štrok, Baya, Hintelmann (br0390) 2015; 347 Shen, Chen, Algeo, Yuan, Feng, Yu, Zhou, O'Connell, Planavsky (br0320) 2019; 10 Kokh, Sokol, Gustaytis (br0220) 2021; 11 Su, Huff, Ettensohn, Liu, Zhang, Li (br0400) 2009; 15 Hu, Li, Chen, Luo, Grasby, Zhang, Yuan, Xu, Finney, Sun, Shen (br0190) 2021; 196 Large, Halpin, Danyushevsky, Maslennikov, Bull, Long, Gregory, Lounejeva, Lyons, Sack, McGoldrick, Calver (br0240) 2014; 389 Jiskra, Heimbürger-Boavida, Desgranges, Petrova, Dufour, Ferreira-Araujo, Masbou, Chmeleff, Thyssen, Point, Sonke (br0200) 2021; 597 Hu, Li, Zhang, Turchyn, Gong, Shen (br0180) 2020; 11 Taylor, McLennan (br0410) 1985 Yuan, Sommar, Lin, Wang, Li, Liu, Zhang, Lu, Wu, Feng (br0460) 2019; 53 Percival, Jenkyns, Mather, Dickson, Batenburg, Ruhl, Hesselbo, Barclay, Jarvis, Robinson (br0270) 2018; 318 Ernst, Youbi (br0100) 2017; 478 Lehmann, Nägler, Holland, Wille, Mao, Pan, Ma, Dulski (br0250) 2007; 35 Zhu, Tao, Yin, Liao, Yang, Liu, Barriga (br0490) 2020; 281 Grasby, Them, Chen, Yin, Ardakani (br0160) 2019; 196 Yin, Feng, Hurley, Krabbenhoft, Lepak, Hu, Zhang, Li, Bi (br0450) 2016; 6 Shen, Yin, Zhang, Algeo, Bottjer, Yu, Xu, Penman, Wang, Li, Shi, Planavsky, Feng, Xie (br0360) 2022; 13 Percival, Ruhl, Hesselbo, Jenkyns, Mather, Whiteside (br0260) 2017; 114 Zou, Qiu, Poulton, Dong, Wang, Chen, Lu, Shi, Tao (br0500) 2018; 46 Pyle, Mather (br0280) 2003; 37 Selin (br0300) 2009; 34 Shen, Algeo, Chen, Planavsky, Feng, Yu, Liu (br0330) 2019; 511 Deng, Sun, Rong, Sun, Sun, Lehmann, Yin (br0090) 2021; 49 Them, Jagoe, Caruthers, Gill, Grasby, Gröcke, Yin, Owens (br0420) 2019; 507 Kwon, Blum, Yin, Tsui, Yang, Choi (br0230) 2020; 203 Bond, Grasby (br0040) 2020; 48 Chen, Rong, Li, Boucot (br0080) 2004; 204 Fu, Zhang, Feng, Tan, Ming, Liu, Zhang (br0120) 2019; 53 Zou (10.1016/j.epsl.2022.117705_br0500) 2018; 46 Selin (10.1016/j.epsl.2022.117705_br0300) 2009; 34 Su (10.1016/j.epsl.2022.117705_br0400) 2009; 15 Smolarek-Lach (10.1016/j.epsl.2022.117705_br0380) 2019; 9 Turekian (10.1016/j.epsl.2022.117705_br0430) 2010 Bergquist (10.1016/j.epsl.2022.117705_br0020) 2007; 318 Lehmann (10.1016/j.epsl.2022.117705_br0250) 2007; 35 Shen (10.1016/j.epsl.2022.117705_br0340) 2020; 543 Zambardi (10.1016/j.epsl.2022.117705_br0470) 2009; 277 Algeo (10.1016/j.epsl.2022.117705_br0010) 2004; 206 Shen (10.1016/j.epsl.2022.117705_br0330) 2019; 511 Zhao (10.1016/j.epsl.2022.117705_br0510) 2022; 581 Deng (10.1016/j.epsl.2022.117705_br0090) 2021; 49 Fu (10.1016/j.epsl.2022.117705_br0120) 2019; 53 Hu (10.1016/j.epsl.2022.117705_br0180) 2020; 11 Jones (10.1016/j.epsl.2022.117705_br0210) 2017; 45 Kokh (10.1016/j.epsl.2022.117705_br0220) 2021; 11 Kwon (10.1016/j.epsl.2022.117705_br0230) 2020; 203 Shen (10.1016/j.epsl.2022.117705_br0310) 2015; 149 Shen (10.1016/j.epsl.2022.117705_br0370) 2022; 13 Ernst (10.1016/j.epsl.2022.117705_br0100) 2017; 478 Shen (10.1016/j.epsl.2022.117705_br0320) 2019; 10 Charbonnier (10.1016/j.epsl.2022.117705_br0060) 2020; 21 Gadd (10.1016/j.epsl.2022.117705_br0130) 2018; vol. 8358 Grasby (10.1016/j.epsl.2022.117705_br0150) 2017; 45 Štrok (10.1016/j.epsl.2022.117705_br0390) 2015; 347 Yang (10.1016/j.epsl.2022.117705_br0440) 2019; 518 Percival (10.1016/j.epsl.2022.117705_br0270) 2018; 318 Yin (10.1016/j.epsl.2022.117705_br0450) 2016; 6 Bond (10.1016/j.epsl.2022.117705_br0040) 2020; 48 Grasby (10.1016/j.epsl.2022.117705_br0160) 2019; 196 Chen (10.1016/j.epsl.2022.117705_br0080) 2004; 204 Pyle (10.1016/j.epsl.2022.117705_br0280) 2003; 37 Shen (10.1016/j.epsl.2022.117705_br0360) 2022; 13 Large (10.1016/j.epsl.2022.117705_br0240) 2014; 389 Taylor (10.1016/j.epsl.2022.117705_br0410) 1985 Bower (10.1016/j.epsl.2022.117705_br0050) 2008; 156 Ravichandran (10.1016/j.epsl.2022.117705_br0290) 2004; 55 Finnegan (10.1016/j.epsl.2022.117705_br0110) 2011; 331 Shen (10.1016/j.epsl.2022.117705_br0350) 2021; 49 Yuan (10.1016/j.epsl.2022.117705_br0460) 2019; 53 Zhu (10.1016/j.epsl.2022.117705_br0490) 2020; 281 Jiskra (10.1016/j.epsl.2022.117705_br0200) 2021; 597 Gong (10.1016/j.epsl.2022.117705_br0140) 2017; 7 Them (10.1016/j.epsl.2022.117705_br0420) 2019; 507 Hu (10.1016/j.epsl.2022.117705_br0190) 2021; 196 Percival (10.1016/j.epsl.2022.117705_br0260) 2017; 114 Blum (10.1016/j.epsl.2022.117705_br0030) 2014; 42 |
References_xml | – volume: 206 start-page: 289 year: 2004 end-page: 318 ident: br0010 article-title: Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems publication-title: Chem. Geol. – volume: 46 start-page: 535 year: 2018 end-page: 538 ident: br0500 article-title: Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction publication-title: Geology – volume: 7 year: 2017 ident: br0140 article-title: Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction publication-title: Sci. Rep. – volume: 114 start-page: 7929 year: 2017 end-page: 7934 ident: br0260 article-title: Mercury evidence for pulsed volcanism during the end-Triassic mass extinction publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 111 year: 2009 end-page: 130 ident: br0400 article-title: K-bentonite, black-shale and flysch successions at the Ordovician–Silurian transition, South China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana publication-title: Gondwana Res. – volume: 347 start-page: 368 year: 2015 end-page: 376 ident: br0390 article-title: The mercury isotope composition of Arctic coastal seawater publication-title: C. R. Geosci. – volume: 6 year: 2016 ident: br0450 article-title: Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites publication-title: Sci. Rep. – volume: 478 start-page: 30 year: 2017 end-page: 52 ident: br0100 article-title: How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 53 start-page: 1947 year: 2019 end-page: 1957 ident: br0120 article-title: Domestic and transboundary sources of atmospheric particulate bound mercury in remote areas of China: evidence from mercury isotopes publication-title: Environ. Sci. Technol. – year: 2010 ident: br0430 article-title: Marine Chemistry and Geochemistry – volume: 49 start-page: 309 year: 2021 end-page: 313 ident: br0090 article-title: Recycling of mercury from the atmosphere-ocean system into volcanic-arc–associated epithermal gold systems publication-title: Geology – volume: 597 start-page: 678 year: 2021 end-page: 682 ident: br0200 article-title: Mercury stable isotopes constrain atmospheric sources to the ocean publication-title: Nature – volume: 507 start-page: 62 year: 2019 end-page: 72 ident: br0420 article-title: Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic) publication-title: Earth Planet. Sci. Lett. – volume: 518 start-page: 13 year: 2019 end-page: 25 ident: br0440 article-title: Duration, evolution, and implications of volcanic activity across the Ordovician–Silurian transition in the Lower Yangtze region, South China publication-title: Earth Planet. Sci. Lett. – volume: 37 start-page: 5115 year: 2003 end-page: 5124 ident: br0280 article-title: The importance of volcanic emissions for the global atmospheric mercury cycle publication-title: Atmos. Environ. – volume: 196 year: 2019 ident: br0160 article-title: Mercury as a proxy for volcanic emissions in the geologic record publication-title: Earth-Sci. Rev. – volume: 156 start-page: 504 year: 2008 end-page: 514 ident: br0050 article-title: Immobilization of mercury by pyrite (FeS publication-title: Environ. Pollut. – volume: vol. 8358 start-page: 193 year: 2018 end-page: 206 ident: br0130 article-title: Field observations, mineralogy and geochemistry of Middle Devonian Ni-Zn-Mo-PGE hyper-enriched black shale deposits, Yukon publication-title: Targeted Geoscience Initiative: 2017 Report of Activities, vol. 1 – volume: 196 year: 2021 ident: br0190 article-title: Major volcanic eruptions linked to the Late Ordovician mass extinction: evidence from mercury enrichment and Hg isotopes publication-title: Glob. Planet. Change – volume: 149 start-page: 136 year: 2015 end-page: 162 ident: br0310 article-title: Marine productivity changes during the end-Permian crisis and Early Triassic recovery publication-title: Earth-Sci. Rev. – volume: 318 start-page: 417 year: 2007 end-page: 420 ident: br0020 article-title: Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems publication-title: Science – volume: 203 year: 2020 ident: br0230 article-title: Mercury stable isotopes for monitoring the effectiveness of the Minamata Convention on Mercury publication-title: Earth-Sci. Rev. – volume: 389 start-page: 209 year: 2014 end-page: 220 ident: br0240 article-title: Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution publication-title: Earth Planet. Sci. Lett. – volume: 21 year: 2020 ident: br0060 article-title: Effect of intense weathering and postdepositional degradation of organic matter on Hg/TOC proxy in organic-rich sediments and its implications for deep-time investigations publication-title: Geochem. Geophys. Geosyst. – volume: 48 start-page: 777 year: 2020 end-page: 781 ident: br0040 article-title: Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation publication-title: Geology – volume: 10 start-page: 1563 year: 2019 ident: br0320 article-title: Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records publication-title: Nat. Commun. – volume: 13 start-page: 1307 year: 2022 ident: br0370 article-title: Mercury evidence for combustion of organic-rich sediments during the end-Triassic crisis publication-title: Nat. Commun. – volume: 42 start-page: 249 year: 2014 end-page: 269 ident: br0030 article-title: Mercury isotopes in earth and environmental sciences publication-title: Annu. Rev. Earth Planet. Sci. – volume: 35 start-page: 403 year: 2007 end-page: 406 ident: br0250 article-title: Highly metalliferous carbonaceous shale and Early Cambrian seawater publication-title: Geology – volume: 45 start-page: 631 year: 2017 end-page: 634 ident: br0210 article-title: A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia publication-title: Geology – volume: 13 start-page: 299 year: 2022 ident: br0360 article-title: Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic–Jurassic transition publication-title: Nat. Commun. – year: 1985 ident: br0410 article-title: The Continental Crust: Its Composition and Evolution – volume: 581 year: 2022 ident: br0510 article-title: Mercury isotope evidence for regional volcanism during the Frasnian-Famennian transition publication-title: Earth Planet. Sci. Lett. – volume: 511 start-page: 130 year: 2019 end-page: 140 ident: br0330 article-title: Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin publication-title: Earth Planet. Sci. Lett. – volume: 34 start-page: 43 year: 2009 end-page: 63 ident: br0300 article-title: Global biogeochemical cycling of mercury: a review publication-title: Ann. Rev. Environ. Res. – volume: 53 start-page: 651 year: 2019 end-page: 660 ident: br0460 article-title: Stable isotope evidence shows re-emission of elemental mercury vapor occurring after reductive loss from foliage publication-title: Environ. Sci. Technol. – volume: 11 start-page: 751 year: 2021 ident: br0220 article-title: Mercury anomaly in Oligocene–Miocene Maykop Group sediments (Caucasus Continental Collision Zone): mercury hosts, distribution, and sources publication-title: Minerals – volume: 55 start-page: 319 year: 2004 end-page: 331 ident: br0290 article-title: Interactions between mercury and dissolved organic matter—a review publication-title: Chemosphere – volume: 49 start-page: 452 year: 2021 end-page: 456 ident: br0350 article-title: Mercury fluxes record regional volcanism in the South China craton prior to the end-Permian mass extinction publication-title: Geology – volume: 331 start-page: 903 year: 2011 end-page: 906 ident: br0110 article-title: The magnitude and duration of Late Ordovician–Early Silurian glaciation publication-title: Science – volume: 277 start-page: 236 year: 2009 end-page: 243 ident: br0470 article-title: Mercury emissions and stable isotopic compositions at Vulcano Island (Italy) publication-title: Earth Planet. Sci. Lett. – volume: 9 start-page: 3139 year: 2019 ident: br0380 article-title: Mercury spikes indicate a volcanic trigger for the late Ordovician mass extinction event: an example from a deep shelf of the peri-Baltic region publication-title: Sci. Rep. – volume: 45 start-page: 55 year: 2017 end-page: 58 ident: br0150 article-title: Isotopic signatures of mercury contamination in latest Permian oceans publication-title: Geology – volume: 11 year: 2020 ident: br0180 article-title: Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction publication-title: Nat. Commun. – volume: 204 start-page: 353 year: 2004 end-page: 372 ident: br0080 article-title: Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 281 start-page: 91 year: 2020 end-page: 101 ident: br0490 article-title: Seawater versus mantle sources of mercury in sulfide-rich seafloor hydrothermal systems, Southwest Indian Ridge publication-title: Geochim. Cosmochim. Acta – volume: 543 year: 2020 ident: br0340 article-title: Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy publication-title: Earth Planet. Sci. Lett. – volume: 318 start-page: 799 year: 2018 end-page: 860 ident: br0270 article-title: Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events publication-title: Am. J. Sci. – volume: 206 start-page: 289 year: 2004 ident: 10.1016/j.epsl.2022.117705_br0010 article-title: Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2003.12.009 – volume: 55 start-page: 319 year: 2004 ident: 10.1016/j.epsl.2022.117705_br0290 article-title: Interactions between mercury and dissolved organic matter—a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2003.11.011 – volume: 347 start-page: 368 year: 2015 ident: 10.1016/j.epsl.2022.117705_br0390 article-title: The mercury isotope composition of Arctic coastal seawater publication-title: C. R. Geosci. doi: 10.1016/j.crte.2015.04.001 – volume: 13 start-page: 299 year: 2022 ident: 10.1016/j.epsl.2022.117705_br0360 article-title: Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic–Jurassic transition publication-title: Nat. Commun. doi: 10.1038/s41467-022-27965-x – volume: 21 year: 2020 ident: 10.1016/j.epsl.2022.117705_br0060 article-title: Effect of intense weathering and postdepositional degradation of organic matter on Hg/TOC proxy in organic-rich sediments and its implications for deep-time investigations publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2019GC008707 – volume: 35 start-page: 403 year: 2007 ident: 10.1016/j.epsl.2022.117705_br0250 article-title: Highly metalliferous carbonaceous shale and Early Cambrian seawater publication-title: Geology doi: 10.1130/G23543A.1 – volume: 543 year: 2020 ident: 10.1016/j.epsl.2022.117705_br0340 article-title: Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2020.116333 – volume: 597 start-page: 678 year: 2021 ident: 10.1016/j.epsl.2022.117705_br0200 article-title: Mercury stable isotopes constrain atmospheric sources to the ocean publication-title: Nature doi: 10.1038/s41586-021-03859-8 – volume: 581 year: 2022 ident: 10.1016/j.epsl.2022.117705_br0510 article-title: Mercury isotope evidence for regional volcanism during the Frasnian-Famennian transition publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2022.117412 – volume: 331 start-page: 903 year: 2011 ident: 10.1016/j.epsl.2022.117705_br0110 article-title: The magnitude and duration of Late Ordovician–Early Silurian glaciation publication-title: Science doi: 10.1126/science.1200803 – volume: 196 year: 2021 ident: 10.1016/j.epsl.2022.117705_br0190 article-title: Major volcanic eruptions linked to the Late Ordovician mass extinction: evidence from mercury enrichment and Hg isotopes publication-title: Glob. Planet. Change doi: 10.1016/j.gloplacha.2020.103374 – volume: 37 start-page: 5115 year: 2003 ident: 10.1016/j.epsl.2022.117705_br0280 article-title: The importance of volcanic emissions for the global atmospheric mercury cycle publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2003.07.011 – volume: 49 start-page: 309 year: 2021 ident: 10.1016/j.epsl.2022.117705_br0090 article-title: Recycling of mercury from the atmosphere-ocean system into volcanic-arc–associated epithermal gold systems publication-title: Geology doi: 10.1130/G48132.1 – year: 2010 ident: 10.1016/j.epsl.2022.117705_br0430 – volume: 42 start-page: 249 year: 2014 ident: 10.1016/j.epsl.2022.117705_br0030 article-title: Mercury isotopes in earth and environmental sciences publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-050212-124107 – volume: 45 start-page: 55 year: 2017 ident: 10.1016/j.epsl.2022.117705_br0150 article-title: Isotopic signatures of mercury contamination in latest Permian oceans publication-title: Geology doi: 10.1130/G38487.1 – volume: 114 start-page: 7929 year: 2017 ident: 10.1016/j.epsl.2022.117705_br0260 article-title: Mercury evidence for pulsed volcanism during the end-Triassic mass extinction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1705378114 – volume: 9 start-page: 3139 year: 2019 ident: 10.1016/j.epsl.2022.117705_br0380 article-title: Mercury spikes indicate a volcanic trigger for the late Ordovician mass extinction event: an example from a deep shelf of the peri-Baltic region publication-title: Sci. Rep. doi: 10.1038/s41598-019-39333-9 – volume: 389 start-page: 209 year: 2014 ident: 10.1016/j.epsl.2022.117705_br0240 article-title: Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2013.12.020 – volume: 53 start-page: 651 year: 2019 ident: 10.1016/j.epsl.2022.117705_br0460 article-title: Stable isotope evidence shows re-emission of elemental mercury vapor occurring after reductive loss from foliage publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b04865 – volume: 13 start-page: 1307 year: 2022 ident: 10.1016/j.epsl.2022.117705_br0370 article-title: Mercury evidence for combustion of organic-rich sediments during the end-Triassic crisis publication-title: Nat. Commun. doi: 10.1038/s41467-022-28891-8 – volume: 518 start-page: 13 year: 2019 ident: 10.1016/j.epsl.2022.117705_br0440 article-title: Duration, evolution, and implications of volcanic activity across the Ordovician–Silurian transition in the Lower Yangtze region, South China publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2019.04.020 – volume: 7 year: 2017 ident: 10.1016/j.epsl.2022.117705_br0140 article-title: Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction publication-title: Sci. Rep. doi: 10.1038/s41598-017-05524-5 – volume: 196 year: 2019 ident: 10.1016/j.epsl.2022.117705_br0160 article-title: Mercury as a proxy for volcanic emissions in the geologic record publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2019.102880 – volume: 478 start-page: 30 year: 2017 ident: 10.1016/j.epsl.2022.117705_br0100 article-title: How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. doi: 10.1016/j.palaeo.2017.03.014 – volume: 11 year: 2020 ident: 10.1016/j.epsl.2022.117705_br0180 article-title: Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction publication-title: Nat. Commun. – volume: 6 year: 2016 ident: 10.1016/j.epsl.2022.117705_br0450 article-title: Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites publication-title: Sci. Rep. – volume: 10 start-page: 1563 year: 2019 ident: 10.1016/j.epsl.2022.117705_br0320 article-title: Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records publication-title: Nat. Commun. doi: 10.1038/s41467-019-09620-0 – volume: 156 start-page: 504 year: 2008 ident: 10.1016/j.epsl.2022.117705_br0050 article-title: Immobilization of mercury by pyrite (FeS2) publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.01.011 – volume: 15 start-page: 111 year: 2009 ident: 10.1016/j.epsl.2022.117705_br0400 article-title: K-bentonite, black-shale and flysch successions at the Ordovician–Silurian transition, South China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana publication-title: Gondwana Res. doi: 10.1016/j.gr.2008.06.004 – volume: 511 start-page: 130 year: 2019 ident: 10.1016/j.epsl.2022.117705_br0330 article-title: Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2019.01.028 – volume: 507 start-page: 62 year: 2019 ident: 10.1016/j.epsl.2022.117705_br0420 article-title: Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic) publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2018.11.029 – volume: 49 start-page: 452 year: 2021 ident: 10.1016/j.epsl.2022.117705_br0350 article-title: Mercury fluxes record regional volcanism in the South China craton prior to the end-Permian mass extinction publication-title: Geology doi: 10.1130/G48501.1 – volume: 281 start-page: 91 year: 2020 ident: 10.1016/j.epsl.2022.117705_br0490 article-title: Seawater versus mantle sources of mercury in sulfide-rich seafloor hydrothermal systems, Southwest Indian Ridge publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2020.05.008 – volume: 203 year: 2020 ident: 10.1016/j.epsl.2022.117705_br0230 article-title: Mercury stable isotopes for monitoring the effectiveness of the Minamata Convention on Mercury publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2020.103111 – volume: 204 start-page: 353 year: 2004 ident: 10.1016/j.epsl.2022.117705_br0080 article-title: Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. doi: 10.1016/S0031-0182(03)00736-3 – volume: 53 start-page: 1947 year: 2019 ident: 10.1016/j.epsl.2022.117705_br0120 article-title: Domestic and transboundary sources of atmospheric particulate bound mercury in remote areas of China: evidence from mercury isotopes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b06736 – volume: 11 start-page: 751 year: 2021 ident: 10.1016/j.epsl.2022.117705_br0220 article-title: Mercury anomaly in Oligocene–Miocene Maykop Group sediments (Caucasus Continental Collision Zone): mercury hosts, distribution, and sources publication-title: Minerals doi: 10.3390/min11070751 – year: 1985 ident: 10.1016/j.epsl.2022.117705_br0410 – volume: 277 start-page: 236 year: 2009 ident: 10.1016/j.epsl.2022.117705_br0470 article-title: Mercury emissions and stable isotopic compositions at Vulcano Island (Italy) publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2008.10.023 – volume: 318 start-page: 417 year: 2007 ident: 10.1016/j.epsl.2022.117705_br0020 article-title: Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems publication-title: Science doi: 10.1126/science.1148050 – volume: vol. 8358 start-page: 193 year: 2018 ident: 10.1016/j.epsl.2022.117705_br0130 article-title: Field observations, mineralogy and geochemistry of Middle Devonian Ni-Zn-Mo-PGE hyper-enriched black shale deposits, Yukon – volume: 318 start-page: 799 year: 2018 ident: 10.1016/j.epsl.2022.117705_br0270 article-title: Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events publication-title: Am. J. Sci. doi: 10.2475/08.2018.01 – volume: 46 start-page: 535 year: 2018 ident: 10.1016/j.epsl.2022.117705_br0500 article-title: Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction publication-title: Geology doi: 10.1130/G40121.1 – volume: 34 start-page: 43 year: 2009 ident: 10.1016/j.epsl.2022.117705_br0300 article-title: Global biogeochemical cycling of mercury: a review publication-title: Ann. Rev. Environ. Res. doi: 10.1146/annurev.environ.051308.084314 – volume: 45 start-page: 631 year: 2017 ident: 10.1016/j.epsl.2022.117705_br0210 article-title: A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia publication-title: Geology doi: 10.1130/G38940.1 – volume: 149 start-page: 136 year: 2015 ident: 10.1016/j.epsl.2022.117705_br0310 article-title: Marine productivity changes during the end-Permian crisis and Early Triassic recovery publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2014.11.002 – volume: 48 start-page: 777 year: 2020 ident: 10.1016/j.epsl.2022.117705_br0040 article-title: Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation publication-title: Geology doi: 10.1130/G47377.1 |
SSID | ssj0006569 |
Score | 2.5059485 |
Snippet | Ordovician-Silurian transition (OST) sections of South China contain extremely high mercury (Hg) concentrations (>1000 ppb) of uncertain provenance. The main... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117705 |
SubjectTerms | anoxia black shale isotopic fractionation large igneous province mass extinction volcanism |
Title | Mercury isotope evidence for a non-volcanic origin of Hg spikes at the Ordovician-Silurian boundary, South China |
URI | https://dx.doi.org/10.1016/j.epsl.2022.117705 |
Volume | 594 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS-QwFA6iLHgRdRXdVXkHb2t08qNN5ziI7qjoHlSYW0naV6kOTplWYS7-7b6kHXVBPHhrSwLh9f342nwvH2P7VOVsP0LDnYwTrhXGvC_ziBsfeVQQdax8c_LlVTy81eejaLTAjue9MJ5W2eX-NqeHbN09OeqseVSVpe_xpdwqxUh6fpUWvqNca-O9_PDlneZBeKWFwIIin0Z3jTMtxwur2m8_SBn2Lr2E3WfF6UPBOV1lKx1ShEG7mDW2gI_r7MffoMQ7o6vA3czqn6y6xGlGpoGynjSTCgE7pVAgQAoW6AOfUxIiG5YZtEJYMClgeAd1VT5gDbYBgoHwb5pPnsNfDn5djp_IMx_BBdWl6ewAgtYeBLntDXZ7enJzPOSdkAK3hEcaXvRQF2gICVoRWVlkeV9ZgyKOM1moREsjXIwU6Sj6DrXFIncuN-gSpZzsWbXJFmmtuMXAWDS5TTKtLAEDSykq6UmMlI0zwhZJss3E3IJp1p0y7sUuxumcTnafequn3uppa_Vt9udtTtWesfHl6Gj-YtL_PCWlIvDFvF_fnPebLfs7zxER0Q5bbKZPuEtApHF7wdP22NLg7GJ49QrGyNxl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIXxFO0vOYAJzBdPxJnDz0goGxptxxopb0FO5mgtNUm2qSgvfCn-gcZO14eEuoBqbcoiSNnZvzNl3jsj7HnlOXsOEHDnUwzrhWmfCzLhBs_8igh6lT5xcnTw3RyrD_Oktkau1ithfFllRH7B0wPaB3PbEdrbrd17df4ErZKMZO-vkoLEysr93H5nb7bup29d-TkF1Luvj96O-FRWoBbytA9r0aoKzTEjaxIrKyKcqysQZGmhaxUpqURLkWKfRRjh9piVTpXGnSZUk6OrKLnXmPXNcGFl014_eN3XQkRpIFzC4Ia6l5cqTMUlWHb-fkOKcNkqdfM-1c2_CPD7d5mtyI1hTfD299hazi_y258CNK_SzoKxaJFd4-1U1wU5Auou6ZvWgSM0qRADBgszJs5J9Qjp9UFDMpb0FQw-QpdW59iB7YH4p3waVE238JvFf65PjunoTAHF2SeFstXEMT9IOh732fHV2LeB2yd-ooPGRiLprRZoZUlJmIJE7ORxETZtCAyk2WbTKwsmBdxW3OvrnGWr-rXTnJv9dxbPR-svsle_mrTDpt6XHp3snJM_ldo5pR1Lmm39Z_tnrGbk6PpQX6wd7j_iG34K75ARSSP2Xq_OMcnxIJ69zREHbAvVx3mPwEicBmk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mercury+isotope+evidence+for+a+non-volcanic+origin+of+Hg+spikes+at+the+Ordovician-Silurian+boundary%2C+South+China&rft.jtitle=Earth+and+planetary+science+letters&rft.au=Shen%2C+Jun&rft.au=Algeo%2C+Thomas+J.&rft.au=Feng%2C+Qinglai&rft.date=2022-09-15&rft.issn=0012-821X&rft.volume=594&rft.spage=117705&rft_id=info:doi/10.1016%2Fj.epsl.2022.117705&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsl_2022_117705 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-821X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-821X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-821X&client=summon |