Defect Passivation via a Graded Fullerene Heterojunction in Low-Bandgap Pb–Sn Binary Perovskite Photovoltaics
Development of low-bandgap (∼1.2 eV) Pb–Sn binary perovskites is exciting and has recently gained immense attention because of their high photovoltages, lowered Pb toxicity, and pivotal role in realizing perovskite tandem solar cells. Defect passivation in this class of perovskite alloys has immense...
Saved in:
Published in | ACS energy letters Vol. 2; no. 11; pp. 2531 - 2539 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.11.2017
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of low-bandgap (∼1.2 eV) Pb–Sn binary perovskites is exciting and has recently gained immense attention because of their high photovoltages, lowered Pb toxicity, and pivotal role in realizing perovskite tandem solar cells. Defect passivation in this class of perovskite alloys has immense potential to further reduce the photovoltage deficit but is relatively unexplored. Here, we investigate and report the passivation of defect sites in low-bandgap CH3NH3Pb0.5Sn0.5I3 perovskite through the incorporation of fluoroalkyl-substituted fullerene (DF-C60) via a graded heterojunction (GHJ) structure. Graded distribution of DF-C60 successfully reduced the number of trap sites, and the resultant films had characteristically lower Urbach energy, dominant bimolecular recombination, and higher surface/bulk recombination resistance. The improved optoelectronic quality of films with GHJ structure was reflected in improved performance for corresponding photovoltaic devices, with the best PCE up to 15.61% and a remarkably high V oc of 0.89 V. A V oc of ∼92% of the Shockley–Queisser (SQ) limit achieved here is comparable to that of state-of-the-art inorganic technologies and is the best among perovskite solar cells (PVSCs) to date. Additionally, through stability studies, we find that though GHJ with DF-C60 can slow down degradation due to moisture penetration, the oxidative susceptibility of Sn in binary perovskites sharply constraints overall stability. |
---|---|
AbstractList | Not provided. Development of low-bandgap (∼1.2 eV) Pb–Sn binary perovskites is exciting and has recently gained immense attention because of their high photovoltages, lowered Pb toxicity, and pivotal role in realizing perovskite tandem solar cells. Defect passivation in this class of perovskite alloys has immense potential to further reduce the photovoltage deficit but is relatively unexplored. Here, we investigate and report the passivation of defect sites in low-bandgap CH3NH3Pb0.5Sn0.5I3 perovskite through the incorporation of fluoroalkyl-substituted fullerene (DF-C60) via a graded heterojunction (GHJ) structure. Graded distribution of DF-C60 successfully reduced the number of trap sites, and the resultant films had characteristically lower Urbach energy, dominant bimolecular recombination, and higher surface/bulk recombination resistance. The improved optoelectronic quality of films with GHJ structure was reflected in improved performance for corresponding photovoltaic devices, with the best PCE up to 15.61% and a remarkably high V oc of 0.89 V. A V oc of ∼92% of the Shockley–Queisser (SQ) limit achieved here is comparable to that of state-of-the-art inorganic technologies and is the best among perovskite solar cells (PVSCs) to date. Additionally, through stability studies, we find that though GHJ with DF-C60 can slow down degradation due to moisture penetration, the oxidative susceptibility of Sn in binary perovskites sharply constraints overall stability. |
Author | Rajagopal, Adharsh Yang, Zhibin Liang, Po-Wei Jen, Alex K.-Y Chueh, Chu-Chen |
AuthorAffiliation | Department of Chemistry City University of Hong Kong Department of Materials Science and Engineering Department of Materials Science & Engineering University of Washington |
AuthorAffiliation_xml | – name: Department of Chemistry – name: City University of Hong Kong – name: Department of Materials Science & Engineering – name: Department of Materials Science and Engineering – name: University of Washington |
Author_xml | – sequence: 1 givenname: Adharsh orcidid: 0000-0001-9806-080X surname: Rajagopal fullname: Rajagopal, Adharsh organization: University of Washington – sequence: 2 givenname: Po-Wei orcidid: 0000-0002-9953-5886 surname: Liang fullname: Liang, Po-Wei organization: University of Washington – sequence: 3 givenname: Chu-Chen orcidid: 0000-0003-1203-4227 surname: Chueh fullname: Chueh, Chu-Chen organization: University of Washington – sequence: 4 givenname: Zhibin orcidid: 0000-0003-4036-9446 surname: Yang fullname: Yang, Zhibin organization: University of Washington – sequence: 5 givenname: Alex K.-Y orcidid: 0000-0002-9219-7749 surname: Jen fullname: Jen, Alex K.-Y email: ajen@uw.edu organization: City University of Hong Kong |
BackLink | https://www.osti.gov/biblio/1539533$$D View this record in Osti.gov |
BookMark | eNqFkMtOAjEUhhuDiYg8gknjfrCXGShxJShgQiKJup70NlAcW9IWDDvfwTf0SazAQt2QLk6Tfv85Pd85aFhnNQCXGHUwIviay6Ct9vNtrWPs9ARCLO-dgCahDGUM94vGr_sZaIewRAjhLivSaQJ3pystI5zxEMyGR-Ms3BgOORx7rrSCo3Vda59GwImO2rvl2sodZSycuvdswK2a8xWcia-PzycLB8Zyv4WzhG7Cq4kazhYuuo2rIzcyXIDTitdBtw-1BV5G98_DSTZ9HD8Mb6cZp4zFTCihKtXvIoF7faEUYVgIkecK5ZhIwjEleTcnXSq4wqTHONWskiInlOoCyYq2wNW-rwvRlEGmj8iFdNamZUtc0H5BaYJu9pD0LgSvqzJxOwfRc1OXGJU_jss_jsuD45Qu_qVX3ryl5Y_m8D6XnsulW3ubRBzJfANDApxh |
