Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions

Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel co...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 35; no. 5; pp. 1552 - 1562
Main Authors Koc, Julian, Schönemann, Eric, Amuthalingam, Ajitha, Clarke, Jessica, Finlay, John A, Clare, Anthony S, Laschewsky, Andre, Rosenhahn, Axel
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.02.2019
Online AccessGet full text

Cover

Loading…
Abstract Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel coatings against a series of proteins and nonmotile as well as motile marine organisms as model foulers. The coatings are prepared by simultaneous photoinduced cross-linking and surface anchoring to elucidate the effect of the molecular structure of the zwitterionic moieties on their antifouling activity. Analogously prepared coatings of poly­(butyl methacrylate) and poly­(oligoethylene glycol methacrylate) serve as references. Photoreactive polymers are synthesized by the statistical copolymerization of sulfobetaine or sulfabetaine methacrylates and methacrylamides with a benzophenone derivative of 2-hydroxyethyl methacrylate and are applied as a thin film coating. While keeping the density of the zwitterionic and cross-linker groups constant, the molecular structure of the zwitterionic side chains is varied systematically, as is the arrangement of the ion pairs in the side chain by changing the classical linear geometry to a novel Y-shaped geometry. All of the polyzwitterions strongly reduce fouling compared to poly­(butyl methacrylate). Overall, the sulfabetaine polyzwitterion coatings studied matches the high antifouling effectiveness of oligo­(ethylene glycol)-based ones used as a control. Nevertheless, performances varied individually for a given pair of polymer and fouler. The case of the polysulfobetaines exemplifies that minor chemical changes in the polymer structure affect the antifouling performance markedly. Accordingly, the antifouling performance of such polymers cannot be correlated simply to the type of zwitterion used (which could be generally ranked as better performing or poorer performing) but is a result of the polymer’s precise chemical structure. Our findings underline the need to enlarge the existing structural diversity of polyzwitterions for antifouling purposes to optimize the potential of their chemical structure.
AbstractList Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel coatings against a series of proteins and nonmotile as well as motile marine organisms as model foulers. The coatings are prepared by simultaneous photoinduced cross-linking and surface anchoring to elucidate the effect of the molecular structure of the zwitterionic moieties on their antifouling activity. Analogously prepared coatings of poly(butyl methacrylate) and poly(oligoethylene glycol methacrylate) serve as references. Photoreactive polymers are synthesized by the statistical copolymerization of sulfobetaine or sulfabetaine methacrylates and methacrylamides with a benzophenone derivative of 2-hydroxyethyl methacrylate and are applied as a thin film coating. While keeping the density of the zwitterionic and cross-linker groups constant, the molecular structure of the zwitterionic side chains is varied systematically, as is the arrangement of the ion pairs in the side chain by changing the classical linear geometry to a novel Y-shaped geometry. All of the polyzwitterions strongly reduce fouling compared to poly(butyl methacrylate). Overall, the sulfabetaine polyzwitterion coatings studied matches the high antifouling effectiveness of oligo(ethylene glycol)-based ones used as a control. Nevertheless, performances varied individually for a given pair of polymer and fouler. The case of the polysulfobetaines exemplifies that minor chemical changes in the polymer structure affect the antifouling performance markedly. Accordingly, the antifouling performance of such polymers cannot be correlated simply to the type of zwitterion used (which could be generally ranked as better performing or poorer performing) but is a result of the polymer's precise chemical structure. Our findings underline the need to enlarge the existing structural diversity of polyzwitterions for antifouling purposes to optimize the potential of their chemical structure.
Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel coatings against a series of proteins and nonmotile as well as motile marine organisms as model foulers. The coatings are prepared by simultaneous photoinduced cross-linking and surface anchoring to elucidate the effect of the molecular structure of the zwitterionic moieties on their antifouling activity. Analogously prepared coatings of poly­(butyl methacrylate) and poly­(oligoethylene glycol methacrylate) serve as references. Photoreactive polymers are synthesized by the statistical copolymerization of sulfobetaine or sulfabetaine methacrylates and methacrylamides with a benzophenone derivative of 2-hydroxyethyl methacrylate and are applied as a thin film coating. While keeping the density of the zwitterionic and cross-linker groups constant, the molecular structure of the zwitterionic side chains is varied systematically, as is the arrangement of the ion pairs in the side chain by changing the classical linear geometry to a novel Y-shaped geometry. All of the polyzwitterions strongly reduce fouling compared to poly­(butyl methacrylate). Overall, the sulfabetaine polyzwitterion coatings studied matches the high antifouling effectiveness of oligo­(ethylene glycol)-based ones used as a control. Nevertheless, performances varied individually for a given pair of polymer and fouler. The case of the polysulfobetaines exemplifies that minor chemical changes in the polymer structure affect the antifouling performance markedly. Accordingly, the antifouling performance of such polymers cannot be correlated simply to the type of zwitterion used (which could be generally ranked as better performing or poorer performing) but is a result of the polymer’s precise chemical structure. Our findings underline the need to enlarge the existing structural diversity of polyzwitterions for antifouling purposes to optimize the potential of their chemical structure.
Author Clare, Anthony S
Finlay, John A
Schönemann, Eric
Laschewsky, Andre
Koc, Julian
Rosenhahn, Axel
Clarke, Jessica
Amuthalingam, Ajitha
AuthorAffiliation Department of Chemistry
Analytical Chemistry - Biointerfaces
AuthorAffiliation_xml – name: Analytical Chemistry - Biointerfaces
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Julian
  orcidid: 0000-0001-6026-9368
  surname: Koc
  fullname: Koc, Julian
  email: julian.koc@rub.de
  organization: Analytical Chemistry - Biointerfaces
– sequence: 2
  givenname: Eric
  surname: Schönemann
  fullname: Schönemann, Eric
  organization: Department of Chemistry
– sequence: 3
  givenname: Ajitha
  surname: Amuthalingam
  fullname: Amuthalingam, Ajitha
  organization: Analytical Chemistry - Biointerfaces
– sequence: 4
  givenname: Jessica
  surname: Clarke
  fullname: Clarke, Jessica
– sequence: 5
  givenname: John A
  surname: Finlay
  fullname: Finlay, John A
– sequence: 6
  givenname: Anthony S
  orcidid: 0000-0002-7692-9583
  surname: Clare
  fullname: Clare, Anthony S
– sequence: 7
  givenname: Andre
  orcidid: 0000-0003-2443-886X
  surname: Laschewsky
  fullname: Laschewsky, Andre
  email: laschews@uni-potsdam.de
  organization: Department of Chemistry
– sequence: 8
  givenname: Axel
  orcidid: 0000-0001-9393-7190
  surname: Rosenhahn
  fullname: Rosenhahn, Axel
  email: axel.rosenhahn@rub.de
  organization: Analytical Chemistry - Biointerfaces
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30376714$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1OwzAQhC0Eoj_wBgjlyCXFjuPYPqKKUqRU9FDOlhM7rUsSFztRVZ4eV205clppNTM7-43AdWtbDcADghMEE_QsSz-pZbtueuMmrIAJ5fwKDBFJYExYQq_BENIUxzTN8ACMvN9CCDlO-S0YYIhpRlE6BIvc7uOZ7WvTrqPVxrTR_KCcXes6mlrZha2PFlLpyFbRcmM7G0-d9T7OTfulVbS09eFnb7pOO2NbfwduKll7fX-eY_A5e11N53H-8fY-fcljiRnpYoo0plARnPCsqFIGC8k5L0I5JTGRsoS8lElFCiQJVUrLTELGOCOUMK0oxWPwdMrdOfvda9-JxvhS14GHtr0XCUpoRjiGLEjTk7Q89na6EjtnGukOAkFxBCkCSHEBKc4gg-3xfKEvGq3-TBdyQQBPgqN9a3vXhof_z_wF_IqEvw
CitedBy_id crossref_primary_10_1021_acsami_0c11580
crossref_primary_10_1021_acs_langmuir_0c02329
crossref_primary_10_1021_acsami_1c13459
crossref_primary_10_1021_acssuschemeng_3c00508
crossref_primary_10_1016_j_jwpe_2024_105722
crossref_primary_10_1093_pnasnexus_pgad204
crossref_primary_10_1016_j_scitotenv_2020_144469
crossref_primary_10_1021_acs_chemmater_1c02781
crossref_primary_10_1063_5_0066082
crossref_primary_10_1016_j_jmst_2020_12_070
crossref_primary_10_1080_00914037_2022_2066668
crossref_primary_10_1016_j_colcom_2021_100560
crossref_primary_10_1021_acs_biomac_3c00948
crossref_primary_10_1021_acs_langmuir_1c00428
crossref_primary_10_1002_marc_202100589
crossref_primary_10_1016_j_jcis_2021_08_004
crossref_primary_10_3390_gels9030237
crossref_primary_10_1002_mame_202000371
crossref_primary_10_1002_mabi_202200225
crossref_primary_10_1080_08927014_2019_1611790
crossref_primary_10_1016_j_porgcoat_2024_108349
crossref_primary_10_1002_macp_202200334
crossref_primary_10_1021_acs_langmuir_8b01789
crossref_primary_10_1080_08927014_2023_2185143
crossref_primary_10_3390_polym11061014
crossref_primary_10_1021_acsami_0c07599
crossref_primary_10_1021_acsapm_9b00897
crossref_primary_10_1021_acs_langmuir_1c00997
crossref_primary_10_3390_gels8010046
crossref_primary_10_1002_admi_202300873
crossref_primary_10_1016_j_eurpolymj_2024_113177
crossref_primary_10_1016_j_aquaeng_2024_102393
crossref_primary_10_1002_smtd_202301095
crossref_primary_10_1080_08927014_2020_1796983
crossref_primary_10_1021_acsabm_0c01253
crossref_primary_10_1016_j_colsuc_2023_100018
crossref_primary_10_1038_s41467_022_35105_8
crossref_primary_10_1002_marc_201900447
crossref_primary_10_3390_ijms24076594
crossref_primary_10_1021_acsami_0c21212
crossref_primary_10_1039_C9PY00764D
crossref_primary_10_1002_admi_202200677
crossref_primary_10_1002_admi_202000966
crossref_primary_10_1021_acs_langmuir_2c01202
crossref_primary_10_1002_adfm_202000757
crossref_primary_10_1016_j_progpolymsci_2022_101516
crossref_primary_10_3390_molecules25071678
crossref_primary_10_1016_j_cossms_2020_100897
crossref_primary_10_1016_j_porgcoat_2022_107351
crossref_primary_10_1016_j_eurpolymj_2021_110578
crossref_primary_10_1039_C8RA09358J
crossref_primary_10_1055_s_0040_1721741
crossref_primary_10_1021_acsengineeringau_2c00008
crossref_primary_10_1021_acs_langmuir_0c01287
crossref_primary_10_1002_admi_202100994
crossref_primary_10_1021_acs_langmuir_1c00491
crossref_primary_10_1021_acsami_2c01809
crossref_primary_10_1021_acs_biomac_0c01705
crossref_primary_10_1002_marc_202100051
crossref_primary_10_1002_cptc_201900216
crossref_primary_10_1021_acs_langmuir_9b02720
Cites_doi 10.1039/C6TB00595K
10.1080/08927014.2017.1328058
10.1021/acsami.7b03160
10.1007/s13758-012-0033-y
10.1021/acsami.7b04079
10.1016/j.porgcoat.2014.07.011
10.1021/acs.chemrev.6b00342
10.1016/S1369-7021(10)70058-4
10.1021/jp5027114
10.1080/08927014.2012.689288
10.2478/s11534-011-0096-2
10.1021/ma034737v
10.1021/jp074847u
10.1002/adma.200901407
10.3390/polym6051544
10.1021/ja9723491
10.1021/acs.langmuir.6b00839
10.1016/j.biomaterials.2009.05.058
10.1021/acs.langmuir.6b02622
10.1021/la901957k
10.1002/cphc.200700044
10.1021/ma800185y
10.1016/j.porgcoat.2003.06.001
10.1021/cr200350v
10.1111/j.0022-3646.1997.00938.x
10.1021/ma202007h
10.1021/la010384m
10.1021/ja028987n
10.1021/acsami.5b05627
10.1116/1.2806729
10.1021/cr500252u
10.1080/09205063.2014.929429
10.1021/acs.langmuir.8b01789
10.1021/acs.langmuir.5b01768
10.1021/acs.macromol.6b01379
10.1021/acs.macromol.5b02734
10.1002/mabi.201700359
10.3390/polym10060639
10.1021/acs.iecr.7b02378
10.4319/lo.1967.12.1.0176
10.1021/la0015258
10.1021/bm201791p
10.1016/j.actbio.2016.07.017
10.1021/bm8014208
10.1021/jacs.5b13156
10.1021/acs.langmuir.5b00920
10.1039/C4CC08681C
10.1021/acsami.5b05193
10.1038/pj.2015.77
10.1021/ja990962+
10.1039/c2sm06466a
10.1080/08927014.2015.1081179
10.3390/polym10030325
10.1038/ncomms13437
10.1038/ncomms1251
10.1002/adma.200701164
10.1021/la061012m
10.1021/la0485327
10.1039/C4RA00928B
10.1039/c2jm30820g
10.1080/08927014.2017.1383983
10.1016/j.progpolymsci.2008.08.004
10.1039/C2SM26879E
10.1039/c001968m
10.1080/08927014.2013.777046
10.1021/acs.biomac.5b01590
10.1080/08927014.2010.506677
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.langmuir.8b02799
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 1562
ExternalDocumentID 10_1021_acs_langmuir_8b02799
30376714
d270198894
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
4.4
AAHBH
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
CUPRZ
GGK
NPM
YQT
~02
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a385t-71e370d53296bf480ba999b934da35aac09ca2f5b1a57ddea6a088985758ed773
IEDL.DBID ACS
ISSN 0743-7463
IngestDate Fri Aug 16 07:30:35 EDT 2024
Fri Aug 23 01:17:18 EDT 2024
Wed Oct 16 00:48:44 EDT 2024
Thu Aug 27 13:44:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a385t-71e370d53296bf480ba999b934da35aac09ca2f5b1a57ddea6a088985758ed773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9393-7190
0000-0003-2443-886X
0000-0002-7692-9583
0000-0001-6026-9368
PMID 30376714
PQID 2127659308
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2127659308
crossref_primary_10_1021_acs_langmuir_8b02799
pubmed_primary_30376714
acs_journals_10_1021_acs_langmuir_8b02799
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-02-05
PublicationDateYYYYMMDD 2019-02-05
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
Hamburger R. (ref66/cit66) 1975; 50
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref45/cit45
  doi: 10.1039/C6TB00595K
– ident: ref56/cit56
  doi: 10.1080/08927014.2017.1328058
– ident: ref63/cit63
  doi: 10.1021/acsami.7b03160
– ident: ref64/cit64
  doi: 10.1007/s13758-012-0033-y
– ident: ref25/cit25
  doi: 10.1021/acsami.7b04079
– ident: ref41/cit41
  doi: 10.1016/j.porgcoat.2014.07.011
– ident: ref33/cit33
  doi: 10.1021/acs.chemrev.6b00342
– ident: ref6/cit6
  doi: 10.1016/S1369-7021(10)70058-4
– ident: ref47/cit47
  doi: 10.1021/jp5027114
– ident: ref54/cit54
  doi: 10.1080/08927014.2012.689288
– ident: ref22/cit22
– ident: ref55/cit55
  doi: 10.2478/s11534-011-0096-2
– volume: 50
  start-page: 10
  year: 1975
  ident: ref66/cit66
  publication-title: Pharm. Acta Helv.
  contributor:
    fullname: Hamburger R.
– ident: ref28/cit28
  doi: 10.1021/ma034737v
– ident: ref52/cit52
  doi: 10.1021/jp074847u
– ident: ref4/cit4
  doi: 10.1002/adma.200901407
– ident: ref21/cit21
  doi: 10.3390/polym6051544
– ident: ref59/cit59
  doi: 10.1021/ja9723491
– ident: ref8/cit8
  doi: 10.1021/acs.langmuir.6b00839
– ident: ref15/cit15
  doi: 10.1016/j.biomaterials.2009.05.058
– ident: ref36/cit36
  doi: 10.1021/acs.langmuir.6b02622
– ident: ref38/cit38
  doi: 10.1021/la901957k
– ident: ref53/cit53
  doi: 10.1002/cphc.200700044
– ident: ref67/cit67
  doi: 10.1021/ma800185y
– ident: ref1/cit1
  doi: 10.1016/j.porgcoat.2003.06.001
– ident: ref5/cit5
  doi: 10.1021/cr200350v
– ident: ref57/cit57
  doi: 10.1111/j.0022-3646.1997.00938.x
– ident: ref68/cit68
  doi: 10.1021/ma202007h
– ident: ref7/cit7
  doi: 10.1021/la010384m
– ident: ref58/cit58
  doi: 10.1021/ja028987n
– ident: ref12/cit12
  doi: 10.1021/acsami.5b05627
– ident: ref65/cit65
  doi: 10.1116/1.2806729
– ident: ref2/cit2
  doi: 10.1021/cr500252u
– ident: ref17/cit17
  doi: 10.1080/09205063.2014.929429
– ident: ref20/cit20
  doi: 10.1021/acs.langmuir.8b01789
– ident: ref44/cit44
  doi: 10.1021/acs.langmuir.5b01768
– ident: ref31/cit31
  doi: 10.1021/acs.macromol.6b01379
– ident: ref34/cit34
  doi: 10.1021/acs.macromol.5b02734
– ident: ref37/cit37
  doi: 10.1002/mabi.201700359
– ident: ref48/cit48
  doi: 10.3390/polym10060639
– ident: ref13/cit13
  doi: 10.1021/acs.iecr.7b02378
– ident: ref49/cit49
  doi: 10.4319/lo.1967.12.1.0176
– ident: ref11/cit11
  doi: 10.1021/la0015258
– ident: ref35/cit35
  doi: 10.1021/bm201791p
– ident: ref16/cit16
  doi: 10.1016/j.actbio.2016.07.017
– ident: ref50/cit50
  doi: 10.1021/bm8014208
– ident: ref62/cit62
  doi: 10.1021/jacs.5b13156
– ident: ref60/cit60
  doi: 10.1021/acs.langmuir.5b00920
– ident: ref61/cit61
  doi: 10.1039/C4CC08681C
– ident: ref32/cit32
  doi: 10.1021/acsami.5b05193
– ident: ref10/cit10
  doi: 10.1038/pj.2015.77
– ident: ref26/cit26
  doi: 10.1021/ja990962+
– ident: ref29/cit29
  doi: 10.1039/c2sm06466a
– ident: ref42/cit42
  doi: 10.1080/08927014.2015.1081179
– ident: ref46/cit46
  doi: 10.3390/polym10030325
– ident: ref69/cit69
  doi: 10.1038/ncomms13437
– ident: ref3/cit3
  doi: 10.1038/ncomms1251
– ident: ref14/cit14
  doi: 10.1002/adma.200701164
– ident: ref19/cit19
  doi: 10.1021/la061012m
– ident: ref27/cit27
  doi: 10.1021/la0485327
– ident: ref43/cit43
  doi: 10.1039/C4RA00928B
– ident: ref24/cit24
  doi: 10.1039/c2jm30820g
– ident: ref39/cit39
  doi: 10.1080/08927014.2017.1383983
– ident: ref23/cit23
  doi: 10.1016/j.progpolymsci.2008.08.004
– ident: ref30/cit30
  doi: 10.1039/C2SM26879E
– ident: ref9/cit9
  doi: 10.1039/c001968m
– ident: ref40/cit40
  doi: 10.1080/08927014.2013.777046
– ident: ref51/cit51
  doi: 10.1021/acs.biomac.5b01590
– ident: ref18/cit18
  doi: 10.1080/08927014.2010.506677
SSID ssj0009349
Score 2.5593476
Snippet Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now....
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1552
Title Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions
URI http://dx.doi.org/10.1021/acs.langmuir.8b02799
https://www.ncbi.nlm.nih.gov/pubmed/30376714
https://search.proquest.com/docview/2127659308
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaemgvLfS55SFX4sLB2ySOY_uIIlYrxLZIBYlbNH6EotK42mSF4NfXs9kUAUJtr1Fk2TPjzDeZx0fIrtIGHKSKqdwWLJcZZxqLqSwHUUvntefY7zz7UkxP88MzcXYbKN7P4GfpZ7DtGP_d_VxczMfKxDBK66fkWSbj_UAoVH67HbLLe7iLYzdlXvChVe6RVdAh2fauQ3oEZS69zeQV-Tr07PRFJj_Gi86M7c3DEY7_eJB18nIFPOl-bykb5IlvXpPn5cD39obMjsIVmyBBenNOkc6TTq_dPJz7S1oGwOrols7AeRpqevw9dIGVeCCG0ax39DhcXt9cXWBzEFryW3I6OTgpp2xFtsCAK9ExmXouEyd4pgtT5yoxELGjiSJ1wAWATbSFrBYmBSHjNxEKwAopJPhU3knJ35G1JjT-A6GuyCAx1uaKmzwCEGWFl8YLGc2h1tKOyF6URbW6LG21zINnaYUPBwFVKwGNCBu0U_3q52_85f1PgwqrKD_MfkDjw6KtcJR9ITRP1Ii873X7Z8Xox2Uh0_zjf-xsk7yI4EkvK7jFFlnr5gu_HQFKZ3aWVvkbzt3ieA
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ReqAX-i5b-nClXnrwNonj2D6iqKttu4uQChW3yK9QBMTVJisEv76e7AbUSqjiakXWeGaS-ZyZ-Qbgo1RGO51KKnNb0FxkjCosprJM81o4rzzDfuf5fjE9yr8d8-MN4EMvTBSijTu1fRL_ll0g_Yxr-AvvYnm6GEsTb1NKPYCHXMSYiYio_HHLtctWqBfZN0VesKFj7o5dMC7Z9u-4dAfY7IPO5DH8vBG3rzU5Gy87M7bX_zA53vs8T2B7DUPJ3spvnsKGb57BVjlMf3sO81m4pBMcl96cEBzuSaZXbhFO_Dkpg8Za6ZbMtfMk1OTgV-gCLfFcFO-23pGDcH51fXmKrULo1y_gaPLlsJzS9egFqpnkHRWpZyJxnGWqMHUuE6MjkjRRs04zrrVNlNVZzU2quYhfSF1orJfCcZ_SOyHYS9hsQuN3gLgi04mxNpfM5BGOSMu9MJ6L6By1EnYEn6IuqvWr01Z9VjxLK1wcFFStFTQCOhip-r1i4_jP8x8GS1ZRf5gL0Y0Py7ZCYvuCK5bIEbxamfhmxxjVRSHS_PU9JHsPW9PD-ayafd3_vguPIqxSfW03fwOb3WLp30bo0pl3vaP-AXAH6t0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BkYAX7mM5jcQLD94mcRzbj1VgtUC3WgkqVbxEvlIqSlxtsqraX48nm5RDqhC8WtFoPDP2fM5cAK-lMtrpVFKZ24LmImNUYTKVZZrXwnnlGdY7L_aK-X7-4YAf_DLqKzLRRkptH8THU33i6qHDQLqN6_gb7_v6aDWVJr6olLoK17hI-wjtTvnpZ79dtkG-2IFT5AUbq-YuoYK-yba_-6ZLAGfveGa34csFy32-ybfpujNTe_5HN8f_2tMduDXAUbKzsZ-7cMU39-BGOU6Buw-L3XBKZzg2vTkkOOSTzM_cKhz6Y1IGjTnTLVlo50moyfJr6AItcW8U37jekWU4Pjs_PcKSIbTvB7A_e_e5nNNhBAPVTPKOitQzkTjOMlWYOpeJ0RFRmihdpxnX2ibK6qzmJtVcxJtSFxrzpnDsp_ROCPYQtprQ-MdAXJHpxFibS2byCEuk5V4Yz0U0kloJO4E3URbVcITaqo-OZ2mFi6OAqkFAE6CjoqqTTVeOv3z_atRmFeWHMRHd-LBuK2xwX3DFEjmBRxs1X1CM3l0UIs2f_ANnL-H68u2s2n2_9_Ep3IzoSvUp3vwZbHWrtX8eEUxnXvS2-gP1Xe1X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Fouling+Thin+Hydrogel+Coatings+Made+of+Photo-Cross-Linked+Polyzwitterions&rft.jtitle=Langmuir&rft.au=Koc%2C+Julian&rft.au=Sch%C3%B6nemann%2C+Eric&rft.au=Amuthalingam%2C+Ajitha&rft.au=Clarke%2C+Jessica&rft.date=2019-02-05&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=35&rft.issue=5&rft.spage=1552&rft.epage=1562&rft_id=info:doi/10.1021%2Facs.langmuir.8b02799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_8b02799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon