Achieving High-Energy–High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor

Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a cap...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 16; no. 9; pp. 5938 - 5943
Main Authors Li, Hongsen, Peng, Lele, Zhu, Yue, Zhang, Xiaogang, Yu, Guihua
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg–1 at power density of 800 W kg–1, and 33.2 Wh kg–1 at power density of 11200 W kg–1, which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.6b02932