Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions
Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel co...
Saved in:
Published in | Langmuir Vol. 35; no. 5; pp. 1552 - 1562 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.02.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel coatings against a series of proteins and nonmotile as well as motile marine organisms as model foulers. The coatings are prepared by simultaneous photoinduced cross-linking and surface anchoring to elucidate the effect of the molecular structure of the zwitterionic moieties on their antifouling activity. Analogously prepared coatings of poly(butyl methacrylate) and poly(oligoethylene glycol methacrylate) serve as references. Photoreactive polymers are synthesized by the statistical copolymerization of sulfobetaine or sulfabetaine methacrylates and methacrylamides with a benzophenone derivative of 2-hydroxyethyl methacrylate and are applied as a thin film coating. While keeping the density of the zwitterionic and cross-linker groups constant, the molecular structure of the zwitterionic side chains is varied systematically, as is the arrangement of the ion pairs in the side chain by changing the classical linear geometry to a novel Y-shaped geometry. All of the polyzwitterions strongly reduce fouling compared to poly(butyl methacrylate). Overall, the sulfabetaine polyzwitterion coatings studied matches the high antifouling effectiveness of oligo(ethylene glycol)-based ones used as a control. Nevertheless, performances varied individually for a given pair of polymer and fouler. The case of the polysulfobetaines exemplifies that minor chemical changes in the polymer structure affect the antifouling performance markedly. Accordingly, the antifouling performance of such polymers cannot be correlated simply to the type of zwitterion used (which could be generally ranked as better performing or poorer performing) but is a result of the polymer’s precise chemical structure. Our findings underline the need to enlarge the existing structural diversity of polyzwitterions for antifouling purposes to optimize the potential of their chemical structure. |
---|---|
AbstractList | Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel coatings against a series of proteins and nonmotile as well as motile marine organisms as model foulers. The coatings are prepared by simultaneous photoinduced cross-linking and surface anchoring to elucidate the effect of the molecular structure of the zwitterionic moieties on their antifouling activity. Analogously prepared coatings of poly(butyl methacrylate) and poly(oligoethylene glycol methacrylate) serve as references. Photoreactive polymers are synthesized by the statistical copolymerization of sulfobetaine or sulfabetaine methacrylates and methacrylamides with a benzophenone derivative of 2-hydroxyethyl methacrylate and are applied as a thin film coating. While keeping the density of the zwitterionic and cross-linker groups constant, the molecular structure of the zwitterionic side chains is varied systematically, as is the arrangement of the ion pairs in the side chain by changing the classical linear geometry to a novel Y-shaped geometry. All of the polyzwitterions strongly reduce fouling compared to poly(butyl methacrylate). Overall, the sulfabetaine polyzwitterion coatings studied matches the high antifouling effectiveness of oligo(ethylene glycol)-based ones used as a control. Nevertheless, performances varied individually for a given pair of polymer and fouler. The case of the polysulfobetaines exemplifies that minor chemical changes in the polymer structure affect the antifouling performance markedly. Accordingly, the antifouling performance of such polymers cannot be correlated simply to the type of zwitterion used (which could be generally ranked as better performing or poorer performing) but is a result of the polymer's precise chemical structure. Our findings underline the need to enlarge the existing structural diversity of polyzwitterions for antifouling purposes to optimize the potential of their chemical structure. Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel coatings against a series of proteins and nonmotile as well as motile marine organisms as model foulers. The coatings are prepared by simultaneous photoinduced cross-linking and surface anchoring to elucidate the effect of the molecular structure of the zwitterionic moieties on their antifouling activity. Analogously prepared coatings of poly(butyl methacrylate) and poly(oligoethylene glycol methacrylate) serve as references. Photoreactive polymers are synthesized by the statistical copolymerization of sulfobetaine or sulfabetaine methacrylates and methacrylamides with a benzophenone derivative of 2-hydroxyethyl methacrylate and are applied as a thin film coating. While keeping the density of the zwitterionic and cross-linker groups constant, the molecular structure of the zwitterionic side chains is varied systematically, as is the arrangement of the ion pairs in the side chain by changing the classical linear geometry to a novel Y-shaped geometry. All of the polyzwitterions strongly reduce fouling compared to poly(butyl methacrylate). Overall, the sulfabetaine polyzwitterion coatings studied matches the high antifouling effectiveness of oligo(ethylene glycol)-based ones used as a control. Nevertheless, performances varied individually for a given pair of polymer and fouler. The case of the polysulfobetaines exemplifies that minor chemical changes in the polymer structure affect the antifouling performance markedly. Accordingly, the antifouling performance of such polymers cannot be correlated simply to the type of zwitterion used (which could be generally ranked as better performing or poorer performing) but is a result of the polymer’s precise chemical structure. Our findings underline the need to enlarge the existing structural diversity of polyzwitterions for antifouling purposes to optimize the potential of their chemical structure. |
Author | Clare, Anthony S Finlay, John A Schönemann, Eric Laschewsky, Andre Koc, Julian Rosenhahn, Axel Clarke, Jessica Amuthalingam, Ajitha |
AuthorAffiliation | Department of Chemistry Analytical Chemistry - Biointerfaces |
AuthorAffiliation_xml | – name: Analytical Chemistry - Biointerfaces – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Julian orcidid: 0000-0001-6026-9368 surname: Koc fullname: Koc, Julian email: julian.koc@rub.de organization: Analytical Chemistry - Biointerfaces – sequence: 2 givenname: Eric surname: Schönemann fullname: Schönemann, Eric organization: Department of Chemistry – sequence: 3 givenname: Ajitha surname: Amuthalingam fullname: Amuthalingam, Ajitha organization: Analytical Chemistry - Biointerfaces – sequence: 4 givenname: Jessica surname: Clarke fullname: Clarke, Jessica – sequence: 5 givenname: John A surname: Finlay fullname: Finlay, John A – sequence: 6 givenname: Anthony S orcidid: 0000-0002-7692-9583 surname: Clare fullname: Clare, Anthony S – sequence: 7 givenname: Andre orcidid: 0000-0003-2443-886X surname: Laschewsky fullname: Laschewsky, Andre email: laschews@uni-potsdam.de organization: Department of Chemistry – sequence: 8 givenname: Axel orcidid: 0000-0001-9393-7190 surname: Rosenhahn fullname: Rosenhahn, Axel email: axel.rosenhahn@rub.de organization: Analytical Chemistry - Biointerfaces |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30376714$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM1OwzAQhC0Eoj_wBgjlyCXFjuPYPqKKUqRU9FDOlhM7rUsSFztRVZ4eV205clppNTM7-43AdWtbDcADghMEE_QsSz-pZbtueuMmrIAJ5fwKDBFJYExYQq_BENIUxzTN8ACMvN9CCDlO-S0YYIhpRlE6BIvc7uOZ7WvTrqPVxrTR_KCcXes6mlrZha2PFlLpyFbRcmM7G0-d9T7OTfulVbS09eFnb7pOO2NbfwduKll7fX-eY_A5e11N53H-8fY-fcljiRnpYoo0plARnPCsqFIGC8k5L0I5JTGRsoS8lElFCiQJVUrLTELGOCOUMK0oxWPwdMrdOfvda9-JxvhS14GHtr0XCUpoRjiGLEjTk7Q89na6EjtnGukOAkFxBCkCSHEBKc4gg-3xfKEvGq3-TBdyQQBPgqN9a3vXhof_z_wF_IqEvw |
CitedBy_id | crossref_primary_10_1021_acsami_0c11580 crossref_primary_10_1021_acs_langmuir_0c02329 crossref_primary_10_1021_acsami_1c13459 crossref_primary_10_1021_acssuschemeng_3c00508 crossref_primary_10_1016_j_jwpe_2024_105722 crossref_primary_10_1093_pnasnexus_pgad204 crossref_primary_10_1016_j_scitotenv_2020_144469 crossref_primary_10_1021_acs_chemmater_1c02781 crossref_primary_10_1063_5_0066082 crossref_primary_10_1016_j_jmst_2020_12_070 crossref_primary_10_1080_00914037_2022_2066668 crossref_primary_10_1016_j_colcom_2021_100560 crossref_primary_10_1021_acs_biomac_3c00948 crossref_primary_10_1021_acs_langmuir_1c00428 crossref_primary_10_1002_marc_202100589 crossref_primary_10_1016_j_jcis_2021_08_004 crossref_primary_10_3390_gels9030237 crossref_primary_10_1002_mame_202000371 crossref_primary_10_1002_mabi_202200225 crossref_primary_10_1080_08927014_2019_1611790 crossref_primary_10_1016_j_porgcoat_2024_108349 crossref_primary_10_1002_macp_202200334 crossref_primary_10_1021_acs_langmuir_8b01789 crossref_primary_10_1080_08927014_2023_2185143 crossref_primary_10_3390_polym11061014 crossref_primary_10_1021_acsami_0c07599 crossref_primary_10_1021_acsapm_9b00897 crossref_primary_10_1021_acs_langmuir_1c00997 crossref_primary_10_3390_gels8010046 crossref_primary_10_1002_admi_202300873 crossref_primary_10_1016_j_eurpolymj_2024_113177 crossref_primary_10_1016_j_aquaeng_2024_102393 crossref_primary_10_1002_smtd_202301095 crossref_primary_10_1080_08927014_2020_1796983 crossref_primary_10_1021_acsabm_0c01253 crossref_primary_10_1016_j_colsuc_2023_100018 crossref_primary_10_1038_s41467_022_35105_8 crossref_primary_10_1002_marc_201900447 crossref_primary_10_3390_ijms24076594 crossref_primary_10_1021_acsami_0c21212 crossref_primary_10_1039_C9PY00764D crossref_primary_10_1002_admi_202200677 crossref_primary_10_1002_admi_202000966 crossref_primary_10_1021_acs_langmuir_2c01202 crossref_primary_10_1002_adfm_202000757 crossref_primary_10_1016_j_progpolymsci_2022_101516 crossref_primary_10_3390_molecules25071678 crossref_primary_10_1016_j_cossms_2020_100897 crossref_primary_10_1016_j_porgcoat_2022_107351 crossref_primary_10_1016_j_eurpolymj_2021_110578 crossref_primary_10_1039_C8RA09358J crossref_primary_10_1055_s_0040_1721741 crossref_primary_10_1021_acsengineeringau_2c00008 crossref_primary_10_1021_acs_langmuir_0c01287 crossref_primary_10_1002_admi_202100994 crossref_primary_10_1021_acs_langmuir_1c00491 crossref_primary_10_1021_acsami_2c01809 crossref_primary_10_1021_acs_biomac_0c01705 crossref_primary_10_1002_marc_202100051 crossref_primary_10_1002_cptc_201900216 crossref_primary_10_1021_acs_langmuir_9b02720 |
Cites_doi | 10.1039/C6TB00595K 10.1080/08927014.2017.1328058 10.1021/acsami.7b03160 10.1007/s13758-012-0033-y 10.1021/acsami.7b04079 10.1016/j.porgcoat.2014.07.011 10.1021/acs.chemrev.6b00342 10.1016/S1369-7021(10)70058-4 10.1021/jp5027114 10.1080/08927014.2012.689288 10.2478/s11534-011-0096-2 10.1021/ma034737v 10.1021/jp074847u 10.1002/adma.200901407 10.3390/polym6051544 10.1021/ja9723491 10.1021/acs.langmuir.6b00839 10.1016/j.biomaterials.2009.05.058 10.1021/acs.langmuir.6b02622 10.1021/la901957k 10.1002/cphc.200700044 10.1021/ma800185y 10.1016/j.porgcoat.2003.06.001 10.1021/cr200350v 10.1111/j.0022-3646.1997.00938.x 10.1021/ma202007h 10.1021/la010384m 10.1021/ja028987n 10.1021/acsami.5b05627 10.1116/1.2806729 10.1021/cr500252u 10.1080/09205063.2014.929429 10.1021/acs.langmuir.8b01789 10.1021/acs.langmuir.5b01768 10.1021/acs.macromol.6b01379 10.1021/acs.macromol.5b02734 10.1002/mabi.201700359 10.3390/polym10060639 10.1021/acs.iecr.7b02378 10.4319/lo.1967.12.1.0176 10.1021/la0015258 10.1021/bm201791p 10.1016/j.actbio.2016.07.017 10.1021/bm8014208 10.1021/jacs.5b13156 10.1021/acs.langmuir.5b00920 10.1039/C4CC08681C 10.1021/acsami.5b05193 10.1038/pj.2015.77 10.1021/ja990962+ 10.1039/c2sm06466a 10.1080/08927014.2015.1081179 10.3390/polym10030325 10.1038/ncomms13437 10.1038/ncomms1251 10.1002/adma.200701164 10.1021/la061012m 10.1021/la0485327 10.1039/C4RA00928B 10.1039/c2jm30820g 10.1080/08927014.2017.1383983 10.1016/j.progpolymsci.2008.08.004 10.1039/C2SM26879E 10.1039/c001968m 10.1080/08927014.2013.777046 10.1021/acs.biomac.5b01590 10.1080/08927014.2010.506677 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acs.langmuir.8b02799 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 1562 |
ExternalDocumentID | 10_1021_acs_langmuir_8b02799 30376714 d270198894 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X 4.4 AAHBH ABJNI ABQRX ADHLV AGXLV AHGAQ CUPRZ GGK NPM YQT ~02 AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a385t-71e370d53296bf480ba999b934da35aac09ca2f5b1a57ddea6a088985758ed773 |
IEDL.DBID | ACS |
ISSN | 0743-7463 |
IngestDate | Fri Aug 16 07:30:35 EDT 2024 Fri Aug 23 01:17:18 EDT 2024 Wed Oct 16 00:48:44 EDT 2024 Thu Aug 27 13:44:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a385t-71e370d53296bf480ba999b934da35aac09ca2f5b1a57ddea6a088985758ed773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9393-7190 0000-0003-2443-886X 0000-0002-7692-9583 0000-0001-6026-9368 |
PMID | 30376714 |
PQID | 2127659308 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2127659308 crossref_primary_10_1021_acs_langmuir_8b02799 pubmed_primary_30376714 acs_journals_10_1021_acs_langmuir_8b02799 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2019-02-05 |
PublicationDateYYYYMMDD | 2019-02-05 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 Hamburger R. (ref66/cit66) 1975; 50 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref45/cit45 doi: 10.1039/C6TB00595K – ident: ref56/cit56 doi: 10.1080/08927014.2017.1328058 – ident: ref63/cit63 doi: 10.1021/acsami.7b03160 – ident: ref64/cit64 doi: 10.1007/s13758-012-0033-y – ident: ref25/cit25 doi: 10.1021/acsami.7b04079 – ident: ref41/cit41 doi: 10.1016/j.porgcoat.2014.07.011 – ident: ref33/cit33 doi: 10.1021/acs.chemrev.6b00342 – ident: ref6/cit6 doi: 10.1016/S1369-7021(10)70058-4 – ident: ref47/cit47 doi: 10.1021/jp5027114 – ident: ref54/cit54 doi: 10.1080/08927014.2012.689288 – ident: ref22/cit22 – ident: ref55/cit55 doi: 10.2478/s11534-011-0096-2 – volume: 50 start-page: 10 year: 1975 ident: ref66/cit66 publication-title: Pharm. Acta Helv. contributor: fullname: Hamburger R. – ident: ref28/cit28 doi: 10.1021/ma034737v – ident: ref52/cit52 doi: 10.1021/jp074847u – ident: ref4/cit4 doi: 10.1002/adma.200901407 – ident: ref21/cit21 doi: 10.3390/polym6051544 – ident: ref59/cit59 doi: 10.1021/ja9723491 – ident: ref8/cit8 doi: 10.1021/acs.langmuir.6b00839 – ident: ref15/cit15 doi: 10.1016/j.biomaterials.2009.05.058 – ident: ref36/cit36 doi: 10.1021/acs.langmuir.6b02622 – ident: ref38/cit38 doi: 10.1021/la901957k – ident: ref53/cit53 doi: 10.1002/cphc.200700044 – ident: ref67/cit67 doi: 10.1021/ma800185y – ident: ref1/cit1 doi: 10.1016/j.porgcoat.2003.06.001 – ident: ref5/cit5 doi: 10.1021/cr200350v – ident: ref57/cit57 doi: 10.1111/j.0022-3646.1997.00938.x – ident: ref68/cit68 doi: 10.1021/ma202007h – ident: ref7/cit7 doi: 10.1021/la010384m – ident: ref58/cit58 doi: 10.1021/ja028987n – ident: ref12/cit12 doi: 10.1021/acsami.5b05627 – ident: ref65/cit65 doi: 10.1116/1.2806729 – ident: ref2/cit2 doi: 10.1021/cr500252u – ident: ref17/cit17 doi: 10.1080/09205063.2014.929429 – ident: ref20/cit20 doi: 10.1021/acs.langmuir.8b01789 – ident: ref44/cit44 doi: 10.1021/acs.langmuir.5b01768 – ident: ref31/cit31 doi: 10.1021/acs.macromol.6b01379 – ident: ref34/cit34 doi: 10.1021/acs.macromol.5b02734 – ident: ref37/cit37 doi: 10.1002/mabi.201700359 – ident: ref48/cit48 doi: 10.3390/polym10060639 – ident: ref13/cit13 doi: 10.1021/acs.iecr.7b02378 – ident: ref49/cit49 doi: 10.4319/lo.1967.12.1.0176 – ident: ref11/cit11 doi: 10.1021/la0015258 – ident: ref35/cit35 doi: 10.1021/bm201791p – ident: ref16/cit16 doi: 10.1016/j.actbio.2016.07.017 – ident: ref50/cit50 doi: 10.1021/bm8014208 – ident: ref62/cit62 doi: 10.1021/jacs.5b13156 – ident: ref60/cit60 doi: 10.1021/acs.langmuir.5b00920 – ident: ref61/cit61 doi: 10.1039/C4CC08681C – ident: ref32/cit32 doi: 10.1021/acsami.5b05193 – ident: ref10/cit10 doi: 10.1038/pj.2015.77 – ident: ref26/cit26 doi: 10.1021/ja990962+ – ident: ref29/cit29 doi: 10.1039/c2sm06466a – ident: ref42/cit42 doi: 10.1080/08927014.2015.1081179 – ident: ref46/cit46 doi: 10.3390/polym10030325 – ident: ref69/cit69 doi: 10.1038/ncomms13437 – ident: ref3/cit3 doi: 10.1038/ncomms1251 – ident: ref14/cit14 doi: 10.1002/adma.200701164 – ident: ref19/cit19 doi: 10.1021/la061012m – ident: ref27/cit27 doi: 10.1021/la0485327 – ident: ref43/cit43 doi: 10.1039/C4RA00928B – ident: ref24/cit24 doi: 10.1039/c2jm30820g – ident: ref39/cit39 doi: 10.1080/08927014.2017.1383983 – ident: ref23/cit23 doi: 10.1016/j.progpolymsci.2008.08.004 – ident: ref30/cit30 doi: 10.1039/C2SM26879E – ident: ref9/cit9 doi: 10.1039/c001968m – ident: ref40/cit40 doi: 10.1080/08927014.2013.777046 – ident: ref51/cit51 doi: 10.1021/acs.biomac.5b01590 – ident: ref18/cit18 doi: 10.1080/08927014.2010.506677 |
SSID | ssj0009349 |
Score | 2.5593476 |
Snippet | Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now.... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1552 |
Title | Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions |
URI | http://dx.doi.org/10.1021/acs.langmuir.8b02799 https://www.ncbi.nlm.nih.gov/pubmed/30376714 https://search.proquest.com/docview/2127659308 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaemgvLfS55SFX4sLB2ySOY_uIIlYrxLZIBYlbNH6EotK42mSF4NfXs9kUAUJtr1Fk2TPjzDeZx0fIrtIGHKSKqdwWLJcZZxqLqSwHUUvntefY7zz7UkxP88MzcXYbKN7P4GfpZ7DtGP_d_VxczMfKxDBK66fkWSbj_UAoVH67HbLLe7iLYzdlXvChVe6RVdAh2fauQ3oEZS69zeQV-Tr07PRFJj_Gi86M7c3DEY7_eJB18nIFPOl-bykb5IlvXpPn5cD39obMjsIVmyBBenNOkc6TTq_dPJz7S1oGwOrols7AeRpqevw9dIGVeCCG0ax39DhcXt9cXWBzEFryW3I6OTgpp2xFtsCAK9ExmXouEyd4pgtT5yoxELGjiSJ1wAWATbSFrBYmBSHjNxEKwAopJPhU3knJ35G1JjT-A6GuyCAx1uaKmzwCEGWFl8YLGc2h1tKOyF6URbW6LG21zINnaYUPBwFVKwGNCBu0U_3q52_85f1PgwqrKD_MfkDjw6KtcJR9ITRP1Ii873X7Z8Xox2Uh0_zjf-xsk7yI4EkvK7jFFlnr5gu_HQFKZ3aWVvkbzt3ieA |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ReqAX-i5b-nClXnrwNonj2D6iqKttu4uQChW3yK9QBMTVJisEv76e7AbUSqjiakXWeGaS-ZyZ-Qbgo1RGO51KKnNb0FxkjCosprJM81o4rzzDfuf5fjE9yr8d8-MN4EMvTBSijTu1fRL_ll0g_Yxr-AvvYnm6GEsTb1NKPYCHXMSYiYio_HHLtctWqBfZN0VesKFj7o5dMC7Z9u-4dAfY7IPO5DH8vBG3rzU5Gy87M7bX_zA53vs8T2B7DUPJ3spvnsKGb57BVjlMf3sO81m4pBMcl96cEBzuSaZXbhFO_Dkpg8Za6ZbMtfMk1OTgV-gCLfFcFO-23pGDcH51fXmKrULo1y_gaPLlsJzS9egFqpnkHRWpZyJxnGWqMHUuE6MjkjRRs04zrrVNlNVZzU2quYhfSF1orJfCcZ_SOyHYS9hsQuN3gLgi04mxNpfM5BGOSMu9MJ6L6By1EnYEn6IuqvWr01Z9VjxLK1wcFFStFTQCOhip-r1i4_jP8x8GS1ZRf5gL0Y0Py7ZCYvuCK5bIEbxamfhmxxjVRSHS_PU9JHsPW9PD-ayafd3_vguPIqxSfW03fwOb3WLp30bo0pl3vaP-AXAH6t0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BkYAX7mM5jcQLD94mcRzbj1VgtUC3WgkqVbxEvlIqSlxtsqraX48nm5RDqhC8WtFoPDP2fM5cAK-lMtrpVFKZ24LmImNUYTKVZZrXwnnlGdY7L_aK-X7-4YAf_DLqKzLRRkptH8THU33i6qHDQLqN6_gb7_v6aDWVJr6olLoK17hI-wjtTvnpZ79dtkG-2IFT5AUbq-YuoYK-yba_-6ZLAGfveGa34csFy32-ybfpujNTe_5HN8f_2tMduDXAUbKzsZ-7cMU39-BGOU6Buw-L3XBKZzg2vTkkOOSTzM_cKhz6Y1IGjTnTLVlo50moyfJr6AItcW8U37jekWU4Pjs_PcKSIbTvB7A_e_e5nNNhBAPVTPKOitQzkTjOMlWYOpeJ0RFRmihdpxnX2ibK6qzmJtVcxJtSFxrzpnDsp_ROCPYQtprQ-MdAXJHpxFibS2byCEuk5V4Yz0U0kloJO4E3URbVcITaqo-OZ2mFi6OAqkFAE6CjoqqTTVeOv3z_atRmFeWHMRHd-LBuK2xwX3DFEjmBRxs1X1CM3l0UIs2f_ANnL-H68u2s2n2_9_Ep3IzoSvUp3vwZbHWrtX8eEUxnXvS2-gP1Xe1X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Fouling+Thin+Hydrogel+Coatings+Made+of+Photo-Cross-Linked+Polyzwitterions&rft.jtitle=Langmuir&rft.au=Koc%2C+Julian&rft.au=Sch%C3%B6nemann%2C+Eric&rft.au=Amuthalingam%2C+Ajitha&rft.au=Clarke%2C+Jessica&rft.date=2019-02-05&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=35&rft.issue=5&rft.spage=1552&rft.epage=1562&rft_id=info:doi/10.1021%2Facs.langmuir.8b02799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_8b02799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |