An orientation based correction method for SfM-MVS point clouds—Implications for field geology
Advancements in computing capabilities over the last decade have allowed for the routine creation of Structure from Motion-Multiview Stereo (SfM-MVS) terrain models that can serve as base for high resolution geologic mapping. Outcrops models developed from these systems are high-resolution, photo-re...
Saved in:
Published in | Journal of structural geology Vol. 113; pp. 76 - 89 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Advancements in computing capabilities over the last decade have allowed for the routine creation of Structure from Motion-Multiview Stereo (SfM-MVS) terrain models that can serve as base for high resolution geologic mapping. Outcrops models developed from these systems are high-resolution, photo-realistic 3D base providing unprecedented capability for geometric analysis. Yet, before this technology becomes a mainstay of field geology, the potential errors associated with it must be well understood. Here, we compare orientation measurements from multi-point analyses on the SfM-MVS point clouds to those taken in the field with the objective of resolving the geometry of complex folds within the outcrop. We also analyzed two point clouds of the same exposure created from different ground-based cameras to compare the ranges of error. We found that the point clouds produced from ground-based photos exhibited significant rigid-body rotation relative to the real world despite well distributed ground control, yet the models maintained a realistic scale and internal geometry. To correct the error the model values were rotated and the discrepancy reassessed. The two point clouds produced similar results, however, the Sony compact-digital-camera-based point cloud ultimately corresponded more closely to field values. We suggest that the primary cause of the error in the point clouds was GPS-based and was enhanced by the lack of significant topographic relief in our camera positions, allowing rigid-body rotations along the axis of the photographic array. This outcome suggests that care must be taken when GPS errors are a significant fraction of the outcrop size and relatively 2D outcrops imaged by a relatively 1D image array are subject to rotation errors that are difficult to remove without high-resolution ground control. Short of using a UAV and/or RTK-GPS we show how this can be resolved simply by collecting several known orientations in the field, which can then be used to orient the model more accurately, akin to ground control points. This addition is a key step if this method is to be used for more thorough analysis and is a general method that could be used to orient virtual outcrops with no geographic reference.
•SfM-MVS point cloud models allow for surface data collection post-field.•The benefits of SfM-MVS points can be hindered by error in consumer grade GPS units.•We present a straightforward rigid body correction method to address this issue. |
---|---|
AbstractList | Advancements in computing capabilities over the last decade have allowed for the routine creation of Structure from Motion-Multiview Stereo (SfM-MVS) terrain models that can serve as base for high resolution geologic mapping. Outcrops models developed from these systems are high-resolution, photo-realistic 3D base providing unprecedented capability for geometric analysis. Yet, before this technology becomes a mainstay of field geology, the potential errors associated with it must be well understood. Here, we compare orientation measurements from multi-point analyses on the SfM-MVS point clouds to those taken in the field with the objective of resolving the geometry of complex folds within the outcrop. We also analyzed two point clouds of the same exposure created from different ground-based cameras to compare the ranges of error. We found that the point clouds produced from ground-based photos exhibited significant rigid-body rotation relative to the real world despite well distributed ground control, yet the models maintained a realistic scale and internal geometry. To correct the error the model values were rotated and the discrepancy reassessed. The two point clouds produced similar results, however, the Sony compact-digital-camera-based point cloud ultimately corresponded more closely to field values. We suggest that the primary cause of the error in the point clouds was GPS-based and was enhanced by the lack of significant topographic relief in our camera positions, allowing rigid-body rotations along the axis of the photographic array. This outcome suggests that care must be taken when GPS errors are a significant fraction of the outcrop size and relatively 2D outcrops imaged by a relatively 1D image array are subject to rotation errors that are difficult to remove without high-resolution ground control. Short of using a UAV and/or RTK-GPS we show how this can be resolved simply by collecting several known orientations in the field, which can then be used to orient the model more accurately, akin to ground control points. This addition is a key step if this method is to be used for more thorough analysis and is a general method that could be used to orient virtual outcrops with no geographic reference.
•SfM-MVS point cloud models allow for surface data collection post-field.•The benefits of SfM-MVS points can be hindered by error in consumer grade GPS units.•We present a straightforward rigid body correction method to address this issue. |
Author | Fleming, Zachariah Pavlis, Terry |
Author_xml | – sequence: 1 givenname: Zachariah surname: Fleming fullname: Fleming, Zachariah email: zfleming@miners.utep.edu – sequence: 2 givenname: Terry surname: Pavlis fullname: Pavlis, Terry email: tlpavlis@utep.edu |
BookMark | eNp9kEtOwzAURS1UJNrCAph5Awl2nDiOGFUVn0qtGBSYGsef4iiNKzsgdcYiWCErwW0YMejoSVfvPL17JmDUuU4DcI1RihGmN03ahE2aIcxSVKQI52dgjFlJEhyzERgjXOGE4RxfgEkIDYpMgfMxeJt10Hmru1701nWwFkErKJ33Wh6Dre7fnYLGebg2q2T1uoY7Z7seytZ9qPDz9b3Y7lorj3g47hmrWwU32rVus78E50a0QV_9zSl4ub97nj8my6eHxXy2TARhtE_qXFXxRUnLKhNFVVaaMM1kXitkKGUVM7igTJqMFFQaWVdlLjJBKMllpjJGyBSUw13pXQheGy7t0Kn3wrYcI34QxRseRfGDKI4KHkVFEv8jd95uhd-fZG4HRsdKn1Z7HmSUKLWyB3FcOXuC_gXl34TR |
CitedBy_id | crossref_primary_10_1364_OE_460640 crossref_primary_10_1029_2024EA003607 crossref_primary_10_1590_2317_4889201800201898 crossref_primary_10_3390_rs13051007 crossref_primary_10_3390_drones4030049 crossref_primary_10_1130_GES02167_1 crossref_primary_10_1016_j_jsg_2020_104266 crossref_primary_10_3390_geosciences13070217 crossref_primary_10_3390_drones4020011 crossref_primary_10_3390_rs12203293 crossref_primary_10_1016_j_earscirev_2022_103969 crossref_primary_10_5194_gc_5_1_2022 crossref_primary_10_3390_rs12213616 crossref_primary_10_1016_j_jsg_2022_104567 crossref_primary_10_3390_drones5040114 crossref_primary_10_1111_sed_12855 crossref_primary_10_1130_GES02031_1 crossref_primary_10_3390_ijgi9110656 crossref_primary_10_3390_s21051649 crossref_primary_10_3390_s19245352 crossref_primary_10_3390_min11121301 |
Cites_doi | 10.1016/j.jsg.2016.03.009 10.1002/esp.4142 10.1016/j.geomorph.2012.08.021 10.1130/GES01005.1 10.1016/j.cageo.2013.10.013 10.1007/s11263-009-0232-2 10.1038/293133a0 10.1130/GES00104.1 10.1016/j.jsg.2017.04.004 10.1016/S0924-2716(99)00014-3 10.1130/GSATG313A.1 10.1130/GES00993.1 10.1007/s11263-007-0107-3 10.1130/0016-7606(1988)100<1738:BARETA>2.3.CO;2 10.1130/0091-7613(1990)018<0520:BMCSDV>2.3.CO;2 10.1016/j.jsg.2014.10.007 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jsg.2018.05.014 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1873-1201 |
EndPage | 89 |
ExternalDocumentID | 10_1016_j_jsg_2018_05_014 S0191814118302852 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFMIJ AFTJW AGCDD AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LY3 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSZ T5K TN5 UQL VH1 VJK WUQ XJT XOL XPP ZCA ZKB ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a386t-b4d9191c6792a5979e38e8c4bd0f66898f1568cf2356cfcb974a2a3634c2d2833 |
IEDL.DBID | .~1 |
ISSN | 0191-8141 |
IngestDate | Tue Jul 01 03:17:54 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Fri Feb 23 02:29:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Georeference Structure from motion Photogrammetry Rotations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a386t-b4d9191c6792a5979e38e8c4bd0f66898f1568cf2356cfcb974a2a3634c2d2833 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jsg_2018_05_014 crossref_primary_10_1016_j_jsg_2018_05_014 elsevier_sciencedirect_doi_10_1016_j_jsg_2018_05_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationTitle | Journal of structural geology |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Pavlis, Rutkofske, Guerrero, Serpa (bib21) 2014; 10 Tavani, Corradetti, Billi (bib25) 2016; 86 Bistacchi, Balsamo, Storti, Mozafari, Swennen, Solum, Tueckmantel, Taberner (bib4) 2015; 11 Bemis, Micklethwaite, Turner, James, Akciz, Thiele, Bangash (bib2) 2014; 69 Furukawa, Curless, Seitz, Szeliski (bib10) 2010 Furukawa, Hernandez (bib11) 2015 Pavlis, Mason (bib20) 2017; 27 Westoby, Brasington, Glasser, Hambrey, Reynolds (bib28) 2012; 179 Brush (bib7) 2015 Kaplan, Hegarty (bib16) 2005 Snavely, Seitz, Szeliski (bib24) 2008; 80 Schober, Exner (bib22) 2011; 104 Baltsavias (bib1) 1999; 54 Cawood, Bond, Howell, Butler, Totake (bib9) 2017; 98 White, Alfarhan, Ahmed, Aiken, Anonymous (bib29) 2008; 40 Carrivick, Smith, Quincey (bib8) 2016 Bidgoli, Amir, Walker, Stockli, Andrew, Caskey (bib3) 2015 Holm, Wernicke (bib15) 1990; 18 Wernicke, Axen, Snow (bib27) 1988; 100 Furukawa, Ponce (bib12) 2009; 84 Brown, Lowe (bib6) 2005 Glendell, McShane, Farrow, James, Quinton, Anderson, Evans, Benaud, Rawlins, Morgan, Jones, Kirkham, DeBell, Quine (bib13) 2017 Pavlis, Brush, Cobb, Anonymous (bib19) 2015; 47 Bonnaffe, Jennette, Andrews (bib5) 2007; 3 Longuet-Higgins (bib17) 1981; 293 Tavani, Granado, Corradetti, Girundo, Iannace, Arbués, Muñoz, Mazzoli (bib26) 2014; 63 Zaidman (bib30) 2008 Cawood (10.1016/j.jsg.2018.05.014_bib9) 2017; 98 Longuet-Higgins (10.1016/j.jsg.2018.05.014_bib17) 1981; 293 Wernicke (10.1016/j.jsg.2018.05.014_bib27) 1988; 100 Furukawa (10.1016/j.jsg.2018.05.014_bib12) 2009; 84 Kaplan (10.1016/j.jsg.2018.05.014_bib16) 2005 Pavlis (10.1016/j.jsg.2018.05.014_bib20) 2017; 27 Baltsavias (10.1016/j.jsg.2018.05.014_bib1) 1999; 54 Westoby (10.1016/j.jsg.2018.05.014_bib28) 2012; 179 Bonnaffe (10.1016/j.jsg.2018.05.014_bib5) 2007; 3 Brush (10.1016/j.jsg.2018.05.014_bib7) 2015 Schober (10.1016/j.jsg.2018.05.014_bib22) 2011; 104 Bemis (10.1016/j.jsg.2018.05.014_bib2) 2014; 69 Glendell (10.1016/j.jsg.2018.05.014_bib13) 2017 Bistacchi (10.1016/j.jsg.2018.05.014_bib4) 2015; 11 Furukawa (10.1016/j.jsg.2018.05.014_bib10) 2010 Snavely (10.1016/j.jsg.2018.05.014_bib24) 2008; 80 Brown (10.1016/j.jsg.2018.05.014_bib6) 2005 Carrivick (10.1016/j.jsg.2018.05.014_bib8) 2016 Zaidman (10.1016/j.jsg.2018.05.014_bib30) 2008 White (10.1016/j.jsg.2018.05.014_bib29) 2008; 40 Holm (10.1016/j.jsg.2018.05.014_bib15) 1990; 18 Pavlis (10.1016/j.jsg.2018.05.014_bib19) 2015; 47 Tavani (10.1016/j.jsg.2018.05.014_bib25) 2016; 86 Pavlis (10.1016/j.jsg.2018.05.014_bib21) 2014; 10 Furukawa (10.1016/j.jsg.2018.05.014_bib11) 2015 Tavani (10.1016/j.jsg.2018.05.014_bib26) 2014; 63 Bidgoli (10.1016/j.jsg.2018.05.014_bib3) 2015 |
References_xml | – start-page: 1 year: 2015 end-page: 141 ident: bib7 article-title: Evaluating Methods of Field-based 3D Visualization and Their Application to Mapping Metamorphic Terranes: an Example from the Panamint Mountains, California – volume: 63 start-page: 44 year: 2014 end-page: 53 ident: bib26 article-title: Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via open plot and Photoscan: an example from the Khaviz Anticline (Iran) publication-title: Comput. Geosci. – volume: 18 start-page: 520 year: 1990 end-page: 523 ident: bib15 article-title: Black Mountains crustal section, Death Valley extended terrain, California publication-title: Geology – volume: 100 start-page: 1738 year: 1988 end-page: 1757 ident: bib27 article-title: Basin and range extensional tectonics at the latitude of Las Vegas, Nevada publication-title: Geol. Soc. Am. Bull. – start-page: 166 year: 2015 ident: bib11 article-title: Multi-view Stereo: a Tutorial: Place of Publication Not Identified – volume: 98 start-page: 67 year: 2017 end-page: 82 ident: bib9 article-title: LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models publication-title: J. Struct. Geol. – start-page: 1434 year: 2010 end-page: 1441 ident: bib10 article-title: Towards Internet-scale multi-view stereo publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 179 start-page: 300 year: 2012 end-page: 314 ident: bib28 article-title: ‘Structure-from-Motion' photogrammetry: a low-cost, effective tool for geoscience applications publication-title: Geomorphology – volume: 11 start-page: 2031 year: 2015 end-page: 2048 ident: bib4 article-title: Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy) publication-title: Geosphere – start-page: 56 year: 2005 end-page: 63 ident: bib6 article-title: Unsupervised 3D object recognition and reconstruction in unordered datasets publication-title: Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05) – volume: 69 start-page: 163 year: 2014 end-page: 178 ident: bib2 article-title: Ground-based and UAV-Based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology publication-title: J. Struct. Geol. – volume: 104 start-page: 73 year: 2011 end-page: 79 ident: bib22 article-title: 3D structural modelling of an outcrop-scale fold train using photogrammetry and GPS mapping publication-title: Aust. J. Earth Sci. – volume: 40 start-page: 423 year: 2008 end-page: 424 ident: bib29 article-title: Structural and orientation analysis of 3D virtual outcrop models publication-title: Abstr. Progr. Geol. Soc. Am. – year: 2015 ident: bib3 article-title: Low-temperature Thermochronology of the Black and Panamint Mountains, Death Valley, California: Implications for Geodynamic Controls on Cenozoic Intraplate Strain: Lithosphere – start-page: 211 year: 2016 ident: bib8 article-title: Structure from Motion in the Geosciences – volume: 80 start-page: 189 year: 2008 end-page: 210 ident: bib24 article-title: Modeling the world from internet photo collections publication-title: Int. J. Comput. Vis. – volume: 293 start-page: 133 year: 1981 end-page: 135 ident: bib17 article-title: A computer algorithm for reconstructing a scene from two projections publication-title: Nature – start-page: 718 year: 2005 ident: bib16 article-title: Understanding GPS: Principles and Applications – volume: 54 start-page: 83 year: 1999 end-page: 94 ident: bib1 article-title: A comparison between photogrammetry and laser scanning publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 47 start-page: 407 year: 2015 ident: bib19 article-title: Paper mapping is dead and flat map geologic analysis has one foot in the grave; the new revolution in three dimensional structural analysis using inexpensive terrain models and visualization software publication-title: Abstr. Progr. Geol. Soc. Am. – volume: 3 start-page: 501 year: 2007 end-page: 510 ident: bib5 article-title: A method for acquiring and processing ground-based lidar data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models publication-title: Geosphere – volume: 10 start-page: 732 year: 2014 end-page: 756 ident: bib21 article-title: Structural overprinting of Mesozoic thrust systems in eastern California and its importance to reconstruction of Neogene extension in the southern Basin and Range publication-title: Geosphere – volume: 86 start-page: 200 year: 2016 end-page: 210 ident: bib25 article-title: High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: the viewpoint importance in structural geology publication-title: J. Struct. Geol. – volume: 84 start-page: 257 year: 2009 end-page: 268 ident: bib12 article-title: Accurate camera calibration from multi-view stereo and bundle adjustment publication-title: Int. J. Comput. Vis. – year: 2017 ident: bib13 article-title: Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion publication-title: Earth Surf. Processes and Landf. – volume: 27 start-page: 4 year: 2017 end-page: 10 ident: bib20 article-title: The new world of 3D geologic mapping publication-title: GSA Today – year: 2008 ident: bib30 article-title: Global Positioning System Wide Area Augmentation System (WAAS) Performance Standard – year: 2015 ident: 10.1016/j.jsg.2018.05.014_bib3 – start-page: 166 year: 2015 ident: 10.1016/j.jsg.2018.05.014_bib11 – volume: 47 start-page: 407 year: 2015 ident: 10.1016/j.jsg.2018.05.014_bib19 article-title: Paper mapping is dead and flat map geologic analysis has one foot in the grave; the new revolution in three dimensional structural analysis using inexpensive terrain models and visualization software publication-title: Abstr. Progr. Geol. Soc. Am. – start-page: 56 year: 2005 ident: 10.1016/j.jsg.2018.05.014_bib6 article-title: Unsupervised 3D object recognition and reconstruction in unordered datasets – start-page: 211 year: 2016 ident: 10.1016/j.jsg.2018.05.014_bib8 – start-page: 1434 year: 2010 ident: 10.1016/j.jsg.2018.05.014_bib10 article-title: Towards Internet-scale multi-view stereo – volume: 86 start-page: 200 year: 2016 ident: 10.1016/j.jsg.2018.05.014_bib25 article-title: High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: the viewpoint importance in structural geology publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2016.03.009 – year: 2017 ident: 10.1016/j.jsg.2018.05.014_bib13 article-title: Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion publication-title: Earth Surf. Processes and Landf. doi: 10.1002/esp.4142 – volume: 179 start-page: 300 year: 2012 ident: 10.1016/j.jsg.2018.05.014_bib28 article-title: ‘Structure-from-Motion' photogrammetry: a low-cost, effective tool for geoscience applications publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.08.021 – volume: 11 start-page: 2031 year: 2015 ident: 10.1016/j.jsg.2018.05.014_bib4 article-title: Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy) publication-title: Geosphere doi: 10.1130/GES01005.1 – start-page: 718 year: 2005 ident: 10.1016/j.jsg.2018.05.014_bib16 – volume: 63 start-page: 44 year: 2014 ident: 10.1016/j.jsg.2018.05.014_bib26 article-title: Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via open plot and Photoscan: an example from the Khaviz Anticline (Iran) publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.10.013 – volume: 40 start-page: 423 year: 2008 ident: 10.1016/j.jsg.2018.05.014_bib29 article-title: Structural and orientation analysis of 3D virtual outcrop models publication-title: Abstr. Progr. Geol. Soc. Am. – volume: 84 start-page: 257 year: 2009 ident: 10.1016/j.jsg.2018.05.014_bib12 article-title: Accurate camera calibration from multi-view stereo and bundle adjustment publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0232-2 – volume: 293 start-page: 133 year: 1981 ident: 10.1016/j.jsg.2018.05.014_bib17 article-title: A computer algorithm for reconstructing a scene from two projections publication-title: Nature doi: 10.1038/293133a0 – volume: 3 start-page: 501 year: 2007 ident: 10.1016/j.jsg.2018.05.014_bib5 article-title: A method for acquiring and processing ground-based lidar data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models publication-title: Geosphere doi: 10.1130/GES00104.1 – volume: 104 start-page: 73 year: 2011 ident: 10.1016/j.jsg.2018.05.014_bib22 article-title: 3D structural modelling of an outcrop-scale fold train using photogrammetry and GPS mapping publication-title: Aust. J. Earth Sci. – volume: 98 start-page: 67 year: 2017 ident: 10.1016/j.jsg.2018.05.014_bib9 article-title: LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2017.04.004 – volume: 54 start-page: 83 year: 1999 ident: 10.1016/j.jsg.2018.05.014_bib1 article-title: A comparison between photogrammetry and laser scanning publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/S0924-2716(99)00014-3 – volume: 27 start-page: 4 year: 2017 ident: 10.1016/j.jsg.2018.05.014_bib20 article-title: The new world of 3D geologic mapping publication-title: GSA Today doi: 10.1130/GSATG313A.1 – start-page: 1 year: 2015 ident: 10.1016/j.jsg.2018.05.014_bib7 – volume: 10 start-page: 732 year: 2014 ident: 10.1016/j.jsg.2018.05.014_bib21 article-title: Structural overprinting of Mesozoic thrust systems in eastern California and its importance to reconstruction of Neogene extension in the southern Basin and Range publication-title: Geosphere doi: 10.1130/GES00993.1 – volume: 80 start-page: 189 year: 2008 ident: 10.1016/j.jsg.2018.05.014_bib24 article-title: Modeling the world from internet photo collections publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-007-0107-3 – volume: 100 start-page: 1738 year: 1988 ident: 10.1016/j.jsg.2018.05.014_bib27 article-title: Basin and range extensional tectonics at the latitude of Las Vegas, Nevada publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1988)100<1738:BARETA>2.3.CO;2 – volume: 18 start-page: 520 year: 1990 ident: 10.1016/j.jsg.2018.05.014_bib15 article-title: Black Mountains crustal section, Death Valley extended terrain, California publication-title: Geology doi: 10.1130/0091-7613(1990)018<0520:BMCSDV>2.3.CO;2 – volume: 69 start-page: 163 issue: Part A year: 2014 ident: 10.1016/j.jsg.2018.05.014_bib2 article-title: Ground-based and UAV-Based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2014.10.007 – year: 2008 ident: 10.1016/j.jsg.2018.05.014_bib30 |
SSID | ssj0016514 |
Score | 2.3639507 |
Snippet | Advancements in computing capabilities over the last decade have allowed for the routine creation of Structure from Motion-Multiview Stereo (SfM-MVS) terrain... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 76 |
SubjectTerms | Georeference Photogrammetry Rotations Structure from motion |
Title | An orientation based correction method for SfM-MVS point clouds—Implications for field geology |
URI | https://dx.doi.org/10.1016/j.jsg.2018.05.014 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QjIkX4zPig-zBk0mlj-2yeyREBA1cEMOt7qMlENISKAcvxh_hL_SXONsHwUQ9eGyzk7ZfZufR_WYGoWuHuoIxza2I26FFuBaWpFJaTT9kPuchbLKMbTGg3RF5GPvjCmqXtTCGVlnY_tymZ9a6uNMo0GwsptPGEIITcE8EImQPnKRv7DAhTaPlt28bmodDy_7e3DG_u5zyZDPjeM1WE8PuYnnzTvKzb9ryN50DtF8EiriVv8shqoTxEdq9zwbxvh6jl1aMk-W0qByKsfFGGiszayOrVMD5aGgMMSkeRn2r_zzEi2Qap1jNk7Vefb5_9LbI5Nm6jM2GJ_kjTtCoc_fU7lrFtARLeIymliSaw0cq2uSugDSBhx4LmSJS2xGljLMIUjWmItfzqYqUhERCuMKjHlGuhiDDO0XVOInDM4TBY3FbK5dpzQhsWqmFVNxMtFGS-r6oIbvEKVBFK3Ez0WIelJyxWQDQBgbawPYDgLaGbjYii7yPxl-LSQl-8E0ZArDzv4ud_0_sAu2Zq5zVd4mq6XIdXkGkkcp6pkp1tNPqPXYHX3uU0v4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QjNGL8RnxuQdPJpXSbpfdIyEiKHABDLe1u9uSElIIj4MX44_wF_pLnO2DYKIevLY7aTvZeXW_mQ-hmwp1fMY0t0JuBxbh2rckldKqegHzOA_AyBK0RZc2B-Rx6A0LqJ73whhYZeb7U5-eeOvsSjnTZnkWReUeJCcQnghkyC4ESQ_88BYB8zU0Bndva5xHheYDvnnF_O-q5EebCchrvBgZeBdLp3eSn4PTRsBp7KO9LFPEtfRlDlAhiA_R9kPCxPt6hF5qMZ7Oo6x1KMYmHGmsDNlG0qqAU25oDEkp7oUdq_Pcw7NpFC-xmkxXevH5_tHaQJMn6xI4Gx6ljzhGg8Z9v960MroEy3cZXVqSaA4fqWiVOz7UCTxwWcAUkdoOKWWchVCrMRU6rkdVqCRUEr7ju9QlytGQZbgnqBhP4-AUYQhZ3NbKYVozAlYrtS8VN5Q2SlLP80vIzvUkVDZL3FBaTEQOGhsLUK0wqhW2J0C1JXS7FpmlgzT-Wkxy5Ytvu0GAo_9d7Ox_Ytdop9nvtEW71X06R7vmTgrxu0DF5XwVXELasZRXybb6Ancw1Iw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+orientation+based+correction+method+for+SfM-MVS+point+clouds%E2%80%94Implications+for+field+geology&rft.jtitle=Journal+of+structural+geology&rft.au=Fleming%2C+Zachariah&rft.au=Pavlis%2C+Terry&rft.date=2018-08-01&rft.issn=0191-8141&rft.volume=113&rft.spage=76&rft.epage=89&rft_id=info:doi/10.1016%2Fj.jsg.2018.05.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsg_2018_05_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-8141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-8141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-8141&client=summon |