CitedBy_id | crossref_primary_10_1039_C9CC00016J crossref_primary_10_1021_acs_chemrev_3c00667 crossref_primary_10_1002_adfm_202001904 crossref_primary_10_1039_C9TA05308E crossref_primary_10_1021_acs_jpcc_3c02289 crossref_primary_10_1016_j_jechem_2021_06_011 crossref_primary_10_1002_aenm_201903347 crossref_primary_10_1002_aenm_202200877 crossref_primary_10_1002_cey2_350 crossref_primary_10_1002_adma_201907392 crossref_primary_10_1021_acsenergylett_9b00880 crossref_primary_10_1039_D3QM00236E crossref_primary_10_1002_cjoc_202100672 crossref_primary_10_1021_acsaem_1c01205 crossref_primary_10_1126_science_aav7911 crossref_primary_10_1002_sstr_202200012 crossref_primary_10_1016_j_mtener_2018_12_009 crossref_primary_10_1039_D4EE03579H crossref_primary_10_1002_smll_201801016 crossref_primary_10_1021_acs_jpclett_2c01812 crossref_primary_10_1002_aenm_202003585 crossref_primary_10_1002_adma_201902762 crossref_primary_10_1002_adma_201908107 crossref_primary_10_1002_eem2_12211 crossref_primary_10_1002_solr_202100945 crossref_primary_10_1021_acsenergylett_8b01226 crossref_primary_10_1039_D3TC03995A crossref_primary_10_1016_j_nanoen_2020_105159 crossref_primary_10_1002_solr_201800146 crossref_primary_10_1007_s11426_023_1596_9 crossref_primary_10_1002_solr_202201016 crossref_primary_10_1002_admi_201900413 crossref_primary_10_1007_s12274_022_4322_6 crossref_primary_10_1021_acs_jpcc_3c07293 crossref_primary_10_1002_adma_201800455 crossref_primary_10_1016_j_nanoen_2022_107298 crossref_primary_10_1088_1674_4926_42_12_120201 crossref_primary_10_1002_adma_202003312 crossref_primary_10_1016_j_jpcs_2024_112096 crossref_primary_10_1002_aesr_202100156 crossref_primary_10_1002_eem2_12089 crossref_primary_10_1002_sstr_202100102 crossref_primary_10_1063_5_0254767 crossref_primary_10_1016_j_optmat_2023_114720 crossref_primary_10_1002_aelm_201900244 crossref_primary_10_1021_acsami_1c18520 crossref_primary_10_1021_acs_chemrev_9b00780 crossref_primary_10_1021_acsenergylett_9b01237 crossref_primary_10_1021_acs_jpclett_1c03807 crossref_primary_10_1016_j_jechem_2022_07_003 crossref_primary_10_1016_j_nantod_2021_101164 crossref_primary_10_1021_acs_energyfuels_3c00462 crossref_primary_10_1016_j_jpowsour_2021_230848 crossref_primary_10_1039_C9NR09352D crossref_primary_10_1039_D1TA06247F crossref_primary_10_1021_acs_jpcc_2c08968 crossref_primary_10_1039_D1TC03852D crossref_primary_10_1002_advs_202106054 crossref_primary_10_1021_acsaem_0c02895 crossref_primary_10_1002_adfm_202107650 crossref_primary_10_1002_aenm_202101069 crossref_primary_10_1021_acssuschemeng_9b00368 crossref_primary_10_1039_C7TC05643E crossref_primary_10_1039_D0EE00132E crossref_primary_10_1063_5_0099988 crossref_primary_10_1002_aenm_202202491 crossref_primary_10_1016_j_optmat_2021_111806 crossref_primary_10_1038_s41560_018_0190_4 crossref_primary_10_3389_fchem_2022_802890 crossref_primary_10_1002_aenm_202300168 crossref_primary_10_1002_ente_201901196 crossref_primary_10_1021_acsenergylett_0c01796 crossref_primary_10_1002_solr_202000586 crossref_primary_10_1002_adma_202208320 crossref_primary_10_1038_s41467_019_13909_5 crossref_primary_10_1002_ange_202314270 crossref_primary_10_1002_adfm_202306458 crossref_primary_10_1016_j_matlet_2022_132460 crossref_primary_10_1016_j_solmat_2018_12_038 crossref_primary_10_1002_adfm_202410605 crossref_primary_10_1039_D4TA03900A crossref_primary_10_1002_adfm_202205870 crossref_primary_10_1038_s41560_019_0466_3 crossref_primary_10_1088_1361_6641_ab27f7 crossref_primary_10_1021_acsami_4c09283 crossref_primary_10_1002_adfm_202005594 crossref_primary_10_1002_er_7542 crossref_primary_10_1002_solr_202300261 crossref_primary_10_1007_s40843_022_2365_3 crossref_primary_10_1016_j_inoche_2024_113115 crossref_primary_10_1002_solr_202100212 crossref_primary_10_1021_acs_nanolett_8b01480 crossref_primary_10_1016_j_jallcom_2025_179760 crossref_primary_10_1002_admi_202201438 crossref_primary_10_1002_aenm_202403186 crossref_primary_10_1038_s41560_019_0471_6 crossref_primary_10_1021_acs_jpclett_3c00602 crossref_primary_10_1002_adfm_201808801 crossref_primary_10_1016_j_jpowsour_2020_227903 crossref_primary_10_1007_s11664_019_07374_5 crossref_primary_10_1016_j_joule_2019_01_007 crossref_primary_10_1039_C9TC00816K crossref_primary_10_1021_acsenergylett_4c03233 crossref_primary_10_1016_j_solener_2020_11_038 crossref_primary_10_1002_solr_201900146 crossref_primary_10_1016_j_ceramint_2019_08_042 crossref_primary_10_34133_2021_9845067 crossref_primary_10_1039_D4RA00634H crossref_primary_10_1039_C8TA05282D crossref_primary_10_1039_D3TC04600A crossref_primary_10_1016_j_nanoen_2024_109664 crossref_primary_10_1002_admi_202200636 crossref_primary_10_1002_adfm_202103121 crossref_primary_10_1002_adma_202110241 crossref_primary_10_1021_acsenergylett_8b01606 crossref_primary_10_1039_D0EE03368E crossref_primary_10_1080_10667857_2023_2254137 crossref_primary_10_1021_acsenergylett_8b01201 crossref_primary_10_1002_ente_202300228 crossref_primary_10_1002_aenm_201902600 crossref_primary_10_1002_aenm_202400582 crossref_primary_10_1038_s41467_019_12513_x crossref_primary_10_1021_acsami_2c19124 crossref_primary_10_1002_aenm_202201242 crossref_primary_10_1002_anie_202314270 crossref_primary_10_1039_D0QM00295J crossref_primary_10_1002_solr_201900413 crossref_primary_10_1002_solr_202100295 crossref_primary_10_1021_acsmaterialslett_2c00275 |
Cites_doi | 10.1038/ncomms8081 10.1021/acs.jpclett.6b00118 10.1039/C6TA07712A 10.1039/C4EE01076K 10.1002/advs.201700204 10.1021/jacs.6b06287 10.1038/ncomms3242 10.1021/acsenergylett.6b00060 10.1038/nphoton.2016.3 10.1039/C7TA01327B 10.1021/ja301539s 10.1126/science.aaf9717 10.1002/adma.201605005 10.1002/aenm.201502104 10.1021/jacs.6b09257 10.1038/nmat4572 10.1002/aenm.201602512 10.1021/acs.jpclett.6b02122 10.1039/C5TA05741H 10.1021/acsenergylett.7b00171 10.1039/C6EE03397K 10.1063/1.1889240 10.1038/nphoton.2014.82 10.1002/adma.201401641 10.1038/nenergy.2016.149 10.1126/science.aan2301 10.1002/aenm.201601130 10.1016/j.nanoen.2016.10.036 10.1002/adma.201702140 10.1038/nenergy.2016.148 10.1002/adma.201600265 10.1039/C5EE00222B 10.1002/aenm.201502206 10.1063/1.2130396 10.1002/aenm.201402321 10.1021/acsenergylett.6b00402 10.1038/ncomms6784 10.1126/science.aad4424 10.1002/aenm.201501119 10.1002/aenm.201602358 10.1038/nenergy.2017.18 10.1021/jacs.6b06320 10.1021/acs.jpclett.5b02651 10.1021/jacs.7b01815 10.1002/adma.201602696 10.1039/b812468j 10.1021/ja5033259 10.1016/j.nanoen.2017.02.040 10.1021/nn404323g 10.1021/jacs.6b00142 10.1021/acsenergylett.7b00239 10.1021/acs.jpclett.5b02014 10.1021/ja512833n 10.1021/acsenergylett.6b00657 10.1039/C7TA00929A 10.1039/C5EE02555A 10.1002/adma.201604744 10.1039/C6EE03201J 10.1002/adma.201401991 10.1038/natrevmats.2017.42 10.1002/aelm.201500089 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
CorporateAuthor | Univ. of Washington, Seattle, WA (United States) |
CorporateAuthor_xml | – name: Univ. of Washington, Seattle, WA (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1021/acsenergylett.7b00847 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2380-8195 |
EndPage | 2539 |
ExternalDocumentID | 1539533 10_1021_acsenergylett_7b00847 b488442434 |
GroupedDBID | ABUCX ACGFS ACS AFEFF ALMA_UNASSIGNED_HOLDINGS EBS EJD VF5 VG9 AAYXX ABBLG ABJNI ABLBI ABQRX AHGAQ BAANH CITATION CUPRZ GGK ABFRP OTOTI |
ID | FETCH-LOGICAL-a388t-bdbdfd960b179bdd281bbb44d0412c2a132464263bad1278a3e8fcb4233e50cf3 |
IEDL.DBID | ACS |
ISSN | 2380-8195 |
IngestDate | Fri May 19 02:14:15 EDT 2023 Tue Jul 01 01:58:14 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Thu Aug 27 13:42:41 EDT 2020 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a388t-bdbdfd960b179bdd281bbb44d0412c2a132464263bad1278a3e8fcb4233e50cf3 |
Notes | EE0006710 USDOE Office of Energy Efficiency and Renewable Energy (EERE) |
ORCID | 0000-0002-9219-7749 0000-0003-4036-9446 0000-0003-1203-4227 0000-0002-9953-5886 0000-0001-9806-080X 0000000312034227 000000019806080X 0000000292197749 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1539533 crossref_citationtrail_10_1021_acsenergylett_7b00847 crossref_primary_10_1021_acsenergylett_7b00847 acs_journals_10_1021_acsenergylett_7b00847 |
ProviderPackageCode | ACS VG9 ABUCX AFEFF VF5 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-10 |
PublicationDateYYYYMMDD | 2017-11-10 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS energy letters |
PublicationTitleAlternate | ACS Energy Lett |
PublicationYear | 2017 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref42/cit42 doi: 10.1038/ncomms8081 – ident: ref24/cit24 doi: 10.1021/acs.jpclett.6b00118 – ident: ref55/cit55 doi: 10.1039/C6TA07712A – ident: ref21/cit21 doi: 10.1039/C4EE01076K – ident: ref31/cit31 doi: 10.1002/advs.201700204 – ident: ref22/cit22 doi: 10.1021/jacs.6b06287 – ident: ref60/cit60 doi: 10.1038/ncomms3242 – ident: ref44/cit44 doi: 10.1021/acsenergylett.6b00060 – ident: ref48/cit48 doi: 10.1038/nphoton.2016.3 – ident: ref15/cit15 doi: 10.1039/C7TA01327B – ident: ref39/cit39 doi: 10.1021/ja301539s – ident: ref33/cit33 doi: 10.1126/science.aaf9717 – ident: ref12/cit12 doi: 10.1002/adma.201605005 – ident: ref52/cit52 doi: 10.1002/aenm.201502104 – ident: ref17/cit17 doi: 10.1021/jacs.6b09257 – ident: ref8/cit8 doi: 10.1038/nmat4572 – ident: ref13/cit13 doi: 10.1002/aenm.201602512 – ident: ref9/cit9 doi: 10.1021/acs.jpclett.6b02122 – ident: ref11/cit11 doi: 10.1039/C5TA05741H – ident: ref27/cit27 doi: 10.1021/acsenergylett.7b00171 – ident: ref2/cit2 doi: 10.1039/C6EE03397K – ident: ref56/cit56 doi: 10.1063/1.1889240 – ident: ref19/cit19 doi: 10.1038/nphoton.2014.82 – ident: ref20/cit20 doi: 10.1002/adma.201401641 – ident: ref37/cit37 doi: 10.1038/nenergy.2016.149 – ident: ref6/cit6 doi: 10.1126/science.aan2301 – ident: ref26/cit26 doi: 10.1002/aenm.201601130 – ident: ref46/cit46 doi: 10.1016/j.nanoen.2016.10.036 – ident: ref34/cit34 doi: 10.1002/adma.201702140 – ident: ref47/cit47 doi: 10.1038/nenergy.2016.148 – ident: ref4/cit4 doi: 10.1002/adma.201600265 – ident: ref54/cit54 doi: 10.1039/C5EE00222B – ident: ref50/cit50 doi: 10.1002/aenm.201502206 – ident: ref58/cit58 doi: 10.1063/1.2130396 – ident: ref45/cit45 doi: 10.1002/aenm.201402321 – ident: ref49/cit49 doi: 10.1021/acsenergylett.6b00402 – ident: ref41/cit41 doi: 10.1038/ncomms6784 – ident: ref5/cit5 doi: 10.1126/science.aad4424 – ident: ref7/cit7 doi: 10.1002/aenm.201501119 – ident: ref36/cit36 doi: 10.1002/aenm.201602358 – ident: ref32/cit32 doi: 10.1038/nenergy.2017.18 – ident: ref51/cit51 doi: 10.1021/jacs.6b06320 – ident: ref3/cit3 doi: 10.1021/acs.jpclett.5b02651 – ident: ref30/cit30 doi: 10.1021/jacs.7b01815 – ident: ref23/cit23 doi: 10.1002/adma.201602696 – ident: ref61/cit61 doi: 10.1039/b812468j – ident: ref16/cit16 doi: 10.1021/ja5033259 – ident: ref29/cit29 doi: 10.1016/j.nanoen.2017.02.040 – ident: ref59/cit59 doi: 10.1021/nn404323g – ident: ref25/cit25 doi: 10.1021/jacs.6b00142 – ident: ref35/cit35 doi: 10.1021/acsenergylett.7b00239 – ident: ref57/cit57 doi: 10.1021/acs.jpclett.5b02014 – ident: ref38/cit38 doi: 10.1021/ja512833n – ident: ref43/cit43 doi: 10.1021/acsenergylett.6b00657 – ident: ref18/cit18 doi: 10.1039/C7TA00929A – ident: ref53/cit53 doi: 10.1039/C5EE02555A – ident: ref28/cit28 doi: 10.1002/adma.201604744 – ident: ref10/cit10 doi: 10.1039/C6EE03201J – ident: ref40/cit40 doi: 10.1002/adma.201401991 – ident: ref1/cit1 doi: 10.1038/natrevmats.2017.42 – ident: ref14/cit14 doi: 10.1002/aelm.201500089 |
SSID | ssj0001685858 |
Score | 2.4156182 |
Snippet | Development of low-bandgap (∼1.2 eV) Pb–Sn binary perovskites is exciting and has recently gained immense attention because of their high photovoltages,... Not provided. |
SourceID | osti crossref acs |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 2531 |
SubjectTerms | Chemistry Electrochemistry Energy & Fuels Materials Science Science & Technology - Other Topics |
Title | Defect Passivation via a Graded Fullerene Heterojunction in Low-Bandgap Pb–Sn Binary Perovskite Photovoltaics |
URI | http://dx.doi.org/10.1021/acsenergylett.7b00847 https://www.osti.gov/biblio/1539533 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsQwDI1guMCBHbErB05IGbpNmh7ZRwhQJUDiVmUrDKAW0QISJ_6BP-RLsDMdFiEE3OMqcez6JbGfCVlDvhQJSIJFhicssj5n0hMR8_JASM0hxHMscD465t2z6OC8cz5ENn54wQ_8Dakr68rgYB11O1bIAB8Pk5GAgyMjFto--bhUcWzqrgtdKDyGb0SDqp2fvoRRSVdfolKrBO_6FGX2Jkg6qNXpJ5dct-9r1dZP36kb_7qASTLeIE662TeRKTJki2ky9omHcIaUOxazOmgKSLrpdkYfepJKun8njTUUD6qujQrtYvpMeQXR0I3qFfSwfGRbsjAX8pam6vX55aSgW67Kl6Yw9KHC-2GaXpZ1Cb_CWvZ0NUvO9nZPt7us6cTAZChEzZRRJjdw2FHgv8qYAMCuUlFkkK1Lw2YDLONI_a6k8YNYyNCKXCuAaqHteDoP50irKAs7T6i1Xsd4UsV5IgC8JEksLRcOePBE-3aBrIPCssaTqsw9kgd-9kWLWaPFBRINti3TDac5tta4-U2s_S522yf1-E1gCW0iA1SC1Loac5B0nUG0wOzcxf9MeYmMBogMXCbhMmnVd_d2BXBNrVadLb8BMCP4jw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R7aHlUPqggi4UH3qq5CWvdZzj8tzSBa0EqNwiv1KWVgkiASRO_Q_9h_wSZkyWR6UKcY1sy4-ZzGfPzDcAX4gvRSGS4IkVGU9cKLgKZMKDIpLKCDTxghKcd_fE8DDZOeofzYCY5sLgJGocqfZO_Ht2gXAVvzmfDYfLaXqpJiL49AW8REASkWQP1vfv31Y8qbovRhfLgJOraJq887-RyDiZ-pFx6lSoZA-MzdYc_Libpo8x-dU7b3TPXP3D4Pj8dbyFNy3-ZINbgXkHM658D7MPWAk_QLXhKMaDjRFXt7XP2MVEMcW2z5R1ltG11RdVYUMKpqlO0Db6VpOSjapLvqZK-1OdsrG-_vN3v2RrPueXjbHpRU2vxWx8XDUV_hgbNTH1PBxubR6sD3lbl4GrWMqGa6ttYfHqo1GbtbURQl-tk8QSd5fBo0eQJogIXisbRqlUsZOF0QjcYtcPTBF_hE5ZlW4BmHNB3wZKp0UmEcpkWaqckB6GiMyEbhG-4oblrV7VuXeZR2H-aBfzdhcXIZmeXm5ahnMqtPH7qW69u26ntxQfT3XokmjkiFGIaNdQRJJpcrQdFKv76TlTXoFXw4PdUT76tve9C68jwgw-xnAJOs3ZuVtGxNPoz168bwD2YAD_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF61qVSVA32BoJR2D5yQNvgVe33MoyFtIbKUIiFxsPblNlDZUeyAxIn_wD_kl3Rm4wRSqUL0au2u9jHj-XZn5htC9pAvRQCSYIEOYxYYN2TC4QFzMo8LFYKJDzHB-XgYDk6Cb6et0zqqEnNhYBIljFRaJz5q9URnNcOAewDfjc2IgyVVzUgiGXz0nLxA1x1Kd7s7un9fscTqtiCdzx2G7qJFAs-_RkIDpcoVA9UoQNEeGJz-a3K2nKqNM7lozirZVNd_sTj-31rekPUah9L2XHDekmcmf0fWHrATvidFz2CsB00AX9c10OjlWFBBD6dCG03x-mqLq9ABBtUU52AjbatxTo-KK9YRuf4pJjSRdze3o5x2bO4vTaDpZYmvxjT5VVQF_CArMVblBjnpf_nRHbC6PgMTPucVk1rqTMMVSIJWS609gMBSBoFGDi8FIgBgLURCeCm060Vc-IZnSgKA803LUZm_SRp5kZstQo1xWtoRMspiDpAmjiNhQm7hSBgr12yTfdiwtNavMrWuc89NV3YxrXdxmwSLE0xVzXSOBTd-P9atuew2mVN9PNZhB8UjBayChLsKI5NUlYINwZjdD0-Z8mfyMun106Ovw-875JWH0MGGGn4kjWo6M7sAfCr5yUr4Hxc-A4I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Passivation+via+a+Graded+Fullerene+Heterojunction+in+Low-Bandgap+Pb%E2%80%93Sn+Binary+Perovskite+Photovoltaics&rft.jtitle=ACS+energy+letters&rft.au=Rajagopal%2C+Adharsh&rft.au=Liang%2C+Po-Wei&rft.au=Chueh%2C+Chu-Chen&rft.au=Yang%2C+Zhibin&rft.date=2017-11-10&rft.pub=American+Chemical+Society&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=2&rft.issue=11&rft.spage=2531&rft.epage=2539&rft_id=info:doi/10.1021%2Facsenergylett.7b00847&rft.externalDocID=b488442434 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon |