An orientation based correction method for SfM-MVS point clouds—Implications for field geology

Advancements in computing capabilities over the last decade have allowed for the routine creation of Structure from Motion-Multiview Stereo (SfM-MVS) terrain models that can serve as base for high resolution geologic mapping. Outcrops models developed from these systems are high-resolution, photo-re...

Full description

Saved in:
Bibliographic Details
Published inJournal of structural geology Vol. 113; pp. 76 - 89
Main Authors Fleming, Zachariah, Pavlis, Terry
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Advancements in computing capabilities over the last decade have allowed for the routine creation of Structure from Motion-Multiview Stereo (SfM-MVS) terrain models that can serve as base for high resolution geologic mapping. Outcrops models developed from these systems are high-resolution, photo-realistic 3D base providing unprecedented capability for geometric analysis. Yet, before this technology becomes a mainstay of field geology, the potential errors associated with it must be well understood. Here, we compare orientation measurements from multi-point analyses on the SfM-MVS point clouds to those taken in the field with the objective of resolving the geometry of complex folds within the outcrop. We also analyzed two point clouds of the same exposure created from different ground-based cameras to compare the ranges of error. We found that the point clouds produced from ground-based photos exhibited significant rigid-body rotation relative to the real world despite well distributed ground control, yet the models maintained a realistic scale and internal geometry. To correct the error the model values were rotated and the discrepancy reassessed. The two point clouds produced similar results, however, the Sony compact-digital-camera-based point cloud ultimately corresponded more closely to field values. We suggest that the primary cause of the error in the point clouds was GPS-based and was enhanced by the lack of significant topographic relief in our camera positions, allowing rigid-body rotations along the axis of the photographic array. This outcome suggests that care must be taken when GPS errors are a significant fraction of the outcrop size and relatively 2D outcrops imaged by a relatively 1D image array are subject to rotation errors that are difficult to remove without high-resolution ground control. Short of using a UAV and/or RTK-GPS we show how this can be resolved simply by collecting several known orientations in the field, which can then be used to orient the model more accurately, akin to ground control points. This addition is a key step if this method is to be used for more thorough analysis and is a general method that could be used to orient virtual outcrops with no geographic reference. •SfM-MVS point cloud models allow for surface data collection post-field.•The benefits of SfM-MVS points can be hindered by error in consumer grade GPS units.•We present a straightforward rigid body correction method to address this issue.
AbstractList Advancements in computing capabilities over the last decade have allowed for the routine creation of Structure from Motion-Multiview Stereo (SfM-MVS) terrain models that can serve as base for high resolution geologic mapping. Outcrops models developed from these systems are high-resolution, photo-realistic 3D base providing unprecedented capability for geometric analysis. Yet, before this technology becomes a mainstay of field geology, the potential errors associated with it must be well understood. Here, we compare orientation measurements from multi-point analyses on the SfM-MVS point clouds to those taken in the field with the objective of resolving the geometry of complex folds within the outcrop. We also analyzed two point clouds of the same exposure created from different ground-based cameras to compare the ranges of error. We found that the point clouds produced from ground-based photos exhibited significant rigid-body rotation relative to the real world despite well distributed ground control, yet the models maintained a realistic scale and internal geometry. To correct the error the model values were rotated and the discrepancy reassessed. The two point clouds produced similar results, however, the Sony compact-digital-camera-based point cloud ultimately corresponded more closely to field values. We suggest that the primary cause of the error in the point clouds was GPS-based and was enhanced by the lack of significant topographic relief in our camera positions, allowing rigid-body rotations along the axis of the photographic array. This outcome suggests that care must be taken when GPS errors are a significant fraction of the outcrop size and relatively 2D outcrops imaged by a relatively 1D image array are subject to rotation errors that are difficult to remove without high-resolution ground control. Short of using a UAV and/or RTK-GPS we show how this can be resolved simply by collecting several known orientations in the field, which can then be used to orient the model more accurately, akin to ground control points. This addition is a key step if this method is to be used for more thorough analysis and is a general method that could be used to orient virtual outcrops with no geographic reference. •SfM-MVS point cloud models allow for surface data collection post-field.•The benefits of SfM-MVS points can be hindered by error in consumer grade GPS units.•We present a straightforward rigid body correction method to address this issue.
Author Fleming, Zachariah
Pavlis, Terry
Author_xml – sequence: 1
  givenname: Zachariah
  surname: Fleming
  fullname: Fleming, Zachariah
  email: zfleming@miners.utep.edu
– sequence: 2
  givenname: Terry
  surname: Pavlis
  fullname: Pavlis, Terry
  email: tlpavlis@utep.edu
BookMark eNp9kEtOwzAURS1UJNrCAph5Awl2nDiOGFUVn0qtGBSYGsef4iiNKzsgdcYiWCErwW0YMejoSVfvPL17JmDUuU4DcI1RihGmN03ahE2aIcxSVKQI52dgjFlJEhyzERgjXOGE4RxfgEkIDYpMgfMxeJt10Hmru1701nWwFkErKJ33Wh6Dre7fnYLGebg2q2T1uoY7Z7seytZ9qPDz9b3Y7lorj3g47hmrWwU32rVus78E50a0QV_9zSl4ub97nj8my6eHxXy2TARhtE_qXFXxRUnLKhNFVVaaMM1kXitkKGUVM7igTJqMFFQaWVdlLjJBKMllpjJGyBSUw13pXQheGy7t0Kn3wrYcI34QxRseRfGDKI4KHkVFEv8jd95uhd-fZG4HRsdKn1Z7HmSUKLWyB3FcOXuC_gXl34TR
CitedBy_id crossref_primary_10_1364_OE_460640
crossref_primary_10_1029_2024EA003607
crossref_primary_10_1590_2317_4889201800201898
crossref_primary_10_3390_rs13051007
crossref_primary_10_3390_drones4030049
crossref_primary_10_1130_GES02167_1
crossref_primary_10_1016_j_jsg_2020_104266
crossref_primary_10_3390_geosciences13070217
crossref_primary_10_3390_drones4020011
crossref_primary_10_3390_rs12203293
crossref_primary_10_1016_j_earscirev_2022_103969
crossref_primary_10_5194_gc_5_1_2022
crossref_primary_10_3390_rs12213616
crossref_primary_10_1016_j_jsg_2022_104567
crossref_primary_10_3390_drones5040114
crossref_primary_10_1111_sed_12855
crossref_primary_10_1130_GES02031_1
crossref_primary_10_3390_ijgi9110656
crossref_primary_10_3390_s21051649
crossref_primary_10_3390_s19245352
crossref_primary_10_3390_min11121301
Cites_doi 10.1016/j.jsg.2016.03.009
10.1002/esp.4142
10.1016/j.geomorph.2012.08.021
10.1130/GES01005.1
10.1016/j.cageo.2013.10.013
10.1007/s11263-009-0232-2
10.1038/293133a0
10.1130/GES00104.1
10.1016/j.jsg.2017.04.004
10.1016/S0924-2716(99)00014-3
10.1130/GSATG313A.1
10.1130/GES00993.1
10.1007/s11263-007-0107-3
10.1130/0016-7606(1988)100<1738:BARETA>2.3.CO;2
10.1130/0091-7613(1990)018<0520:BMCSDV>2.3.CO;2
10.1016/j.jsg.2014.10.007
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jsg.2018.05.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-1201
EndPage 89
ExternalDocumentID 10_1016_j_jsg_2018_05_014
S0191814118302852
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFMIJ
AFTJW
AGCDD
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LY3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
TN5
UQL
VH1
VJK
WUQ
XJT
XOL
XPP
ZCA
ZKB
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a386t-b4d9191c6792a5979e38e8c4bd0f66898f1568cf2356cfcb974a2a3634c2d2833
IEDL.DBID .~1
ISSN 0191-8141
IngestDate Tue Jul 01 03:17:54 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Fri Feb 23 02:29:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Georeference
Structure from motion
Photogrammetry
Rotations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a386t-b4d9191c6792a5979e38e8c4bd0f66898f1568cf2356cfcb974a2a3634c2d2833
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_jsg_2018_05_014
crossref_primary_10_1016_j_jsg_2018_05_014
elsevier_sciencedirect_doi_10_1016_j_jsg_2018_05_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationTitle Journal of structural geology
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pavlis, Rutkofske, Guerrero, Serpa (bib21) 2014; 10
Tavani, Corradetti, Billi (bib25) 2016; 86
Bistacchi, Balsamo, Storti, Mozafari, Swennen, Solum, Tueckmantel, Taberner (bib4) 2015; 11
Bemis, Micklethwaite, Turner, James, Akciz, Thiele, Bangash (bib2) 2014; 69
Furukawa, Curless, Seitz, Szeliski (bib10) 2010
Furukawa, Hernandez (bib11) 2015
Pavlis, Mason (bib20) 2017; 27
Westoby, Brasington, Glasser, Hambrey, Reynolds (bib28) 2012; 179
Brush (bib7) 2015
Kaplan, Hegarty (bib16) 2005
Snavely, Seitz, Szeliski (bib24) 2008; 80
Schober, Exner (bib22) 2011; 104
Baltsavias (bib1) 1999; 54
Cawood, Bond, Howell, Butler, Totake (bib9) 2017; 98
White, Alfarhan, Ahmed, Aiken, Anonymous (bib29) 2008; 40
Carrivick, Smith, Quincey (bib8) 2016
Bidgoli, Amir, Walker, Stockli, Andrew, Caskey (bib3) 2015
Holm, Wernicke (bib15) 1990; 18
Wernicke, Axen, Snow (bib27) 1988; 100
Furukawa, Ponce (bib12) 2009; 84
Brown, Lowe (bib6) 2005
Glendell, McShane, Farrow, James, Quinton, Anderson, Evans, Benaud, Rawlins, Morgan, Jones, Kirkham, DeBell, Quine (bib13) 2017
Pavlis, Brush, Cobb, Anonymous (bib19) 2015; 47
Bonnaffe, Jennette, Andrews (bib5) 2007; 3
Longuet-Higgins (bib17) 1981; 293
Tavani, Granado, Corradetti, Girundo, Iannace, Arbués, Muñoz, Mazzoli (bib26) 2014; 63
Zaidman (bib30) 2008
Cawood (10.1016/j.jsg.2018.05.014_bib9) 2017; 98
Longuet-Higgins (10.1016/j.jsg.2018.05.014_bib17) 1981; 293
Wernicke (10.1016/j.jsg.2018.05.014_bib27) 1988; 100
Furukawa (10.1016/j.jsg.2018.05.014_bib12) 2009; 84
Kaplan (10.1016/j.jsg.2018.05.014_bib16) 2005
Pavlis (10.1016/j.jsg.2018.05.014_bib20) 2017; 27
Baltsavias (10.1016/j.jsg.2018.05.014_bib1) 1999; 54
Westoby (10.1016/j.jsg.2018.05.014_bib28) 2012; 179
Bonnaffe (10.1016/j.jsg.2018.05.014_bib5) 2007; 3
Brush (10.1016/j.jsg.2018.05.014_bib7) 2015
Schober (10.1016/j.jsg.2018.05.014_bib22) 2011; 104
Bemis (10.1016/j.jsg.2018.05.014_bib2) 2014; 69
Glendell (10.1016/j.jsg.2018.05.014_bib13) 2017
Bistacchi (10.1016/j.jsg.2018.05.014_bib4) 2015; 11
Furukawa (10.1016/j.jsg.2018.05.014_bib10) 2010
Snavely (10.1016/j.jsg.2018.05.014_bib24) 2008; 80
Brown (10.1016/j.jsg.2018.05.014_bib6) 2005
Carrivick (10.1016/j.jsg.2018.05.014_bib8) 2016
Zaidman (10.1016/j.jsg.2018.05.014_bib30) 2008
White (10.1016/j.jsg.2018.05.014_bib29) 2008; 40
Holm (10.1016/j.jsg.2018.05.014_bib15) 1990; 18
Pavlis (10.1016/j.jsg.2018.05.014_bib19) 2015; 47
Tavani (10.1016/j.jsg.2018.05.014_bib25) 2016; 86
Pavlis (10.1016/j.jsg.2018.05.014_bib21) 2014; 10
Furukawa (10.1016/j.jsg.2018.05.014_bib11) 2015
Tavani (10.1016/j.jsg.2018.05.014_bib26) 2014; 63
Bidgoli (10.1016/j.jsg.2018.05.014_bib3) 2015
References_xml – start-page: 1
  year: 2015
  end-page: 141
  ident: bib7
  article-title: Evaluating Methods of Field-based 3D Visualization and Their Application to Mapping Metamorphic Terranes: an Example from the Panamint Mountains, California
– volume: 63
  start-page: 44
  year: 2014
  end-page: 53
  ident: bib26
  article-title: Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via open plot and Photoscan: an example from the Khaviz Anticline (Iran)
  publication-title: Comput. Geosci.
– volume: 18
  start-page: 520
  year: 1990
  end-page: 523
  ident: bib15
  article-title: Black Mountains crustal section, Death Valley extended terrain, California
  publication-title: Geology
– volume: 100
  start-page: 1738
  year: 1988
  end-page: 1757
  ident: bib27
  article-title: Basin and range extensional tectonics at the latitude of Las Vegas, Nevada
  publication-title: Geol. Soc. Am. Bull.
– start-page: 166
  year: 2015
  ident: bib11
  article-title: Multi-view Stereo: a Tutorial: Place of Publication Not Identified
– volume: 98
  start-page: 67
  year: 2017
  end-page: 82
  ident: bib9
  article-title: LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models
  publication-title: J. Struct. Geol.
– start-page: 1434
  year: 2010
  end-page: 1441
  ident: bib10
  article-title: Towards Internet-scale multi-view stereo
  publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 179
  start-page: 300
  year: 2012
  end-page: 314
  ident: bib28
  article-title: ‘Structure-from-Motion' photogrammetry: a low-cost, effective tool for geoscience applications
  publication-title: Geomorphology
– volume: 11
  start-page: 2031
  year: 2015
  end-page: 2048
  ident: bib4
  article-title: Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy)
  publication-title: Geosphere
– start-page: 56
  year: 2005
  end-page: 63
  ident: bib6
  article-title: Unsupervised 3D object recognition and reconstruction in unordered datasets
  publication-title: Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05)
– volume: 69
  start-page: 163
  year: 2014
  end-page: 178
  ident: bib2
  article-title: Ground-based and UAV-Based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology
  publication-title: J. Struct. Geol.
– volume: 104
  start-page: 73
  year: 2011
  end-page: 79
  ident: bib22
  article-title: 3D structural modelling of an outcrop-scale fold train using photogrammetry and GPS mapping
  publication-title: Aust. J. Earth Sci.
– volume: 40
  start-page: 423
  year: 2008
  end-page: 424
  ident: bib29
  article-title: Structural and orientation analysis of 3D virtual outcrop models
  publication-title: Abstr. Progr. Geol. Soc. Am.
– year: 2015
  ident: bib3
  article-title: Low-temperature Thermochronology of the Black and Panamint Mountains, Death Valley, California: Implications for Geodynamic Controls on Cenozoic Intraplate Strain: Lithosphere
– start-page: 211
  year: 2016
  ident: bib8
  article-title: Structure from Motion in the Geosciences
– volume: 80
  start-page: 189
  year: 2008
  end-page: 210
  ident: bib24
  article-title: Modeling the world from internet photo collections
  publication-title: Int. J. Comput. Vis.
– volume: 293
  start-page: 133
  year: 1981
  end-page: 135
  ident: bib17
  article-title: A computer algorithm for reconstructing a scene from two projections
  publication-title: Nature
– start-page: 718
  year: 2005
  ident: bib16
  article-title: Understanding GPS: Principles and Applications
– volume: 54
  start-page: 83
  year: 1999
  end-page: 94
  ident: bib1
  article-title: A comparison between photogrammetry and laser scanning
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 47
  start-page: 407
  year: 2015
  ident: bib19
  article-title: Paper mapping is dead and flat map geologic analysis has one foot in the grave; the new revolution in three dimensional structural analysis using inexpensive terrain models and visualization software
  publication-title: Abstr. Progr. Geol. Soc. Am.
– volume: 3
  start-page: 501
  year: 2007
  end-page: 510
  ident: bib5
  article-title: A method for acquiring and processing ground-based lidar data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models
  publication-title: Geosphere
– volume: 10
  start-page: 732
  year: 2014
  end-page: 756
  ident: bib21
  article-title: Structural overprinting of Mesozoic thrust systems in eastern California and its importance to reconstruction of Neogene extension in the southern Basin and Range
  publication-title: Geosphere
– volume: 86
  start-page: 200
  year: 2016
  end-page: 210
  ident: bib25
  article-title: High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: the viewpoint importance in structural geology
  publication-title: J. Struct. Geol.
– volume: 84
  start-page: 257
  year: 2009
  end-page: 268
  ident: bib12
  article-title: Accurate camera calibration from multi-view stereo and bundle adjustment
  publication-title: Int. J. Comput. Vis.
– year: 2017
  ident: bib13
  article-title: Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion
  publication-title: Earth Surf. Processes and Landf.
– volume: 27
  start-page: 4
  year: 2017
  end-page: 10
  ident: bib20
  article-title: The new world of 3D geologic mapping
  publication-title: GSA Today
– year: 2008
  ident: bib30
  article-title: Global Positioning System Wide Area Augmentation System (WAAS) Performance Standard
– year: 2015
  ident: 10.1016/j.jsg.2018.05.014_bib3
– start-page: 166
  year: 2015
  ident: 10.1016/j.jsg.2018.05.014_bib11
– volume: 47
  start-page: 407
  year: 2015
  ident: 10.1016/j.jsg.2018.05.014_bib19
  article-title: Paper mapping is dead and flat map geologic analysis has one foot in the grave; the new revolution in three dimensional structural analysis using inexpensive terrain models and visualization software
  publication-title: Abstr. Progr. Geol. Soc. Am.
– start-page: 56
  year: 2005
  ident: 10.1016/j.jsg.2018.05.014_bib6
  article-title: Unsupervised 3D object recognition and reconstruction in unordered datasets
– start-page: 211
  year: 2016
  ident: 10.1016/j.jsg.2018.05.014_bib8
– start-page: 1434
  year: 2010
  ident: 10.1016/j.jsg.2018.05.014_bib10
  article-title: Towards Internet-scale multi-view stereo
– volume: 86
  start-page: 200
  year: 2016
  ident: 10.1016/j.jsg.2018.05.014_bib25
  article-title: High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: the viewpoint importance in structural geology
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2016.03.009
– year: 2017
  ident: 10.1016/j.jsg.2018.05.014_bib13
  article-title: Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion
  publication-title: Earth Surf. Processes and Landf.
  doi: 10.1002/esp.4142
– volume: 179
  start-page: 300
  year: 2012
  ident: 10.1016/j.jsg.2018.05.014_bib28
  article-title: ‘Structure-from-Motion' photogrammetry: a low-cost, effective tool for geoscience applications
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.08.021
– volume: 11
  start-page: 2031
  year: 2015
  ident: 10.1016/j.jsg.2018.05.014_bib4
  article-title: Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy)
  publication-title: Geosphere
  doi: 10.1130/GES01005.1
– start-page: 718
  year: 2005
  ident: 10.1016/j.jsg.2018.05.014_bib16
– volume: 63
  start-page: 44
  year: 2014
  ident: 10.1016/j.jsg.2018.05.014_bib26
  article-title: Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via open plot and Photoscan: an example from the Khaviz Anticline (Iran)
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2013.10.013
– volume: 40
  start-page: 423
  year: 2008
  ident: 10.1016/j.jsg.2018.05.014_bib29
  article-title: Structural and orientation analysis of 3D virtual outcrop models
  publication-title: Abstr. Progr. Geol. Soc. Am.
– volume: 84
  start-page: 257
  year: 2009
  ident: 10.1016/j.jsg.2018.05.014_bib12
  article-title: Accurate camera calibration from multi-view stereo and bundle adjustment
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0232-2
– volume: 293
  start-page: 133
  year: 1981
  ident: 10.1016/j.jsg.2018.05.014_bib17
  article-title: A computer algorithm for reconstructing a scene from two projections
  publication-title: Nature
  doi: 10.1038/293133a0
– volume: 3
  start-page: 501
  year: 2007
  ident: 10.1016/j.jsg.2018.05.014_bib5
  article-title: A method for acquiring and processing ground-based lidar data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models
  publication-title: Geosphere
  doi: 10.1130/GES00104.1
– volume: 104
  start-page: 73
  year: 2011
  ident: 10.1016/j.jsg.2018.05.014_bib22
  article-title: 3D structural modelling of an outcrop-scale fold train using photogrammetry and GPS mapping
  publication-title: Aust. J. Earth Sci.
– volume: 98
  start-page: 67
  year: 2017
  ident: 10.1016/j.jsg.2018.05.014_bib9
  article-title: LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2017.04.004
– volume: 54
  start-page: 83
  year: 1999
  ident: 10.1016/j.jsg.2018.05.014_bib1
  article-title: A comparison between photogrammetry and laser scanning
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/S0924-2716(99)00014-3
– volume: 27
  start-page: 4
  year: 2017
  ident: 10.1016/j.jsg.2018.05.014_bib20
  article-title: The new world of 3D geologic mapping
  publication-title: GSA Today
  doi: 10.1130/GSATG313A.1
– start-page: 1
  year: 2015
  ident: 10.1016/j.jsg.2018.05.014_bib7
– volume: 10
  start-page: 732
  year: 2014
  ident: 10.1016/j.jsg.2018.05.014_bib21
  article-title: Structural overprinting of Mesozoic thrust systems in eastern California and its importance to reconstruction of Neogene extension in the southern Basin and Range
  publication-title: Geosphere
  doi: 10.1130/GES00993.1
– volume: 80
  start-page: 189
  year: 2008
  ident: 10.1016/j.jsg.2018.05.014_bib24
  article-title: Modeling the world from internet photo collections
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0107-3
– volume: 100
  start-page: 1738
  year: 1988
  ident: 10.1016/j.jsg.2018.05.014_bib27
  article-title: Basin and range extensional tectonics at the latitude of Las Vegas, Nevada
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1988)100<1738:BARETA>2.3.CO;2
– volume: 18
  start-page: 520
  year: 1990
  ident: 10.1016/j.jsg.2018.05.014_bib15
  article-title: Black Mountains crustal section, Death Valley extended terrain, California
  publication-title: Geology
  doi: 10.1130/0091-7613(1990)018<0520:BMCSDV>2.3.CO;2
– volume: 69
  start-page: 163
  issue: Part A
  year: 2014
  ident: 10.1016/j.jsg.2018.05.014_bib2
  article-title: Ground-based and UAV-Based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2014.10.007
– year: 2008
  ident: 10.1016/j.jsg.2018.05.014_bib30
SSID ssj0016514
Score 2.3639507
Snippet Advancements in computing capabilities over the last decade have allowed for the routine creation of Structure from Motion-Multiview Stereo (SfM-MVS) terrain...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 76
SubjectTerms Georeference
Photogrammetry
Rotations
Structure from motion
Title An orientation based correction method for SfM-MVS point clouds—Implications for field geology
URI https://dx.doi.org/10.1016/j.jsg.2018.05.014
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QjIkX4zPig-zBk0mlj-2yeyREBA1cEMOt7qMlENISKAcvxh_hL_SXONsHwUQ9eGyzk7ZfZufR_WYGoWuHuoIxza2I26FFuBaWpFJaTT9kPuchbLKMbTGg3RF5GPvjCmqXtTCGVlnY_tymZ9a6uNMo0GwsptPGEIITcE8EImQPnKRv7DAhTaPlt28bmodDy_7e3DG_u5zyZDPjeM1WE8PuYnnzTvKzb9ryN50DtF8EiriVv8shqoTxEdq9zwbxvh6jl1aMk-W0qByKsfFGGiszayOrVMD5aGgMMSkeRn2r_zzEi2Qap1jNk7Vefb5_9LbI5Nm6jM2GJ_kjTtCoc_fU7lrFtARLeIymliSaw0cq2uSugDSBhx4LmSJS2xGljLMIUjWmItfzqYqUhERCuMKjHlGuhiDDO0XVOInDM4TBY3FbK5dpzQhsWqmFVNxMtFGS-r6oIbvEKVBFK3Ez0WIelJyxWQDQBgbawPYDgLaGbjYii7yPxl-LSQl-8E0ZArDzv4ud_0_sAu2Zq5zVd4mq6XIdXkGkkcp6pkp1tNPqPXYHX3uU0v4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QjNGL8RnxuQdPJpXSbpfdIyEiKHABDLe1u9uSElIIj4MX44_wF_pLnO2DYKIevLY7aTvZeXW_mQ-hmwp1fMY0t0JuBxbh2rckldKqegHzOA_AyBK0RZc2B-Rx6A0LqJ73whhYZeb7U5-eeOvsSjnTZnkWReUeJCcQnghkyC4ESQ_88BYB8zU0Bndva5xHheYDvnnF_O-q5EebCchrvBgZeBdLp3eSn4PTRsBp7KO9LFPEtfRlDlAhiA_R9kPCxPt6hF5qMZ7Oo6x1KMYmHGmsDNlG0qqAU25oDEkp7oUdq_Pcw7NpFC-xmkxXevH5_tHaQJMn6xI4Gx6ljzhGg8Z9v960MroEy3cZXVqSaA4fqWiVOz7UCTxwWcAUkdoOKWWchVCrMRU6rkdVqCRUEr7ju9QlytGQZbgnqBhP4-AUYQhZ3NbKYVozAlYrtS8VN5Q2SlLP80vIzvUkVDZL3FBaTEQOGhsLUK0wqhW2J0C1JXS7FpmlgzT-Wkxy5Ytvu0GAo_9d7Ox_Ytdop9nvtEW71X06R7vmTgrxu0DF5XwVXELasZRXybb6Ancw1Iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+orientation+based+correction+method+for+SfM-MVS+point+clouds%E2%80%94Implications+for+field+geology&rft.jtitle=Journal+of+structural+geology&rft.au=Fleming%2C+Zachariah&rft.au=Pavlis%2C+Terry&rft.date=2018-08-01&rft.issn=0191-8141&rft.volume=113&rft.spage=76&rft.epage=89&rft_id=info:doi/10.1016%2Fj.jsg.2018.05.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsg_2018_05_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-8141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-8141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-8141&client=summon