Machine-learning-based regional-scale groundwater level prediction using GRACE

The rapid decline of groundwater levels (GWL) due to pervasive groundwater abstraction in the densely populated (~1 billion) Indus-Ganges-Brahmaputra-Meghna (IGBM) transboundary river basins of South Asia, necessitates a robust framework of prediction and understanding. While few localized studies e...

Full description

Saved in:
Bibliographic Details
Published inHydrogeology journal Vol. 29; no. 3; pp. 1027 - 1042
Main Authors Malakar, Pragnaditya, Mukherjee, Abhijit, Bhanja, Soumendra N., Ray, Ranjan Kumar, Sarkar, Sudeshna, Zahid, Anwar
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid decline of groundwater levels (GWL) due to pervasive groundwater abstraction in the densely populated (~1 billion) Indus-Ganges-Brahmaputra-Meghna (IGBM) transboundary river basins of South Asia, necessitates a robust framework of prediction and understanding. While few localized studies exist, three-dimensional regional-scale characterization of GWL prediction is yet to be implemented. Here, ‘support vector machine’, a machine-learning-based method, is applied to data from the Gravity Recovery and Climate Experiment (GRACE) and data on land-surface-model-based groundwater storage and meteorological variables, to predict the GWL anomaly (GWLA) in the IGBM. The study has three main objectives, (1) to understand the spatial (observation well locations) and subsurface (shallow vs. deep observation wells) variability in prediction results for in-situ GWLA data for a large number of observation wells ( n  = 4,791); (2) to determine its relationship with groundwater abstraction, and; (3) to outline the advantages and limitations of using GRACE data for predicting GWLAs. The findings, based on individual observation well results, suggest significant prediction efficiency (median statistics: r  > 0.71, NSE > 0.70; p  < 0.05) in most of the IGBM; however, the study identifies hotspots, mostly in the agriculture-intensive regions, having relatively poor model performance. Further analysis of the subsurface depth-wise prediction statistics reveals that the significant dominance of pumping in the deeper depths of the aquifer is linked to the relatively poor model performance for the deep observation wells (screen depth > 35 m) compared with the shallow observation wells (screen depth < 35 m), thus, highlighting the limitation of GRACE in representing spatial and depth-dependent local-scale pumping.
AbstractList The rapid decline of groundwater levels (GWL) due to pervasive groundwater abstraction in the densely populated (~1 billion) Indus-Ganges-Brahmaputra-Meghna (IGBM) transboundary river basins of South Asia, necessitates a robust framework of prediction and understanding. While few localized studies exist, three-dimensional regional-scale characterization of GWL prediction is yet to be implemented. Here, ‘support vector machine’, a machine-learning-based method, is applied to data from the Gravity Recovery and Climate Experiment (GRACE) and data on land-surface-model-based groundwater storage and meteorological variables, to predict the GWL anomaly (GWLA) in the IGBM. The study has three main objectives, (1) to understand the spatial (observation well locations) and subsurface (shallow vs. deep observation wells) variability in prediction results for in-situ GWLA data for a large number of observation wells (n = 4,791); (2) to determine its relationship with groundwater abstraction, and; (3) to outline the advantages and limitations of using GRACE data for predicting GWLAs. The findings, based on individual observation well results, suggest significant prediction efficiency (median statistics: r > 0.71, NSE > 0.70; p < 0.05) in most of the IGBM; however, the study identifies hotspots, mostly in the agriculture-intensive regions, having relatively poor model performance. Further analysis of the subsurface depth-wise prediction statistics reveals that the significant dominance of pumping in the deeper depths of the aquifer is linked to the relatively poor model performance for the deep observation wells (screen depth > 35 m) compared with the shallow observation wells (screen depth < 35 m), thus, highlighting the limitation of GRACE in representing spatial and depth-dependent local-scale pumping.
The rapid decline of groundwater levels (GWL) due to pervasive groundwater abstraction in the densely populated (~1 billion) Indus-Ganges-Brahmaputra-Meghna (IGBM) transboundary river basins of South Asia, necessitates a robust framework of prediction and understanding. While few localized studies exist, three-dimensional regional-scale characterization of GWL prediction is yet to be implemented. Here, ‘support vector machine’, a machine-learning-based method, is applied to data from the Gravity Recovery and Climate Experiment (GRACE) and data on land-surface-model-based groundwater storage and meteorological variables, to predict the GWL anomaly (GWLA) in the IGBM. The study has three main objectives, (1) to understand the spatial (observation well locations) and subsurface (shallow vs. deep observation wells) variability in prediction results for in-situ GWLA data for a large number of observation wells ( n  = 4,791); (2) to determine its relationship with groundwater abstraction, and; (3) to outline the advantages and limitations of using GRACE data for predicting GWLAs. The findings, based on individual observation well results, suggest significant prediction efficiency (median statistics: r  > 0.71, NSE > 0.70; p  < 0.05) in most of the IGBM; however, the study identifies hotspots, mostly in the agriculture-intensive regions, having relatively poor model performance. Further analysis of the subsurface depth-wise prediction statistics reveals that the significant dominance of pumping in the deeper depths of the aquifer is linked to the relatively poor model performance for the deep observation wells (screen depth > 35 m) compared with the shallow observation wells (screen depth < 35 m), thus, highlighting the limitation of GRACE in representing spatial and depth-dependent local-scale pumping.
Author Sarkar, Sudeshna
Malakar, Pragnaditya
Ray, Ranjan Kumar
Mukherjee, Abhijit
Zahid, Anwar
Bhanja, Soumendra N.
Author_xml – sequence: 1
  givenname: Pragnaditya
  surname: Malakar
  fullname: Malakar, Pragnaditya
– sequence: 2
  givenname: Abhijit
  surname: Mukherjee
  fullname: Mukherjee, Abhijit
  email: amukh2@gmail.com
– sequence: 3
  givenname: Soumendra N.
  surname: Bhanja
  fullname: Bhanja, Soumendra N.
– sequence: 4
  givenname: Ranjan Kumar
  surname: Ray
  fullname: Ray, Ranjan Kumar
– sequence: 5
  givenname: Sudeshna
  surname: Sarkar
  fullname: Sarkar, Sudeshna
– sequence: 6
  givenname: Anwar
  surname: Zahid
  fullname: Zahid, Anwar
BookMark eNp9kEtLAzEUhYMo2Fb_gKsB19Gbx0zSZSm1ClVBdB0ymTvjlDFTk6nivzd2BHcu7mPxncPhTMmx7z0ScsHgigGo65i2BAqcpRFQUH5EJkyKnALL1fHhZ5QzJU_JNMYtJJwpMSEP99a9th5phzb41je0tBGrLGDT9t52NDrbYdaEfu-rTztgyDr8wC7bBaxaNyQo28eky9ZPi-XqjJzUtot4_ntn5OVm9by8pZvH9d1ysaFW6GKgheBWaz1HVQNKpx1LcZwqa87KAgQ4Ni9FbiXjOtcSVFlVCJxb1FaWnEsxI5ej7y7073uMg9n2-5DyRsNzxoVWIPNE8ZFyoY8xYG12oX2z4cswMD-9mbE3k3ozh94MTyIximKCfYPhz_of1TfzD3DL
CitedBy_id crossref_primary_10_1007_s10040_021_02439_4
crossref_primary_10_2166_ws_2023_242
crossref_primary_10_3390_hydrology9070125
crossref_primary_10_1038_s41598_024_55588_3
crossref_primary_10_1007_s12665_023_11137_1
crossref_primary_10_1016_j_jhydrol_2021_127234
crossref_primary_10_1080_13658816_2023_2248215
crossref_primary_10_1021_acsestengg_0c00238
crossref_primary_10_1007_s10661_024_12457_w
crossref_primary_10_3390_w14203220
crossref_primary_10_1021_acsestwater_2c00220
crossref_primary_10_3390_rs14030612
crossref_primary_10_1007_s11053_023_10185_5
crossref_primary_10_3389_frwa_2023_1241451
crossref_primary_10_1016_j_cageo_2023_105386
crossref_primary_10_1016_j_jconhyd_2021_103895
crossref_primary_10_3390_rs15010188
crossref_primary_10_1029_2022WR033588
crossref_primary_10_3390_w16131904
crossref_primary_10_1016_j_catena_2023_107783
crossref_primary_10_1021_acsomega_2c00536
crossref_primary_10_3390_w13233393
crossref_primary_10_1016_j_gsd_2024_101113
crossref_primary_10_1109_ACCESS_2024_3368423
crossref_primary_10_1080_10106049_2022_2158951
crossref_primary_10_1007_s11069_021_05039_3
crossref_primary_10_3389_fenvs_2024_1291327
Cites_doi 10.1038/s41558-018-0386-4
10.1038/s41597-020-0453-3
10.1038/nclimate2425
10.1111/gwat.12453
10.1088/1748-9326/4/3/035005
10.1007/s10040-011-0723-4
10.1016/j.scitotenv.2018.08.352
10.1029/2019GL083015
10.1038/s41598-018-30246-7
10.1002/2017GL072994
10.1007/s10040-007-0208-7
10.1007/978-1-4757-2440-0
10.1016/j.jhydrol.2009.06.019
10.1038/nature08238
10.1016/j.jhydrol.2016.11.052
10.1007/s11269-012-0191-1
10.1016/j.gsd.2017.12.006
10.1038/ngeo2791
10.18637/jss.v045.i03
10.1016/j.earscirev.2014.10.010
10.1175/BAMS-85-3-381
10.1002/wrcr.20421
10.1016/j.ejrh.2015.03.005
10.5194/hess-14-1863-2010
10.1177/0962280216666564
10.1038/ngeo1617
10.1038/s41598-017-07058-2
10.1007/978-981-10-3889-1_37
10.1029/2018WR023333
10.1029/2004GL019779
10.1002/2015GL065798
10.1002/2015JB012608
10.1007/978-981-10-3889-1_4
10.1038/s41586-019-0912-1
10.1016/j.advwatres.2019.02.001
10.1016/j.quaint.2018.10.036
10.1073/pnas.1222460110
10.1126/science.aac9238
10.1073/pnas.1704665115
10.1038/s41586-018-0123-1
10.1126/science.1172974
10.1002/2014GL062498
10.1038/nclimate1744
10.1029/2000WR900368
10.1016/j.gloplacha.2014.02.007
10.1029/2010GL046442
10.1002/2014JB011547
10.1002/2016WR019344
10.1029/2001jb000576
10.1029/2011WR011312
10.1016/j.jhydrol.2018.02.005
10.1002/2015WR017797
10.1029/2002WR001808
10.1016/j.jhydrol.2010.11.002
10.1016/j.jhydrol.2016.10.042
10.1016/j.asoc.2014.02.002
10.1002/mpr.329
10.1080/02626667.2020.1716238
10.5194/hess-23-711-2019
10.1029/2009GL039401
10.1023/A:1022627411411
10.1016/j.jseaes.2013.07.004
10.1007/s10040-017-1550-z
10.1016/j.advwatres.2021.103856
10.3133/cir1186
10.54302/mausam.v65i1.851
10.5194/hess-2020-208
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2021
Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7QH
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M2P
M7S
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
DOI 10.1007/s10040-021-02306-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Science Journals
ProQuest Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Statistics
Agriculture
DocumentTitle_FL Prévision du niveau des eaux souterraines à l’échelle régionale basée sur l’apprentissage automatique à l’aide de GRACE
EISSN 1435-0157
EndPage 1042
ExternalDocumentID 10_1007_s10040_021_02306_2
GroupedDBID -5A
-5G
-5~
-BR
-DZ
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29I
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67M
67Z
6NX
78A
7XC
88I
8CJ
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDZT
ABECU
ABEOS
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPPZ
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z83
Z85
Z86
ZMTXR
ZY4
~02
~KM
AACDK
AAEOY
AAHBH
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AFEUZ
AGQEE
AGRTI
AIGIU
CITATION
H13
7QH
7ST
7TG
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KL.
KR7
L.G
PQEST
PQUKI
Q9U
SOI
ID FETCH-LOGICAL-a386t-632a8889e7f0e4c8c1041c7bf21b6030c19b35a412858407bdde022ae8a4b2243
IEDL.DBID 8FG
ISSN 1431-2174
IngestDate Mon Nov 11 05:16:37 EST 2024
Thu Nov 21 23:47:27 EST 2024
Sat Dec 16 12:10:19 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Satellite imagery
Groundwater level anomaly prediction
Transboundary aquifer
Groundwater exploration
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a386t-632a8889e7f0e4c8c1041c7bf21b6030c19b35a412858407bdde022ae8a4b2243
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10040-021-02306-2.pdf
PQID 2512387045
PQPubID 55405
PageCount 16
ParticipantIDs proquest_journals_2512387045
crossref_primary_10_1007_s10040_021_02306_2
springer_journals_10_1007_s10040_021_02306_2
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Official Journal of the International Association of Hydrogeologists
PublicationTitle Hydrogeology journal
PublicationTitleAbbrev Hydrogeol J
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Bhanja, Mukherjee, Rodell, Wada, Chattopadhyay, Velicogna, Pangaluru, Famiglietti (CR6) 2017; 7
Famiglietti, Lo, Ho, Bethune, Anderson, Syed, Swenson, De Linage, Rodell (CR24) 2011; 38
Sun, Scanlon, Zhang, Walling, Bhanja, Mukherjee, Zhong (CR71) 2019; 55
Huang, Pan, Gong, Yeh, Li, Zhou, Zhao (CR32) 2015; 42
Bhanja, Mukherjee, Rangarajan, Scanlon, Malakar, Verma (CR9) 2019; 23
Coulibaly, Anctil, Aravena, Bobée (CR21) 2001; 37
Van Buuren, Groothuis-Oudshoorn (CR78) 2011; 45
Bhanja, Mukherjee, Rodell (CR11) 2020; 65
CR35
Schewe, Heinke, Gerten, Haddeland, Arnell, Clark, Dankers, Eisner, Fekete, Colón-González, Gosling, Kim, Liu, Masaki, Portmann, Satoh, Stacke, Tang, Wada, Wisser, Albrecht, Frieler, Piontek, Warszawski, Kabat (CR62) 2014; 111
CR34
Chen, Zhang, Nie, Guo (CR18) 2019; 649
CR33
Bhanja, Mukherjee, Saha, Velicogna, Famiglietti (CR5) 2016; 543
CR30
Mukherjee, Fryar, Howell (CR47) 2007; 15
Swenson, Wahr (CR72) 2002; 107
Panda, Wahr (CR52) 2016; 52
Tapley, Bettadpur, Watkins, Reigber (CR74) 2004; 31
Slavíková, Malý, Rost, Petružela, Vojáček (CR67) 2013; 27
Aeschbach-Hertig, Gleeson (CR1) 2012; 5
Lapworth, MacDonald, Krishan, Rao, Gooddy, Darling (CR36) 2015; 42
Shah (CR63) 2009; 4
CR2
Pai, Sridhar, Rajeevan (CR51) 2014; 65
Scanlon, Longuevergne, Long (CR60) 2012; 48
Vapnik (CR79) 1995
Famiglietti, Cazenave, Eicker, Reager, Rodell, Velicogna (CR25) 2015; 349
Rodell, Velicogna, Famiglietti (CR57) 2009; 460
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (CR54) 2019; 566
Tiwari, Wahr, Swenson (CR76) 2009; 36
Scanlon, Zhang, Save, Sun, Schmied, LPH, Wiese, Wada, Long, Reedy, Longuevergne, Döll, Bierkens (CR61) 2018; 115
CR44
Wiese, Landerer, Watkins (CR83) 2016; 52
CR43
Bhanja, Mukherjee, Rodell, Mukherjee (CR8) 2018
MacDonald, Bonsor, Taylor, Shamsudduha, Burgess, AhmedKM, Zahid, Lapworth, Gopal, Rao, Moench, Bricker, Yadav, Satyal, Smith, Dixit, Bell, van Steenbergen, Basharat, GoharMS, Calow, Maurice (CR37) 2015
CR42
Yi, Wang, Sun (CR85) 2016; 121
CR41
CR84
Mukherjee, Ramachandran (CR46) 2018; 558
Srivastava, Pal, Aruche, Wani, Sahrawat (CR68) 2015; 140
Malakar, Mukherjee, Sarkar, Mukherjee (CR39) 2018
Castellazzi, Martel, Galloway, Longuevergne, Rivera (CR13) 2016; 54
Azur, Stuart, Frangakis, Leaf (CR3) 2011; 20
Resche-Rigon, White (CR55) 2018; 27
Vapnik (CR80) 1998
Bhanja, Rodell, Li, Saha, Mukherjee (CR7) 2017; 544
Sun (CR70) 2013; 49
Cuthbert, Gleeson, Moosdorf, Befus, Schneider, Hartmann, Lehner (CR22) 2019; 9
Rodell, Famiglietti, Wiese, Reager, Beaudoing, Landerer, Lo (CR58) 2018; 557
CR19
Harris, Osborn, Jones, Lister (CR31) 2020; 7
CR16
Singh, Tripathi, Kotlia, Singh, Kumar (CR66) 2019; 507
Bhanja, Mukherjee (CR4) 2019; 126
CR15
CR59
CR14
CR12
CR50
MacDonald, Bonsor, Ahmed, Burgess, Basharat, Calow, Dixit, SSD, Gopal, Lapworth, Lark, Moench, Mukherjee, Rao, Shamsudduha, Smith, Taylor, Tucker, van Steenbergen, Yadav (CR38) 2016; 9
(CR45) 2012
Mukherjee, Bhanja, Wada (CR49) 2018; 8
Mukherjee, Saha, Harvey, Taylor, Ahmed, Bhanja (CR48) 2015; 4
Siebert, Burke, Faures, Frenken, Hoogeveen, Döll, Portmann (CR65) 2010; 14
Tukey (CR77) 1977
Bhanja, Malakar, Mukherjee, Rodell, Mitra, Sarkar (CR10) 2019; 46
Yoon, Jun, Hyun, Bae, Lee (CR86) 2011; 396
Shamsudduha, Taylor, Ahmed, Zahid (CR64) 2011; 19
Wang, Chau, Cheng, Qiu (CR81) 2009; 374
Famiglietti (CR23) 2014; 4
CR27
CR69
Swenson, Wahr, Milly (CR73) 2003; 39
Watkins, Wiese, Yuan, Boening, Landerer (CR82) 2015; 120
Raghavendra, Deka (CR53) 2014; 19
Rodell, Houser, Jambor, Gottschalck, Mitchell, Meng, Arsenault, Cosgrove, Radakovich, Bosilovich, Entin, Walker, Lohmann, Toll (CR56) 2004; 85
Taylor, Scanlon, Döll, Rodell, Van Beek, Wada, Longuevergne, Leblanc, Famiglietti, Edmunds, Konikow, Green, Chen, Taniguchi, Bierkens, Macdonald, Fan, Maxwell, Yechieli, Gurdak, Allen, Shamsudduha, Hiscock, Yeh, Holman, Treidel (CR75) 2013; 3
Cortes, Vapnik (CR20) 1995; 20
Fendorf, Michael, Van Geen (CR26) 2010; 328
Chen, Li, Zhang, Ni (CR17) 2014; 116
Gibrilla, Anornu, Adomako (CR28) 2018; 6
Girotto, GJM, Reichle, Rodell, Draper, Bhanja, Mukherjee (CR29) 2017; 44
Malakar, Sarkar, Mukherjee, Bhanja, Sun, Mukherjee (CR40) 2020
2306_CR41
2306_CR42
DJ Lapworth (2306_CR36) 2015; 42
2306_CR43
2306_CR44
SN Bhanja (2306_CR7) 2017; 544
MO Cuthbert (2306_CR22) 2019; 9
SN Bhanja (2306_CR9) 2019; 23
P Castellazzi (2306_CR13) 2016; 54
2306_CR84
S Siebert (2306_CR65) 2010; 14
2306_CR2
S Van Buuren (2306_CR78) 2011; 45
SN Bhanja (2306_CR8) 2018
JS Famiglietti (2306_CR24) 2011; 38
S Fendorf (2306_CR26) 2010; 328
C Cortes (2306_CR20) 1995; 20
S Raghavendra (2306_CR53) 2014; 19
BR Scanlon (2306_CR60) 2012; 48
2306_CR30
S Swenson (2306_CR73) 2003; 39
S Yi (2306_CR85) 2016; 121
2306_CR33
SN Bhanja (2306_CR10) 2019; 46
MoA (Ministry of Agriculture) (2306_CR45) 2012
WC Wang (2306_CR81) 2009; 374
2306_CR34
BR Scanlon (2306_CR61) 2018; 115
2306_CR35
Z Huang (2306_CR32) 2015; 42
L Slavíková (2306_CR67) 2013; 27
P Coulibaly (2306_CR21) 2001; 37
S Swenson (2306_CR72) 2002; 107
A Mukherjee (2306_CR47) 2007; 15
M Rodell (2306_CR57) 2009; 460
J Chen (2306_CR17) 2014; 116
AY Sun (2306_CR71) 2019; 55
DK Panda (2306_CR52) 2016; 52
H Chen (2306_CR18) 2019; 649
A Gibrilla (2306_CR28) 2018; 6
MJ Azur (2306_CR3) 2011; 20
SN Bhanja (2306_CR5) 2016; 543
W Aeschbach-Hertig (2306_CR1) 2012; 5
T Shah (2306_CR63) 2009; 4
2306_CR27
VN Vapnik (2306_CR79) 1995
2306_CR69
M Shamsudduha (2306_CR64) 2011; 19
AY Sun (2306_CR70) 2013; 49
AM MacDonald (2306_CR38) 2016; 9
P Malakar (2306_CR39) 2018
A Mukherjee (2306_CR46) 2018; 558
SN Bhanja (2306_CR6) 2017; 7
M Rodell (2306_CR58) 2018; 557
RG Taylor (2306_CR75) 2013; 3
BD Tapley (2306_CR74) 2004; 31
H Yoon (2306_CR86) 2011; 396
M Resche-Rigon (2306_CR55) 2018; 27
P Srivastava (2306_CR68) 2015; 140
P Malakar (2306_CR40) 2020
DS Pai (2306_CR51) 2014; 65
A Mukherjee (2306_CR48) 2015; 4
M Girotto (2306_CR29) 2017; 44
JW Tukey (2306_CR77) 1977
2306_CR50
DN Wiese (2306_CR83) 2016; 52
SN Bhanja (2306_CR11) 2020; 65
2306_CR16
AM MacDonald (2306_CR37) 2015
MM Watkins (2306_CR82) 2015; 120
2306_CR19
2306_CR12
2306_CR14
VN Vapnik (2306_CR80) 1998
2306_CR15
2306_CR59
JS Famiglietti (2306_CR25) 2015; 349
VM Tiwari (2306_CR76) 2009; 36
SN Bhanja (2306_CR4) 2019; 126
M Rodell (2306_CR56) 2004; 85
AK Singh (2306_CR66) 2019; 507
A Mukherjee (2306_CR49) 2018; 8
JS Famiglietti (2306_CR23) 2014; 4
J Schewe (2306_CR62) 2014; 111
M Reichstein (2306_CR54) 2019; 566
I Harris (2306_CR31) 2020; 7
References_xml – volume: 9
  start-page: 137
  year: 2019
  end-page: 141
  ident: CR22
  article-title: Global patterns and dynamics of climate–groundwater interactions
  publication-title: Nat Clim Chang
  doi: 10.1038/s41558-018-0386-4
  contributor:
    fullname: Lehner
– volume: 7
  start-page: 109
  year: 2020
  ident: CR31
  article-title: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset
  publication-title: Sci Data
  doi: 10.1038/s41597-020-0453-3
  contributor:
    fullname: Lister
– volume: 4
  start-page: 945
  year: 2014
  end-page: 948
  ident: CR23
  article-title: The global groundwater crisis
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate2425
  contributor:
    fullname: Famiglietti
– volume: 54
  start-page: 768
  year: 2016
  end-page: 780
  ident: CR13
  article-title: Assessing groundwater depletion and dynamics using GRACE and InSAR: potential and limitations
  publication-title: Groundwater
  doi: 10.1111/gwat.12453
  contributor:
    fullname: Rivera
– ident: CR16
– ident: CR12
– year: 1977
  ident: CR77
  publication-title: Exploratory data analysis
  contributor:
    fullname: Tukey
– ident: CR35
– volume: 4
  start-page: 035005
  year: 2009
  ident: CR63
  article-title: Climate change and groundwater: India’s opportunities for mitigation and adaptation
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/4/3/035005
  contributor:
    fullname: Shah
– volume: 19
  start-page: 901
  year: 2011
  end-page: 916
  ident: CR64
  article-title: The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-011-0723-4
  contributor:
    fullname: Zahid
– volume: 649
  start-page: 372
  year: 2019
  end-page: 387
  ident: CR18
  article-title: Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.08.352
  contributor:
    fullname: Guo
– ident: CR84
– volume: 46
  start-page: 8082
  year: 2019
  end-page: 8092
  ident: CR10
  article-title: Using satellite-based vegetation cover as indicator of groundwater storage in natural vegetation areas
  publication-title: Geophys Res Lett
  doi: 10.1029/2019GL083015
  contributor:
    fullname: Sarkar
– ident: CR42
– volume: 8
  start-page: 12049
  year: 2018
  ident: CR49
  article-title: Groundwater depletion causing reduction of baseflow triggering Ganges River summer drying
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-30246-7
  contributor:
    fullname: Wada
– volume: 44
  start-page: 4107
  year: 2017
  end-page: 4115
  ident: CR29
  article-title: Benefits and pitfalls of GRACE data assimilation: a case study of terrestrial water storage depletion in India
  publication-title: Geophys Res Lett
  doi: 10.1002/2017GL072994
  contributor:
    fullname: Mukherjee
– volume: 15
  start-page: 1397
  year: 2007
  end-page: 1418
  ident: CR47
  article-title: Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-007-0208-7
  contributor:
    fullname: Howell
– year: 1995
  ident: CR79
  publication-title: The nature of statistical learning theory
  doi: 10.1007/978-1-4757-2440-0
  contributor:
    fullname: Vapnik
– volume: 374
  start-page: 294
  year: 2009
  end-page: 306
  ident: CR81
  article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.06.019
  contributor:
    fullname: Qiu
– volume: 460
  start-page: 999
  year: 2009
  end-page: 1002
  ident: CR57
  article-title: Satellite-based estimates of groundwater depletion in India
  publication-title: Nature
  doi: 10.1038/nature08238
  contributor:
    fullname: Famiglietti
– volume: 544
  start-page: 428
  year: 2017
  end-page: 437
  ident: CR7
  article-title: Spatio-temporal variability of groundwater storage in India
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.11.052
  contributor:
    fullname: Mukherjee
– ident: CR19
– volume: 27
  start-page: 365
  year: 2013
  end-page: 379
  ident: CR67
  article-title: Impacts of climate variables on residential water consumption in the Czech Republic
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-012-0191-1
  contributor:
    fullname: Vojáček
– ident: CR15
– volume: 6
  start-page: 150
  year: 2018
  end-page: 163
  ident: CR28
  article-title: Trend analysis and ARIMA modelling of recent groundwater levels in the White Volta River basin of Ghana
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2017.12.006
  contributor:
    fullname: Adomako
– volume: 9
  start-page: 762
  year: 2016
  end-page: 766
  ident: CR38
  article-title: Groundwater depletion and quality in the Indo-Gangetic Basin from in situ observations
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2791
  contributor:
    fullname: Yadav
– ident: CR50
– volume: 45
  start-page: 1
  year: 2011
  end-page: 67
  ident: CR78
  article-title: mice: Multivariate imputation by chained equations in R
  publication-title: J Stat Softw
  doi: 10.18637/jss.v045.i03
  contributor:
    fullname: Groothuis-Oudshoorn
– volume: 140
  start-page: 54
  year: 2015
  end-page: 71
  ident: CR68
  article-title: Soils of the Indo-Gangetic Plains: a pedogenic response to landscape stability, climatic variability and anthropogenic activity during the Holocene
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2014.10.010
  contributor:
    fullname: Sahrawat
– volume: 85
  start-page: 381
  year: 2004
  end-page: 394
  ident: CR56
  article-title: The global land data assimilation system
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-85-3-381
  contributor:
    fullname: Toll
– volume: 49
  start-page: 5900
  year: 2013
  end-page: 5912
  ident: CR70
  article-title: Predicting groundwater level changes using GRACE data
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20421
  contributor:
    fullname: Sun
– volume: 4
  start-page: 1
  year: 2015
  end-page: 14
  ident: CR48
  article-title: Groundwater systems of the Indian sub-continent
  publication-title: J Hydrol Reg Stud
  doi: 10.1016/j.ejrh.2015.03.005
  contributor:
    fullname: Bhanja
– year: 2015
  ident: CR37
  publication-title: Groundwater resources in the Indo-Gangetic Basin: resilience to climate change and abstraction. BGS open report, OR/15/047
  contributor:
    fullname: Maurice
– volume: 14
  start-page: 1863
  year: 2010
  end-page: 1880
  ident: CR65
  article-title: Groundwater use for irrigation: a global inventory
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-14-1863-2010
  contributor:
    fullname: Portmann
– volume: 27
  start-page: 1634
  year: 2018
  end-page: 1649
  ident: CR55
  article-title: Multiple imputation by chained equations for systematically and sporadically missing multilevel data
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280216666564
  contributor:
    fullname: White
– volume: 5
  start-page: 853
  year: 2012
  end-page: 861
  ident: CR1
  article-title: Regional strategies for the accelerating global problem of groundwater depletion
  publication-title: Nat Geosci
  doi: 10.1038/ngeo1617
  contributor:
    fullname: Gleeson
– volume: 7
  start-page: 7453
  year: 2017
  ident: CR6
  article-title: Groundwater rejuvenation in parts of India influenced by water-policy change implementation
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-07058-2
  contributor:
    fullname: Famiglietti
– start-page: 643
  year: 2018
  end-page: 655
  ident: CR39
  article-title: Potential application of advanced computational techniques in prediction of groundwater resource of India
  publication-title: Groundwater of South Asia
  doi: 10.1007/978-981-10-3889-1_37
  contributor:
    fullname: Mukherjee
– ident: CR43
– volume: 55
  start-page: 1179
  year: 2019
  end-page: 1195
  ident: CR71
  article-title: Combining physically based modeling and deep learning for fusing GRACE satellite data: can we learn from mismatch?
  publication-title: Water Resour Res
  doi: 10.1029/2018WR023333
  contributor:
    fullname: Zhong
– volume: 31
  start-page: L09607
  year: 2004
  ident: CR74
  article-title: The gravity recovery and climate experiment: mission overview and early results
  publication-title: Geophys Res Lett
  doi: 10.1029/2004GL019779
  contributor:
    fullname: Reigber
– volume: 42
  start-page: 7554
  year: 2015
  end-page: 7562
  ident: CR36
  article-title: Groundwater recharge and age-depth profiles of intensively exploited groundwater resources in Northwest India
  publication-title: Geophys Res Lett
  doi: 10.1002/2015GL065798
  contributor:
    fullname: Darling
– year: 1998
  ident: CR80
  publication-title: Statistical learning theory
  contributor:
    fullname: Vapnik
– ident: CR14
– ident: CR2
– volume: 121
  start-page: 3782
  year: 2016
  end-page: 3803
  ident: CR85
  article-title: Basin mass dynamic changes in China from GRACE based on a multibasin inversion method
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2015JB012608
  contributor:
    fullname: Sun
– start-page: 49
  year: 2018
  end-page: 59
  ident: CR8
  article-title: Groundwater storage variations in India
  publication-title: Groundwater of South Asia
  doi: 10.1007/978-981-10-3889-1_4
  contributor:
    fullname: Mukherjee
– ident: CR30
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: CR54
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
  contributor:
    fullname: Prabhat
– ident: CR33
– volume: 126
  start-page: 15
  year: 2019
  end-page: 23
  ident: CR4
  article-title: In situ and satellite-based estimates of usable groundwater storage across India: implications for drinking water supply and food security
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2019.02.001
  contributor:
    fullname: Mukherjee
– volume: 507
  start-page: 342
  year: 2019
  end-page: 351
  ident: CR66
  article-title: Monitoring groundwater fluctuations over India during Indian Summer Monsoon (ISM) and Northeast monsoon using GRACE satellite: impact on agriculture
  publication-title: Quat Int
  doi: 10.1016/j.quaint.2018.10.036
  contributor:
    fullname: Kumar
– volume: 111
  start-page: 3245
  year: 2014
  end-page: 3250
  ident: CR62
  article-title: Multimodel assessment of water scarcity under climate change
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1222460110
  contributor:
    fullname: Kabat
– start-page: 545
  year: 2020
  end-page: 557
  ident: CR40
  article-title: Use of machine learning and deep learning methods in groundwater
  publication-title: Global groundwater
  contributor:
    fullname: Mukherjee
– volume: 349
  start-page: 684
  year: 2015
  end-page: 685
  ident: CR25
  article-title: Satellites provide the big picture
  publication-title: Science
  doi: 10.1126/science.aac9238
  contributor:
    fullname: Velicogna
– ident: CR27
– volume: 115
  start-page: E1080
  year: 2018
  end-page: E1089
  ident: CR61
  article-title: Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1704665115
  contributor:
    fullname: Bierkens
– volume: 557
  start-page: 651
  year: 2018
  end-page: 659
  ident: CR58
  article-title: Emerging trends in global freshwater availability
  publication-title: Nature
  doi: 10.1038/s41586-018-0123-1
  contributor:
    fullname: Lo
– volume: 328
  start-page: 1123
  year: 2010
  end-page: 1127
  ident: CR26
  article-title: Spatial and temporal variations of groundwater arsenic in south and Southeast Asia
  publication-title: Science
  doi: 10.1126/science.1172974
  contributor:
    fullname: Van Geen
– ident: CR69
– volume: 42
  start-page: 1791
  year: 2015
  end-page: 1799
  ident: CR32
  article-title: Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain
  publication-title: Geophys Res Lett
  doi: 10.1002/2014GL062498
  contributor:
    fullname: Zhao
– volume: 3
  start-page: 322
  year: 2013
  end-page: 329
  ident: CR75
  article-title: Ground water and climate change
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate1744
  contributor:
    fullname: Treidel
– volume: 37
  start-page: 885
  year: 2001
  end-page: 896
  ident: CR21
  article-title: Artificial neural network modeling of water table depth fluctuations
  publication-title: Water Resour Res
  doi: 10.1029/2000WR900368
  contributor:
    fullname: Bobée
– ident: CR44
– volume: 116
  start-page: 130
  year: 2014
  end-page: 138
  ident: CR17
  article-title: Long-term groundwater variations in Northwest India from satellite gravity measurements
  publication-title: Glob Planet Chang
  doi: 10.1016/j.gloplacha.2014.02.007
  contributor:
    fullname: Ni
– year: 2012
  ident: CR45
  publication-title: State of Indian agriculture 2011–12
– volume: 38
  start-page: L03403
  year: 2011
  ident: CR24
  article-title: Satellites measure recent rates of groundwater depletion in California’s Central Valley
  publication-title: Geophys Res Lett
  doi: 10.1029/2010GL046442
  contributor:
    fullname: Rodell
– volume: 120
  start-page: 2648
  year: 2015
  end-page: 2671
  ident: CR82
  article-title: Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2014JB011547
  contributor:
    fullname: Landerer
– volume: 52
  start-page: 7490
  year: 2016
  end-page: 7502
  ident: CR83
  article-title: Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution
  publication-title: Water Resour Res
  doi: 10.1002/2016WR019344
  contributor:
    fullname: Watkins
– volume: 107
  start-page: ETG 3-1-ETG 3-13
  year: 2002
  ident: CR72
  article-title: Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2001jb000576
  contributor:
    fullname: Wahr
– volume: 48
  start-page: 1
  year: 2012
  end-page: 9
  ident: CR60
  article-title: Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA
  publication-title: Water Resour Res
  doi: 10.1029/2011WR011312
  contributor:
    fullname: Long
– volume: 558
  start-page: 647
  year: 2018
  end-page: 658
  ident: CR46
  article-title: Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India: analysis of comparative performances of SVR, ANN and LRM
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.02.005
  contributor:
    fullname: Ramachandran
– volume: 52
  start-page: 135
  year: 2016
  end-page: 149
  ident: CR52
  article-title: Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records
  publication-title: Water Resour Res
  doi: 10.1002/2015WR017797
  contributor:
    fullname: Wahr
– volume: 39
  start-page: 1223
  year: 2003
  ident: CR73
  article-title: Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE)
  publication-title: Water Resour Res
  doi: 10.1029/2002WR001808
  contributor:
    fullname: Milly
– volume: 396
  start-page: 128
  year: 2011
  end-page: 138
  ident: CR86
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.11.002
  contributor:
    fullname: Lee
– ident: CR34
– volume: 65
  start-page: 1
  year: 2014
  end-page: 18
  ident: CR51
  article-title: Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region
  publication-title: Mausam
  contributor:
    fullname: Rajeevan
– volume: 543
  start-page: 729
  year: 2016
  end-page: 738
  ident: CR5
  article-title: Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.10.042
  contributor:
    fullname: Famiglietti
– ident: CR59
– volume: 19
  start-page: 372
  year: 2014
  end-page: 386
  ident: CR53
  article-title: Support vector machine applications in the field of hydrology: a review
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.02.002
  contributor:
    fullname: Deka
– volume: 20
  start-page: 40
  year: 2011
  end-page: 49
  ident: CR3
  article-title: Multiple imputation by chained equations: what is it and how does it work?
  publication-title: Int J Methods Psychiatr Res
  doi: 10.1002/mpr.329
  contributor:
    fullname: Leaf
– volume: 65
  start-page: 650
  year: 2020
  end-page: 659
  ident: CR11
  article-title: Groundwater storage change detection from in situ and GRACE-based estimates in major river basins across India
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2020.1716238
  contributor:
    fullname: Rodell
– volume: 23
  start-page: 711
  year: 2019
  end-page: 722
  ident: CR9
  article-title: Long-term groundwater recharge rates across India by in situ measurements
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-23-711-2019
  contributor:
    fullname: Verma
– ident: CR41
– volume: 36
  start-page: 1
  year: 2009
  end-page: 5
  ident: CR76
  article-title: Dwindling groundwater resources in northern India, from satellite gravity observations
  publication-title: Geophys Res Lett
  doi: 10.1029/2009GL039401
  contributor:
    fullname: Swenson
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: CR20
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1023/A:1022627411411
  contributor:
    fullname: Vapnik
– ident: 2306_CR19
– ident: 2306_CR44
– volume: 111
  start-page: 3245
  year: 2014
  ident: 2306_CR62
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1222460110
  contributor:
    fullname: J Schewe
– volume: 544
  start-page: 428
  year: 2017
  ident: 2306_CR7
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.11.052
  contributor:
    fullname: SN Bhanja
– volume: 49
  start-page: 5900
  year: 2013
  ident: 2306_CR70
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20421
  contributor:
    fullname: AY Sun
– ident: 2306_CR50
– volume: 45
  start-page: 1
  year: 2011
  ident: 2306_CR78
  publication-title: J Stat Softw
  doi: 10.18637/jss.v045.i03
  contributor:
    fullname: S Van Buuren
– ident: 2306_CR34
– volume: 20
  start-page: 40
  year: 2011
  ident: 2306_CR3
  publication-title: Int J Methods Psychiatr Res
  doi: 10.1002/mpr.329
  contributor:
    fullname: MJ Azur
– ident: 2306_CR15
– start-page: 643
  volume-title: Groundwater of South Asia
  year: 2018
  ident: 2306_CR39
  doi: 10.1007/978-981-10-3889-1_37
  contributor:
    fullname: P Malakar
– volume: 115
  start-page: E1080
  year: 2018
  ident: 2306_CR61
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1704665115
  contributor:
    fullname: BR Scanlon
– volume: 27
  start-page: 365
  year: 2013
  ident: 2306_CR67
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-012-0191-1
  contributor:
    fullname: L Slavíková
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 2306_CR79
  doi: 10.1007/978-1-4757-2440-0
  contributor:
    fullname: VN Vapnik
– ident: 2306_CR35
  doi: 10.1016/j.jseaes.2013.07.004
– volume: 4
  start-page: 1
  year: 2015
  ident: 2306_CR48
  publication-title: J Hydrol Reg Stud
  doi: 10.1016/j.ejrh.2015.03.005
  contributor:
    fullname: A Mukherjee
– volume: 9
  start-page: 762
  year: 2016
  ident: 2306_CR38
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2791
  contributor:
    fullname: AM MacDonald
– volume: 566
  start-page: 195
  year: 2019
  ident: 2306_CR54
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
  contributor:
    fullname: M Reichstein
– volume: 557
  start-page: 651
  year: 2018
  ident: 2306_CR58
  publication-title: Nature
  doi: 10.1038/s41586-018-0123-1
  contributor:
    fullname: M Rodell
– volume-title: Statistical learning theory
  year: 1998
  ident: 2306_CR80
  contributor:
    fullname: VN Vapnik
– ident: 2306_CR12
  doi: 10.1007/s10040-017-1550-z
– ident: 2306_CR42
  doi: 10.1016/j.advwatres.2021.103856
– volume: 19
  start-page: 372
  year: 2014
  ident: 2306_CR53
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.02.002
  contributor:
    fullname: S Raghavendra
– volume: 120
  start-page: 2648
  year: 2015
  ident: 2306_CR82
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2014JB011547
  contributor:
    fullname: MM Watkins
– volume: 126
  start-page: 15
  year: 2019
  ident: 2306_CR4
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2019.02.001
  contributor:
    fullname: SN Bhanja
– volume: 140
  start-page: 54
  year: 2015
  ident: 2306_CR68
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2014.10.010
  contributor:
    fullname: P Srivastava
– volume: 48
  start-page: 1
  year: 2012
  ident: 2306_CR60
  publication-title: Water Resour Res
  doi: 10.1029/2011WR011312
  contributor:
    fullname: BR Scanlon
– volume: 36
  start-page: 1
  year: 2009
  ident: 2306_CR76
  publication-title: Geophys Res Lett
  doi: 10.1029/2009GL039401
  contributor:
    fullname: VM Tiwari
– volume-title: State of Indian agriculture 2011–12
  year: 2012
  ident: 2306_CR45
  contributor:
    fullname: MoA (Ministry of Agriculture)
– volume: 39
  start-page: 1223
  year: 2003
  ident: 2306_CR73
  publication-title: Water Resour Res
  doi: 10.1029/2002WR001808
  contributor:
    fullname: S Swenson
– volume: 23
  start-page: 711
  year: 2019
  ident: 2306_CR9
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-23-711-2019
  contributor:
    fullname: SN Bhanja
– ident: 2306_CR30
– ident: 2306_CR14
– volume: 52
  start-page: 135
  year: 2016
  ident: 2306_CR52
  publication-title: Water Resour Res
  doi: 10.1002/2015WR017797
  contributor:
    fullname: DK Panda
– volume: 14
  start-page: 1863
  year: 2010
  ident: 2306_CR65
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-14-1863-2010
  contributor:
    fullname: S Siebert
– volume: 38
  start-page: L03403
  year: 2011
  ident: 2306_CR24
  publication-title: Geophys Res Lett
  doi: 10.1029/2010GL046442
  contributor:
    fullname: JS Famiglietti
– volume: 3
  start-page: 322
  year: 2013
  ident: 2306_CR75
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate1744
  contributor:
    fullname: RG Taylor
– volume: 65
  start-page: 650
  year: 2020
  ident: 2306_CR11
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2020.1716238
  contributor:
    fullname: SN Bhanja
– ident: 2306_CR59
– volume: 107
  start-page: ETG 3-1-ETG 3-1
  year: 2002
  ident: 2306_CR72
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2001jb000576
  contributor:
    fullname: S Swenson
– volume: 55
  start-page: 1179
  year: 2019
  ident: 2306_CR71
  publication-title: Water Resour Res
  doi: 10.1029/2018WR023333
  contributor:
    fullname: AY Sun
– volume: 4
  start-page: 945
  year: 2014
  ident: 2306_CR23
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate2425
  contributor:
    fullname: JS Famiglietti
– volume: 328
  start-page: 1123
  year: 2010
  ident: 2306_CR26
  publication-title: Science
  doi: 10.1126/science.1172974
  contributor:
    fullname: S Fendorf
– volume: 649
  start-page: 372
  year: 2019
  ident: 2306_CR18
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.08.352
  contributor:
    fullname: H Chen
– volume: 8
  start-page: 12049
  year: 2018
  ident: 2306_CR49
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-30246-7
  contributor:
    fullname: A Mukherjee
– volume: 37
  start-page: 885
  year: 2001
  ident: 2306_CR21
  publication-title: Water Resour Res
  doi: 10.1029/2000WR900368
  contributor:
    fullname: P Coulibaly
– volume: 85
  start-page: 381
  year: 2004
  ident: 2306_CR56
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-85-3-381
  contributor:
    fullname: M Rodell
– ident: 2306_CR69
– volume: 7
  start-page: 109
  year: 2020
  ident: 2306_CR31
  publication-title: Sci Data
  doi: 10.1038/s41597-020-0453-3
  contributor:
    fullname: I Harris
– volume: 558
  start-page: 647
  year: 2018
  ident: 2306_CR46
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.02.005
  contributor:
    fullname: A Mukherjee
– start-page: 49
  volume-title: Groundwater of South Asia
  year: 2018
  ident: 2306_CR8
  doi: 10.1007/978-981-10-3889-1_4
  contributor:
    fullname: SN Bhanja
– volume: 6
  start-page: 150
  year: 2018
  ident: 2306_CR28
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2017.12.006
  contributor:
    fullname: A Gibrilla
– volume: 5
  start-page: 853
  year: 2012
  ident: 2306_CR1
  publication-title: Nat Geosci
  doi: 10.1038/ngeo1617
  contributor:
    fullname: W Aeschbach-Hertig
– volume: 349
  start-page: 684
  year: 2015
  ident: 2306_CR25
  publication-title: Science
  doi: 10.1126/science.aac9238
  contributor:
    fullname: JS Famiglietti
– volume: 31
  start-page: L09607
  year: 2004
  ident: 2306_CR74
  publication-title: Geophys Res Lett
  doi: 10.1029/2004GL019779
  contributor:
    fullname: BD Tapley
– ident: 2306_CR84
– volume: 42
  start-page: 7554
  year: 2015
  ident: 2306_CR36
  publication-title: Geophys Res Lett
  doi: 10.1002/2015GL065798
  contributor:
    fullname: DJ Lapworth
– volume-title: Groundwater resources in the Indo-Gangetic Basin: resilience to climate change and abstraction. BGS open report, OR/15/047
  year: 2015
  ident: 2306_CR37
  contributor:
    fullname: AM MacDonald
– volume: 19
  start-page: 901
  year: 2011
  ident: 2306_CR64
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-011-0723-4
  contributor:
    fullname: M Shamsudduha
– volume: 44
  start-page: 4107
  year: 2017
  ident: 2306_CR29
  publication-title: Geophys Res Lett
  doi: 10.1002/2017GL072994
  contributor:
    fullname: M Girotto
– volume: 121
  start-page: 3782
  year: 2016
  ident: 2306_CR85
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2015JB012608
  contributor:
    fullname: S Yi
– ident: 2306_CR27
– ident: 2306_CR43
– volume: 507
  start-page: 342
  year: 2019
  ident: 2306_CR66
  publication-title: Quat Int
  doi: 10.1016/j.quaint.2018.10.036
  contributor:
    fullname: AK Singh
– volume: 460
  start-page: 999
  year: 2009
  ident: 2306_CR57
  publication-title: Nature
  doi: 10.1038/nature08238
  contributor:
    fullname: M Rodell
– volume: 543
  start-page: 729
  year: 2016
  ident: 2306_CR5
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.10.042
  contributor:
    fullname: SN Bhanja
– volume: 52
  start-page: 7490
  year: 2016
  ident: 2306_CR83
  publication-title: Water Resour Res
  doi: 10.1002/2016WR019344
  contributor:
    fullname: DN Wiese
– volume-title: Exploratory data analysis
  year: 1977
  ident: 2306_CR77
  contributor:
    fullname: JW Tukey
– volume: 42
  start-page: 1791
  year: 2015
  ident: 2306_CR32
  publication-title: Geophys Res Lett
  doi: 10.1002/2014GL062498
  contributor:
    fullname: Z Huang
– volume: 15
  start-page: 1397
  year: 2007
  ident: 2306_CR47
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-007-0208-7
  contributor:
    fullname: A Mukherjee
– ident: 2306_CR2
  doi: 10.3133/cir1186
– ident: 2306_CR16
– ident: 2306_CR33
– volume: 65
  start-page: 1
  year: 2014
  ident: 2306_CR51
  publication-title: Mausam
  doi: 10.54302/mausam.v65i1.851
  contributor:
    fullname: DS Pai
– volume: 374
  start-page: 294
  year: 2009
  ident: 2306_CR81
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.06.019
  contributor:
    fullname: WC Wang
– volume: 54
  start-page: 768
  year: 2016
  ident: 2306_CR13
  publication-title: Groundwater
  doi: 10.1111/gwat.12453
  contributor:
    fullname: P Castellazzi
– volume: 116
  start-page: 130
  year: 2014
  ident: 2306_CR17
  publication-title: Glob Planet Chang
  doi: 10.1016/j.gloplacha.2014.02.007
  contributor:
    fullname: J Chen
– ident: 2306_CR41
  doi: 10.5194/hess-2020-208
– volume: 7
  start-page: 7453
  year: 2017
  ident: 2306_CR6
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-07058-2
  contributor:
    fullname: SN Bhanja
– volume: 4
  start-page: 035005
  year: 2009
  ident: 2306_CR63
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/4/3/035005
  contributor:
    fullname: T Shah
– volume: 9
  start-page: 137
  year: 2019
  ident: 2306_CR22
  publication-title: Nat Clim Chang
  doi: 10.1038/s41558-018-0386-4
  contributor:
    fullname: MO Cuthbert
– volume: 20
  start-page: 273
  year: 1995
  ident: 2306_CR20
  publication-title: Mach Learn
  doi: 10.1023/A:1022627411411
  contributor:
    fullname: C Cortes
– volume: 46
  start-page: 8082
  year: 2019
  ident: 2306_CR10
  publication-title: Geophys Res Lett
  doi: 10.1029/2019GL083015
  contributor:
    fullname: SN Bhanja
– volume: 27
  start-page: 1634
  year: 2018
  ident: 2306_CR55
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280216666564
  contributor:
    fullname: M Resche-Rigon
– start-page: 545
  volume-title: Global groundwater
  year: 2020
  ident: 2306_CR40
  contributor:
    fullname: P Malakar
– volume: 396
  start-page: 128
  year: 2011
  ident: 2306_CR86
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.11.002
  contributor:
    fullname: H Yoon
SSID ssj0004173
Score 2.482472
Snippet The rapid decline of groundwater levels (GWL) due to pervasive groundwater abstraction in the densely populated (~1 billion) Indus-Ganges-Brahmaputra-Meghna...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1027
SubjectTerms Agriculture
Aquatic Pollution
Aquifers
Data
Depth
Earth and Environmental Science
Earth Sciences
Geology
Geophysics/Geodesy
GRACE (experiment)
Gravity
Groundwater
Groundwater data
Groundwater levels
Groundwater storage
Hydrogeology
Hydrology/Water Resources
Learning algorithms
Machine learning
Observation wells
Population density
Predictions
Pumping
River basins
Statistical analysis
Statistical methods
Statistics
Support vector machines
Transboundary waters
Waste Water Technology
Water Management
Water Pollution Control
Water Quality/Water Pollution
Wells
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1SEb2IVsVqlRy8aWDztd09ltIPhPYgFnoLyTZbD7KWtiL9986ku6yKHjwn5PAmM_PCvMkQcgcuIyx3mjkfzZmSSrDUOwiGudUuEsCZPTY4jyfxaKoeZ3pW93EHsXtVkQyB-kuvG4rfUFEQaDODuLsP5EHiVZ6Kbt0MuSsrAw_gDPl22Snz-xnfs1FNMX9URUOyGZyQ45Il0u7OrKdkzxdNclgOLH_ZNsnBMEzk3Z6RyTjIIT0r5z8sGCamOcWJC8iy2Rqs4Cl2bxTzD2CWK_qKQiG6XGGNBu1CUfy-oMOnbq9_TqaD_nNvxMohCczKJN6wWAoLr9jUd_LIqyzJ4H3Fs47LBXcxeHDGUye1VZCHgGtEHQfxDPK29YlVDvK3vCCN4q3wl4QqzxMvdO6txuHgqcOfdiKeiSzW4KqiRe4rsMxy9xeGqX89RmgNQGsCtAZ2tys8TekXa4NsSkKIULpFHiqM6-W_T7v63_ZrciSCmVGZ2CaNzerd3wB72LjbcFs-Ad6JuGY
  priority: 102
  providerName: Springer Nature
Title Machine-learning-based regional-scale groundwater level prediction using GRACE
URI https://link.springer.com/article/10.1007/s10040-021-02306-2
https://www.proquest.com/docview/2512387045
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60PVgPolWxWksO3nQx2bxPEksfKC1SLNRTyCabepC0phXx3zuTbAgKegokYQ8zOzPf7jw-gCs0GR4ZwmZC6gmzTIszXwp0hmlkC50jZpbU4DyZOuO59bCwF-rCbaPKKiufWDjqZBXTHfktxWETN5dl363fGbFGUXZVUWjsQtPgrkvUDd5wVPdFlhlmhAQGI-itmmZU6xzV0lGBQoHCGf8ZmGq0-StBWsSd4SEcKMCoBaWGj2BHZm3YD5a5Gpoh27CnmMxfv9rQIvRYDl8-humkKJWUTHFDLBkFrUQjNgZC4GyDGpIadXZkySeizlx7oyIibZ1T_oZ0plFh_FIbzYL-4ATmw8Fzf8wUgQKLTM_ZMsfkEZ5wfemmurRiL8azlxG7IuWGcNC6Y8MXph1ZGKMQh-iuQF-HMT2SXmQJjO3mKTSyVSbPQLOk4UlupzKyiTjcFzSFRzdiHjs2mjHvwHUlvXBdzskI64nIJOsQZR0Wsg7x724l4FDZzCasNdyBm0ro9ee_Vzv_f7ULaPFCz1Sl2IXGNv-Ql4gktqJXbJceNIPRy-MAn_eD6dMM38558A0Am8Yf
link.rule.ids 315,781,785,12770,21393,27929,27930,33378,33749,41086,41528,42155,42597,43605,43810,52116,52239,74040,74307
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0oHNCDUdSIovbgTTe22w_ak0ECokJjCCTcmm67xYMpWDDGf-9Mu02jiZ7b7GFmd-btzpt5AFd4ZHhoCJsJqcfMMi3OPCkwGCahLXSOmFlSg_PYd4Yz62luz9WD21rRKsuYmAfqeBnRG_kt5WETN5dl363eGalGUXVVSWhsQz0fVVWD-n3ff5lUnZFFjRlBgcEIfKu2GdU8R2w6oijkOJzxn6mpwpu_SqR55hnsw56CjFq38PEBbMm0CbvdRabGZsgmNJSW-etXE3YIPxbjlw_BH-dkScmUOsSCUdqKNdJjIAzO1ugjqVFvRxp_Iu7MtDeiEWmrjCo45DWNqPEL7WHS7fWPYDboT3tDpiQUWGi6zoY5Jg_xjuvJTqJLK3IjvH0ZUUck3BAOnu_I8IRphxZmKUQiekdgtMOsHko3tARmd_MYaukylSegWdJwJbcTGdokHe4JmsOjGxGPHBsPMm_BdWm9YFVMygiqmchk6wBtHeS2DvDvdmngQJ2adVD5uAU3pdGrz3-vdvr_apfQGE7Ho2D06D-fwQ7PfU6cxTbUNtmHPEdcsREXavN8A8j8xlk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0oJIoHo6gRRe3Bm25otx-0J4MI4gcNIZJwa7rtFg8GsGCM_96ZdptGEz236WFmZ97bzpsZgEsMGR4awmZC6jGzTIszTwpMhkloC50jZ5bU4Dz0ncHEepzaU6V_WilZZZETs0QdLyL6R94iHDbxcFl2K1GyiNFd_2b5zmiDFFVa1TqNTagiKup4Eave9vzRuOySzOvNSBAMRkRctdCoRjpS1pFcIePkjP-EqZJ7_iqXZijU34NdRR-1Tu7vfdiQ8zrsdGapGqEh67Ct9pq_ftWhRlwyH8V8AP4wE05KpjZFzBhBWKzRbgbi42yF_pIa9XnM40_koKn2RpIibZlSNYc8qJFMfqbdjzvd3iFM-r2X7oCpdQosNF1nzRyTh3jf9WQ70aUVuRHexIyoLRJuCAdjPTI8YdqhhYiFrERvC8x8iPChdENLINKbR1CZL-byGDRLGq7kdiJDm9aIe4Jm8uhGxCPHxqDmDbgqrBcs86kZQTkfmWwdoK2DzNYBvt0sDByoCFoFpb8bcF0YvXz899dO_v_aBWzhuQmeH_ynU6jxzOUkX2xCZZ1-yDOkGGtxrs7ON0Igyo8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning-based+regional-scale+groundwater+level+prediction+using+GRACE&rft.jtitle=Hydrogeology+journal&rft.au=Malakar+Pragnaditya&rft.au=Mukherjee+Abhijit&rft.au=Bhanja%2C+Soumendra+N&rft.au=Kumar%2C+Ray+Ranjan&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1431-2174&rft.eissn=1435-0157&rft.volume=29&rft.issue=3&rft.spage=1027&rft.epage=1042&rft_id=info:doi/10.1007%2Fs10040-021-02306-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-2174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-2174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-2174&client=summon