Machine-learning-based regional-scale groundwater level prediction using GRACE
The rapid decline of groundwater levels (GWL) due to pervasive groundwater abstraction in the densely populated (~1 billion) Indus-Ganges-Brahmaputra-Meghna (IGBM) transboundary river basins of South Asia, necessitates a robust framework of prediction and understanding. While few localized studies e...
Saved in:
Published in | Hydrogeology journal Vol. 29; no. 3; pp. 1027 - 1042 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid decline of groundwater levels (GWL) due to pervasive groundwater abstraction in the densely populated (~1 billion) Indus-Ganges-Brahmaputra-Meghna (IGBM) transboundary river basins of South Asia, necessitates a robust framework of prediction and understanding. While few localized studies exist, three-dimensional regional-scale characterization of GWL prediction is yet to be implemented. Here, ‘support vector machine’, a machine-learning-based method, is applied to data from the Gravity Recovery and Climate Experiment (GRACE) and data on land-surface-model-based groundwater storage and meteorological variables, to predict the GWL anomaly (GWLA) in the IGBM. The study has three main objectives, (1) to understand the spatial (observation well locations) and subsurface (shallow vs. deep observation wells) variability in prediction results for in-situ GWLA data for a large number of observation wells (
n
= 4,791); (2) to determine its relationship with groundwater abstraction, and; (3) to outline the advantages and limitations of using GRACE data for predicting GWLAs. The findings, based on individual observation well results, suggest significant prediction efficiency (median statistics:
r
> 0.71, NSE > 0.70;
p
< 0.05) in most of the IGBM; however, the study identifies hotspots, mostly in the agriculture-intensive regions, having relatively poor model performance. Further analysis of the subsurface depth-wise prediction statistics reveals that the significant dominance of pumping in the deeper depths of the aquifer is linked to the relatively poor model performance for the deep observation wells (screen depth > 35 m) compared with the shallow observation wells (screen depth < 35 m), thus, highlighting the limitation of GRACE in representing spatial and depth-dependent local-scale pumping. |
---|---|
AbstractList | The rapid decline of groundwater levels (GWL) due to pervasive groundwater abstraction in the densely populated (~1 billion) Indus-Ganges-Brahmaputra-Meghna (IGBM) transboundary river basins of South Asia, necessitates a robust framework of prediction and understanding. While few localized studies exist, three-dimensional regional-scale characterization of GWL prediction is yet to be implemented. Here, ‘support vector machine’, a machine-learning-based method, is applied to data from the Gravity Recovery and Climate Experiment (GRACE) and data on land-surface-model-based groundwater storage and meteorological variables, to predict the GWL anomaly (GWLA) in the IGBM. The study has three main objectives, (1) to understand the spatial (observation well locations) and subsurface (shallow vs. deep observation wells) variability in prediction results for in-situ GWLA data for a large number of observation wells (n = 4,791); (2) to determine its relationship with groundwater abstraction, and; (3) to outline the advantages and limitations of using GRACE data for predicting GWLAs. The findings, based on individual observation well results, suggest significant prediction efficiency (median statistics: r > 0.71, NSE > 0.70; p < 0.05) in most of the IGBM; however, the study identifies hotspots, mostly in the agriculture-intensive regions, having relatively poor model performance. Further analysis of the subsurface depth-wise prediction statistics reveals that the significant dominance of pumping in the deeper depths of the aquifer is linked to the relatively poor model performance for the deep observation wells (screen depth > 35 m) compared with the shallow observation wells (screen depth < 35 m), thus, highlighting the limitation of GRACE in representing spatial and depth-dependent local-scale pumping. The rapid decline of groundwater levels (GWL) due to pervasive groundwater abstraction in the densely populated (~1 billion) Indus-Ganges-Brahmaputra-Meghna (IGBM) transboundary river basins of South Asia, necessitates a robust framework of prediction and understanding. While few localized studies exist, three-dimensional regional-scale characterization of GWL prediction is yet to be implemented. Here, ‘support vector machine’, a machine-learning-based method, is applied to data from the Gravity Recovery and Climate Experiment (GRACE) and data on land-surface-model-based groundwater storage and meteorological variables, to predict the GWL anomaly (GWLA) in the IGBM. The study has three main objectives, (1) to understand the spatial (observation well locations) and subsurface (shallow vs. deep observation wells) variability in prediction results for in-situ GWLA data for a large number of observation wells ( n = 4,791); (2) to determine its relationship with groundwater abstraction, and; (3) to outline the advantages and limitations of using GRACE data for predicting GWLAs. The findings, based on individual observation well results, suggest significant prediction efficiency (median statistics: r > 0.71, NSE > 0.70; p < 0.05) in most of the IGBM; however, the study identifies hotspots, mostly in the agriculture-intensive regions, having relatively poor model performance. Further analysis of the subsurface depth-wise prediction statistics reveals that the significant dominance of pumping in the deeper depths of the aquifer is linked to the relatively poor model performance for the deep observation wells (screen depth > 35 m) compared with the shallow observation wells (screen depth < 35 m), thus, highlighting the limitation of GRACE in representing spatial and depth-dependent local-scale pumping. |
Author | Sarkar, Sudeshna Malakar, Pragnaditya Ray, Ranjan Kumar Mukherjee, Abhijit Zahid, Anwar Bhanja, Soumendra N. |
Author_xml | – sequence: 1 givenname: Pragnaditya surname: Malakar fullname: Malakar, Pragnaditya – sequence: 2 givenname: Abhijit surname: Mukherjee fullname: Mukherjee, Abhijit email: amukh2@gmail.com – sequence: 3 givenname: Soumendra N. surname: Bhanja fullname: Bhanja, Soumendra N. – sequence: 4 givenname: Ranjan Kumar surname: Ray fullname: Ray, Ranjan Kumar – sequence: 5 givenname: Sudeshna surname: Sarkar fullname: Sarkar, Sudeshna – sequence: 6 givenname: Anwar surname: Zahid fullname: Zahid, Anwar |
BookMark | eNp9kEtLAzEUhYMo2Fb_gKsB19Gbx0zSZSm1ClVBdB0ymTvjlDFTk6nivzd2BHcu7mPxncPhTMmx7z0ScsHgigGo65i2BAqcpRFQUH5EJkyKnALL1fHhZ5QzJU_JNMYtJJwpMSEP99a9th5phzb41je0tBGrLGDT9t52NDrbYdaEfu-rTztgyDr8wC7bBaxaNyQo28eky9ZPi-XqjJzUtot4_ntn5OVm9by8pZvH9d1ysaFW6GKgheBWaz1HVQNKpx1LcZwqa87KAgQ4Ni9FbiXjOtcSVFlVCJxb1FaWnEsxI5ej7y7073uMg9n2-5DyRsNzxoVWIPNE8ZFyoY8xYG12oX2z4cswMD-9mbE3k3ozh94MTyIximKCfYPhz_of1TfzD3DL |
CitedBy_id | crossref_primary_10_1007_s10040_021_02439_4 crossref_primary_10_2166_ws_2023_242 crossref_primary_10_3390_hydrology9070125 crossref_primary_10_1038_s41598_024_55588_3 crossref_primary_10_1007_s12665_023_11137_1 crossref_primary_10_1016_j_jhydrol_2021_127234 crossref_primary_10_1080_13658816_2023_2248215 crossref_primary_10_1021_acsestengg_0c00238 crossref_primary_10_1007_s10661_024_12457_w crossref_primary_10_3390_w14203220 crossref_primary_10_1021_acsestwater_2c00220 crossref_primary_10_3390_rs14030612 crossref_primary_10_1007_s11053_023_10185_5 crossref_primary_10_3389_frwa_2023_1241451 crossref_primary_10_1016_j_cageo_2023_105386 crossref_primary_10_1016_j_jconhyd_2021_103895 crossref_primary_10_3390_rs15010188 crossref_primary_10_1029_2022WR033588 crossref_primary_10_3390_w16131904 crossref_primary_10_1016_j_catena_2023_107783 crossref_primary_10_1021_acsomega_2c00536 crossref_primary_10_3390_w13233393 crossref_primary_10_1016_j_gsd_2024_101113 crossref_primary_10_1109_ACCESS_2024_3368423 crossref_primary_10_1080_10106049_2022_2158951 crossref_primary_10_1007_s11069_021_05039_3 crossref_primary_10_3389_fenvs_2024_1291327 |
Cites_doi | 10.1038/s41558-018-0386-4 10.1038/s41597-020-0453-3 10.1038/nclimate2425 10.1111/gwat.12453 10.1088/1748-9326/4/3/035005 10.1007/s10040-011-0723-4 10.1016/j.scitotenv.2018.08.352 10.1029/2019GL083015 10.1038/s41598-018-30246-7 10.1002/2017GL072994 10.1007/s10040-007-0208-7 10.1007/978-1-4757-2440-0 10.1016/j.jhydrol.2009.06.019 10.1038/nature08238 10.1016/j.jhydrol.2016.11.052 10.1007/s11269-012-0191-1 10.1016/j.gsd.2017.12.006 10.1038/ngeo2791 10.18637/jss.v045.i03 10.1016/j.earscirev.2014.10.010 10.1175/BAMS-85-3-381 10.1002/wrcr.20421 10.1016/j.ejrh.2015.03.005 10.5194/hess-14-1863-2010 10.1177/0962280216666564 10.1038/ngeo1617 10.1038/s41598-017-07058-2 10.1007/978-981-10-3889-1_37 10.1029/2018WR023333 10.1029/2004GL019779 10.1002/2015GL065798 10.1002/2015JB012608 10.1007/978-981-10-3889-1_4 10.1038/s41586-019-0912-1 10.1016/j.advwatres.2019.02.001 10.1016/j.quaint.2018.10.036 10.1073/pnas.1222460110 10.1126/science.aac9238 10.1073/pnas.1704665115 10.1038/s41586-018-0123-1 10.1126/science.1172974 10.1002/2014GL062498 10.1038/nclimate1744 10.1029/2000WR900368 10.1016/j.gloplacha.2014.02.007 10.1029/2010GL046442 10.1002/2014JB011547 10.1002/2016WR019344 10.1029/2001jb000576 10.1029/2011WR011312 10.1016/j.jhydrol.2018.02.005 10.1002/2015WR017797 10.1029/2002WR001808 10.1016/j.jhydrol.2010.11.002 10.1016/j.jhydrol.2016.10.042 10.1016/j.asoc.2014.02.002 10.1002/mpr.329 10.1080/02626667.2020.1716238 10.5194/hess-23-711-2019 10.1029/2009GL039401 10.1023/A:1022627411411 10.1016/j.jseaes.2013.07.004 10.1007/s10040-017-1550-z 10.1016/j.advwatres.2021.103856 10.3133/cir1186 10.54302/mausam.v65i1.851 10.5194/hess-2020-208 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2021 Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7QH 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M2P M7S PATMY PCBAR PQEST PQQKQ PQUKI PTHSS PYCSY Q9U SOI |
DOI | 10.1007/s10040-021-02306-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Science Journals ProQuest Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Statistics Agriculture |
DocumentTitle_FL | Prévision du niveau des eaux souterraines à l’échelle régionale basée sur l’apprentissage automatique à l’aide de GRACE |
EISSN | 1435-0157 |
EndPage | 1042 |
ExternalDocumentID | 10_1007_s10040_021_02306_2 |
GroupedDBID | -5A -5G -5~ -BR -DZ -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29I 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 78A 7XC 88I 8CJ 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPPZ ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP D1J D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7Y Z7Z Z81 Z83 Z85 Z86 ZMTXR ZY4 ~02 ~KM AACDK AAEOY AAHBH AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AFEUZ AGQEE AGRTI AIGIU CITATION H13 7QH 7ST 7TG 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KL. KR7 L.G PQEST PQUKI Q9U SOI |
ID | FETCH-LOGICAL-a386t-632a8889e7f0e4c8c1041c7bf21b6030c19b35a412858407bdde022ae8a4b2243 |
IEDL.DBID | 8FG |
ISSN | 1431-2174 |
IngestDate | Mon Nov 11 05:16:37 EST 2024 Thu Nov 21 23:47:27 EST 2024 Sat Dec 16 12:10:19 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Satellite imagery Groundwater level anomaly prediction Transboundary aquifer Groundwater exploration Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a386t-632a8889e7f0e4c8c1041c7bf21b6030c19b35a412858407bdde022ae8a4b2243 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10040-021-02306-2.pdf |
PQID | 2512387045 |
PQPubID | 55405 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2512387045 crossref_primary_10_1007_s10040_021_02306_2 springer_journals_10_1007_s10040_021_02306_2 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Official Journal of the International Association of Hydrogeologists |
PublicationTitle | Hydrogeology journal |
PublicationTitleAbbrev | Hydrogeol J |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Bhanja, Mukherjee, Rodell, Wada, Chattopadhyay, Velicogna, Pangaluru, Famiglietti (CR6) 2017; 7 Famiglietti, Lo, Ho, Bethune, Anderson, Syed, Swenson, De Linage, Rodell (CR24) 2011; 38 Sun, Scanlon, Zhang, Walling, Bhanja, Mukherjee, Zhong (CR71) 2019; 55 Huang, Pan, Gong, Yeh, Li, Zhou, Zhao (CR32) 2015; 42 Bhanja, Mukherjee, Rangarajan, Scanlon, Malakar, Verma (CR9) 2019; 23 Coulibaly, Anctil, Aravena, Bobée (CR21) 2001; 37 Van Buuren, Groothuis-Oudshoorn (CR78) 2011; 45 Bhanja, Mukherjee, Rodell (CR11) 2020; 65 CR35 Schewe, Heinke, Gerten, Haddeland, Arnell, Clark, Dankers, Eisner, Fekete, Colón-González, Gosling, Kim, Liu, Masaki, Portmann, Satoh, Stacke, Tang, Wada, Wisser, Albrecht, Frieler, Piontek, Warszawski, Kabat (CR62) 2014; 111 CR34 Chen, Zhang, Nie, Guo (CR18) 2019; 649 CR33 Bhanja, Mukherjee, Saha, Velicogna, Famiglietti (CR5) 2016; 543 CR30 Mukherjee, Fryar, Howell (CR47) 2007; 15 Swenson, Wahr (CR72) 2002; 107 Panda, Wahr (CR52) 2016; 52 Tapley, Bettadpur, Watkins, Reigber (CR74) 2004; 31 Slavíková, Malý, Rost, Petružela, Vojáček (CR67) 2013; 27 Aeschbach-Hertig, Gleeson (CR1) 2012; 5 Lapworth, MacDonald, Krishan, Rao, Gooddy, Darling (CR36) 2015; 42 Shah (CR63) 2009; 4 CR2 Pai, Sridhar, Rajeevan (CR51) 2014; 65 Scanlon, Longuevergne, Long (CR60) 2012; 48 Vapnik (CR79) 1995 Famiglietti, Cazenave, Eicker, Reager, Rodell, Velicogna (CR25) 2015; 349 Rodell, Velicogna, Famiglietti (CR57) 2009; 460 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (CR54) 2019; 566 Tiwari, Wahr, Swenson (CR76) 2009; 36 Scanlon, Zhang, Save, Sun, Schmied, LPH, Wiese, Wada, Long, Reedy, Longuevergne, Döll, Bierkens (CR61) 2018; 115 CR44 Wiese, Landerer, Watkins (CR83) 2016; 52 CR43 Bhanja, Mukherjee, Rodell, Mukherjee (CR8) 2018 MacDonald, Bonsor, Taylor, Shamsudduha, Burgess, AhmedKM, Zahid, Lapworth, Gopal, Rao, Moench, Bricker, Yadav, Satyal, Smith, Dixit, Bell, van Steenbergen, Basharat, GoharMS, Calow, Maurice (CR37) 2015 CR42 Yi, Wang, Sun (CR85) 2016; 121 CR41 CR84 Mukherjee, Ramachandran (CR46) 2018; 558 Srivastava, Pal, Aruche, Wani, Sahrawat (CR68) 2015; 140 Malakar, Mukherjee, Sarkar, Mukherjee (CR39) 2018 Castellazzi, Martel, Galloway, Longuevergne, Rivera (CR13) 2016; 54 Azur, Stuart, Frangakis, Leaf (CR3) 2011; 20 Resche-Rigon, White (CR55) 2018; 27 Vapnik (CR80) 1998 Bhanja, Rodell, Li, Saha, Mukherjee (CR7) 2017; 544 Sun (CR70) 2013; 49 Cuthbert, Gleeson, Moosdorf, Befus, Schneider, Hartmann, Lehner (CR22) 2019; 9 Rodell, Famiglietti, Wiese, Reager, Beaudoing, Landerer, Lo (CR58) 2018; 557 CR19 Harris, Osborn, Jones, Lister (CR31) 2020; 7 CR16 Singh, Tripathi, Kotlia, Singh, Kumar (CR66) 2019; 507 Bhanja, Mukherjee (CR4) 2019; 126 CR15 CR59 CR14 CR12 CR50 MacDonald, Bonsor, Ahmed, Burgess, Basharat, Calow, Dixit, SSD, Gopal, Lapworth, Lark, Moench, Mukherjee, Rao, Shamsudduha, Smith, Taylor, Tucker, van Steenbergen, Yadav (CR38) 2016; 9 (CR45) 2012 Mukherjee, Bhanja, Wada (CR49) 2018; 8 Mukherjee, Saha, Harvey, Taylor, Ahmed, Bhanja (CR48) 2015; 4 Siebert, Burke, Faures, Frenken, Hoogeveen, Döll, Portmann (CR65) 2010; 14 Tukey (CR77) 1977 Bhanja, Malakar, Mukherjee, Rodell, Mitra, Sarkar (CR10) 2019; 46 Yoon, Jun, Hyun, Bae, Lee (CR86) 2011; 396 Shamsudduha, Taylor, Ahmed, Zahid (CR64) 2011; 19 Wang, Chau, Cheng, Qiu (CR81) 2009; 374 Famiglietti (CR23) 2014; 4 CR27 CR69 Swenson, Wahr, Milly (CR73) 2003; 39 Watkins, Wiese, Yuan, Boening, Landerer (CR82) 2015; 120 Raghavendra, Deka (CR53) 2014; 19 Rodell, Houser, Jambor, Gottschalck, Mitchell, Meng, Arsenault, Cosgrove, Radakovich, Bosilovich, Entin, Walker, Lohmann, Toll (CR56) 2004; 85 Taylor, Scanlon, Döll, Rodell, Van Beek, Wada, Longuevergne, Leblanc, Famiglietti, Edmunds, Konikow, Green, Chen, Taniguchi, Bierkens, Macdonald, Fan, Maxwell, Yechieli, Gurdak, Allen, Shamsudduha, Hiscock, Yeh, Holman, Treidel (CR75) 2013; 3 Cortes, Vapnik (CR20) 1995; 20 Fendorf, Michael, Van Geen (CR26) 2010; 328 Chen, Li, Zhang, Ni (CR17) 2014; 116 Gibrilla, Anornu, Adomako (CR28) 2018; 6 Girotto, GJM, Reichle, Rodell, Draper, Bhanja, Mukherjee (CR29) 2017; 44 Malakar, Sarkar, Mukherjee, Bhanja, Sun, Mukherjee (CR40) 2020 2306_CR41 2306_CR42 DJ Lapworth (2306_CR36) 2015; 42 2306_CR43 2306_CR44 SN Bhanja (2306_CR7) 2017; 544 MO Cuthbert (2306_CR22) 2019; 9 SN Bhanja (2306_CR9) 2019; 23 P Castellazzi (2306_CR13) 2016; 54 2306_CR84 S Siebert (2306_CR65) 2010; 14 2306_CR2 S Van Buuren (2306_CR78) 2011; 45 SN Bhanja (2306_CR8) 2018 JS Famiglietti (2306_CR24) 2011; 38 S Fendorf (2306_CR26) 2010; 328 C Cortes (2306_CR20) 1995; 20 S Raghavendra (2306_CR53) 2014; 19 BR Scanlon (2306_CR60) 2012; 48 2306_CR30 S Swenson (2306_CR73) 2003; 39 S Yi (2306_CR85) 2016; 121 2306_CR33 SN Bhanja (2306_CR10) 2019; 46 MoA (Ministry of Agriculture) (2306_CR45) 2012 WC Wang (2306_CR81) 2009; 374 2306_CR34 BR Scanlon (2306_CR61) 2018; 115 2306_CR35 Z Huang (2306_CR32) 2015; 42 L Slavíková (2306_CR67) 2013; 27 P Coulibaly (2306_CR21) 2001; 37 S Swenson (2306_CR72) 2002; 107 A Mukherjee (2306_CR47) 2007; 15 M Rodell (2306_CR57) 2009; 460 J Chen (2306_CR17) 2014; 116 AY Sun (2306_CR71) 2019; 55 DK Panda (2306_CR52) 2016; 52 H Chen (2306_CR18) 2019; 649 A Gibrilla (2306_CR28) 2018; 6 MJ Azur (2306_CR3) 2011; 20 SN Bhanja (2306_CR5) 2016; 543 W Aeschbach-Hertig (2306_CR1) 2012; 5 T Shah (2306_CR63) 2009; 4 2306_CR27 VN Vapnik (2306_CR79) 1995 2306_CR69 M Shamsudduha (2306_CR64) 2011; 19 AY Sun (2306_CR70) 2013; 49 AM MacDonald (2306_CR38) 2016; 9 P Malakar (2306_CR39) 2018 A Mukherjee (2306_CR46) 2018; 558 SN Bhanja (2306_CR6) 2017; 7 M Rodell (2306_CR58) 2018; 557 RG Taylor (2306_CR75) 2013; 3 BD Tapley (2306_CR74) 2004; 31 H Yoon (2306_CR86) 2011; 396 M Resche-Rigon (2306_CR55) 2018; 27 P Srivastava (2306_CR68) 2015; 140 P Malakar (2306_CR40) 2020 DS Pai (2306_CR51) 2014; 65 A Mukherjee (2306_CR48) 2015; 4 M Girotto (2306_CR29) 2017; 44 JW Tukey (2306_CR77) 1977 2306_CR50 DN Wiese (2306_CR83) 2016; 52 SN Bhanja (2306_CR11) 2020; 65 2306_CR16 AM MacDonald (2306_CR37) 2015 MM Watkins (2306_CR82) 2015; 120 2306_CR19 2306_CR12 2306_CR14 VN Vapnik (2306_CR80) 1998 2306_CR15 2306_CR59 JS Famiglietti (2306_CR25) 2015; 349 VM Tiwari (2306_CR76) 2009; 36 SN Bhanja (2306_CR4) 2019; 126 M Rodell (2306_CR56) 2004; 85 AK Singh (2306_CR66) 2019; 507 A Mukherjee (2306_CR49) 2018; 8 JS Famiglietti (2306_CR23) 2014; 4 J Schewe (2306_CR62) 2014; 111 M Reichstein (2306_CR54) 2019; 566 I Harris (2306_CR31) 2020; 7 |
References_xml | – volume: 9 start-page: 137 year: 2019 end-page: 141 ident: CR22 article-title: Global patterns and dynamics of climate–groundwater interactions publication-title: Nat Clim Chang doi: 10.1038/s41558-018-0386-4 contributor: fullname: Lehner – volume: 7 start-page: 109 year: 2020 ident: CR31 article-title: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset publication-title: Sci Data doi: 10.1038/s41597-020-0453-3 contributor: fullname: Lister – volume: 4 start-page: 945 year: 2014 end-page: 948 ident: CR23 article-title: The global groundwater crisis publication-title: Nat Clim Chang doi: 10.1038/nclimate2425 contributor: fullname: Famiglietti – volume: 54 start-page: 768 year: 2016 end-page: 780 ident: CR13 article-title: Assessing groundwater depletion and dynamics using GRACE and InSAR: potential and limitations publication-title: Groundwater doi: 10.1111/gwat.12453 contributor: fullname: Rivera – ident: CR16 – ident: CR12 – year: 1977 ident: CR77 publication-title: Exploratory data analysis contributor: fullname: Tukey – ident: CR35 – volume: 4 start-page: 035005 year: 2009 ident: CR63 article-title: Climate change and groundwater: India’s opportunities for mitigation and adaptation publication-title: Environ Res Lett doi: 10.1088/1748-9326/4/3/035005 contributor: fullname: Shah – volume: 19 start-page: 901 year: 2011 end-page: 916 ident: CR64 article-title: The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh publication-title: Hydrogeol J doi: 10.1007/s10040-011-0723-4 contributor: fullname: Zahid – volume: 649 start-page: 372 year: 2019 end-page: 387 ident: CR18 article-title: Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.352 contributor: fullname: Guo – ident: CR84 – volume: 46 start-page: 8082 year: 2019 end-page: 8092 ident: CR10 article-title: Using satellite-based vegetation cover as indicator of groundwater storage in natural vegetation areas publication-title: Geophys Res Lett doi: 10.1029/2019GL083015 contributor: fullname: Sarkar – ident: CR42 – volume: 8 start-page: 12049 year: 2018 ident: CR49 article-title: Groundwater depletion causing reduction of baseflow triggering Ganges River summer drying publication-title: Sci Rep doi: 10.1038/s41598-018-30246-7 contributor: fullname: Wada – volume: 44 start-page: 4107 year: 2017 end-page: 4115 ident: CR29 article-title: Benefits and pitfalls of GRACE data assimilation: a case study of terrestrial water storage depletion in India publication-title: Geophys Res Lett doi: 10.1002/2017GL072994 contributor: fullname: Mukherjee – volume: 15 start-page: 1397 year: 2007 end-page: 1418 ident: CR47 article-title: Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India publication-title: Hydrogeol J doi: 10.1007/s10040-007-0208-7 contributor: fullname: Howell – year: 1995 ident: CR79 publication-title: The nature of statistical learning theory doi: 10.1007/978-1-4757-2440-0 contributor: fullname: Vapnik – volume: 374 start-page: 294 year: 2009 end-page: 306 ident: CR81 article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.06.019 contributor: fullname: Qiu – volume: 460 start-page: 999 year: 2009 end-page: 1002 ident: CR57 article-title: Satellite-based estimates of groundwater depletion in India publication-title: Nature doi: 10.1038/nature08238 contributor: fullname: Famiglietti – volume: 544 start-page: 428 year: 2017 end-page: 437 ident: CR7 article-title: Spatio-temporal variability of groundwater storage in India publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.11.052 contributor: fullname: Mukherjee – ident: CR19 – volume: 27 start-page: 365 year: 2013 end-page: 379 ident: CR67 article-title: Impacts of climate variables on residential water consumption in the Czech Republic publication-title: Water Resour Manag doi: 10.1007/s11269-012-0191-1 contributor: fullname: Vojáček – ident: CR15 – volume: 6 start-page: 150 year: 2018 end-page: 163 ident: CR28 article-title: Trend analysis and ARIMA modelling of recent groundwater levels in the White Volta River basin of Ghana publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2017.12.006 contributor: fullname: Adomako – volume: 9 start-page: 762 year: 2016 end-page: 766 ident: CR38 article-title: Groundwater depletion and quality in the Indo-Gangetic Basin from in situ observations publication-title: Nat Geosci doi: 10.1038/ngeo2791 contributor: fullname: Yadav – ident: CR50 – volume: 45 start-page: 1 year: 2011 end-page: 67 ident: CR78 article-title: mice: Multivariate imputation by chained equations in R publication-title: J Stat Softw doi: 10.18637/jss.v045.i03 contributor: fullname: Groothuis-Oudshoorn – volume: 140 start-page: 54 year: 2015 end-page: 71 ident: CR68 article-title: Soils of the Indo-Gangetic Plains: a pedogenic response to landscape stability, climatic variability and anthropogenic activity during the Holocene publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2014.10.010 contributor: fullname: Sahrawat – volume: 85 start-page: 381 year: 2004 end-page: 394 ident: CR56 article-title: The global land data assimilation system publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-85-3-381 contributor: fullname: Toll – volume: 49 start-page: 5900 year: 2013 end-page: 5912 ident: CR70 article-title: Predicting groundwater level changes using GRACE data publication-title: Water Resour Res doi: 10.1002/wrcr.20421 contributor: fullname: Sun – volume: 4 start-page: 1 year: 2015 end-page: 14 ident: CR48 article-title: Groundwater systems of the Indian sub-continent publication-title: J Hydrol Reg Stud doi: 10.1016/j.ejrh.2015.03.005 contributor: fullname: Bhanja – year: 2015 ident: CR37 publication-title: Groundwater resources in the Indo-Gangetic Basin: resilience to climate change and abstraction. BGS open report, OR/15/047 contributor: fullname: Maurice – volume: 14 start-page: 1863 year: 2010 end-page: 1880 ident: CR65 article-title: Groundwater use for irrigation: a global inventory publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-14-1863-2010 contributor: fullname: Portmann – volume: 27 start-page: 1634 year: 2018 end-page: 1649 ident: CR55 article-title: Multiple imputation by chained equations for systematically and sporadically missing multilevel data publication-title: Stat Methods Med Res doi: 10.1177/0962280216666564 contributor: fullname: White – volume: 5 start-page: 853 year: 2012 end-page: 861 ident: CR1 article-title: Regional strategies for the accelerating global problem of groundwater depletion publication-title: Nat Geosci doi: 10.1038/ngeo1617 contributor: fullname: Gleeson – volume: 7 start-page: 7453 year: 2017 ident: CR6 article-title: Groundwater rejuvenation in parts of India influenced by water-policy change implementation publication-title: Sci Rep doi: 10.1038/s41598-017-07058-2 contributor: fullname: Famiglietti – start-page: 643 year: 2018 end-page: 655 ident: CR39 article-title: Potential application of advanced computational techniques in prediction of groundwater resource of India publication-title: Groundwater of South Asia doi: 10.1007/978-981-10-3889-1_37 contributor: fullname: Mukherjee – ident: CR43 – volume: 55 start-page: 1179 year: 2019 end-page: 1195 ident: CR71 article-title: Combining physically based modeling and deep learning for fusing GRACE satellite data: can we learn from mismatch? publication-title: Water Resour Res doi: 10.1029/2018WR023333 contributor: fullname: Zhong – volume: 31 start-page: L09607 year: 2004 ident: CR74 article-title: The gravity recovery and climate experiment: mission overview and early results publication-title: Geophys Res Lett doi: 10.1029/2004GL019779 contributor: fullname: Reigber – volume: 42 start-page: 7554 year: 2015 end-page: 7562 ident: CR36 article-title: Groundwater recharge and age-depth profiles of intensively exploited groundwater resources in Northwest India publication-title: Geophys Res Lett doi: 10.1002/2015GL065798 contributor: fullname: Darling – year: 1998 ident: CR80 publication-title: Statistical learning theory contributor: fullname: Vapnik – ident: CR14 – ident: CR2 – volume: 121 start-page: 3782 year: 2016 end-page: 3803 ident: CR85 article-title: Basin mass dynamic changes in China from GRACE based on a multibasin inversion method publication-title: J Geophys Res Solid Earth doi: 10.1002/2015JB012608 contributor: fullname: Sun – start-page: 49 year: 2018 end-page: 59 ident: CR8 article-title: Groundwater storage variations in India publication-title: Groundwater of South Asia doi: 10.1007/978-981-10-3889-1_4 contributor: fullname: Mukherjee – ident: CR30 – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: CR54 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 contributor: fullname: Prabhat – ident: CR33 – volume: 126 start-page: 15 year: 2019 end-page: 23 ident: CR4 article-title: In situ and satellite-based estimates of usable groundwater storage across India: implications for drinking water supply and food security publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2019.02.001 contributor: fullname: Mukherjee – volume: 507 start-page: 342 year: 2019 end-page: 351 ident: CR66 article-title: Monitoring groundwater fluctuations over India during Indian Summer Monsoon (ISM) and Northeast monsoon using GRACE satellite: impact on agriculture publication-title: Quat Int doi: 10.1016/j.quaint.2018.10.036 contributor: fullname: Kumar – volume: 111 start-page: 3245 year: 2014 end-page: 3250 ident: CR62 article-title: Multimodel assessment of water scarcity under climate change publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1222460110 contributor: fullname: Kabat – start-page: 545 year: 2020 end-page: 557 ident: CR40 article-title: Use of machine learning and deep learning methods in groundwater publication-title: Global groundwater contributor: fullname: Mukherjee – volume: 349 start-page: 684 year: 2015 end-page: 685 ident: CR25 article-title: Satellites provide the big picture publication-title: Science doi: 10.1126/science.aac9238 contributor: fullname: Velicogna – ident: CR27 – volume: 115 start-page: E1080 year: 2018 end-page: E1089 ident: CR61 article-title: Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1704665115 contributor: fullname: Bierkens – volume: 557 start-page: 651 year: 2018 end-page: 659 ident: CR58 article-title: Emerging trends in global freshwater availability publication-title: Nature doi: 10.1038/s41586-018-0123-1 contributor: fullname: Lo – volume: 328 start-page: 1123 year: 2010 end-page: 1127 ident: CR26 article-title: Spatial and temporal variations of groundwater arsenic in south and Southeast Asia publication-title: Science doi: 10.1126/science.1172974 contributor: fullname: Van Geen – ident: CR69 – volume: 42 start-page: 1791 year: 2015 end-page: 1799 ident: CR32 article-title: Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain publication-title: Geophys Res Lett doi: 10.1002/2014GL062498 contributor: fullname: Zhao – volume: 3 start-page: 322 year: 2013 end-page: 329 ident: CR75 article-title: Ground water and climate change publication-title: Nat Clim Chang doi: 10.1038/nclimate1744 contributor: fullname: Treidel – volume: 37 start-page: 885 year: 2001 end-page: 896 ident: CR21 article-title: Artificial neural network modeling of water table depth fluctuations publication-title: Water Resour Res doi: 10.1029/2000WR900368 contributor: fullname: Bobée – ident: CR44 – volume: 116 start-page: 130 year: 2014 end-page: 138 ident: CR17 article-title: Long-term groundwater variations in Northwest India from satellite gravity measurements publication-title: Glob Planet Chang doi: 10.1016/j.gloplacha.2014.02.007 contributor: fullname: Ni – year: 2012 ident: CR45 publication-title: State of Indian agriculture 2011–12 – volume: 38 start-page: L03403 year: 2011 ident: CR24 article-title: Satellites measure recent rates of groundwater depletion in California’s Central Valley publication-title: Geophys Res Lett doi: 10.1029/2010GL046442 contributor: fullname: Rodell – volume: 120 start-page: 2648 year: 2015 end-page: 2671 ident: CR82 article-title: Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons publication-title: J Geophys Res Solid Earth doi: 10.1002/2014JB011547 contributor: fullname: Landerer – volume: 52 start-page: 7490 year: 2016 end-page: 7502 ident: CR83 article-title: Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution publication-title: Water Resour Res doi: 10.1002/2016WR019344 contributor: fullname: Watkins – volume: 107 start-page: ETG 3-1-ETG 3-13 year: 2002 ident: CR72 article-title: Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity publication-title: J Geophys Res Solid Earth doi: 10.1029/2001jb000576 contributor: fullname: Wahr – volume: 48 start-page: 1 year: 2012 end-page: 9 ident: CR60 article-title: Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA publication-title: Water Resour Res doi: 10.1029/2011WR011312 contributor: fullname: Long – volume: 558 start-page: 647 year: 2018 end-page: 658 ident: CR46 article-title: Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India: analysis of comparative performances of SVR, ANN and LRM publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.02.005 contributor: fullname: Ramachandran – volume: 52 start-page: 135 year: 2016 end-page: 149 ident: CR52 article-title: Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records publication-title: Water Resour Res doi: 10.1002/2015WR017797 contributor: fullname: Wahr – volume: 39 start-page: 1223 year: 2003 ident: CR73 article-title: Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE) publication-title: Water Resour Res doi: 10.1029/2002WR001808 contributor: fullname: Milly – volume: 396 start-page: 128 year: 2011 end-page: 138 ident: CR86 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.11.002 contributor: fullname: Lee – ident: CR34 – volume: 65 start-page: 1 year: 2014 end-page: 18 ident: CR51 article-title: Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region publication-title: Mausam contributor: fullname: Rajeevan – volume: 543 start-page: 729 year: 2016 end-page: 738 ident: CR5 article-title: Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.10.042 contributor: fullname: Famiglietti – ident: CR59 – volume: 19 start-page: 372 year: 2014 end-page: 386 ident: CR53 article-title: Support vector machine applications in the field of hydrology: a review publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.02.002 contributor: fullname: Deka – volume: 20 start-page: 40 year: 2011 end-page: 49 ident: CR3 article-title: Multiple imputation by chained equations: what is it and how does it work? publication-title: Int J Methods Psychiatr Res doi: 10.1002/mpr.329 contributor: fullname: Leaf – volume: 65 start-page: 650 year: 2020 end-page: 659 ident: CR11 article-title: Groundwater storage change detection from in situ and GRACE-based estimates in major river basins across India publication-title: Hydrol Sci J doi: 10.1080/02626667.2020.1716238 contributor: fullname: Rodell – volume: 23 start-page: 711 year: 2019 end-page: 722 ident: CR9 article-title: Long-term groundwater recharge rates across India by in situ measurements publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-23-711-2019 contributor: fullname: Verma – ident: CR41 – volume: 36 start-page: 1 year: 2009 end-page: 5 ident: CR76 article-title: Dwindling groundwater resources in northern India, from satellite gravity observations publication-title: Geophys Res Lett doi: 10.1029/2009GL039401 contributor: fullname: Swenson – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: CR20 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1023/A:1022627411411 contributor: fullname: Vapnik – ident: 2306_CR19 – ident: 2306_CR44 – volume: 111 start-page: 3245 year: 2014 ident: 2306_CR62 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1222460110 contributor: fullname: J Schewe – volume: 544 start-page: 428 year: 2017 ident: 2306_CR7 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.11.052 contributor: fullname: SN Bhanja – volume: 49 start-page: 5900 year: 2013 ident: 2306_CR70 publication-title: Water Resour Res doi: 10.1002/wrcr.20421 contributor: fullname: AY Sun – ident: 2306_CR50 – volume: 45 start-page: 1 year: 2011 ident: 2306_CR78 publication-title: J Stat Softw doi: 10.18637/jss.v045.i03 contributor: fullname: S Van Buuren – ident: 2306_CR34 – volume: 20 start-page: 40 year: 2011 ident: 2306_CR3 publication-title: Int J Methods Psychiatr Res doi: 10.1002/mpr.329 contributor: fullname: MJ Azur – ident: 2306_CR15 – start-page: 643 volume-title: Groundwater of South Asia year: 2018 ident: 2306_CR39 doi: 10.1007/978-981-10-3889-1_37 contributor: fullname: P Malakar – volume: 115 start-page: E1080 year: 2018 ident: 2306_CR61 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1704665115 contributor: fullname: BR Scanlon – volume: 27 start-page: 365 year: 2013 ident: 2306_CR67 publication-title: Water Resour Manag doi: 10.1007/s11269-012-0191-1 contributor: fullname: L Slavíková – volume-title: The nature of statistical learning theory year: 1995 ident: 2306_CR79 doi: 10.1007/978-1-4757-2440-0 contributor: fullname: VN Vapnik – ident: 2306_CR35 doi: 10.1016/j.jseaes.2013.07.004 – volume: 4 start-page: 1 year: 2015 ident: 2306_CR48 publication-title: J Hydrol Reg Stud doi: 10.1016/j.ejrh.2015.03.005 contributor: fullname: A Mukherjee – volume: 9 start-page: 762 year: 2016 ident: 2306_CR38 publication-title: Nat Geosci doi: 10.1038/ngeo2791 contributor: fullname: AM MacDonald – volume: 566 start-page: 195 year: 2019 ident: 2306_CR54 publication-title: Nature doi: 10.1038/s41586-019-0912-1 contributor: fullname: M Reichstein – volume: 557 start-page: 651 year: 2018 ident: 2306_CR58 publication-title: Nature doi: 10.1038/s41586-018-0123-1 contributor: fullname: M Rodell – volume-title: Statistical learning theory year: 1998 ident: 2306_CR80 contributor: fullname: VN Vapnik – ident: 2306_CR12 doi: 10.1007/s10040-017-1550-z – ident: 2306_CR42 doi: 10.1016/j.advwatres.2021.103856 – volume: 19 start-page: 372 year: 2014 ident: 2306_CR53 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.02.002 contributor: fullname: S Raghavendra – volume: 120 start-page: 2648 year: 2015 ident: 2306_CR82 publication-title: J Geophys Res Solid Earth doi: 10.1002/2014JB011547 contributor: fullname: MM Watkins – volume: 126 start-page: 15 year: 2019 ident: 2306_CR4 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2019.02.001 contributor: fullname: SN Bhanja – volume: 140 start-page: 54 year: 2015 ident: 2306_CR68 publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2014.10.010 contributor: fullname: P Srivastava – volume: 48 start-page: 1 year: 2012 ident: 2306_CR60 publication-title: Water Resour Res doi: 10.1029/2011WR011312 contributor: fullname: BR Scanlon – volume: 36 start-page: 1 year: 2009 ident: 2306_CR76 publication-title: Geophys Res Lett doi: 10.1029/2009GL039401 contributor: fullname: VM Tiwari – volume-title: State of Indian agriculture 2011–12 year: 2012 ident: 2306_CR45 contributor: fullname: MoA (Ministry of Agriculture) – volume: 39 start-page: 1223 year: 2003 ident: 2306_CR73 publication-title: Water Resour Res doi: 10.1029/2002WR001808 contributor: fullname: S Swenson – volume: 23 start-page: 711 year: 2019 ident: 2306_CR9 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-23-711-2019 contributor: fullname: SN Bhanja – ident: 2306_CR30 – ident: 2306_CR14 – volume: 52 start-page: 135 year: 2016 ident: 2306_CR52 publication-title: Water Resour Res doi: 10.1002/2015WR017797 contributor: fullname: DK Panda – volume: 14 start-page: 1863 year: 2010 ident: 2306_CR65 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-14-1863-2010 contributor: fullname: S Siebert – volume: 38 start-page: L03403 year: 2011 ident: 2306_CR24 publication-title: Geophys Res Lett doi: 10.1029/2010GL046442 contributor: fullname: JS Famiglietti – volume: 3 start-page: 322 year: 2013 ident: 2306_CR75 publication-title: Nat Clim Chang doi: 10.1038/nclimate1744 contributor: fullname: RG Taylor – volume: 65 start-page: 650 year: 2020 ident: 2306_CR11 publication-title: Hydrol Sci J doi: 10.1080/02626667.2020.1716238 contributor: fullname: SN Bhanja – ident: 2306_CR59 – volume: 107 start-page: ETG 3-1-ETG 3-1 year: 2002 ident: 2306_CR72 publication-title: J Geophys Res Solid Earth doi: 10.1029/2001jb000576 contributor: fullname: S Swenson – volume: 55 start-page: 1179 year: 2019 ident: 2306_CR71 publication-title: Water Resour Res doi: 10.1029/2018WR023333 contributor: fullname: AY Sun – volume: 4 start-page: 945 year: 2014 ident: 2306_CR23 publication-title: Nat Clim Chang doi: 10.1038/nclimate2425 contributor: fullname: JS Famiglietti – volume: 328 start-page: 1123 year: 2010 ident: 2306_CR26 publication-title: Science doi: 10.1126/science.1172974 contributor: fullname: S Fendorf – volume: 649 start-page: 372 year: 2019 ident: 2306_CR18 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.352 contributor: fullname: H Chen – volume: 8 start-page: 12049 year: 2018 ident: 2306_CR49 publication-title: Sci Rep doi: 10.1038/s41598-018-30246-7 contributor: fullname: A Mukherjee – volume: 37 start-page: 885 year: 2001 ident: 2306_CR21 publication-title: Water Resour Res doi: 10.1029/2000WR900368 contributor: fullname: P Coulibaly – volume: 85 start-page: 381 year: 2004 ident: 2306_CR56 publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-85-3-381 contributor: fullname: M Rodell – ident: 2306_CR69 – volume: 7 start-page: 109 year: 2020 ident: 2306_CR31 publication-title: Sci Data doi: 10.1038/s41597-020-0453-3 contributor: fullname: I Harris – volume: 558 start-page: 647 year: 2018 ident: 2306_CR46 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.02.005 contributor: fullname: A Mukherjee – start-page: 49 volume-title: Groundwater of South Asia year: 2018 ident: 2306_CR8 doi: 10.1007/978-981-10-3889-1_4 contributor: fullname: SN Bhanja – volume: 6 start-page: 150 year: 2018 ident: 2306_CR28 publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2017.12.006 contributor: fullname: A Gibrilla – volume: 5 start-page: 853 year: 2012 ident: 2306_CR1 publication-title: Nat Geosci doi: 10.1038/ngeo1617 contributor: fullname: W Aeschbach-Hertig – volume: 349 start-page: 684 year: 2015 ident: 2306_CR25 publication-title: Science doi: 10.1126/science.aac9238 contributor: fullname: JS Famiglietti – volume: 31 start-page: L09607 year: 2004 ident: 2306_CR74 publication-title: Geophys Res Lett doi: 10.1029/2004GL019779 contributor: fullname: BD Tapley – ident: 2306_CR84 – volume: 42 start-page: 7554 year: 2015 ident: 2306_CR36 publication-title: Geophys Res Lett doi: 10.1002/2015GL065798 contributor: fullname: DJ Lapworth – volume-title: Groundwater resources in the Indo-Gangetic Basin: resilience to climate change and abstraction. BGS open report, OR/15/047 year: 2015 ident: 2306_CR37 contributor: fullname: AM MacDonald – volume: 19 start-page: 901 year: 2011 ident: 2306_CR64 publication-title: Hydrogeol J doi: 10.1007/s10040-011-0723-4 contributor: fullname: M Shamsudduha – volume: 44 start-page: 4107 year: 2017 ident: 2306_CR29 publication-title: Geophys Res Lett doi: 10.1002/2017GL072994 contributor: fullname: M Girotto – volume: 121 start-page: 3782 year: 2016 ident: 2306_CR85 publication-title: J Geophys Res Solid Earth doi: 10.1002/2015JB012608 contributor: fullname: S Yi – ident: 2306_CR27 – ident: 2306_CR43 – volume: 507 start-page: 342 year: 2019 ident: 2306_CR66 publication-title: Quat Int doi: 10.1016/j.quaint.2018.10.036 contributor: fullname: AK Singh – volume: 460 start-page: 999 year: 2009 ident: 2306_CR57 publication-title: Nature doi: 10.1038/nature08238 contributor: fullname: M Rodell – volume: 543 start-page: 729 year: 2016 ident: 2306_CR5 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.10.042 contributor: fullname: SN Bhanja – volume: 52 start-page: 7490 year: 2016 ident: 2306_CR83 publication-title: Water Resour Res doi: 10.1002/2016WR019344 contributor: fullname: DN Wiese – volume-title: Exploratory data analysis year: 1977 ident: 2306_CR77 contributor: fullname: JW Tukey – volume: 42 start-page: 1791 year: 2015 ident: 2306_CR32 publication-title: Geophys Res Lett doi: 10.1002/2014GL062498 contributor: fullname: Z Huang – volume: 15 start-page: 1397 year: 2007 ident: 2306_CR47 publication-title: Hydrogeol J doi: 10.1007/s10040-007-0208-7 contributor: fullname: A Mukherjee – ident: 2306_CR2 doi: 10.3133/cir1186 – ident: 2306_CR16 – ident: 2306_CR33 – volume: 65 start-page: 1 year: 2014 ident: 2306_CR51 publication-title: Mausam doi: 10.54302/mausam.v65i1.851 contributor: fullname: DS Pai – volume: 374 start-page: 294 year: 2009 ident: 2306_CR81 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.06.019 contributor: fullname: WC Wang – volume: 54 start-page: 768 year: 2016 ident: 2306_CR13 publication-title: Groundwater doi: 10.1111/gwat.12453 contributor: fullname: P Castellazzi – volume: 116 start-page: 130 year: 2014 ident: 2306_CR17 publication-title: Glob Planet Chang doi: 10.1016/j.gloplacha.2014.02.007 contributor: fullname: J Chen – ident: 2306_CR41 doi: 10.5194/hess-2020-208 – volume: 7 start-page: 7453 year: 2017 ident: 2306_CR6 publication-title: Sci Rep doi: 10.1038/s41598-017-07058-2 contributor: fullname: SN Bhanja – volume: 4 start-page: 035005 year: 2009 ident: 2306_CR63 publication-title: Environ Res Lett doi: 10.1088/1748-9326/4/3/035005 contributor: fullname: T Shah – volume: 9 start-page: 137 year: 2019 ident: 2306_CR22 publication-title: Nat Clim Chang doi: 10.1038/s41558-018-0386-4 contributor: fullname: MO Cuthbert – volume: 20 start-page: 273 year: 1995 ident: 2306_CR20 publication-title: Mach Learn doi: 10.1023/A:1022627411411 contributor: fullname: C Cortes – volume: 46 start-page: 8082 year: 2019 ident: 2306_CR10 publication-title: Geophys Res Lett doi: 10.1029/2019GL083015 contributor: fullname: SN Bhanja – volume: 27 start-page: 1634 year: 2018 ident: 2306_CR55 publication-title: Stat Methods Med Res doi: 10.1177/0962280216666564 contributor: fullname: M Resche-Rigon – start-page: 545 volume-title: Global groundwater year: 2020 ident: 2306_CR40 contributor: fullname: P Malakar – volume: 396 start-page: 128 year: 2011 ident: 2306_CR86 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.11.002 contributor: fullname: H Yoon |
SSID | ssj0004173 |
Score | 2.482472 |
Snippet | The rapid decline of groundwater levels (GWL) due to pervasive groundwater abstraction in the densely populated (~1 billion) Indus-Ganges-Brahmaputra-Meghna... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1027 |
SubjectTerms | Agriculture Aquatic Pollution Aquifers Data Depth Earth and Environmental Science Earth Sciences Geology Geophysics/Geodesy GRACE (experiment) Gravity Groundwater Groundwater data Groundwater levels Groundwater storage Hydrogeology Hydrology/Water Resources Learning algorithms Machine learning Observation wells Population density Predictions Pumping River basins Statistical analysis Statistical methods Statistics Support vector machines Transboundary waters Waste Water Technology Water Management Water Pollution Control Water Quality/Water Pollution Wells |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1SEb2IVsVqlRy8aWDztd09ltIPhPYgFnoLyTZbD7KWtiL9986ku6yKHjwn5PAmM_PCvMkQcgcuIyx3mjkfzZmSSrDUOwiGudUuEsCZPTY4jyfxaKoeZ3pW93EHsXtVkQyB-kuvG4rfUFEQaDODuLsP5EHiVZ6Kbt0MuSsrAw_gDPl22Snz-xnfs1FNMX9URUOyGZyQ45Il0u7OrKdkzxdNclgOLH_ZNsnBMEzk3Z6RyTjIIT0r5z8sGCamOcWJC8iy2Rqs4Cl2bxTzD2CWK_qKQiG6XGGNBu1CUfy-oMOnbq9_TqaD_nNvxMohCczKJN6wWAoLr9jUd_LIqyzJ4H3Fs47LBXcxeHDGUye1VZCHgGtEHQfxDPK29YlVDvK3vCCN4q3wl4QqzxMvdO6txuHgqcOfdiKeiSzW4KqiRe4rsMxy9xeGqX89RmgNQGsCtAZ2tys8TekXa4NsSkKIULpFHiqM6-W_T7v63_ZrciSCmVGZ2CaNzerd3wB72LjbcFs-Ad6JuGY priority: 102 providerName: Springer Nature |
Title | Machine-learning-based regional-scale groundwater level prediction using GRACE |
URI | https://link.springer.com/article/10.1007/s10040-021-02306-2 https://www.proquest.com/docview/2512387045 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60PVgPolWxWksO3nQx2bxPEksfKC1SLNRTyCabepC0phXx3zuTbAgKegokYQ8zOzPf7jw-gCs0GR4ZwmZC6gmzTIszXwp0hmlkC50jZpbU4DyZOuO59bCwF-rCbaPKKiufWDjqZBXTHfktxWETN5dl363fGbFGUXZVUWjsQtPgrkvUDd5wVPdFlhlmhAQGI-itmmZU6xzV0lGBQoHCGf8ZmGq0-StBWsSd4SEcKMCoBaWGj2BHZm3YD5a5Gpoh27CnmMxfv9rQIvRYDl8-humkKJWUTHFDLBkFrUQjNgZC4GyDGpIadXZkySeizlx7oyIibZ1T_oZ0plFh_FIbzYL-4ATmw8Fzf8wUgQKLTM_ZMsfkEZ5wfemmurRiL8azlxG7IuWGcNC6Y8MXph1ZGKMQh-iuQF-HMT2SXmQJjO3mKTSyVSbPQLOk4UlupzKyiTjcFzSFRzdiHjs2mjHvwHUlvXBdzskI64nIJOsQZR0Wsg7x724l4FDZzCasNdyBm0ro9ee_Vzv_f7ULaPFCz1Sl2IXGNv-Ql4gktqJXbJceNIPRy-MAn_eD6dMM38558A0Am8Yf |
link.rule.ids | 315,781,785,12770,21393,27929,27930,33378,33749,41086,41528,42155,42597,43605,43810,52116,52239,74040,74307 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0oHNCDUdSIovbgTTe22w_ak0ECokJjCCTcmm67xYMpWDDGf-9Mu02jiZ7b7GFmd-btzpt5AFd4ZHhoCJsJqcfMMi3OPCkwGCahLXSOmFlSg_PYd4Yz62luz9WD21rRKsuYmAfqeBnRG_kt5WETN5dl363eGalGUXVVSWhsQz0fVVWD-n3ff5lUnZFFjRlBgcEIfKu2GdU8R2w6oijkOJzxn6mpwpu_SqR55hnsw56CjFq38PEBbMm0CbvdRabGZsgmNJSW-etXE3YIPxbjlw_BH-dkScmUOsSCUdqKNdJjIAzO1ugjqVFvRxp_Iu7MtDeiEWmrjCo45DWNqPEL7WHS7fWPYDboT3tDpiQUWGi6zoY5Jg_xjuvJTqJLK3IjvH0ZUUck3BAOnu_I8IRphxZmKUQiekdgtMOsHko3tARmd_MYaukylSegWdJwJbcTGdokHe4JmsOjGxGPHBsPMm_BdWm9YFVMygiqmchk6wBtHeS2DvDvdmngQJ2adVD5uAU3pdGrz3-vdvr_apfQGE7Ho2D06D-fwQ7PfU6cxTbUNtmHPEdcsREXavN8A8j8xlk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0oJIoHo6gRRe3Bm25otx-0J4MI4gcNIZJwa7rtFg8GsGCM_96ZdptGEz236WFmZ97bzpsZgEsMGR4awmZC6jGzTIszTwpMhkloC50jZ5bU4Dz0ncHEepzaU6V_WilZZZETs0QdLyL6R94iHDbxcFl2K1GyiNFd_2b5zmiDFFVa1TqNTagiKup4Eave9vzRuOySzOvNSBAMRkRctdCoRjpS1pFcIePkjP-EqZJ7_iqXZijU34NdRR-1Tu7vfdiQ8zrsdGapGqEh67Ct9pq_ftWhRlwyH8V8AP4wE05KpjZFzBhBWKzRbgbi42yF_pIa9XnM40_koKn2RpIibZlSNYc8qJFMfqbdjzvd3iFM-r2X7oCpdQosNF1nzRyTh3jf9WQ70aUVuRHexIyoLRJuCAdjPTI8YdqhhYiFrERvC8x8iPChdENLINKbR1CZL-byGDRLGq7kdiJDm9aIe4Jm8uhGxCPHxqDmDbgqrBcs86kZQTkfmWwdoK2DzNYBvt0sDByoCFoFpb8bcF0YvXz899dO_v_aBWzhuQmeH_ynU6jxzOUkX2xCZZ1-yDOkGGtxrs7ON0Igyo8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning-based+regional-scale+groundwater+level+prediction+using+GRACE&rft.jtitle=Hydrogeology+journal&rft.au=Malakar+Pragnaditya&rft.au=Mukherjee+Abhijit&rft.au=Bhanja%2C+Soumendra+N&rft.au=Kumar%2C+Ray+Ranjan&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1431-2174&rft.eissn=1435-0157&rft.volume=29&rft.issue=3&rft.spage=1027&rft.epage=1042&rft_id=info:doi/10.1007%2Fs10040-021-02306-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-2174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-2174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-2174&client=summon |