インクレチンの生理作用と機能性食品成分による調節・模倣

食事による血糖上昇に対応して適切にインスリンが分泌されて適切に作用することで血糖の恒常性が維持される。特にインスリン分泌能が低い東アジア人では, インスリン分泌を担う膵β細胞の機能維持が2型糖尿病を予防するために重要な課題となっている。腸管インクレチンホルモンであるgastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide (GIP) とglucagon-like peptide (GLP-1) は, 膵β細胞に直接あるいは間接的に作用して, 膵β細胞の細胞増殖促進作用, 細胞死抑制作用, 血糖上昇に対...

Full description

Saved in:
Bibliographic Details
Published inNihon Eiyō, Shokuryō Gakkai shi Vol. 76; no. 3; pp. 141 - 147
Main Author 原田, 直樹
Format Journal Article
LanguageJapanese
Published 公益社団法人 日本栄養・食糧学会 2023
日本栄養・食糧学会
Subjects
Online AccessGet full text
ISSN0287-3516
1883-2849
DOI10.4327/jsnfs.76.141

Cover

Abstract 食事による血糖上昇に対応して適切にインスリンが分泌されて適切に作用することで血糖の恒常性が維持される。特にインスリン分泌能が低い東アジア人では, インスリン分泌を担う膵β細胞の機能維持が2型糖尿病を予防するために重要な課題となっている。腸管インクレチンホルモンであるgastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide (GIP) とglucagon-like peptide (GLP-1) は, 膵β細胞に直接あるいは間接的に作用して, 膵β細胞の細胞増殖促進作用, 細胞死抑制作用, 血糖上昇に対応したインスリン分泌増幅作用を発揮する。インクレチンの血糖恒常性維持機構を利用した応用展開は, 2型糖尿病薬にとどまらず, 健康食品や食事自体による予防にも役立つと考えられる。本稿では, インスリン, インクレチンホルモンと2型糖尿病について概説し, インクレチンの分泌を促進あるいは作用を模倣する機能性食品成分について紹介する。
AbstractList 食事による血糖上昇に対応して適切にインスリンが分泌されて適切に作用することで血糖の恒常性が維持される。特にインスリン分泌能が低い東アジア人では,インスリン分泌を担う膵β細胞の機能維持が2型糖尿病を予防するために重要な課題となっている。腸管インクレチンホルモンであるgastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide(GIP)とglucagon-like peptide(GLP-1)は,膵β細胞に直接あるいは間接的に作用して,膵β細胞の細胞増殖促進作用,細胞死抑制作用,血糖上昇に対応したインスリン分泌増幅作用を発揮する。インクレチンの血糖恒常性維持機構を利用した応用展開は,2型糖尿病薬にとどまらず,健康食品や食事自体による予防にも役立つと考えられる。本稿では,インスリン,インクレチンホルモンと2型糖尿病について概説し,インクレチンの分泌を促進あるいは作用を模倣する機能性食品成分について紹介する。
食事による血糖上昇に対応して適切にインスリンが分泌されて適切に作用することで血糖の恒常性が維持される。特にインスリン分泌能が低い東アジア人では, インスリン分泌を担う膵β細胞の機能維持が2型糖尿病を予防するために重要な課題となっている。腸管インクレチンホルモンであるgastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide (GIP) とglucagon-like peptide (GLP-1) は, 膵β細胞に直接あるいは間接的に作用して, 膵β細胞の細胞増殖促進作用, 細胞死抑制作用, 血糖上昇に対応したインスリン分泌増幅作用を発揮する。インクレチンの血糖恒常性維持機構を利用した応用展開は, 2型糖尿病薬にとどまらず, 健康食品や食事自体による予防にも役立つと考えられる。本稿では, インスリン, インクレチンホルモンと2型糖尿病について概説し, インクレチンの分泌を促進あるいは作用を模倣する機能性食品成分について紹介する。
「要旨」:食事による血糖上昇に対応して適切にインスリンが分泌されて適切に作用することで血糖の恒常性が維持される. 特にインスリン分泌能が低い東アジア人では, インスリン分泌を担う膵β細胞の機能維持が2型糖尿病を予防するために重要な課題となっている. 腸管インクレチンホルモンであるgastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide (GIP)とglucagon-like peptide (GLP-1)は, 膵β細胞に直接あるいは間接的に作用して, 膵β細胞の細胞増殖促進作用, 細胞死抑制作用, 血糖上昇に対応したインスリン分泌増幅作用を発揮する. インクレチンの血糖恒常性維持機構を利用した応用展開は, 2型糖尿病薬にとどまらず, 健康食品や食事自体による予防にも役立つと考えられる. 本稿では, インスリン, インクレチンホルモンと2型糖尿病について概説し, インクレチンの分泌を促進あるいは作用を模倣する機能性食品成分について紹介する.
Author 原田, 直樹
Author_xml – sequence: 1
  fullname: 原田, 直樹
  organization: 大阪公立大学大学院農学研究科
BackLink https://agriknowledge.affrc.go.jp/RN/2030947286$$DView record in AgriKnowledge
BookMark eNo1UcFqGzEQFSWFuElu-Y11JY280p5KCWlaCJRCehayVutou9kNuw6lN68XgqGXQHMsmJBCnDQkhx5L6MeottO_qBa3h5k3MPPePGaeobW8yA1C2wR3GVD-PK3ypOrysEsYeYI6RAgIqGDRGupgKngAPRKuo62qsn2MseAUg-igd278zTU_3PjeNbeuqdu6vlueT5dnp78fvi7PZ66eLa6nj83DYnT153I6_1IvJmfzyamrv7vxxI0_P978Wt6PXPNzMbuYjy430dNEZZXZ-ocb6P2r3YOd18H-2703Oy_3AwWCkQAizjQmicZUx0RHcR-0AlAKh33OKIHYaCYE7zFItKFAFfeznEJCwxC4hg3EV7oqSUo7lGpQ2g958TEz8cDIQlnZNrQcFDI9lphIjKOwJ0jPM_dWzCMTW62yIs9sbmRanJS5dyxjhY2tDgtJMQVP4yFuwYc_bZtafxGhzCu9WCml1VD5rcelPVLlJ6nKodWZl2x_InkooU0t-39HH6pSpgr-ArhgoqE
ContentType Journal Article
Copyright 2023 公益社団法人 日本栄養・食糧学会
Copyright_xml – notice: 2023 公益社団法人 日本栄養・食糧学会
CorporateAuthor 大阪公立大学大学院農学研究科
CorporateAuthor_xml – name: 大阪公立大学大学院農学研究科
DBID N5S
DOI 10.4327/jsnfs.76.141
DatabaseName AgriKnowledge(アグリナレッジ)AGROLib
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1883-2849
EndPage 147
ExternalDocumentID oai_affrc_go_jp_01_00965815
da0eisho_2023_007603_003_0141_01474219124
article_jsnfs_76_3_76_141_article_char_ja
GroupedDBID 2WC
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
JSF
KQ8
MOJWN
OK1
RJT
N5S
ID FETCH-LOGICAL-a3841-3974c01fc02cd1c9db3ca33aa06b74213dec4887543fce232a7fc0723f26637c3
ISSN 0287-3516
IngestDate Fri Aug 15 12:19:54 EDT 2025
Thu Jul 10 16:15:04 EDT 2025
Sun Jul 28 06:07:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3841-3974c01fc02cd1c9db3ca33aa06b74213dec4887543fce232a7fc0723f26637c3
Notes 947286
ZZ00014795
OpenAccessLink https://agriknowledge.affrc.go.jp/RN/2030947286
PageCount 7
ParticipantIDs affrit_agriknowledge_oai_affrc_go_jp_01_00965815
medicalonline_journals_da0eisho_2023_007603_003_0141_01474219124
jstage_primary_article_jsnfs_76_3_76_141_article_char_ja
PublicationCentury 2000
PublicationDate 20230000
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationTitle Nihon Eiyō, Shokuryō Gakkai shi
PublicationTitleAlternate 日本栄養・食糧学会誌
PublicationYear 2023
Publisher 公益社団法人 日本栄養・食糧学会
日本栄養・食糧学会
Publisher_xml – name: 公益社団法人 日本栄養・食糧学会
– name: 日本栄養・食糧学会
References 27) Hansen HS, Rosenkilde MM, Holst JJ, Schwartz TW (2012) GPR119 as a fat sensor. Trends Pharmacol Sci 33: 374-81.
3) Kodama K, Tojjar D, Yamada S, Toda K, Patel CJ, Butte AJ (2013) Ethnic differences in the relationship between insulin sensitivity and insulin response: a systematic review and meta-analysis. Diabetes Care 36: 1789-96.
43) Harada K, Sada S, Sakaguchi H, Takizawa M, Ishida R, Tsuboi T (2018) Bacterial metabolite S-equol modulates glucagon-like peptide-1 secretion from enteroendocrine L cell line GLUTag cells via actin polymerization. Biochem Biophys Res Commun 501: 1009-15.
29) Katsuma S, Hirasawa A, Tsujimoto G (2005) Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 329: 386-90.
7) Sakuraba H. Mizukami H. Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002) Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45: 85-96.
1) Staiger H, Machicao F, Fritsche A, Haring HU (2009) Pathomechanisms of type 2 diabetes genes. Endocr Rev 30: 557-85.
39) Tang J, Wan Y, Zhao M, Zhong H, Zheng JS, Feng F (2020) Legume and soy intake and risk of type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Am J Clin Nutr 111: 677-88.
13) McIntyre N, Holdsworth CD, Turner DS (1964) New intrerpretation of oral glucose tolerance. Lancet 2: 20-1.
6) Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52: 102-10.
41) Luo J, Wang A, Zhen W, Wang Y, Si H, Jia Z, Alkhalidy H, Cheng Z, Gilbert E, Xu B, Liu D (2018) Phytonutrient genistein is a survival factor for pancreatic beta-cells via GPR30-mediated mechanism. J Nutr Biochem 58: 59-70.
5) Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, Ng DP, Holmkvist J, Borch-Johnsen K, Jørgensen T, Sandbaek A, Lauritzen T, Hansen T, Nurbaya S, Tsunoda T, Kubo M, Babazono T, Hirose H, Hayashi M, Iwamoto Y, Kashiwagi A, Kaku K, Kawamori R, Tai ES, Pedersen O, Kamatani N, Kadowaki T, Kikkawa R, Nakamura Y, Maeda S (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40: 1098-102.
38) Baker M (2017) Deceptive curcumin offers cautionary tale for chemists. Nature 541: 144-5.
45) Horiuchi H, Usami A, Shirai R, Harada N, Ikushiro S, Sakaki T, Nakano Y, Inui H, Yamaji R (2017) S-Equol activates cAMP signaling at the plasma membrane of INS-1 pancreatic β-cells and protects against streptozotocin-induced hyperglycemia by increasing β-cell function in male mice. J Nutr 147: 1631-9.
18) Kim SJ, Nian C, Karunakaran S, Clee SM, Isales CM, McIntosh CH (2012) GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS One 7: e40156.
33) Altobelli E, Angeletti PM, Marziliano C, Mastrodomenico M, Giuliani AR, Petrocelli R (2021) Potential therapeutic effects of curcumin on glycemic and lipid profile in uncomplicated type 2 diabetes-a meta-analysis of randomized controlled trial. Nutrients 13: 404.
40) Gilbert ER, Liu D (2013) Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct 4: 200-12.
17) Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132: 2131-57.
35) Kato M, Nishikawa S, Ikehata A, Dochi K, Tani T, Takahashi T, Imaizumi A, Tsuda T (2017) Curcumin improves glucose tolerance via stimulation of glucagon-like peptide-1 secretion. Mol Nutr Food Res 61: 1600471.
22) Kim YG, Hahn S, Oh TJ, Kwak SH, Park KS, Cho YM (2013) Differences in the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors between Asians and non-Asians: a systematic review and meta-analysis. Diabetologia 56: 696-708.
4) Imura H (2013) Life course health care and preemptive approach to non-communicable diseases. Proc Jpn Acad Ser B Phys Biol Sci 89: 462-73.
46) Liu R, Cheng J, Wu H (2019) Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides: a review. Int J Mol Sci 20: 463.
20) Frías JP, Davies MJ, Rosenstock J, Pérez Manghi FC, Fernández Landó L, Bergman BK, Liu B, Cui X, Brown K (2021) Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. New Engl J Med 385: 503-15.
42) Dong HL, Tang XY, Deng YY, Zhong QW, Wang C, Zhang ZQ, Chen YM (2020) Urinary equol, but not daidzein and genistein, was inversely associated with the risk of type 2 diabetes in Chinese adults. Eur J Nutr 59: 719-728.
32) Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S (2012) Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35: 2121-7.
10) Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Invest 39: 1157-75.
44) Horiuchi H, Harada N, Adachi T, Nakano Y, Inui H, Yamaji R (2014) S-Equol enantioselectively activates cAMP-protein kinase A signaling and reduces alloxan-induced cell death in INS-1 pancreatic beta-cells. J Nutr Sci Vitaminol 60: 291-6.
47) Power O, Nongonierma AB, Jakeman P, FitzGerald RJ (2014) Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proc Nutr Soc 73: 34-46.
16) Holst JJ, Knop FK, Vilsbøll T, Krarup T, Madsbad S (2011) Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 34: S251-7.
26) Ichimura A, Hasegawa S, Kasubuchi M, Kimura I (2014) Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front Pharmacol 5: 236.
28) Alhouayek M, Masquelier J, Muccioli GG (2018) Lysophosphatidylinositols, from cell membrane constituents to GPR55 ligands. Trends Pharmacol Sci 39: 586-604.
31) Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G (2012) Curcumin―from molecule to biological function. Angew Chem Int Ed Engl 51: 5308-32.
37) Harada N, Arahori Y, Okuyama M, Luis PB, Joseph AI, Kitakaze T, Goshima N, Schneider C, Inui H, Yamaji R (2022) Curcumin activates G protein-coupled receptor 97 (GPR97) in a manner different from glucocorticoid. Biochem Biophys Res Commun 595: 41-6.
12) Elrick H, Stimmler L, Hlad CJ Jr, Arai Y (1964) Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 24: 1076-82.
48) Kazeem M, Bankole H, Ogunrinola O, Wusu A, Kappo A (2021) Functional foods with dipeptidyl peptidase-4 inhibitory potential and management of type 2 diabetes: A review. Food Front 2: 153-62.
25) Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7: 2839-49.
49) Lacroix IME, Li-Chan ECY (2016) Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation―Current knowledge and future research considerations. Trends Food Sci Technol 54: 1-16.
11) Perley MJ, Kipnis DM (1967) Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects. J Clin Invest 46: 1954-62.
9) La Barre J (1932) Sur les possibilites d'un traitement du diabete par I'incretine. Bull Acad R Med Belg 12: 620-34.
15) Nauck M, Stockmann F, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29: 46-52.
24) Shirazi-Beechey SP, Daly K. Al-Rammahi M, Moran AW, Bravo D (2014) Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing. Br J Nutr 111: S8-15.
23) Röder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H (2014) The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One 9: e89977.
21) Kim YG, Hahn S, Oh TJ, Park KS, Cho YM (2014) Differences in the HbA1c-lowering efficacy of glucagon-like peptide-1 analogues between Asians and non-Asians: a systematic review and meta-analysis. Diabetes Obes Metab 16: 900-9.
36) Harada N, Okuyama M, Teraoka Y, Arahori Y, Shinmori Y, Horiuchi H, Luis PB, Joseph AI, Kitakaze T, Matsumura S, Hira T, Yamamoto N, Inui T, Goshima N, Schneider C, Inui H, Yamaji R (2022) Identification of G-protein coupled receptor 55 (GPR55) as a target of curcumin. NPJ Sci Food 6: 4.
34) Takikawa M, Kurimoto Y, Tsuda T (2013) Curcumin stimulates glucagon-like peptide-1 secretion in GLUTag cells via Ca2+/calmodulin-dependent kinase II activation. Biochem Biophys Res Commun 435: 165-70.
14) Oduori OS, Murao N, Shimomura K, Takahashi H, Zhang Q, Dou H, Sakai S, Minami K, Chanclon B, Guida C, Kothegala L, Tolö J, Maejima Y, Yokoi N, Minami Y, Miki T, Rorsman P, Seino S (2020) Gs/Gq signaling switch in β cells defines incretin effectiveness in diabetes. J Clin Invest 130: 6639-55.
19) Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C, Urva S, Gimeno RE, Milicevic Z, Robins D, Haupt A (2018) Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392: 2180-93.
8) Barbiellini Amidei C, Fayosse A, Dumurgier J, Machado-Fragua MD, Tabak AG, van Sloten T, Kivimäki M, Dugravot A, Sabia S, Singh-Manoux A (2021) Association between age at diabetes onset and subsequent risk of dementia. JAMA 325: 1640-9.
30) 堀内寛子, 原田直樹, 山地亮一 (2015) 膵β細胞のインスリン分泌能におよぼすポリフェノール類の作用. ビタミン 89: 341-7.
2) Kopelman PG (2000) Obesity as a medical problem. Nature 404: 635-43.
References_xml – reference: 6) Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52: 102-10.
– reference: 24) Shirazi-Beechey SP, Daly K. Al-Rammahi M, Moran AW, Bravo D (2014) Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing. Br J Nutr 111: S8-15.
– reference: 11) Perley MJ, Kipnis DM (1967) Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects. J Clin Invest 46: 1954-62.
– reference: 38) Baker M (2017) Deceptive curcumin offers cautionary tale for chemists. Nature 541: 144-5.
– reference: 37) Harada N, Arahori Y, Okuyama M, Luis PB, Joseph AI, Kitakaze T, Goshima N, Schneider C, Inui H, Yamaji R (2022) Curcumin activates G protein-coupled receptor 97 (GPR97) in a manner different from glucocorticoid. Biochem Biophys Res Commun 595: 41-6.
– reference: 20) Frías JP, Davies MJ, Rosenstock J, Pérez Manghi FC, Fernández Landó L, Bergman BK, Liu B, Cui X, Brown K (2021) Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. New Engl J Med 385: 503-15.
– reference: 36) Harada N, Okuyama M, Teraoka Y, Arahori Y, Shinmori Y, Horiuchi H, Luis PB, Joseph AI, Kitakaze T, Matsumura S, Hira T, Yamamoto N, Inui T, Goshima N, Schneider C, Inui H, Yamaji R (2022) Identification of G-protein coupled receptor 55 (GPR55) as a target of curcumin. NPJ Sci Food 6: 4.
– reference: 39) Tang J, Wan Y, Zhao M, Zhong H, Zheng JS, Feng F (2020) Legume and soy intake and risk of type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Am J Clin Nutr 111: 677-88.
– reference: 30) 堀内寛子, 原田直樹, 山地亮一 (2015) 膵β細胞のインスリン分泌能におよぼすポリフェノール類の作用. ビタミン 89: 341-7.
– reference: 42) Dong HL, Tang XY, Deng YY, Zhong QW, Wang C, Zhang ZQ, Chen YM (2020) Urinary equol, but not daidzein and genistein, was inversely associated with the risk of type 2 diabetes in Chinese adults. Eur J Nutr 59: 719-728.
– reference: 29) Katsuma S, Hirasawa A, Tsujimoto G (2005) Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 329: 386-90.
– reference: 10) Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Invest 39: 1157-75.
– reference: 15) Nauck M, Stockmann F, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29: 46-52.
– reference: 48) Kazeem M, Bankole H, Ogunrinola O, Wusu A, Kappo A (2021) Functional foods with dipeptidyl peptidase-4 inhibitory potential and management of type 2 diabetes: A review. Food Front 2: 153-62.
– reference: 31) Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G (2012) Curcumin―from molecule to biological function. Angew Chem Int Ed Engl 51: 5308-32.
– reference: 16) Holst JJ, Knop FK, Vilsbøll T, Krarup T, Madsbad S (2011) Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 34: S251-7.
– reference: 33) Altobelli E, Angeletti PM, Marziliano C, Mastrodomenico M, Giuliani AR, Petrocelli R (2021) Potential therapeutic effects of curcumin on glycemic and lipid profile in uncomplicated type 2 diabetes-a meta-analysis of randomized controlled trial. Nutrients 13: 404.
– reference: 22) Kim YG, Hahn S, Oh TJ, Kwak SH, Park KS, Cho YM (2013) Differences in the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors between Asians and non-Asians: a systematic review and meta-analysis. Diabetologia 56: 696-708.
– reference: 46) Liu R, Cheng J, Wu H (2019) Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides: a review. Int J Mol Sci 20: 463.
– reference: 49) Lacroix IME, Li-Chan ECY (2016) Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation―Current knowledge and future research considerations. Trends Food Sci Technol 54: 1-16.
– reference: 19) Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C, Urva S, Gimeno RE, Milicevic Z, Robins D, Haupt A (2018) Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392: 2180-93.
– reference: 34) Takikawa M, Kurimoto Y, Tsuda T (2013) Curcumin stimulates glucagon-like peptide-1 secretion in GLUTag cells via Ca2+/calmodulin-dependent kinase II activation. Biochem Biophys Res Commun 435: 165-70.
– reference: 27) Hansen HS, Rosenkilde MM, Holst JJ, Schwartz TW (2012) GPR119 as a fat sensor. Trends Pharmacol Sci 33: 374-81.
– reference: 8) Barbiellini Amidei C, Fayosse A, Dumurgier J, Machado-Fragua MD, Tabak AG, van Sloten T, Kivimäki M, Dugravot A, Sabia S, Singh-Manoux A (2021) Association between age at diabetes onset and subsequent risk of dementia. JAMA 325: 1640-9.
– reference: 9) La Barre J (1932) Sur les possibilites d'un traitement du diabete par I'incretine. Bull Acad R Med Belg 12: 620-34.
– reference: 2) Kopelman PG (2000) Obesity as a medical problem. Nature 404: 635-43.
– reference: 28) Alhouayek M, Masquelier J, Muccioli GG (2018) Lysophosphatidylinositols, from cell membrane constituents to GPR55 ligands. Trends Pharmacol Sci 39: 586-604.
– reference: 12) Elrick H, Stimmler L, Hlad CJ Jr, Arai Y (1964) Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 24: 1076-82.
– reference: 21) Kim YG, Hahn S, Oh TJ, Park KS, Cho YM (2014) Differences in the HbA1c-lowering efficacy of glucagon-like peptide-1 analogues between Asians and non-Asians: a systematic review and meta-analysis. Diabetes Obes Metab 16: 900-9.
– reference: 18) Kim SJ, Nian C, Karunakaran S, Clee SM, Isales CM, McIntosh CH (2012) GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS One 7: e40156.
– reference: 43) Harada K, Sada S, Sakaguchi H, Takizawa M, Ishida R, Tsuboi T (2018) Bacterial metabolite S-equol modulates glucagon-like peptide-1 secretion from enteroendocrine L cell line GLUTag cells via actin polymerization. Biochem Biophys Res Commun 501: 1009-15.
– reference: 32) Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S (2012) Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35: 2121-7.
– reference: 45) Horiuchi H, Usami A, Shirai R, Harada N, Ikushiro S, Sakaki T, Nakano Y, Inui H, Yamaji R (2017) S-Equol activates cAMP signaling at the plasma membrane of INS-1 pancreatic β-cells and protects against streptozotocin-induced hyperglycemia by increasing β-cell function in male mice. J Nutr 147: 1631-9.
– reference: 25) Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7: 2839-49.
– reference: 41) Luo J, Wang A, Zhen W, Wang Y, Si H, Jia Z, Alkhalidy H, Cheng Z, Gilbert E, Xu B, Liu D (2018) Phytonutrient genistein is a survival factor for pancreatic beta-cells via GPR30-mediated mechanism. J Nutr Biochem 58: 59-70.
– reference: 40) Gilbert ER, Liu D (2013) Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct 4: 200-12.
– reference: 14) Oduori OS, Murao N, Shimomura K, Takahashi H, Zhang Q, Dou H, Sakai S, Minami K, Chanclon B, Guida C, Kothegala L, Tolö J, Maejima Y, Yokoi N, Minami Y, Miki T, Rorsman P, Seino S (2020) Gs/Gq signaling switch in β cells defines incretin effectiveness in diabetes. J Clin Invest 130: 6639-55.
– reference: 26) Ichimura A, Hasegawa S, Kasubuchi M, Kimura I (2014) Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front Pharmacol 5: 236.
– reference: 47) Power O, Nongonierma AB, Jakeman P, FitzGerald RJ (2014) Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proc Nutr Soc 73: 34-46.
– reference: 1) Staiger H, Machicao F, Fritsche A, Haring HU (2009) Pathomechanisms of type 2 diabetes genes. Endocr Rev 30: 557-85.
– reference: 7) Sakuraba H. Mizukami H. Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002) Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45: 85-96.
– reference: 23) Röder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H (2014) The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One 9: e89977.
– reference: 4) Imura H (2013) Life course health care and preemptive approach to non-communicable diseases. Proc Jpn Acad Ser B Phys Biol Sci 89: 462-73.
– reference: 13) McIntyre N, Holdsworth CD, Turner DS (1964) New intrerpretation of oral glucose tolerance. Lancet 2: 20-1.
– reference: 35) Kato M, Nishikawa S, Ikehata A, Dochi K, Tani T, Takahashi T, Imaizumi A, Tsuda T (2017) Curcumin improves glucose tolerance via stimulation of glucagon-like peptide-1 secretion. Mol Nutr Food Res 61: 1600471.
– reference: 5) Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, Ng DP, Holmkvist J, Borch-Johnsen K, Jørgensen T, Sandbaek A, Lauritzen T, Hansen T, Nurbaya S, Tsunoda T, Kubo M, Babazono T, Hirose H, Hayashi M, Iwamoto Y, Kashiwagi A, Kaku K, Kawamori R, Tai ES, Pedersen O, Kamatani N, Kadowaki T, Kikkawa R, Nakamura Y, Maeda S (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40: 1098-102.
– reference: 44) Horiuchi H, Harada N, Adachi T, Nakano Y, Inui H, Yamaji R (2014) S-Equol enantioselectively activates cAMP-protein kinase A signaling and reduces alloxan-induced cell death in INS-1 pancreatic beta-cells. J Nutr Sci Vitaminol 60: 291-6.
– reference: 17) Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132: 2131-57.
– reference: 3) Kodama K, Tojjar D, Yamada S, Toda K, Patel CJ, Butte AJ (2013) Ethnic differences in the relationship between insulin sensitivity and insulin response: a systematic review and meta-analysis. Diabetes Care 36: 1789-96.
SSID ssib000872038
ssib004261863
ssib005879711
ssib001525703
ssib003104427
ssib003171075
ssib020470628
ssj0066767
ssib007833630
ssib002484672
ssib016445864
ssib004238776
ssib002484671
ssib002483740
ssib031740826
Score 2.3019052
Snippet 食事による血糖上昇に対応して適切にインスリンが分泌されて適切に作用することで血糖の恒常性が維持される。特にインスリン分泌能が低い東アジア人では, インスリン分泌を担う膵β細胞の機能維持が2型糖尿病を予防するために重要な課題となっている。腸管インクレチンホルモンであるgastric inhibitory...
「要旨」:食事による血糖上昇に対応して適切にインスリンが分泌されて適切に作用することで血糖の恒常性が維持される. 特にインスリン分泌能が低い東アジア人では, インスリン分泌を担う膵β細胞の機能維持が2型糖尿病を予防するために重要な課題となっている. 腸管インクレチンホルモンであるgastric inhibitory...
食事による血糖上昇に対応して適切にインスリンが分泌されて適切に作用することで血糖の恒常性が維持される。特にインスリン分泌能が低い東アジア人では,インスリン分泌を担う膵β細胞の機能維持が2型糖尿病を予防するために重要な課題となっている。腸管インクレチンホルモンであるgastric inhibitory...
SourceID affrit
medicalonline
jstage
SourceType Open Access Repository
Publisher
StartPage 141
SubjectTerms インクレチン
インスリン
機能性食品成分
腸管内分泌細胞
膵β細胞
Title インクレチンの生理作用と機能性食品成分による調節・模倣
URI https://www.jstage.jst.go.jp/article/jsnfs/76/3/76_141/_article/-char/ja
http://mol.medicalonline.jp/en/journal/download?GoodsID=da0eisho/2023/007603/003&name=0141-0147j
https://agriknowledge.affrc.go.jp/RN/2030947286
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本栄養・食糧学会誌, 2023, Vol.76(3), pp.141-147
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LahRBcIjxIoj4xPVFDrYX2Tgz3TPdfXNmsyEoBgIJ5NbMzu7ELJqEZHPxlM1CCHgJmKMQJILxgTl48CDBjxmziX9hVfdM7IiHGDzsbPWrurr6VdWPase568kmqD7QvwXN0ipjklYbAVrLg8mHyRbLGgleTn4yHo5NsUfTwfTAma_WqaXlTmM4ffHXeyWnqVXwg3rFW7L_ULNHSMEDYKhf-EINw_dEdUzqlAifREwDlMS09BktfKJaAQjveByPRHVS50QyIkc14BIRkjoj8QiRtSIoEmVkAEISSR1ZaDwj6CNcEnFSlySiOigg0uQFQQJxgg8AiNngiQsKhSiBGBFGEYk1GUA54CxIjXWmEOppPJAXtYVpDJWQJNBATRcW4kNBmCYJxOTIQnVEJEcmINkBiUZIZEpdIzIqKBFHK8c623rJIYjlYpPUjpjErCAvlvbaibnYrNu5Th5ounQKJIcjXXFdsypGigAHkCMDTQWwIbr_38tljfY-jvaBV9gFN7ORELQK8oO0pyvzXE7RLak193jGglghxnjGkOmfMySjPu7Rt5fmsqVhHg4fJTpmc7xo0UpHUzxUFD8QV5UheCdQtUExOetz7uFZ2scTtlyPu_v2diw-lmjLhYJyy8gQuJltZ9G4Lbt2nsuYb-m9HgjG3F4HoIJbcjWuCwjLrlwguOTWRMYFpZZdPA-UgsB6psB3Gce7xaUbssN32cNSxMNz4doOQ1ln5kYN8vaBzVmQapMsW5xFnbUNyh5a8Tj_3GzAGkM4liw7edG5UCihQ5Hh8iVnoJ1cdiojs63O0L2hwlLws6Hx8qGOK85Evvo2733JV3fz3qe810W4-_lgc-tgY-3H3uuDzZ28u9N_v3XY2-uvvPu5vbX_qttf39hfX8u7H_PV9Xz15eGH7we7K3nvW3_nzf7K9lVnarQ-WRurFo-xVBMqGAzekrPU9bLU9dOml8pmg6YJpUnihg3OfI82WykIAzxgMOi3QE9LOMTlPs1ABaA8pdecwbn5udZ1PE2ZAcPxnQgObVtSISRLwMNvpVmTybDiuIZtKplZ_L23oLQlfAhI1cy8ai8o11OuNl7lBRVHGAarBWOkR524CVech8eqRBUD_JJqJi70w6fzCocOpc8w4B_8EA18sNwSFKQbp8_9pnMOsZtF3VvOYGdxuXUb1JxO447uUr8AmcMT-Q
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%82%A4%E3%83%B3%E3%82%AF%E3%83%AC%E3%83%81%E3%83%B3%E3%81%AE%E7%94%9F%E7%90%86%E4%BD%9C%E7%94%A8%E3%81%A8%E6%A9%9F%E8%83%BD%E6%80%A7%E9%A3%9F%E5%93%81%E6%88%90%E5%88%86%E3%81%AB%E3%82%88%E3%82%8B%E8%AA%BF%E7%AF%80%E3%83%BB%E6%A8%A1%E5%80%A3&rft.jtitle=%E6%97%A5%E6%9C%AC%E6%A0%84%E9%A4%8A%E3%83%BB%E9%A3%9F%E7%B3%A7%E5%AD%A6%E4%BC%9A%E8%AA%8C&rft.au=%E5%8E%9F%E7%94%B0%2C+%E7%9B%B4%E6%A8%B9&rft.date=2023&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%A0%84%E9%A4%8A%E3%83%BB%E9%A3%9F%E7%B3%A7%E5%AD%A6%E4%BC%9A&rft.issn=0287-3516&rft.eissn=1883-2849&rft.volume=76&rft.issue=3&rft.spage=141&rft.epage=147&rft_id=info:doi/10.4327%2Fjsnfs.76.141&rft.externalDocID=article_jsnfs_76_3_76_141_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0287-3516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0287-3516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0287-3516&client=summon