On the Extensional Rheology of Polymer Melts and Concentrated Solutions

We examine the influence of the number of entanglements per chain (Z) on the uniaxial extensional rheology of polymer melts and concentrated solutions. We subject fluids with wide range of Z (13–51) to uniaxial extensional flow at strain rates that also spans a wide range: starting at strain rates t...

Full description

Saved in:
Bibliographic Details
Published inMacromolecules Vol. 47; no. 1; pp. 379 - 386
Main Authors Sridhar, T, Acharya, Mohini, Nguyen, D. A, Bhattacharjee, P. K
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 14.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We examine the influence of the number of entanglements per chain (Z) on the uniaxial extensional rheology of polymer melts and concentrated solutions. We subject fluids with wide range of Z (13–51) to uniaxial extensional flow at strain rates that also spans a wide range: starting at strain rates that much less than the inverse of the longest measurable relaxation time of the chains to strain rates that are in excess of the order of the inverse of the Rouse time of the chain. The results show that the value of Z critically influences extensional flow at all strain rates examined. The combination of results presented here and those from recent literature clearly establish areas where the agreement between tube theory and experiments is less than satisfactory. These differences are particularly evident at strain rates wherein chain stretching is expected to play a role. There are also differences in the behavior of polystyrene melts and other systems investigated. Taking together exiting data indicate that the universality of the tube model may break down at large strain rates. It is possible that the monomeric friction coefficient depends sensitively on molecular architecture and the surrounding environment. The presence of pendant groups on the monomer background may influence the friction coefficient. Predicting this apriori remains a challenge. Additionally we show that the parameter λmax/Z, where λmax is the ratio of the maximum length of a polymer chain to its equilibrium length, influences the flow behavior to the extent that fluids having equal values of λmax/Z demonstrate similar rheological behavior at all deformation rates when the extensional flow response is suitably scaled. We also compare our results with those obtained on other polymer melts in uniaxial extensional flow reported previously in literature.
AbstractList We examine the influence of the number of entanglements per chain (Z) on the uniaxial extensional rheology of polymer melts and concentrated solutions. We subject fluids with wide range of Z (13–51) to uniaxial extensional flow at strain rates that also spans a wide range: starting at strain rates that much less than the inverse of the longest measurable relaxation time of the chains to strain rates that are in excess of the order of the inverse of the Rouse time of the chain. The results show that the value of Z critically influences extensional flow at all strain rates examined. The combination of results presented here and those from recent literature clearly establish areas where the agreement between tube theory and experiments is less than satisfactory. These differences are particularly evident at strain rates wherein chain stretching is expected to play a role. There are also differences in the behavior of polystyrene melts and other systems investigated. Taking together exiting data indicate that the universality of the tube model may break down at large strain rates. It is possible that the monomeric friction coefficient depends sensitively on molecular architecture and the surrounding environment. The presence of pendant groups on the monomer background may influence the friction coefficient. Predicting this apriori remains a challenge. Additionally we show that the parameter λmax/Z, where λmax is the ratio of the maximum length of a polymer chain to its equilibrium length, influences the flow behavior to the extent that fluids having equal values of λmax/Z demonstrate similar rheological behavior at all deformation rates when the extensional flow response is suitably scaled. We also compare our results with those obtained on other polymer melts in uniaxial extensional flow reported previously in literature.
We examine the influence of the number of entanglements per chain (Z) on the uniaxial extensional rheology of polymer melts and concentrated solutions. We subject fluids with wide range of Z (13–51) to uniaxial extensional flow at strain rates that also spans a wide range: starting at strain rates that much less than the inverse of the longest measurable relaxation time of the chains to strain rates that are in excess of the order of the inverse of the Rouse time of the chain. The results show that the value of Z critically influences extensional flow at all strain rates examined. The combination of results presented here and those from recent literature clearly establish areas where the agreement between tube theory and experiments is less than satisfactory. These differences are particularly evident at strain rates wherein chain stretching is expected to play a role. There are also differences in the behavior of polystyrene melts and other systems investigated. Taking together exiting data indicate that the universality of the tube model may break down at large strain rates. It is possible that the monomeric friction coefficient depends sensitively on molecular architecture and the surrounding environment. The presence of pendant groups on the monomer background may influence the friction coefficient. Predicting this apriori remains a challenge. Additionally we show that the parameter λₘₐₓ/Z, where λₘₐₓ is the ratio of the maximum length of a polymer chain to its equilibrium length, influences the flow behavior to the extent that fluids having equal values of λₘₐₓ/Z demonstrate similar rheological behavior at all deformation rates when the extensional flow response is suitably scaled. We also compare our results with those obtained on other polymer melts in uniaxial extensional flow reported previously in literature.
Author Nguyen, D. A
Bhattacharjee, P. K
Sridhar, T
Acharya, Mohini
AuthorAffiliation Monash University
Department of Chemical Engineering
AuthorAffiliation_xml – name: Monash University
– name: Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: T
  surname: Sridhar
  fullname: Sridhar, T
  email: tam.sridhar@monash.edu
– sequence: 2
  givenname: Mohini
  surname: Acharya
  fullname: Acharya, Mohini
– sequence: 3
  givenname: D. A
  surname: Nguyen
  fullname: Nguyen, D. A
– sequence: 4
  givenname: P. K
  surname: Bhattacharjee
  fullname: Bhattacharjee, P. K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28259985$$DView record in Pascal Francis
BookMark eNptkE1LAzEURYNUsK0u_AfZCLoYm2SSmcxSSq2CUvFjHTKZxE5Jk5pkwP57p7S6kK7e5tzLu2cEBs47DcAlRrcYETxZS4owwXk4AUPMCMoYz9kADBEiNKtIVZ6BUYwrhDBmNB-C-cLBtNRw9p20i6130sLXpfbWf26hN_DF2-1aB_isbYpQugZOvVPapSCTbuCbt13qU_EcnBppo7443DH4uJ-9Tx-yp8X8cXr3lMmc85TVVUOLmnLCTcEq3BQNMw1RipEcK1kaXBeU4pyVtGSaFaZSnBJSUyqLupIa5WNwve_dBP_V6ZjEuo1KWyud9l0UBHGKigJR1qNXB1RGJa0J0qk2ik1o1zJsBeGEVRXfcZM9p4KPMWgjVJvkblU_srUCI7FTK_7U9ombf4nf0mPs4Qupolj5LvSG4xHuB9Wkhfg
CODEN MAMOBX
CitedBy_id crossref_primary_10_1021_acs_macromol_0c00508
crossref_primary_10_1016_j_polymer_2014_12_018
crossref_primary_10_1016_j_eurpolymj_2015_09_022
crossref_primary_10_1021_acs_macromol_5b00757
crossref_primary_10_1021_acs_macromol_3c02648
crossref_primary_10_1021_acs_macromol_0c00076
crossref_primary_10_1678_rheology_48_259
crossref_primary_10_1103_PhysRevLett_121_047801
crossref_primary_10_1678_rheology_46_207
crossref_primary_10_1021_acs_macromol_1c02262
crossref_primary_10_1021_acs_macromol_8b01954
crossref_primary_10_3390_polym14040741
crossref_primary_10_1021_acs_macromol_9b00314
crossref_primary_10_1021_ma500357g
crossref_primary_10_1002_pen_25641
crossref_primary_10_1016_j_jnnfm_2025_105396
crossref_primary_10_1021_acs_macromol_5b00849
crossref_primary_10_1103_PhysRevLett_115_078302
crossref_primary_10_1678_rheology_50_127
crossref_primary_10_1122_1_5100671
crossref_primary_10_1122_8_0000409
crossref_primary_10_1021_acsmacrolett_9b00772
crossref_primary_10_1021_acs_macromol_0c02542
crossref_primary_10_1063_5_0050859
crossref_primary_10_1021_acs_macromol_6b00519
crossref_primary_10_1021_acs_macromol_8b02319
crossref_primary_10_1122_1_5110027
crossref_primary_10_1016_j_progpolymsci_2020_101325
crossref_primary_10_1063_5_0076347
crossref_primary_10_1103_PhysRevLett_122_059804
crossref_primary_10_4325_seikeikakou_29_238
crossref_primary_10_1021_acs_macromol_6b02053
crossref_primary_10_1088_0953_8984_27_47_473002
crossref_primary_10_1678_rheology_43_63
crossref_primary_10_1122_1_4983828
crossref_primary_10_1122_1_4927919
crossref_primary_10_1038_s41598_018_36596_6
crossref_primary_10_1021_acs_macromol_0c00693
crossref_primary_10_1021_acs_macromol_6b00823
crossref_primary_10_1063_5_0060120
crossref_primary_10_1122_1_4922795
crossref_primary_10_1021_acs_macromol_4c00449
crossref_primary_10_1021_acs_macromol_4c02687
crossref_primary_10_1021_ma5016165
crossref_primary_10_1039_D4SM00219A
crossref_primary_10_1678_rheology_50_305
crossref_primary_10_4325_seikeikakou_27_271
crossref_primary_10_1007_s13367_019_0026_1
crossref_primary_10_1007_s00396_016_3907_6
crossref_primary_10_1103_PhysRevLett_116_088301
crossref_primary_10_1016_j_polymer_2016_05_019
crossref_primary_10_1039_C7SM00126F
Cites_doi 10.1021/ma034279q
10.1146/annurev.fluid.34.083001.125207
10.1122/1.3549296
10.1021/ma0118623
10.1103/PhysRevLett.81.725
10.1122/1.550372
10.1122/1.1402661
10.1016/0377-0257(91)87012-M
10.1021/mz400319v
10.1021/ma202525v
10.1021/ma035501u
10.1021/ma4008434
10.1021/ma301368d
10.1122/1.1530625
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1021/ma401213r
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
EISSN 1520-5835
EndPage 386
ExternalDocumentID 28259985
10_1021_ma401213r
d217116436
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
ROL
TN5
TWZ
UI2
VF5
VG9
W1F
WH7
X
YZZ
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
.GJ
1WB
6TJ
AAYOK
ABHMW
ACRPL
ADNMO
AETEA
AEYZD
AFFNX
ANPPW
ANTXH
EJD
IQODW
MVM
RNS
YYP
7S9
L.6
ID FETCH-LOGICAL-a388t-b9d46b4828f6591d6d5fd2cc5231ca7f1b6441357475e56f9c8422b44a6b9ae03
IEDL.DBID ACS
ISSN 0024-9297
1520-5835
IngestDate Fri Jul 11 06:33:20 EDT 2025
Wed Apr 02 07:25:10 EDT 2025
Tue Jul 01 03:46:23 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Thu Aug 27 13:42:11 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rheological model
Stress relaxation
Polymer solutions
Polymer melts
Theoretical study
Molecular entanglement
Elongational flow
Modeling
Concentrated solution
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a388t-b9d46b4828f6591d6d5fd2cc5231ca7f1b6441357475e56f9c8422b44a6b9ae03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2084066045
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2084066045
pascalfrancis_primary_28259985
crossref_citationtrail_10_1021_ma401213r
crossref_primary_10_1021_ma401213r
acs_journals_10_1021_ma401213r
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-14
PublicationDateYYYYMMDD 2014-01-14
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-14
  day: 14
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Macromolecules
PublicationTitleAlternate Macromolecules
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Doi M. (ref1/cit1) 1986
Kushwaha A. (ref17/cit17) 2011; 55
Acharya M. V. (ref10/cit10) 2008
Bach A. (ref4/cit4) 2003; 36
Milner S. T. (ref11/cit11) 1998; 81
Bhattacharjee P. K. (ref2/cit2) 2003; 47
Bhattacharjee P. K. (ref3/cit3) 2002; 35
Mckinley G. H. (ref16/cit16) 2002; 34
Yaoita T. (ref7/cit7) 2012; 45
Fetters L. J. (ref13/cit13) 2006
Huang Q. (ref8/cit8) 2013; 46
Marrucci G. (ref18/cit18) 2001; 45
Marrucci G. (ref5/cit5) 2004; 37
Sridhar T. (ref14/cit14) 1991; 40
Huang Q. (ref9/cit9) 2013; 2
Ianniruberto G. (ref6/cit6) 2012; 45
Tirtaatmadja V. (ref15/cit15) 1993; 37
Larson R. G. (ref12/cit12) 2003; 47
References_xml – volume: 36
  start-page: 5174
  year: 2003
  ident: ref4/cit4
  publication-title: Macromolecules
  doi: 10.1021/ma034279q
– volume: 34
  start-page: 1305
  year: 2002
  ident: ref16/cit16
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.34.083001.125207
– volume: 55
  start-page: 463
  year: 2011
  ident: ref17/cit17
  publication-title: J. Rheol.
  doi: 10.1122/1.3549296
– volume: 35
  start-page: 10131
  year: 2002
  ident: ref3/cit3
  publication-title: Macromolecules
  doi: 10.1021/ma0118623
– volume: 81
  start-page: 725
  year: 1998
  ident: ref11/cit11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.725
– volume: 37
  start-page: 1081
  year: 1993
  ident: ref15/cit15
  publication-title: J. Rheol.
  doi: 10.1122/1.550372
– volume: 45
  start-page: 1305
  year: 2001
  ident: ref18/cit18
  publication-title: J. Rheol.
  doi: 10.1122/1.1402661
– volume: 47
  start-page: 808
  year: 2003
  ident: ref12/cit12
  publication-title: J. Rheol.
– volume: 40
  start-page: 271
  year: 1991
  ident: ref14/cit14
  publication-title: J. Non-Newtonian Fluid Mech.
  doi: 10.1016/0377-0257(91)87012-M
– volume: 2
  start-page: 741
  year: 2013
  ident: ref9/cit9
  publication-title: ACS Macro Letter
  doi: 10.1021/mz400319v
– volume-title: Physical properties of polymers handbook
  year: 2006
  ident: ref13/cit13
– volume: 45
  start-page: 2773
  year: 2012
  ident: ref7/cit7
  publication-title: Macromolecules
  doi: 10.1021/ma202525v
– volume: 37
  start-page: 3934
  year: 2004
  ident: ref5/cit5
  publication-title: Macromolecules
  doi: 10.1021/ma035501u
– volume: 46
  start-page: 5026
  year: 2013
  ident: ref8/cit8
  publication-title: Macromolecules
  doi: 10.1021/ma4008434
– volume-title: International Congress on Rheology
  year: 2008
  ident: ref10/cit10
– volume: 45
  start-page: 8058
  year: 2012
  ident: ref6/cit6
  publication-title: Macromolecules
  doi: 10.1021/ma301368d
– volume-title: The theory of polymer dynamics
  year: 1986
  ident: ref1/cit1
– volume: 47
  start-page: 269
  year: 2003
  ident: ref2/cit2
  publication-title: J. Rheol.
  doi: 10.1122/1.1530625
SSID ssj0011543
Score 2.359622
Snippet We examine the influence of the number of entanglements per chain (Z) on the uniaxial extensional rheology of polymer melts and concentrated solutions. We...
SourceID proquest
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 379
SubjectTerms Applied sciences
deformation
Exact sciences and technology
friction
melting
Organic polymers
Physicochemistry of polymers
polystyrenes
prediction
Properties and characterization
rheological properties
rheology
Rheology and viscoelasticity
Solution and gel properties
Title On the Extensional Rheology of Polymer Melts and Concentrated Solutions
URI http://dx.doi.org/10.1021/ma401213r
https://www.proquest.com/docview/2084066045
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9xADLYWegAJlfKougVWw-PAJZBMJpPMEW2BFRIt4iFxi-apSl2yaJOVoL--nmQTFQHtJSdHGtnj-HNsfwY4sNqlhodpoIxjAUszEUiGD7w-1AgbhSryA86X3_nojl3cJ_c92H-ngk-j4wfJat6x6QJ8oByd1-Of4U1XKkAM0JSRKQsw1qctfdDfr_rQo8sXoWflUZaoBdesr3j1Ja7Dy9kqfGuHdJqukl9Hs0od6d-vORv_dfJP8HEOL8lJcx_WoGeLdVgatlvdNuD8R0EQ85HTp7p13eNwcv2zXu_7TCaOXE3Gzw92Si7tuCqJLAwZ-sHGoiaxNaT7i7YJd2ent8NRMF-mEMg4y6pACcO4YphgOZ6IyHCTOEO1xkQ00jJ1kfLIKE4wvUhswp3QGaNUMSa5EtKG8WdYLCaF_QKEOyViy0NN69gmhI0to6ER6P1ZIkwfBqjtfO4MZV7XuWmUd_row2FriFzPqcj9RozxW6J7nehjw7_xltDghTU7ST-Yi_lk0ofd1rw56tvXRGRhJ7MypyFmuJwjsP36v1NvwTKiJd-zE0RsGxar6czuICKp1KC-kX8ALorYmg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoHKhUlUeL2AKLqXroJZA4jhMf0QpYWpYiChK3yE8hsZtFm6xU-PWMnWx4SvSS0yRyZiaebzKebxD6YZRNNQvTQGpLA5pmPBAULuA-RHMThTJyDc6DU9a_pL-ukquGJsf1wsAiSnhS6Yv4j-wC0d5IUE8_NvmAFgCEEOfN-72_bcUAoEBdTSY0gJCfzliEnt7qIpAqn0WgT7eiBGXYeorFqw3ZR5nDpXpckV-fP1xyszut5K66f0Hd-H8vsIw-N2AT79fesYLmTLGKFnuzGW9f0NGfAgMCxAf__EF2h8rx-bUf9nuHxxafjYd3IzPBAzOsSiwKjXuuzbHwlLYat__UvqLLw4OLXj9oRisEIs6yKpBcUyYppFuWJTzSTCdWE6UgLY2USG0kHU6KE0g2EpMwy1VGCZGUCia5MGG8huaLcWHWEWZW8tiwUBEf6Tg3saEk1Bz2gizhuoO6oI68-TTK3Fe9SZS3-uignzN75KohJnfzMYZviX5vRW9rNo63hLrPjNpKujZdyC6TDtqZWTkHfbsKiSjMeFrmJIR8lzGAud_eW_U2WuxfDE7yk-PT3xvoI-Aod5oniOgmmq8mU7MFWKWSXe-kD_3d4Ps
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8IJmBiUETjCZ4r4cGXQrvdbruP5OQAlY-gJLw1-xkTj97l2kvEv57ZvV4DSoIvfZputrOzO7_p7PwGYMdqlxse55EyjkUsL0QkGT7QfKgRNolV4gucT0750SX7cpVdtYGir4XBSdQ4Uh2S-H5XT4xrGQaSvWvJAgXZdAme-nSdt-j9wfcua4BwYJ5RpixCt58vmITuvuq9kK7veaHnE1mjQty8k8U_h3LwNMMXcNbNMVww-bU7a9Su_vMXfeP_f8RLWGtBJ9mfW8k6PLHVK1gdLHq9bcDhWUUQCZKD3-FCu0fn5OJnaPp7Q8aOnI9HN9d2Sk7sqKmJrAwZ-HLHKlDbGtL9W3sNl8ODH4OjqG2xEMm0KJpICcO4Yhh2OZ6JxHCTOUO1xvA00TJ3ifJ4Kc0w6Mhsxp3QBaNUMSa5EtLG6RtYrsaVfQuEOyVSy2NNg8cTwqaW0dgIPBOKTJge9FElZbtF6jJkv2lSdvrowafFmpS6JSj3fTJGD4lud6KTOSvHQ0L9ewvbSfpyXYwysx58XKx0ifr2mRJZ2fGsLmmMcS_nCHffPTbrD7By_nlYfjs-_boJzxBO-Us9UcK2YLmZzux7hCyN6gc7vQV5MuN-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Extensional+Rheology+of+Polymer+Melts+and+Concentrated+Solutions&rft.jtitle=Macromolecules&rft.au=SRIDHAR%2C+T&rft.au=ACHARYA%2C+Mohini&rft.au=NGUYEN%2C+D.+A&rft.au=BHATTACHARJEE%2C+P.+K&rft.date=2014-01-14&rft.pub=American+Chemical+Society&rft.issn=0024-9297&rft.volume=47&rft.issue=1&rft.spage=379&rft.epage=386&rft_id=info:doi/10.1021%2Fma401213r&rft.externalDBID=n%2Fa&rft.externalDocID=28259985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-9297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-9297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-9297&client=summon