Defect Passivation via a Graded Fullerene Heterojunction in Low-Bandgap Pb–Sn Binary Perovskite Photovoltaics

Development of low-bandgap (∼1.2 eV) Pb–Sn binary perovskites is exciting and has recently gained immense attention because of their high photovoltages, lowered Pb toxicity, and pivotal role in realizing perovskite tandem solar cells. Defect passivation in this class of perovskite alloys has immense...

Full description

Saved in:
Bibliographic Details
Published inACS energy letters Vol. 2; no. 11; pp. 2531 - 2539
Main Authors Rajagopal, Adharsh, Liang, Po-Wei, Chueh, Chu-Chen, Yang, Zhibin, Jen, Alex K.-Y
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.11.2017
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Development of low-bandgap (∼1.2 eV) Pb–Sn binary perovskites is exciting and has recently gained immense attention because of their high photovoltages, lowered Pb toxicity, and pivotal role in realizing perovskite tandem solar cells. Defect passivation in this class of perovskite alloys has immense potential to further reduce the photovoltage deficit but is relatively unexplored. Here, we investigate and report the passivation of defect sites in low-bandgap CH3NH3Pb0.5Sn0.5I3 perovskite through the incorporation of fluoroalkyl-substituted fullerene (DF-C60) via a graded heterojunction (GHJ) structure. Graded distribution of DF-C60 successfully reduced the number of trap sites, and the resultant films had characteristically lower Urbach energy, dominant bimolecular recombination, and higher surface/bulk recombination resistance. The improved optoelectronic quality of films with GHJ structure was reflected in improved performance for corresponding photovoltaic devices, with the best PCE up to 15.61% and a remarkably high V oc of 0.89 V. A V oc of ∼92% of the Shockley–Queisser (SQ) limit achieved here is comparable to that of state-of-the-art inorganic technologies and is the best among perovskite solar cells (PVSCs) to date. Additionally, through stability studies, we find that though GHJ with DF-C60 can slow down degradation due to moisture penetration, the oxidative susceptibility of Sn in binary perovskites sharply constraints overall stability.
AbstractList Not provided.
Development of low-bandgap (∼1.2 eV) Pb–Sn binary perovskites is exciting and has recently gained immense attention because of their high photovoltages, lowered Pb toxicity, and pivotal role in realizing perovskite tandem solar cells. Defect passivation in this class of perovskite alloys has immense potential to further reduce the photovoltage deficit but is relatively unexplored. Here, we investigate and report the passivation of defect sites in low-bandgap CH3NH3Pb0.5Sn0.5I3 perovskite through the incorporation of fluoroalkyl-substituted fullerene (DF-C60) via a graded heterojunction (GHJ) structure. Graded distribution of DF-C60 successfully reduced the number of trap sites, and the resultant films had characteristically lower Urbach energy, dominant bimolecular recombination, and higher surface/bulk recombination resistance. The improved optoelectronic quality of films with GHJ structure was reflected in improved performance for corresponding photovoltaic devices, with the best PCE up to 15.61% and a remarkably high V oc of 0.89 V. A V oc of ∼92% of the Shockley–Queisser (SQ) limit achieved here is comparable to that of state-of-the-art inorganic technologies and is the best among perovskite solar cells (PVSCs) to date. Additionally, through stability studies, we find that though GHJ with DF-C60 can slow down degradation due to moisture penetration, the oxidative susceptibility of Sn in binary perovskites sharply constraints overall stability.
Author Rajagopal, Adharsh
Yang, Zhibin
Liang, Po-Wei
Jen, Alex K.-Y
Chueh, Chu-Chen
AuthorAffiliation Department of Chemistry
City University of Hong Kong
Department of Materials Science and Engineering
Department of Materials Science & Engineering
University of Washington
AuthorAffiliation_xml – name: Department of Chemistry
– name: City University of Hong Kong
– name: Department of Materials Science & Engineering
– name: Department of Materials Science and Engineering
– name: University of Washington
Author_xml – sequence: 1
  givenname: Adharsh
  orcidid: 0000-0001-9806-080X
  surname: Rajagopal
  fullname: Rajagopal, Adharsh
  organization: University of Washington
– sequence: 2
  givenname: Po-Wei
  orcidid: 0000-0002-9953-5886
  surname: Liang
  fullname: Liang, Po-Wei
  organization: University of Washington
– sequence: 3
  givenname: Chu-Chen
  orcidid: 0000-0003-1203-4227
  surname: Chueh
  fullname: Chueh, Chu-Chen
  organization: University of Washington
– sequence: 4
  givenname: Zhibin
  orcidid: 0000-0003-4036-9446
  surname: Yang
  fullname: Yang, Zhibin
  organization: University of Washington
– sequence: 5
  givenname: Alex K.-Y
  orcidid: 0000-0002-9219-7749
  surname: Jen
  fullname: Jen, Alex K.-Y
  email: ajen@uw.edu
  organization: City University of Hong Kong
BackLink https://www.osti.gov/biblio/1539533$$D View this record in Osti.gov
BookMark eNqFkMtOAjEUhhuDiYg8gknjfrCXGShxJShgQiKJup70NlAcW9IWDDvfwTf0SazAQt2QLk6Tfv85Pd85aFhnNQCXGHUwIviay6Ct9vNtrWPs9ARCLO-dgCahDGUM94vGr_sZaIewRAjhLivSaQJ3pystI5zxEMyGR-Ms3BgOORx7rrSCo3Vda59GwImO2rvl2sodZSycuvdswK2a8xWcia-PzycLB8Zyv4WzhG7Cq4kazhYuuo2rIzcyXIDTitdBtw-1BV5G98_DSTZ9HD8Mb6cZp4zFTCihKtXvIoF7faEUYVgIkecK5ZhIwjEleTcnXSq4wqTHONWskiInlOoCyYq2wNW-rwvRlEGmj8iFdNamZUtc0H5BaYJu9pD0LgSvqzJxOwfRc1OXGJU_jss_jsuD45Qu_qVX3ryl5Y_m8D6XnsulW3ubRBzJfANDApxh
CitedBy_id crossref_primary_10_1039_C9CC00016J
crossref_primary_10_1021_acs_chemrev_3c00667
crossref_primary_10_1002_adfm_202001904
crossref_primary_10_1039_C9TA05308E
crossref_primary_10_1021_acs_jpcc_3c02289
crossref_primary_10_1016_j_jechem_2021_06_011
crossref_primary_10_1002_aenm_201903347
crossref_primary_10_1002_aenm_202200877
crossref_primary_10_1002_cey2_350
crossref_primary_10_1002_adma_201907392
crossref_primary_10_1021_acsenergylett_9b00880
crossref_primary_10_1039_D3QM00236E
crossref_primary_10_1002_cjoc_202100672
crossref_primary_10_1021_acsaem_1c01205
crossref_primary_10_1126_science_aav7911
crossref_primary_10_1002_sstr_202200012
crossref_primary_10_1016_j_mtener_2018_12_009
crossref_primary_10_1039_D4EE03579H
crossref_primary_10_1002_smll_201801016
crossref_primary_10_1021_acs_jpclett_2c01812
crossref_primary_10_1002_aenm_202003585
crossref_primary_10_1002_adma_201902762
crossref_primary_10_1002_adma_201908107
crossref_primary_10_1002_eem2_12211
crossref_primary_10_1002_solr_202100945
crossref_primary_10_1021_acsenergylett_8b01226
crossref_primary_10_1039_D3TC03995A
crossref_primary_10_1016_j_nanoen_2020_105159
crossref_primary_10_1002_solr_201800146
crossref_primary_10_1007_s11426_023_1596_9
crossref_primary_10_1002_solr_202201016
crossref_primary_10_1002_admi_201900413
crossref_primary_10_1007_s12274_022_4322_6
crossref_primary_10_1021_acs_jpcc_3c07293
crossref_primary_10_1002_adma_201800455
crossref_primary_10_1016_j_nanoen_2022_107298
crossref_primary_10_1088_1674_4926_42_12_120201
crossref_primary_10_1002_adma_202003312
crossref_primary_10_1016_j_jpcs_2024_112096
crossref_primary_10_1002_aesr_202100156
crossref_primary_10_1002_eem2_12089
crossref_primary_10_1002_sstr_202100102
crossref_primary_10_1063_5_0254767
crossref_primary_10_1016_j_optmat_2023_114720
crossref_primary_10_1002_aelm_201900244
crossref_primary_10_1021_acsami_1c18520
crossref_primary_10_1021_acs_chemrev_9b00780
crossref_primary_10_1021_acsenergylett_9b01237
crossref_primary_10_1021_acs_jpclett_1c03807
crossref_primary_10_1016_j_jechem_2022_07_003
crossref_primary_10_1016_j_nantod_2021_101164
crossref_primary_10_1021_acs_energyfuels_3c00462
crossref_primary_10_1016_j_jpowsour_2021_230848
crossref_primary_10_1039_C9NR09352D
crossref_primary_10_1039_D1TA06247F
crossref_primary_10_1021_acs_jpcc_2c08968
crossref_primary_10_1039_D1TC03852D
crossref_primary_10_1002_advs_202106054
crossref_primary_10_1021_acsaem_0c02895
crossref_primary_10_1002_adfm_202107650
crossref_primary_10_1002_aenm_202101069
crossref_primary_10_1021_acssuschemeng_9b00368
crossref_primary_10_1039_C7TC05643E
crossref_primary_10_1039_D0EE00132E
crossref_primary_10_1063_5_0099988
crossref_primary_10_1002_aenm_202202491
crossref_primary_10_1016_j_optmat_2021_111806
crossref_primary_10_1038_s41560_018_0190_4
crossref_primary_10_3389_fchem_2022_802890
crossref_primary_10_1002_aenm_202300168
crossref_primary_10_1002_ente_201901196
crossref_primary_10_1021_acsenergylett_0c01796
crossref_primary_10_1002_solr_202000586
crossref_primary_10_1002_adma_202208320
crossref_primary_10_1038_s41467_019_13909_5
crossref_primary_10_1002_ange_202314270
crossref_primary_10_1002_adfm_202306458
crossref_primary_10_1016_j_matlet_2022_132460
crossref_primary_10_1016_j_solmat_2018_12_038
crossref_primary_10_1002_adfm_202410605
crossref_primary_10_1039_D4TA03900A
crossref_primary_10_1002_adfm_202205870
crossref_primary_10_1038_s41560_019_0466_3
crossref_primary_10_1088_1361_6641_ab27f7
crossref_primary_10_1021_acsami_4c09283
crossref_primary_10_1002_adfm_202005594
crossref_primary_10_1002_er_7542
crossref_primary_10_1002_solr_202300261
crossref_primary_10_1007_s40843_022_2365_3
crossref_primary_10_1016_j_inoche_2024_113115
crossref_primary_10_1002_solr_202100212
crossref_primary_10_1021_acs_nanolett_8b01480
crossref_primary_10_1016_j_jallcom_2025_179760
crossref_primary_10_1002_admi_202201438
crossref_primary_10_1002_aenm_202403186
crossref_primary_10_1038_s41560_019_0471_6
crossref_primary_10_1021_acs_jpclett_3c00602
crossref_primary_10_1002_adfm_201808801
crossref_primary_10_1016_j_jpowsour_2020_227903
crossref_primary_10_1007_s11664_019_07374_5
crossref_primary_10_1016_j_joule_2019_01_007
crossref_primary_10_1039_C9TC00816K
crossref_primary_10_1021_acsenergylett_4c03233
crossref_primary_10_1016_j_solener_2020_11_038
crossref_primary_10_1002_solr_201900146
crossref_primary_10_1016_j_ceramint_2019_08_042
crossref_primary_10_34133_2021_9845067
crossref_primary_10_1039_D4RA00634H
crossref_primary_10_1039_C8TA05282D
crossref_primary_10_1039_D3TC04600A
crossref_primary_10_1016_j_nanoen_2024_109664
crossref_primary_10_1002_admi_202200636
crossref_primary_10_1002_adfm_202103121
crossref_primary_10_1002_adma_202110241
crossref_primary_10_1021_acsenergylett_8b01606
crossref_primary_10_1039_D0EE03368E
crossref_primary_10_1080_10667857_2023_2254137
crossref_primary_10_1021_acsenergylett_8b01201
crossref_primary_10_1002_ente_202300228
crossref_primary_10_1002_aenm_201902600
crossref_primary_10_1002_aenm_202400582
crossref_primary_10_1038_s41467_019_12513_x
crossref_primary_10_1021_acsami_2c19124
crossref_primary_10_1002_aenm_202201242
crossref_primary_10_1002_anie_202314270
crossref_primary_10_1039_D0QM00295J
crossref_primary_10_1002_solr_201900413
crossref_primary_10_1002_solr_202100295
crossref_primary_10_1021_acsmaterialslett_2c00275
Cites_doi 10.1038/ncomms8081
10.1021/acs.jpclett.6b00118
10.1039/C6TA07712A
10.1039/C4EE01076K
10.1002/advs.201700204
10.1021/jacs.6b06287
10.1038/ncomms3242
10.1021/acsenergylett.6b00060
10.1038/nphoton.2016.3
10.1039/C7TA01327B
10.1021/ja301539s
10.1126/science.aaf9717
10.1002/adma.201605005
10.1002/aenm.201502104
10.1021/jacs.6b09257
10.1038/nmat4572
10.1002/aenm.201602512
10.1021/acs.jpclett.6b02122
10.1039/C5TA05741H
10.1021/acsenergylett.7b00171
10.1039/C6EE03397K
10.1063/1.1889240
10.1038/nphoton.2014.82
10.1002/adma.201401641
10.1038/nenergy.2016.149
10.1126/science.aan2301
10.1002/aenm.201601130
10.1016/j.nanoen.2016.10.036
10.1002/adma.201702140
10.1038/nenergy.2016.148
10.1002/adma.201600265
10.1039/C5EE00222B
10.1002/aenm.201502206
10.1063/1.2130396
10.1002/aenm.201402321
10.1021/acsenergylett.6b00402
10.1038/ncomms6784
10.1126/science.aad4424
10.1002/aenm.201501119
10.1002/aenm.201602358
10.1038/nenergy.2017.18
10.1021/jacs.6b06320
10.1021/acs.jpclett.5b02651
10.1021/jacs.7b01815
10.1002/adma.201602696
10.1039/b812468j
10.1021/ja5033259
10.1016/j.nanoen.2017.02.040
10.1021/nn404323g
10.1021/jacs.6b00142
10.1021/acsenergylett.7b00239
10.1021/acs.jpclett.5b02014
10.1021/ja512833n
10.1021/acsenergylett.6b00657
10.1039/C7TA00929A
10.1039/C5EE02555A
10.1002/adma.201604744
10.1039/C6EE03201J
10.1002/adma.201401991
10.1038/natrevmats.2017.42
10.1002/aelm.201500089
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Univ. of Washington, Seattle, WA (United States)
CorporateAuthor_xml – name: Univ. of Washington, Seattle, WA (United States)
DBID AAYXX
CITATION
OTOTI
DOI 10.1021/acsenergylett.7b00847
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2380-8195
EndPage 2539
ExternalDocumentID 1539533
10_1021_acsenergylett_7b00847
b488442434
GroupedDBID ABUCX
ACGFS
ACS
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ABFRP
OTOTI
ID FETCH-LOGICAL-a388t-bdbdfd960b179bdd281bbb44d0412c2a132464263bad1278a3e8fcb4233e50cf3
IEDL.DBID ACS
ISSN 2380-8195
IngestDate Fri May 19 02:14:15 EDT 2023
Tue Jul 01 01:58:14 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Thu Aug 27 13:42:41 EDT 2020
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a388t-bdbdfd960b179bdd281bbb44d0412c2a132464263bad1278a3e8fcb4233e50cf3
Notes EE0006710
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
ORCID 0000-0002-9219-7749
0000-0003-4036-9446
0000-0003-1203-4227
0000-0002-9953-5886
0000-0001-9806-080X
0000000312034227
000000019806080X
0000000292197749
PageCount 9
ParticipantIDs osti_scitechconnect_1539533
crossref_citationtrail_10_1021_acsenergylett_7b00847
crossref_primary_10_1021_acsenergylett_7b00847
acs_journals_10_1021_acsenergylett_7b00847
ProviderPackageCode ACS
VG9
ABUCX
AFEFF
VF5
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-10
PublicationDateYYYYMMDD 2017-11-10
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS energy letters
PublicationTitleAlternate ACS Energy Lett
PublicationYear 2017
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref42/cit42
  doi: 10.1038/ncomms8081
– ident: ref24/cit24
  doi: 10.1021/acs.jpclett.6b00118
– ident: ref55/cit55
  doi: 10.1039/C6TA07712A
– ident: ref21/cit21
  doi: 10.1039/C4EE01076K
– ident: ref31/cit31
  doi: 10.1002/advs.201700204
– ident: ref22/cit22
  doi: 10.1021/jacs.6b06287
– ident: ref60/cit60
  doi: 10.1038/ncomms3242
– ident: ref44/cit44
  doi: 10.1021/acsenergylett.6b00060
– ident: ref48/cit48
  doi: 10.1038/nphoton.2016.3
– ident: ref15/cit15
  doi: 10.1039/C7TA01327B
– ident: ref39/cit39
  doi: 10.1021/ja301539s
– ident: ref33/cit33
  doi: 10.1126/science.aaf9717
– ident: ref12/cit12
  doi: 10.1002/adma.201605005
– ident: ref52/cit52
  doi: 10.1002/aenm.201502104
– ident: ref17/cit17
  doi: 10.1021/jacs.6b09257
– ident: ref8/cit8
  doi: 10.1038/nmat4572
– ident: ref13/cit13
  doi: 10.1002/aenm.201602512
– ident: ref9/cit9
  doi: 10.1021/acs.jpclett.6b02122
– ident: ref11/cit11
  doi: 10.1039/C5TA05741H
– ident: ref27/cit27
  doi: 10.1021/acsenergylett.7b00171
– ident: ref2/cit2
  doi: 10.1039/C6EE03397K
– ident: ref56/cit56
  doi: 10.1063/1.1889240
– ident: ref19/cit19
  doi: 10.1038/nphoton.2014.82
– ident: ref20/cit20
  doi: 10.1002/adma.201401641
– ident: ref37/cit37
  doi: 10.1038/nenergy.2016.149
– ident: ref6/cit6
  doi: 10.1126/science.aan2301
– ident: ref26/cit26
  doi: 10.1002/aenm.201601130
– ident: ref46/cit46
  doi: 10.1016/j.nanoen.2016.10.036
– ident: ref34/cit34
  doi: 10.1002/adma.201702140
– ident: ref47/cit47
  doi: 10.1038/nenergy.2016.148
– ident: ref4/cit4
  doi: 10.1002/adma.201600265
– ident: ref54/cit54
  doi: 10.1039/C5EE00222B
– ident: ref50/cit50
  doi: 10.1002/aenm.201502206
– ident: ref58/cit58
  doi: 10.1063/1.2130396
– ident: ref45/cit45
  doi: 10.1002/aenm.201402321
– ident: ref49/cit49
  doi: 10.1021/acsenergylett.6b00402
– ident: ref41/cit41
  doi: 10.1038/ncomms6784
– ident: ref5/cit5
  doi: 10.1126/science.aad4424
– ident: ref7/cit7
  doi: 10.1002/aenm.201501119
– ident: ref36/cit36
  doi: 10.1002/aenm.201602358
– ident: ref32/cit32
  doi: 10.1038/nenergy.2017.18
– ident: ref51/cit51
  doi: 10.1021/jacs.6b06320
– ident: ref3/cit3
  doi: 10.1021/acs.jpclett.5b02651
– ident: ref30/cit30
  doi: 10.1021/jacs.7b01815
– ident: ref23/cit23
  doi: 10.1002/adma.201602696
– ident: ref61/cit61
  doi: 10.1039/b812468j
– ident: ref16/cit16
  doi: 10.1021/ja5033259
– ident: ref29/cit29
  doi: 10.1016/j.nanoen.2017.02.040
– ident: ref59/cit59
  doi: 10.1021/nn404323g
– ident: ref25/cit25
  doi: 10.1021/jacs.6b00142
– ident: ref35/cit35
  doi: 10.1021/acsenergylett.7b00239
– ident: ref57/cit57
  doi: 10.1021/acs.jpclett.5b02014
– ident: ref38/cit38
  doi: 10.1021/ja512833n
– ident: ref43/cit43
  doi: 10.1021/acsenergylett.6b00657
– ident: ref18/cit18
  doi: 10.1039/C7TA00929A
– ident: ref53/cit53
  doi: 10.1039/C5EE02555A
– ident: ref28/cit28
  doi: 10.1002/adma.201604744
– ident: ref10/cit10
  doi: 10.1039/C6EE03201J
– ident: ref40/cit40
  doi: 10.1002/adma.201401991
– ident: ref1/cit1
  doi: 10.1038/natrevmats.2017.42
– ident: ref14/cit14
  doi: 10.1002/aelm.201500089
SSID ssj0001685858
Score 2.4156182
Snippet Development of low-bandgap (∼1.2 eV) Pb–Sn binary perovskites is exciting and has recently gained immense attention because of their high photovoltages,...
Not provided.
SourceID osti
crossref
acs
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2531
SubjectTerms Chemistry
Electrochemistry
Energy & Fuels
Materials Science
Science & Technology - Other Topics
Title Defect Passivation via a Graded Fullerene Heterojunction in Low-Bandgap Pb–Sn Binary Perovskite Photovoltaics
URI http://dx.doi.org/10.1021/acsenergylett.7b00847
https://www.osti.gov/biblio/1539533
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsQwDI1guMCBHbErB05IGbpNmh7ZRwhQJUDiVmUrDKAW0QISJ_6BP-RLsDMdFiEE3OMqcez6JbGfCVlDvhQJSIJFhicssj5n0hMR8_JASM0hxHMscD465t2z6OC8cz5ENn54wQ_8Dakr68rgYB11O1bIAB8Pk5GAgyMjFto--bhUcWzqrgtdKDyGb0SDqp2fvoRRSVdfolKrBO_6FGX2Jkg6qNXpJ5dct-9r1dZP36kb_7qASTLeIE662TeRKTJki2ky9omHcIaUOxazOmgKSLrpdkYfepJKun8njTUUD6qujQrtYvpMeQXR0I3qFfSwfGRbsjAX8pam6vX55aSgW67Kl6Yw9KHC-2GaXpZ1Cb_CWvZ0NUvO9nZPt7us6cTAZChEzZRRJjdw2FHgv8qYAMCuUlFkkK1Lw2YDLONI_a6k8YNYyNCKXCuAaqHteDoP50irKAs7T6i1Xsd4UsV5IgC8JEksLRcOePBE-3aBrIPCssaTqsw9kgd-9kWLWaPFBRINti3TDac5tta4-U2s_S522yf1-E1gCW0iA1SC1Loac5B0nUG0wOzcxf9MeYmMBogMXCbhMmnVd_d2BXBNrVadLb8BMCP4jw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R7aHlUPqggi4UH3qq5CWvdZzj8tzSBa0EqNwiv1KWVgkiASRO_Q_9h_wSZkyWR6UKcY1sy4-ZzGfPzDcAX4gvRSGS4IkVGU9cKLgKZMKDIpLKCDTxghKcd_fE8DDZOeofzYCY5sLgJGocqfZO_Ht2gXAVvzmfDYfLaXqpJiL49AW8REASkWQP1vfv31Y8qbovRhfLgJOraJq887-RyDiZ-pFx6lSoZA-MzdYc_Libpo8x-dU7b3TPXP3D4Pj8dbyFNy3-ZINbgXkHM658D7MPWAk_QLXhKMaDjRFXt7XP2MVEMcW2z5R1ltG11RdVYUMKpqlO0Db6VpOSjapLvqZK-1OdsrG-_vN3v2RrPueXjbHpRU2vxWx8XDUV_hgbNTH1PBxubR6sD3lbl4GrWMqGa6ttYfHqo1GbtbURQl-tk8QSd5fBo0eQJogIXisbRqlUsZOF0QjcYtcPTBF_hE5ZlW4BmHNB3wZKp0UmEcpkWaqckB6GiMyEbhG-4oblrV7VuXeZR2H-aBfzdhcXIZmeXm5ahnMqtPH7qW69u26ntxQfT3XokmjkiFGIaNdQRJJpcrQdFKv76TlTXoFXw4PdUT76tve9C68jwgw-xnAJOs3ZuVtGxNPoz168bwD2YAD_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF61qVSVA32BoJR2D5yQNvgVe33MoyFtIbKUIiFxsPblNlDZUeyAxIn_wD_kl3Rm4wRSqUL0au2u9jHj-XZn5htC9pAvRQCSYIEOYxYYN2TC4QFzMo8LFYKJDzHB-XgYDk6Cb6et0zqqEnNhYBIljFRaJz5q9URnNcOAewDfjc2IgyVVzUgiGXz0nLxA1x1Kd7s7un9fscTqtiCdzx2G7qJFAs-_RkIDpcoVA9UoQNEeGJz-a3K2nKqNM7lozirZVNd_sTj-31rekPUah9L2XHDekmcmf0fWHrATvidFz2CsB00AX9c10OjlWFBBD6dCG03x-mqLq9ABBtUU52AjbatxTo-KK9YRuf4pJjSRdze3o5x2bO4vTaDpZYmvxjT5VVQF_CArMVblBjnpf_nRHbC6PgMTPucVk1rqTMMVSIJWS609gMBSBoFGDi8FIgBgLURCeCm060Vc-IZnSgKA803LUZm_SRp5kZstQo1xWtoRMspiDpAmjiNhQm7hSBgr12yTfdiwtNavMrWuc89NV3YxrXdxmwSLE0xVzXSOBTd-P9atuew2mVN9PNZhB8UjBayChLsKI5NUlYINwZjdD0-Z8mfyMun106Ovw-875JWH0MGGGn4kjWo6M7sAfCr5yUr4Hxc-A4I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Passivation+via+a+Graded+Fullerene+Heterojunction+in+Low-Bandgap+Pb%E2%80%93Sn+Binary+Perovskite+Photovoltaics&rft.jtitle=ACS+energy+letters&rft.au=Rajagopal%2C+Adharsh&rft.au=Liang%2C+Po-Wei&rft.au=Chueh%2C+Chu-Chen&rft.au=Yang%2C+Zhibin&rft.date=2017-11-10&rft.pub=American+Chemical+Society&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=2&rft.issue=11&rft.spage=2531&rft.epage=2539&rft_id=info:doi/10.1021%2Facsenergylett.7b00847&rft.externalDocID=b488442434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon