Effects of lake‐groundwater interaction on the thermal regime of a sub‐alpine headwater stream

Stream thermal regimes are critical to the stability of freshwater habitats. There is growing concern that climate change will result in stream warming due to rising air temperatures, decreased shading in forested areas due to wildfires, and changes in streamflow. Groundwater plays an important role...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 36; no. 2
Main Authors Roesky, Benjamin, Hayashi, Masaki
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.02.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stream thermal regimes are critical to the stability of freshwater habitats. There is growing concern that climate change will result in stream warming due to rising air temperatures, decreased shading in forested areas due to wildfires, and changes in streamflow. Groundwater plays an important role in controlling stream temperatures in mountain headwaters, where it makes up a considerable portion of discharge. This study investigated the controls on the thermal regime of a headwater stream, and the surrounding groundwater processes, in a catchment on the eastern slopes of the Canadian Rocky Mountains. Groundwater discharge to the headwater spring is partially sourced by a seasonal lake. Spring, stream and lake temperature, water level, discharge and chemistry data were used to build a conceptual model of the system. Meteorological data was used to set up a stream temperature model. This study presents a unique example of an indirectly lake‐headed stream, that is, a lake that only has transient subsurface hydrologic connections to the stream and no surface connections. The interaction of groundwater and lake water, and the subsurface connectivity between the lake and the headwater spring determine the resulting stream temperature. Radiation dominated the non‐advective fluxes in the stream energy balance. Sensible and latent heat fluxes play a secondary role, but their effects generally cancel out. During snowfall events, the latent heat associated with melting of direct snowfall onto the water surface was responsible for rapid stream cooling. An increase in advective inputs from groundwater and hillslope pathways did not result in observed cooling of stream water during rainfall events. The results from this study will assist water resource and fisheries managers in adapting to stream temperature changes under a warming climate. There is growing concern that climate change will result in stream warming. This study presents a unique example of an indirectly lake‐headed stream, that is, where the interaction of groundwater and lake water, and the hydraulic gradient determine the resulting stream temperature. During snowfall events, the latent heat associated with melting of direct snowfall onto the water surface was responsible for rapid stream cooling.
AbstractList Stream thermal regimes are critical to the stability of freshwater habitats. There is growing concern that climate change will result in stream warming due to rising air temperatures, decreased shading in forested areas due to wildfires, and changes in streamflow. Groundwater plays an important role in controlling stream temperatures in mountain headwaters, where it makes up a considerable portion of discharge. This study investigated the controls on the thermal regime of a headwater stream, and the surrounding groundwater processes, in a catchment on the eastern slopes of the Canadian Rocky Mountains. Groundwater discharge to the headwater spring is partially sourced by a seasonal lake. Spring, stream and lake temperature, water level, discharge and chemistry data were used to build a conceptual model of the system. Meteorological data was used to set up a stream temperature model. This study presents a unique example of an indirectly lake‐headed stream, that is, a lake that only has transient subsurface hydrologic connections to the stream and no surface connections. The interaction of groundwater and lake water, and the subsurface connectivity between the lake and the headwater spring determine the resulting stream temperature. Radiation dominated the non‐advective fluxes in the stream energy balance. Sensible and latent heat fluxes play a secondary role, but their effects generally cancel out. During snowfall events, the latent heat associated with melting of direct snowfall onto the water surface was responsible for rapid stream cooling. An increase in advective inputs from groundwater and hillslope pathways did not result in observed cooling of stream water during rainfall events. The results from this study will assist water resource and fisheries managers in adapting to stream temperature changes under a warming climate. There is growing concern that climate change will result in stream warming. This study presents a unique example of an indirectly lake‐headed stream, that is, where the interaction of groundwater and lake water, and the hydraulic gradient determine the resulting stream temperature. During snowfall events, the latent heat associated with melting of direct snowfall onto the water surface was responsible for rapid stream cooling.
Stream thermal regimes are critical to the stability of freshwater habitats. There is growing concern that climate change will result in stream warming due to rising air temperatures, decreased shading in forested areas due to wildfires, and changes in streamflow. Groundwater plays an important role in controlling stream temperatures in mountain headwaters, where it makes up a considerable portion of discharge. This study investigated the controls on the thermal regime of a headwater stream, and the surrounding groundwater processes, in a catchment on the eastern slopes of the Canadian Rocky Mountains. Groundwater discharge to the headwater spring is partially sourced by a seasonal lake. Spring, stream and lake temperature, water level, discharge and chemistry data were used to build a conceptual model of the system. Meteorological data was used to set up a stream temperature model. This study presents a unique example of an indirectly lake‐headed stream, that is, a lake that only has transient subsurface hydrologic connections to the stream and no surface connections. The interaction of groundwater and lake water, and the subsurface connectivity between the lake and the headwater spring determine the resulting stream temperature. Radiation dominated the non‐advective fluxes in the stream energy balance. Sensible and latent heat fluxes play a secondary role, but their effects generally cancel out. During snowfall events, the latent heat associated with melting of direct snowfall onto the water surface was responsible for rapid stream cooling. An increase in advective inputs from groundwater and hillslope pathways did not result in observed cooling of stream water during rainfall events. The results from this study will assist water resource and fisheries managers in adapting to stream temperature changes under a warming climate.
Abstract Stream thermal regimes are critical to the stability of freshwater habitats. There is growing concern that climate change will result in stream warming due to rising air temperatures, decreased shading in forested areas due to wildfires, and changes in streamflow. Groundwater plays an important role in controlling stream temperatures in mountain headwaters, where it makes up a considerable portion of discharge. This study investigated the controls on the thermal regime of a headwater stream, and the surrounding groundwater processes, in a catchment on the eastern slopes of the Canadian Rocky Mountains. Groundwater discharge to the headwater spring is partially sourced by a seasonal lake. Spring, stream and lake temperature, water level, discharge and chemistry data were used to build a conceptual model of the system. Meteorological data was used to set up a stream temperature model. This study presents a unique example of an indirectly lake‐headed stream, that is, a lake that only has transient subsurface hydrologic connections to the stream and no surface connections. The interaction of groundwater and lake water, and the subsurface connectivity between the lake and the headwater spring determine the resulting stream temperature. Radiation dominated the non‐advective fluxes in the stream energy balance. Sensible and latent heat fluxes play a secondary role, but their effects generally cancel out. During snowfall events, the latent heat associated with melting of direct snowfall onto the water surface was responsible for rapid stream cooling. An increase in advective inputs from groundwater and hillslope pathways did not result in observed cooling of stream water during rainfall events. The results from this study will assist water resource and fisheries managers in adapting to stream temperature changes under a warming climate.
Author Hayashi, Masaki
Roesky, Benjamin
Author_xml – sequence: 1
  givenname: Benjamin
  orcidid: 0000-0002-6540-7149
  surname: Roesky
  fullname: Roesky, Benjamin
  organization: University of Calgary
– sequence: 2
  givenname: Masaki
  orcidid: 0000-0003-4890-3113
  surname: Hayashi
  fullname: Hayashi, Masaki
  email: hayashi@ucalgary.ca
  organization: University of Calgary
BookMark eNp1kDtOw0AQhlcoSIRAwQ0sUVE4mfVjvS5RFAhSJCigoFqN7dnEwS92HUXpOAJn5CRscFo0r-b7ZzT_JRs1bUOM3XCYcoBgtjl0Ux7FwM_YmEOa-hxkPGJjkDL2Bcjkgl1auwWACCSMWbbQmvLeeq32Kvygn6_vtWl3TbHHnoxXNq5j3pdt47nsN3QsU2PlGVqXNR116Nld5oRYdWVD3obwpLa9Iayv2LnGytL1aU7Y28Pidb70V8-PT_P7lY-hFNwXAZdRmCW60BEBLwCTMJboIhdZWkQiKdKMKBcUBiGi1mkWJTmlCQlwL-ThhN0OezvTfu7I9mrb7kzjTqpAhG67TBPpqLuByk1rrSGtOlPWaA6KgzpaqJyF6s9Cx84Gdl9WdPgfVMv3l0HxC1nreDQ
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_131528
crossref_primary_10_1002_wat2_1643
crossref_primary_10_1029_2022WR033630
crossref_primary_10_1080_07011784_2023_2283241
crossref_primary_10_1002_hyp_14515
crossref_primary_10_1016_j_hydroa_2022_100141
crossref_primary_10_1016_j_jhydrol_2023_130299
crossref_primary_10_1002_hyp_14881
Cites_doi 10.1002/hyp.7325
10.1002/2013WR014329
10.1002/hyp.5590
10.1139/f02-158
10.1007/s10040-020-02153-7
10.1007/s12665-012-1924-4
10.1029/2004WR003076
10.1002/2016WR019813
10.1016/j.earscirev.2014.06.006
10.1029/2020WR028136
10.1029/98WR00998
10.1002/(SICI)1099-1085(199701)11:1<79::AID-HYP404>3.0.CO;2-N
10.1080/00288330.1997.9516801
10.1016/j.agrformet.2012.05.003
10.1016/j.advwatres.2012.11.012
10.1002/hyp.5733
10.1002/rcm.6852
10.1002/hyp.8021
10.1139/x03-087
10.1111/j.1365-2427.2007.01739.x
10.2166/nh.2016.057
10.1002/hyp.10596
10.1175/JCLI3321.1
10.1002/(SICI)1099-1085(19990228)13:3<401::AID-HYP746>3.0.CO;2-A
10.1016/j.jhydrol.2017.03.024
10.4095/288954
10.1016/j.advwatres.2012.12.009
10.1657/1523-0430(2003)035[0391:LQGAEH]2.0.CO;2
10.1002/(SICI)1099-1085(19980330)12:4<575::AID-HYP595>3.0.CO;2-Y
10.1002/hyp.7639
10.1002/hyp.13248
10.1016/j.envsoft.2017.02.021
10.1029/2006GL026611
10.1002/hyp.11190
10.1016/j.jhydrol.2009.10.039
10.1002/hyp.11391
10.1175/BAMS-86-1-39
10.1139/f04-040
10.1111/j.1365-2427.2006.01597.x
10.1016/j.jhydrol.2014.12.041
10.1111/gwat.12965
10.1002/rra.915
10.1016/0022-1694(73)90052-8
10.3189/172756407782871251
10.1111/j.1752-1688.2005.tb03772.x
10.1007/s10584-011-0326-z
10.1002/wrcr.20419
10.1002/hyp.14072
10.1029/2018WR024236
10.1111/j.1745-6592.2005.00049.x
10.5194/hess-24-2731-2020
10.1175/JHM597.1
10.1002/hyp.10223
10.1034/j.1600-0633.2001.100101.x
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/hyp.14501
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage n/a
ExternalDocumentID 10_1002_hyp_14501
HYP14501
Genre article
GrantInformation_xml – fundername: Alberta Innovates ‐ Water Innovation Program
– fundername: Canada First Research Excellence Fund ‐ Global Water Futures
– fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-a3861-621843b7fdf4e01d0a7358a8a8c6b9d467d9beec6e323aaff9b47ce97e60fecc3
IEDL.DBID DR2
ISSN 0885-6087
IngestDate Thu Oct 10 19:40:31 EDT 2024
Fri Aug 23 01:04:49 EDT 2024
Sat Aug 24 00:57:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3861-621843b7fdf4e01d0a7358a8a8c6b9d467d9beec6e323aaff9b47ce97e60fecc3
ORCID 0000-0002-6540-7149
0000-0003-4890-3113
PQID 2632188978
PQPubID 2034139
PageCount 15
ParticipantIDs proquest_journals_2632188978
crossref_primary_10_1002_hyp_14501
wiley_primary_10_1002_hyp_14501_HYP14501
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Hydrological processes
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2014; 138
2012; 164
2002; 59
2004; 61
2017; 48
2013; 68
2019; 55
2006; 33
1973; 18
2020; 58
2010; 380
2014; 28
2017; 553
2005; 25
2021; 35
2017; 31
2010; 24
2013; 55
1997; 11
2006; 22
2007; 8
1987
1999; 13
2011; 25
2018; 32
2014; 50
1998; 12
2001; 10
2009; 23
2004; 40
2006; 51
2013; 49
2012
2010
2015; 521
2003; 35
2005; 41
2005; 86
2007; 52
2002
2007; 53
2003; 33
2021; 57
2017; 53
2005; 19
2015; 29
2017; 92
2012; 113
2021
1997; 31
1995; 825
2020; 28
2017
2020; 24
2015
2014
2005; 18
1998; 34
2007; 46
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
DMTI Spatial Inc (e_1_2_9_18_1) 2017
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
Gravelle J. A. (e_1_2_9_29_1) 2007; 53
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
Coplen T. B. (e_1_2_9_15_1) 1995; 825
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_38_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
Dingman S. L. (e_1_2_9_17_1) 2002
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
References_xml – volume: 59
  start-page: 1886
  year: 2002
  end-page: 1900
  article-title: Stream temperature responses to clearcut logging in British Columbia: The moderating influences of groundwater and headwater lakes
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 825
  start-page: 31
  year: 1995
  end-page: 34
  article-title: Reporting of stable carbon, hydrogen, and oxygen isotopic abundances
  publication-title: Reference and Intercomparison Materials for Stable Isotopes of Light Elements
– volume: 31
  start-page: 4719
  year: 2017
  end-page: 4733
  article-title: Influence of a rock glacier spring on the stream energy budget and cold‐water refuge in an alpine stream
  publication-title: Hydrological Processes
– volume: 35
  start-page: 391
  year: 2003
  end-page: 398
  article-title: Late quaternary glacial and environmental history of the Burstall pass area, Kananaskis country, Alberta, Canada
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 113
  start-page: 499
  year: 2012
  end-page: 524
  article-title: Climate change effects on stream and river temperatures across the northwest US from 1980–2009 and implications for salmonid fishes
  publication-title: Climatic Change
– year: 2021
– volume: 8
  start-page: 952
  year: 2007
  end-page: 967
  article-title: Alpine stream temperature response to storm events
  publication-title: Journal of Hydrometeorology
– volume: 49
  start-page: 7185
  year: 2013
  end-page: 7204
  article-title: Spatiotemporal variability of hyporheic exchange through a pool‐riffle‐pool sequence
  publication-title: Water Resources Research
– volume: 553
  start-page: 471
  year: 2017
  end-page: 485
  article-title: The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics
  publication-title: Journal of Hydrology
– volume: 34
  start-page: 1609
  year: 1998
  end-page: 1615
  article-title: Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams
  publication-title: Water Resources Research
– volume: 24
  start-page: 2369
  year: 2010
  end-page: 2381
  article-title: Above‐stream microclimate and stream surface energy exchanges in a wildfire‐disturbed riparian zone
  publication-title: Hydrological Processes
– volume: 29
  start-page: 1080
  year: 2015
  end-page: 1095
  article-title: Inter‐annual variability in the effects of riparian woodland on micro‐climate, energy exchanges and water temperature of an upland Scottish stream
  publication-title: Hydrological Processes
– volume: 40
  year: 2004
  article-title: Source waters and flow paths in an alpine catchment, Colorado front range, United States
  publication-title: Water Resources Research
– volume: 521
  start-page: 482
  year: 2015
  end-page: 497
  article-title: Characterization of snowmelt flux and groundwater storage in an alpine headwater basin
  publication-title: Journal of Hydrology
– year: 2014
– volume: 28
  start-page: 1871
  year: 2020
  end-page: 1890
  article-title: Hydrogeological characterization of an alpine aquifer system in the Canadian Rocky Mountains
  publication-title: Hydrogeology Journal
– volume: 58
  start-page: 498
  year: 2020
  end-page: 510
  article-title: Alpine hydrogeology: The critical role of groundwater in sourcing the headwaters of the world
  publication-title: Groundwater
– volume: 55
  start-page: 5453
  year: 2019
  end-page: 5467
  article-title: Empirical stream thermal sensitivities may underestimate stream temperature response to climate warming
  publication-title: Water Resources Research
– volume: 164
  start-page: 1
  year: 2012
  end-page: 9
  article-title: Riparian microclimate and evaporation from a coastal headwater stream, and their response to partial‐retention forest harvesting
  publication-title: Agricultural and Forest Meteorology
– volume: 33
  start-page: 1383
  year: 2003
  end-page: 1396
  article-title: Stream temperatures in two shaded reaches below cutblocks and logging roads: Downstream cooling linked to subsurface hydrology
  publication-title: Canadian Journal of Forest Research
– volume: 51
  start-page: 1389
  year: 2006
  end-page: 1406
  article-title: The thermal regime of rivers: A review
  publication-title: Freshwater Biology
– year: 2015
– volume: 138
  start-page: 313
  year: 2014
  end-page: 334
  article-title: Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools
  publication-title: Earth‐Science Reviews
– volume: 41
  start-page: 813
  year: 2005
  end-page: 834
  article-title: Riparian microclimate and stream temperature response to forests harvesting: A review
  publication-title: Journal of the American Water Resources Association
– volume: 35
  year: 2021
  article-title: Describing alpine lake influence on stream network temperatures: A statistical modelling approach
  publication-title: Hydrological Processes
– volume: 53
  start-page: 189
  year: 2007
  end-page: 205
  article-title: Influence of timber harvesting on headwater peak stream temperatures in a northern Idaho watershed
  publication-title: Forest Science
– volume: 55
  start-page: 4
  year: 2013
  end-page: 16
  article-title: Response of snow cover and runoff to climate change in high alpine catchments of eastern Switzerland
  publication-title: Advances in Water Resources
– volume: 32
  start-page: 3070
  year: 2018
  end-page: 3088
  article-title: Groundwater flow and storage processes in an inactive rock glacier
  publication-title: Hydrological Processes
– volume: 86
  start-page: 39
  year: 2005
  end-page: 50
  article-title: Declining mountain snowpack in western North America
  publication-title: Bulletin of the American Meteorological Society
– volume: 55
  start-page: 98
  year: 2013
  end-page: 110
  article-title: An evaluation of methods for determining during‐storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin
  publication-title: Advances in Water Resources
– year: 1987
– volume: 68
  start-page: 2399
  year: 2013
  end-page: 2407
  article-title: The impact of artificially impounded, residential headwater lakes on downstream water temperature
  publication-title: Environmental Earth Sciences
– volume: 22
  start-page: 493
  year: 2006
  end-page: 501
  article-title: Thermal variability and stream flow permanency in an alpine river system
  publication-title: River Research and Applications
– volume: 11
  start-page: 79
  year: 1997
  end-page: 101
  article-title: Spatial and seasonal variability in the components of the river heat budget
  publication-title: Hydrological Processes
– volume: 18
  start-page: 1136
  year: 2005
  end-page: 1155
  article-title: Changes toward earlier streamflow timing across western North America
  publication-title: Journal of Climate
– volume: 53
  start-page: 1595
  year: 2017
  end-page: 1624
  article-title: Quantifying streambed advection and conduction heat fluxes
  publication-title: Water Resources Research
– volume: 13
  start-page: 401
  year: 1999
  end-page: 422
  article-title: Groundwater and fish—Insights from northern North America
  publication-title: Hydrological Processes
– volume: 52
  start-page: 878
  year: 2007
  end-page: 890
  article-title: Groundwater influence on alpine stream ecosystems
  publication-title: Freshwater Biology
– volume: 19
  start-page: 1585
  year: 2005
  end-page: 1610
  article-title: Spatial and temporal water column and streambed temperature dynamics within an alpine catchment: Implications for benthic communities
  publication-title: Hydrological Processes
– year: 2010
– volume: 61
  start-page: 913
  year: 2004
  end-page: 923
  article-title: Factors influencing stream temperatures in small streams: Substrate effects and a shading experiment
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 46
  start-page: 309
  year: 2007
  end-page: 315
  article-title: Sensitivity of glacier runoff to summer snowfall events
  publication-title: Annals of Glaciology
– year: 2012
– volume: 33
  start-page: L13405
  year: 2006
  article-title: Importance of groundwater in the water balance of an alpine headwater lake
  publication-title: Geophysical Research Letters
– volume: 380
  start-page: 247
  year: 2010
  end-page: 259
  article-title: Comparison of microclimate vs. remote meteorological data and results applied to a water temperature model (Miramichi River, Canada)
  publication-title: Journal of Hydrology
– volume: 19
  start-page: 2591
  year: 2005
  end-page: 2608
  article-title: Thermal regime of a headwater stream within a clear‐cut, coastal British Columbia, Canada
  publication-title: Hydrological Processes
– volume: 48
  start-page: 915
  year: 2017
  end-page: 931
  article-title: Spatial and temporal characteristics in streamflow‐related hydroclimatic variables over western Canada. Part 1: 1950–2010
  publication-title: Hydrology Research
– volume: 10
  start-page: 1
  year: 2001
  end-page: 10
  article-title: Relationship between stream temperature, thermal refugia and rainbow trout Oncorhynchus mykiss abundance in arid‐land streams in the northwestern United States
  publication-title: Ecology of Freshwater Fish
– volume: 25
  start-page: 68
  year: 2005
  end-page: 74
  article-title: Evaluation of an inexpensive small‐diameter temperature logger for documenting ground water–river interactions
  publication-title: Groundwater Monitoring & Remediation
– year: 2002
– volume: 28
  start-page: 879
  year: 2014
  end-page: 885
  article-title: Reliability and quality of water isotope data collected with a low‐budget rain collector
  publication-title: Rapid Communications in Mass Spectrometry
– volume: 31
  start-page: 707
  year: 1997
  end-page: 721
  article-title: Predicting the effects of shade on water temperature in small streams
  publication-title: New Zealand Journal of Marine and Freshwater Research
– volume: 31
  start-page: 3160
  year: 2017
  end-page: 3177
  article-title: Insights on stream temperature processes through development of a coupled hydrologic and stream temperature model for forested coastal headwater catchments
  publication-title: Hydrological Processes
– volume: 23
  start-page: 2513
  year: 2009
  end-page: 2525
  article-title: The impact of coniferous forest temperature on incoming longwave radiation to melting snow
  publication-title: Hydrological Processes
– year: 2017
– volume: 57
  year: 2021
  article-title: Lake outflow and hillslope lateral inflows dictate thermal regimes of forested streams draining small lakes
  publication-title: Water Resources Research
– volume: 50
  start-page: 3428
  year: 2014
  end-page: 3443
  article-title: Sensitivity of summer stream temperatures to climate variability in the Pacific northwest
  publication-title: Water Resources Research
– volume: 92
  start-page: 213
  year: 2017
  end-page: 228
  article-title: Stream heat budget modeling with HFLUX: Model development, evaluation, and applications across contrasting sites and seasons
  publication-title: Environmental Modelling & Software
– volume: 25
  start-page: 2439
  year: 2011
  end-page: 2455
  article-title: Study of stream temperature dynamics and corresponding heat fluxes within Miramichi River catchments (New Brunswick, Canada)
  publication-title: Hydrological Processes
– volume: 12
  start-page: 575
  year: 1998
  end-page: 595
  article-title: River energy budgets with special reference to river bed processes
  publication-title: Hydrological Processes
– volume: 18
  start-page: 273
  year: 1973
  end-page: 287
  article-title: Le calcul de la température de l'eau des rivières
  publication-title: Journal of Hydrology
– volume: 29
  start-page: 3905
  year: 2015
  end-page: 3924
  article-title: Hydrological resilience of a Canadian Rockies headwaters basin subject to changing climate, extreme weather, and forest management
  publication-title: Hydrological Processes
– volume: 24
  start-page: 2731
  year: 2020
  end-page: 2754
  article-title: Diagnosis of future changes in hydrology for a Canadian Rockies headwater basin
  publication-title: Hydrology and Earth System Sciences
– ident: e_1_2_9_59_1
  doi: 10.1002/hyp.7325
– ident: e_1_2_9_48_1
  doi: 10.1002/2013WR014329
– ident: e_1_2_9_7_1
  doi: 10.1002/hyp.5590
– ident: e_1_2_9_53_1
  doi: 10.1139/f02-158
– ident: e_1_2_9_13_1
  doi: 10.1007/s10040-020-02153-7
– ident: e_1_2_9_19_1
  doi: 10.1007/s12665-012-1924-4
– ident: e_1_2_9_47_1
  doi: 10.1029/2004WR003076
– ident: e_1_2_9_11_1
  doi: 10.1002/2016WR019813
– ident: e_1_2_9_42_1
  doi: 10.1016/j.earscirev.2014.06.006
– ident: e_1_2_9_46_1
  doi: 10.1029/2020WR028136
– ident: e_1_2_9_51_1
– ident: e_1_2_9_16_1
– ident: e_1_2_9_14_1
  doi: 10.1029/98WR00998
– ident: e_1_2_9_66_1
  doi: 10.1002/(SICI)1099-1085(199701)11:1<79::AID-HYP404>3.0.CO;2-N
– ident: e_1_2_9_63_1
  doi: 10.1080/00288330.1997.9516801
– ident: e_1_2_9_2_1
– ident: e_1_2_9_30_1
  doi: 10.1016/j.agrformet.2012.05.003
– ident: e_1_2_9_35_1
– ident: e_1_2_9_27_1
– ident: e_1_2_9_50_1
  doi: 10.1016/j.advwatres.2012.11.012
– ident: e_1_2_9_55_1
  doi: 10.1002/hyp.5733
– ident: e_1_2_9_61_1
  doi: 10.1002/rcm.6852
– ident: e_1_2_9_36_1
  doi: 10.1002/hyp.8021
– ident: e_1_2_9_65_1
  doi: 10.1139/x03-087
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1365-2427.2007.01739.x
– ident: e_1_2_9_57_1
– ident: e_1_2_9_58_1
  doi: 10.2166/nh.2016.057
– volume: 825
  start-page: 31
  year: 1995
  ident: e_1_2_9_15_1
  article-title: Reporting of stable carbon, hydrogen, and oxygen isotopic abundances
  publication-title: Reference and Intercomparison Materials for Stable Isotopes of Light Elements
  contributor:
    fullname: Coplen T. B.
– ident: e_1_2_9_31_1
  doi: 10.1002/hyp.10596
– ident: e_1_2_9_64_1
  doi: 10.1175/JCLI3321.1
– ident: e_1_2_9_60_1
  doi: 10.1002/(SICI)1099-1085(19990228)13:3<401::AID-HYP746>3.0.CO;2-A
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jhydrol.2017.03.024
– ident: e_1_2_9_52_1
  doi: 10.4095/288954
– ident: e_1_2_9_3_1
  doi: 10.1016/j.advwatres.2012.12.009
– ident: e_1_2_9_4_1
  doi: 10.1657/1523-0430(2003)035[0391:LQGAEH]2.0.CO;2
– ident: e_1_2_9_22_1
  doi: 10.1002/(SICI)1099-1085(19980330)12:4<575::AID-HYP595>3.0.CO;2-Y
– ident: e_1_2_9_44_1
  doi: 10.1002/hyp.7639
– volume-title: Physical hydrology Waveland press
  year: 2002
  ident: e_1_2_9_17_1
  contributor:
    fullname: Dingman S. L.
– ident: e_1_2_9_33_1
  doi: 10.1002/hyp.13248
– ident: e_1_2_9_28_1
  doi: 10.1016/j.envsoft.2017.02.021
– ident: e_1_2_9_62_1
– ident: e_1_2_9_38_1
  doi: 10.1029/2006GL026611
– ident: e_1_2_9_43_1
  doi: 10.1002/hyp.11190
– ident: e_1_2_9_5_1
  doi: 10.1016/j.jhydrol.2009.10.039
– ident: e_1_2_9_32_1
  doi: 10.1002/hyp.11391
– ident: e_1_2_9_56_1
  doi: 10.1175/BAMS-86-1-39
– ident: e_1_2_9_41_1
  doi: 10.1139/f04-040
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1365-2427.2006.01597.x
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jhydrol.2014.12.041
– ident: e_1_2_9_34_1
  doi: 10.1111/gwat.12965
– volume-title: CanMap water
  year: 2017
  ident: e_1_2_9_18_1
  contributor:
    fullname: DMTI Spatial Inc
– volume: 53
  start-page: 189
  year: 2007
  ident: e_1_2_9_29_1
  article-title: Influence of timber harvesting on headwater peak stream temperatures in a northern Idaho watershed
  publication-title: Forest Science
  contributor:
    fullname: Gravelle J. A.
– ident: e_1_2_9_8_1
  doi: 10.1002/rra.915
– ident: e_1_2_9_49_1
  doi: 10.1016/0022-1694(73)90052-8
– ident: e_1_2_9_21_1
  doi: 10.3189/172756407782871251
– ident: e_1_2_9_54_1
  doi: 10.1111/j.1752-1688.2005.tb03772.x
– ident: e_1_2_9_39_1
  doi: 10.1007/s10584-011-0326-z
– ident: e_1_2_9_24_1
  doi: 10.1002/wrcr.20419
– ident: e_1_2_9_12_1
  doi: 10.1002/hyp.14072
– ident: e_1_2_9_45_1
  doi: 10.1029/2018WR024236
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1745-6592.2005.00049.x
– ident: e_1_2_9_23_1
  doi: 10.5194/hess-24-2731-2020
– ident: e_1_2_9_6_1
  doi: 10.1175/JHM597.1
– ident: e_1_2_9_26_1
  doi: 10.1002/hyp.10223
– ident: e_1_2_9_20_1
  doi: 10.1034/j.1600-0633.2001.100101.x
SSID ssj0004080
Score 2.4559565
Snippet Stream thermal regimes are critical to the stability of freshwater habitats. There is growing concern that climate change will result in stream warming due to...
Abstract Stream thermal regimes are critical to the stability of freshwater habitats. There is growing concern that climate change will result in stream...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Air temperature
alpine hydrology
Aquatic habitats
Canadian Rockies
Catchment area
Climate change
Cooling
Energy balance
Fisheries
Fisheries management
Fishery resources
Freshwater
Freshwater environments
Global warming
Groundwater
Groundwater discharge
groundwater–stream interaction
headwater spring
Headwaters
Heat flux
Heat transfer
Hydrology
Inland water environment
Lake water
Lakes
Latent heat
Meteorological data
Mountains
Radiation
Rain
Rainfall
Rivers
seasonal lake
Sensible and latent heat
Shading
Snow
Snowfall
Spring
Spring (season)
Stream discharge
Stream flow
stream temperature
Temperature
Temperature changes
Water discharge
Water levels
Water resources
Water resources management
Wildfires
Title Effects of lake‐groundwater interaction on the thermal regime of a sub‐alpine headwater stream
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.14501
https://www.proquest.com/docview/2632188978
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yF33xLs4bQXzwpS5L2qbFJxHHEBQRBQWhJOkJg805dkH0yZ_gb_SXeJK2mwqCSFtoaU9Jk5yTLyXfdwg5sBZEnkAYWDA8wBGfBwpCi5eQp4xZLjzL9eIybt-G53fR3Rw5rrgwhT7E9Ieb8wwfr52DKz1qzERDOy8DdPPIc7eckJ4DRNcz6aiQ-axp6ERRELNEVqpCjDemlt_HohnA_ApT_TjTWiIPVQmL5SXdo8lYH5nXH-KN__yEZbJY4k96UnSYFTIH_VUyX6ZC77ysEV3oGY_ok6U91YWPt3fH_Ojnz4hKh9TJSwwLMgTFHeGjOzC696jL8fAIzk7R0USjoeoNsIwU431p7Zgp6nGd3LbObk7bQZmIIVAiiZtB7OaBQkub2xBYM2dKiihRuJlYpznG2jzVACYGwYVS1qY6lAZSCTHDIhuxQWr9pz5sEhpKqU0qOUdsEDKVJEYoJmXOTIQ3wNbJftUk2aDQ28gKZWWeYXVlvrrqZKdqrKx0uVHmhOebSYKz4jo59LX--wuy9v2VP9n6-6PbZIE76oNfsb1DauPhBHYRkIz1nu95n0lC4Fs
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFD6I-6Av3pcdddew7IMv1UzSNi3sy-Iq4xURBfdhKUl6guA4DnNB3Kf9Cf5Gf4knaeuosLBIW2hpT0lP-iVfQs53AL45h7LMMI4cWhFRjy8ijbGjSyxzzp2QIcr1-CTtXMQHl8nlFHxvYmEqfYjnCTePjNBee4D7CentiWro1X2fcJ744K0PBPfEw_Ln2UQ8KuYhbxrBKIlSnqlGV4iL7WfT173RhGK-JKqhp9mbh99NGasFJtdb45HZsn_eyDe-9yMWYK6moOxH9c8swhT2lmCmzoZ-db8MppI0HrJbx7r6Gh__Pvjgj155R8R0wLzCxKCKh2C0E4P0BzXwXebTPNygt9NsODZkqLt9KiSjJr-29sEp-mYFLvZ2z3c6UZ2LIdIyS9tR6oeC0ihXuhh5u-RaySTTtNnU5CX5v8wNok1RCqm1c7mJlcVcYcqpyFZ-hOnebQ8_AYuVMjZXQhA9iLnOMis1V6rkNqEb6FrwtamTol9JbhSVuLIoyF1FcFcL1pvaKmrUDQuvPd_OMhoYt2AzuP3fLyg6v07Dyer_P7oBM53z46PiaP_kcA1mhY-ECAu412F6NBjjZ-InI_Ml_IZPUt_kew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3batwwEB1CAmlfmqYXuk3aitKHvjjRSrJl06fSdNn0EkJpIIWC0WVEIJvNshdK8pRPyDf2SzqS7WxbKJRgG2zsMbKkGR0ZnTMAr0JA6UtUWUAnMhrxRWZQBbpEX3EehEws188HxfBIfTjOj1fgTceFafQhbn64Rc9I8To6-MSH3aVo6MnFhNw8j9ytNVVIEWdee1-W2lGKp7Rp5EV5VvBSd7JCXOzemP45GC0R5u84NQ00gw343hWxWV9yurOY2x13-Zd64y2_4T7cawEoe9v0mE1YwfEDuNPmQj-5eAi2ETSesfPARuYUf15dR-rH2P8gWDplUV9i2rAhGO2EH-NB4X3EYpKHM4x2hs0WlgzNaEJlZBTwW-tITTFnj-Bo8P7ru2HWZmLIjCyLflbEiaC0OvigkPc9N1rmpaHNFbbyFGx9ZRFdgVJIY0KorNIOK40FpyI7-RhWx-djfAJMaW1dpYUgcKC4KUsnDdfac5fTDQw9eNk1ST1pBDfqRlpZ1FRddaquHmx3jVW3Pjero_J8vyxpWtyD16nW__2CevjtMJ08_f9HX8D64d6g_rR_8HEL7opIg0irt7dhdT5d4DMCJ3P7PHXCX8zD4yo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+lake%E2%80%90groundwater+interaction+on+the+thermal+regime+of+a+sub%E2%80%90alpine+headwater+stream&rft.jtitle=Hydrological+processes&rft.au=Roesky%2C+Benjamin&rft.au=Hayashi%2C+Masaki&rft.date=2022-02-01&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=36&rft.issue=2&rft_id=info:doi/10.1002%2Fhyp.14501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hyp_14501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon