Electrocatalytic Performance and Stability of Nanostructured Fe–Ni Pyrite-Type Diphosphide Catalyst Supported on Carbon Paper

A simple and effective method to prepare an active and stable nanostructured working electrode for electrochemical water splitting is described. Specifically, mixed Fe–Ni diphosphide was prepared by sputtering a 200-nm-thick layer of Permalloy onto carbon paper gas diffusion layer followed by gas tr...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 120; no. 30; pp. 16537 - 16544
Main Authors Costa, José Diogo, Lado, José Luis, Carbó-Argibay, Enrique, Paz, Elvira, Gallo, Juan, Cerqueira, M. Fátima, Rodríguez-Abreu, Carlos, Kovnir, Kirill, Kolen’ko, Yury V.
Format Journal Article
LanguageEnglish
Published American Chemical Society 04.08.2016
Online AccessGet full text

Cover

Loading…
Abstract A simple and effective method to prepare an active and stable nanostructured working electrode for electrochemical water splitting is described. Specifically, mixed Fe–Ni diphosphide was prepared by sputtering a 200-nm-thick layer of Permalloy onto carbon paper gas diffusion layer followed by gas transport phosphorization reaction. The mass density of the resultant diphosphide phase was established to be ≈1.1 mg/cm2. Energy-dispersive X-ray microanalysis shows that the actual elemental composition of the resultant ternary electrocatalyst is approximately Fe0.2Ni0.8P2, while the powder X-ray diffraction analysis confirms that the electrocatalyst crystallizes in NiP2 cubic pyrite-like structure. As a cathode for hydrogen evolution reaction (HER) in acidic and alkaline electrolytes, this earth-abundant electrode has exchange current densities of 6.84 × 10–3 and 3.16 × 10–3 mA/cm2 and Tafel slopes of 55.3 and 72.2 mV/dec, respectively. As an anode for oxygen evolution reaction (OER) in alkaline electrolyte, the electrode shows an exchange current density of 2.88 × 10–4 mA/cm2 and Tafel slope of 49.3 mV/dec. The observed high activity of the electrode correlates well with its electronic structure, which was assessed by density functional theory (DFT) calculations. The stability of Fe0.2Ni0.8P2 electrocatalyst in HER and OER was evaluated by means of accelerated degradation test and chronopotentiometry. The results of these experiments elucidate partial dissolution and entire chemical transformation of Fe0.2Ni0.8P2 as the main mechanisms of the electrode degradation during HER and OER, respectively. Overall, our findings could facilitate the composition-based design of active, stable, and durable phosphide electrodes for electrochemical water splitting.
AbstractList A simple and effective method to prepare an active and stable nanostructured working electrode for electrochemical water splitting is described. Specifically, mixed Fe–Ni diphosphide was prepared by sputtering a 200-nm-thick layer of Permalloy onto carbon paper gas diffusion layer followed by gas transport phosphorization reaction. The mass density of the resultant diphosphide phase was established to be ≈1.1 mg/cm2. Energy-dispersive X-ray microanalysis shows that the actual elemental composition of the resultant ternary electrocatalyst is approximately Fe0.2Ni0.8P2, while the powder X-ray diffraction analysis confirms that the electrocatalyst crystallizes in NiP2 cubic pyrite-like structure. As a cathode for hydrogen evolution reaction (HER) in acidic and alkaline electrolytes, this earth-abundant electrode has exchange current densities of 6.84 × 10–3 and 3.16 × 10–3 mA/cm2 and Tafel slopes of 55.3 and 72.2 mV/dec, respectively. As an anode for oxygen evolution reaction (OER) in alkaline electrolyte, the electrode shows an exchange current density of 2.88 × 10–4 mA/cm2 and Tafel slope of 49.3 mV/dec. The observed high activity of the electrode correlates well with its electronic structure, which was assessed by density functional theory (DFT) calculations. The stability of Fe0.2Ni0.8P2 electrocatalyst in HER and OER was evaluated by means of accelerated degradation test and chronopotentiometry. The results of these experiments elucidate partial dissolution and entire chemical transformation of Fe0.2Ni0.8P2 as the main mechanisms of the electrode degradation during HER and OER, respectively. Overall, our findings could facilitate the composition-based design of active, stable, and durable phosphide electrodes for electrochemical water splitting.
Author Costa, José Diogo
Cerqueira, M. Fátima
Kovnir, Kirill
Lado, José Luis
Kolen’ko, Yury V.
Carbó-Argibay, Enrique
Paz, Elvira
Rodríguez-Abreu, Carlos
Gallo, Juan
AuthorAffiliation Department of Chemistry
International Iberian Nanotechnology Laboratory
University of California, Davis
University of Minho
Center of Physics
AuthorAffiliation_xml – name: International Iberian Nanotechnology Laboratory
– name: Department of Chemistry
– name: University of California, Davis
– name: University of Minho
– name: Center of Physics
Author_xml – sequence: 1
  givenname: José Diogo
  surname: Costa
  fullname: Costa, José Diogo
– sequence: 2
  givenname: José Luis
  surname: Lado
  fullname: Lado, José Luis
– sequence: 3
  givenname: Enrique
  surname: Carbó-Argibay
  fullname: Carbó-Argibay, Enrique
– sequence: 4
  givenname: Elvira
  surname: Paz
  fullname: Paz, Elvira
– sequence: 5
  givenname: Juan
  surname: Gallo
  fullname: Gallo, Juan
– sequence: 6
  givenname: M. Fátima
  surname: Cerqueira
  fullname: Cerqueira, M. Fátima
– sequence: 7
  givenname: Carlos
  surname: Rodríguez-Abreu
  fullname: Rodríguez-Abreu, Carlos
– sequence: 8
  givenname: Kirill
  surname: Kovnir
  fullname: Kovnir, Kirill
– sequence: 9
  givenname: Yury V.
  surname: Kolen’ko
  fullname: Kolen’ko, Yury V.
  email: yury.kolenko@inl.int
BookMark eNp1kE1OwzAQhS1UJNrCnqUPQIoTJ467RKUFpKpUallHtjNRXaWxZTuLrOAO3JCTkP6IHas3mjfvafSN0KAxDSB0H5NJTJL4USg_2VulJkySLOf0Cg3jKU2iPM2ywd-c5jdo5P2ekIySmA7R57wGFZxRIoi6C1rhNbjKuINoFGDRlHgThNS1Dh02FV6JxvjgWhVaByVewM_X90rjded0gGjbWcDP2u6MtztdAp6dWn3Am9Za40IfMU2_dbKXtbDgbtF1JWoPdxcdo4_FfDt7jZbvL2-zp2UkKOchgpJBSSXLCON5KiWUFWVZzliaCgWMc8mmlLMKKFOE5FncmwlJgFNBqJwSOkbk3Kuc8d5BVVinD8J1RUyKI8CiB1gcARYXgH3k4Rw5OaZ1Tf_g_-e_QHB5eA
CitedBy_id crossref_primary_10_1002_cctc_202101284
crossref_primary_10_1039_C7CC04604A
crossref_primary_10_1002_aenm_201703290
crossref_primary_10_1002_chem_201705322
crossref_primary_10_1039_C8NR01057A
crossref_primary_10_1002_chem_202000839
crossref_primary_10_3390_nano12183153
crossref_primary_10_3762_bjnano_10_6
crossref_primary_10_2139_ssrn_4090735
crossref_primary_10_1595_205651321X16067419458185
crossref_primary_10_18311_jsst_2020_23534
crossref_primary_10_1002_aenm_201802615
crossref_primary_10_1039_C8TA08223E
crossref_primary_10_1021_acssuschemeng_1c03565
crossref_primary_10_1002_celc_201701119
crossref_primary_10_1039_D1TC05974B
crossref_primary_10_1002_admi_202200739
crossref_primary_10_1039_C9NR05061B
crossref_primary_10_1021_acsaem_0c01863
crossref_primary_10_1016_j_jcis_2020_08_101
crossref_primary_10_1021_acs_chemmater_9b00565
crossref_primary_10_1016_j_ijhydene_2019_05_163
crossref_primary_10_1021_acs_energyfuels_0c00793
crossref_primary_10_1016_j_electacta_2016_10_004
crossref_primary_10_1002_adma_201605838
crossref_primary_10_1016_j_electacta_2019_134812
crossref_primary_10_1016_j_mtsust_2021_100060
crossref_primary_10_1039_D0TA09156A
crossref_primary_10_1007_s40843_021_1947_8
crossref_primary_10_1021_acscatal_7b01954
crossref_primary_10_1021_acs_chemmater_2c00041
crossref_primary_10_1021_acscatal_7b03817
crossref_primary_10_1002_adma_201705979
crossref_primary_10_1007_s10854_021_06830_5
crossref_primary_10_1016_j_nantod_2017_06_006
crossref_primary_10_1016_j_electacta_2023_141923
crossref_primary_10_1038_s41598_020_78558_x
crossref_primary_10_1002_ange_202011318
crossref_primary_10_1021_acsami_9b19418
crossref_primary_10_1039_D3DT02222F
crossref_primary_10_1016_j_jelechem_2022_116825
crossref_primary_10_1002_anie_202011318
crossref_primary_10_1080_23746149_2016_1273796
crossref_primary_10_1021_acsenergylett_8b00514
crossref_primary_10_1016_j_ijhydene_2019_05_101
crossref_primary_10_1002_slct_202301077
crossref_primary_10_1021_acs_jpcc_3c04283
crossref_primary_10_1039_C7TA10665C
crossref_primary_10_1039_C7TA04905F
crossref_primary_10_1021_acssuschemeng_3c05621
crossref_primary_10_1016_j_ijhydene_2021_01_137
crossref_primary_10_1021_acs_jpcc_0c01409
Cites_doi 10.1039/C5CS00434A
10.1021/ic50180a018
10.1098/rspa.2014.0792
10.1021/acs.chemmater.5b03148
10.1088/0953-8984/21/39/395502
10.1021/ja502379c
10.1021/acs.chemrev.5b00073
10.1021/ja405351s
10.1366/0003702904085769
10.1021/jz2016507
10.4028/www.scientific.net/MSF.133-136.335
10.1016/j.jcat.2015.03.012
10.1039/C5EE02179K
10.1021/acs.chemmater.5b03331
10.1021/jacs.5b10699
10.1021/ic50063a031
10.1002/ange.201502577
10.1021/ja511559d
10.1002/aenm.201500985
10.1021/acs.jpclett.5b00306
10.1126/science.1233638
10.1021/acscatal.5b01657
10.1021/ja201269b
10.1039/C5EE01155H
10.1126/science.285.5428.687
10.1039/C4CS00448E
10.1021/acscatal.5b01761
10.1039/C4EE01760A
10.1016/S0022-0728(99)00364-2
10.1016/j.ijhydene.2013.01.151
10.1039/C5CC00370A
10.1002/anie.201502438
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.6b05783
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 16544
ExternalDocumentID 10_1021_acs_jpcc_6b05783
g32291548
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
AAYXX
CITATION
CUPRZ
ID FETCH-LOGICAL-a388t-ed6ed3b6506874bbedf36576644ace688b69386fe36c00751657202e83a03b903
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Fri Aug 23 00:31:47 EDT 2024
Thu Dec 07 09:20:08 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a388t-ed6ed3b6506874bbedf36576644ace688b69386fe36c00751657202e83a03b903
OpenAccessLink https://repositorium.sdum.uminho.pt/bitstream/1822/44516/1/Electrocatalytic%20Performance%20and%20Stability%20of%20Nanostructured%20Fe-REpositoriUM.pdf
PageCount 8
ParticipantIDs crossref_primary_10_1021_acs_jpcc_6b05783
acs_journals_10_1021_acs_jpcc_6b05783
PublicationCentury 2000
PublicationDate 2016-08-04
PublicationDateYYYYMMDD 2016-08-04
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-04
  day: 04
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Krischer K. (ref4/cit4) 2008
ref11/cit11
ref25/cit25
ref16/cit16
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref34/cit34
ref28/cit28
Larsson E. (ref29/cit29) 1965; 23
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref30/cit30
ref1/cit1
ref24/cit24
Rostrup-Nielsen J. R. (ref2/cit2) 2008
ref7/cit7
References_xml – start-page: 2882
  volume-title: Handbook of Heterogeneous Catalysis
  year: 2008
  ident: ref2/cit2
  contributor:
    fullname: Rostrup-Nielsen J. R.
– volume: 23
  start-page: 335
  year: 1965
  ident: ref29/cit29
  publication-title: Ark. Kemi
  contributor:
    fullname: Larsson E.
– ident: ref20/cit20
  doi: 10.1039/C5CS00434A
– ident: ref30/cit30
  doi: 10.1021/ic50180a018
– ident: ref27/cit27
  doi: 10.1098/rspa.2014.0792
– ident: ref34/cit34
  doi: 10.1021/acs.chemmater.5b03148
– ident: ref16/cit16
  doi: 10.1088/0953-8984/21/39/395502
– ident: ref36/cit36
  doi: 10.1021/ja502379c
– ident: ref10/cit10
  doi: 10.1021/acs.chemrev.5b00073
– ident: ref18/cit18
– ident: ref24/cit24
  doi: 10.1021/ja405351s
– ident: ref28/cit28
  doi: 10.1366/0003702904085769
– ident: ref6/cit6
  doi: 10.1021/jz2016507
– ident: ref15/cit15
  doi: 10.4028/www.scientific.net/MSF.133-136.335
– ident: ref32/cit32
  doi: 10.1016/j.jcat.2015.03.012
– ident: ref31/cit31
  doi: 10.1039/C5EE02179K
– ident: ref11/cit11
  doi: 10.1021/acs.chemmater.5b03331
– ident: ref35/cit35
  doi: 10.1021/jacs.5b10699
– ident: ref17/cit17
  doi: 10.1021/ic50063a031
– ident: ref13/cit13
  doi: 10.1002/ange.201502577
– ident: ref33/cit33
  doi: 10.1021/ja511559d
– ident: ref19/cit19
  doi: 10.1002/aenm.201500985
– ident: ref5/cit5
  doi: 10.1021/acs.jpclett.5b00306
– ident: ref23/cit23
  doi: 10.1126/science.1233638
– ident: ref21/cit21
  doi: 10.1021/acscatal.5b01657
– ident: ref22/cit22
  doi: 10.1021/ja201269b
– start-page: 1873
  volume-title: Handbook of Heterogeneous Catalysis
  year: 2008
  ident: ref4/cit4
  contributor:
    fullname: Krischer K.
– ident: ref26/cit26
  doi: 10.1039/C5EE01155H
– ident: ref1/cit1
  doi: 10.1126/science.285.5428.687
– ident: ref8/cit8
  doi: 10.1039/C4CS00448E
– ident: ref12/cit12
  doi: 10.1021/acscatal.5b01761
– ident: ref9/cit9
  doi: 10.1039/C4EE01760A
– ident: ref3/cit3
  doi: 10.1016/S0022-0728(99)00364-2
– ident: ref7/cit7
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: ref14/cit14
  doi: 10.1039/C5CC00370A
– ident: ref25/cit25
  doi: 10.1002/anie.201502438
SSID ssj0053013
Score 2.4694974
Snippet A simple and effective method to prepare an active and stable nanostructured working electrode for electrochemical water splitting is described. Specifically,...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 16537
Title Electrocatalytic Performance and Stability of Nanostructured Fe–Ni Pyrite-Type Diphosphide Catalyst Supported on Carbon Paper
URI http://dx.doi.org/10.1021/acs.jpcc.6b05783
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTiW6wv9qAHD6lJdrtNjqW2FMFS0EJvYR8TWoUkNO2hXvQ_-A_9JU4epcUH9BTYbIYwmcz37c7sDCHXQjNubGWsMAxtiyMAWr5scAtUo47474Lws8PJjz3RHfCHYX24LJPzM4LvOndSp7WXROuaUMgtPLZJtlyExWyh1Ww9LbxuHQ2VFRFkZIycN8qQ5F8SMiDS6QoQrSBKZ69oTZTmhQizRJLX2myqavrtd5nGNV52n-yWxJI2C0s4IBsQHZLt1qKf2xF5bxcdb_INmznOov3loQEqI0OReOapsnMahxTdblwUl51NwNAOfH189sa0P58gSbWy5Su9HyejOE1GYwO0lUtNpzRrE5ol8BoaRzg6UXjpywQmx2TQaT-3ulbZfsGSzPOmFhgBhimkcMJrcKXAhEzg8gQZlNQgPE8Jn3kiBCZ0xjwcvOnaLnhM2kz5NjshlSiO4JRQJC1GAj6GZINDXaFn476jmJKhCbVxquQGNReUv08a5JFx1wnyQVRnUKqzSm4X3yxIimoc_849W1PmOdlBEiTypD5-QSqoWbhEojFVV7mFfQNHTNEd
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NTttAEIBHNBzSS_lpEZS_PZRDDw52dr22jygkChSiCBIpN8vrHYuAZFtxOKSX8g68IU_CeO0AQkVqT5bW69FqvN751jM7A_BDxlxoW2krSRLbEmQArSDyhIXKc8n-t1EG5eHky4Hsj8X5xJ2sgLM8C0ODKEhSYZz4r9kFnOOy7TaP45ZUhBg-_wSrrkfGrqShzvVy8XVpvvLKkUzgKIRXeyb_JqG0R3Hxxh69MSy9Nbh6GZKJJ7lr3c9VK_79Llvjf415Hb7UmMlOqnmxASuYbkKzs6zu9hX-dKv6N-b3zYJ6seHrEQIWpZoRhprA2QXLEkaLcFalmr2foWY9fHp4HEzZcDEjZLXKzSw7neY3WZHfTDWyjpFazFlZNLQM59UsS6l1pugyjHKcfYNxrzvq9K26GIMVcd-fW6glaq4I6KTvCaVQJ1zSZoV4KopR-r6SAfdlglzGJYc4dLNtt9Hnkc1VYPMtaKRZitvACGF0hPQYoYdAV9E6JwJHcRUlOom1swNHpLmw_piK0PjJ205oGkmdYa3OHfi5fHVhXuXm-LDv93-UeQjN_ujyIrw4G_zahc-ER9KE-4k9aJCWcZ8QZK4OzKR7Bvu22Yg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkNpeCrRF5Vkf6KGHbJO14yRHtLCCtqxWolTcojgeaxekJNosh-VS_gP_kF_C2MkCQlQqp0iOM7ImM57PnhfAnsy50L7SnjHG9wQZQC_JIuGhikKy_12UiU1OPhnIozPx4zw8X4BwngtDi6iJUu2c-FarK23aCgPBdzt-UeV5RyqCGTFfhOUwCoTVx_3e6XwDDklmeeNMJvAoRNR6J1-iYG1SXj-xSU-MS38F_jwsy8WUXHaupqqTXz-r2Pjqda_C-xZusv1GPtZgAYsP8LY37_L2Ef4eNn1w3DXOjGax4WMqAcsKzQiOugDaGSsNo824bErOXk1Qsz7e3dwOxmw4mxB09eyhlh2Mq1FZV6OxRtZzVOsps81DbVivZmVBoxNFj2FW4eQTnPUPf_eOvLYpg5fxOJ56qCVqrgjYyTgSSqE2XNKhhXBVlqOMYyUTHkuDXOYWjwT0sut3MeaZz1Xi83VYKsoCPwMjKKMzpM8IgggMFe13IgkUV5nRJtfBBnwlzqWtUtWp85d3g9QNEjvTlp0b8G3--9KqqdHxz7mb_0nzC7wZHvTTX8eDn1vwjlCSdFF_YhuWiMm4Q0hkqnad3N0D9BfcAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+Performance+and+Stability+of+Nanostructured+Fe%E2%80%93Ni+Pyrite-Type+Diphosphide+Catalyst+Supported+on+Carbon+Paper&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Costa%2C+Jose%CC%81+Diogo&rft.au=Lado%2C+Jose%CC%81+Luis&rft.au=Carbo%CC%81-Argibay%2C+Enrique&rft.au=Paz%2C+Elvira&rft.date=2016-08-04&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=120&rft.issue=30&rft.spage=16537&rft.epage=16544&rft_id=info:doi/10.1021%2Facs.jpcc.6b05783&rft.externalDocID=g32291548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon