Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: A case study from the Lake District, England

This paper compares the applicability of three ground survey methods for modelling terrain: one man electronic tachymetry (TPS), real time kinematic GPS (GPS), and terrestrial laser scanning (TLS). Vertical accuracy of digital terrain models (DTMs) derived from GPS, TLS and airborne laser scanning (...

Full description

Saved in:
Bibliographic Details
Published inComputers & geosciences Vol. 51; pp. 216 - 227
Main Authors Gallay, Michal, Lloyd, Christopher D., McKinley, Jennifer, Barry, Lorraine
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2013
Subjects
Online AccessGet full text
ISSN0098-3004
1873-7803
DOI10.1016/j.cageo.2012.08.015

Cover

Abstract This paper compares the applicability of three ground survey methods for modelling terrain: one man electronic tachymetry (TPS), real time kinematic GPS (GPS), and terrestrial laser scanning (TLS). Vertical accuracy of digital terrain models (DTMs) derived from GPS, TLS and airborne laser scanning (ALS) data is assessed. Point elevations acquired by the four methods represent two sections of a mountainous area in Cumbria, England. They were chosen so that the presence of non-terrain features is constrained to the smallest amount. The vertical accuracy of the DTMs was addressed by subtracting each DTM from TPS point elevations. The error was assessed using exploratory measures including statistics, histograms, and normal probability plots. The results showed that the internal measurement accuracy of TPS, GPS, and TLS was below a centimetre. TPS and GPS can be considered equally applicable alternatives for sampling the terrain in areas accessible on foot. The highest DTM vertical accuracy was achieved with GPS data, both on sloped terrain (RMSE 0.16m) and flat terrain (RMSE 0.02m). TLS surveying was the most efficient overall but veracity of terrain representation was subject to dense vegetation cover. Therefore, the DTM accuracy was the lowest for the sloped area with dense bracken (RMSE 0.52m) although it was the second highest on the flat unobscured terrain (RMSE 0.07m). ALS data represented the sloped terrain more realistically (RMSE 0.23m) than the TLS. However, due to a systematic bias identified on the flat terrain the DTM accuracy was the lowest (RMSE 0.29m) which was above the level stated by the data provider. Error distribution models were more closely approximated by normal distribution defined using median and normalized median absolute deviation which supports the use of the robust measures in DEM error modelling and its propagation. ► TPS, GPS, and TLS applicability and measurement error were assessed. ► Vertical error for GPS, TLS, and ALS DTM was checked against the TPS points. ► TLS sampling was very efficient, but TLS DTM was inaccurate for areas with bracken. ► Dense bracken was less influential for ALS, but systematic offset was present. ► Median and NMAD provided error models closer fitting the normal distribution.
AbstractList This paper compares the applicability of three ground survey methods for modelling terrain: one man electronic tachymetry (TPS), real time kinematic GPS (GPS), and terrestrial laser scanning (TLS). Vertical accuracy of digital terrain models (DTMs) derived from GPS, TLS and airborne laser scanning (ALS) data is assessed. Point elevations acquired by the four methods represent two sections of a mountainous area in Cumbria, England. They were chosen so that the presence of non-terrain features is constrained to the smallest amount. The vertical accuracy of the DTMs was addressed by subtracting each DTM from TPS point elevations. The error was assessed using exploratory measures including statistics, histograms, and normal probability plots. The results showed that the internal measurement accuracy of TPS, GPS, and TLS was below a centimetre. TPS and GPS can be considered equally applicable alternatives for sampling the terrain in areas accessible on foot. The highest DTM vertical accuracy was achieved with GPS data, both on sloped terrain (RMSE 0.16m) and flat terrain (RMSE 0.02m). TLS surveying was the most efficient overall but veracity of terrain representation was subject to dense vegetation cover. Therefore, the DTM accuracy was the lowest for the sloped area with dense bracken (RMSE 0.52m) although it was the second highest on the flat unobscured terrain (RMSE 0.07m). ALS data represented the sloped terrain more realistically (RMSE 0.23m) than the TLS. However, due to a systematic bias identified on the flat terrain the DTM accuracy was the lowest (RMSE 0.29m) which was above the level stated by the data provider. Error distribution models were more closely approximated by normal distribution defined using median and normalized median absolute deviation which supports the use of the robust measures in DEM error modelling and its propagation.
This paper compares the applicability of three ground survey methods for modelling terrain: one man electronic tachymetry (TPS), real time kinematic GPS (GPS), and terrestrial laser scanning (TLS). Vertical accuracy of digital terrain models (DTMs) derived from GPS, TLS and airborne laser scanning (ALS) data is assessed. Point elevations acquired by the four methods represent two sections of a mountainous area in Cumbria, England. They were chosen so that the presence of non-terrain features is constrained to the smallest amount. The vertical accuracy of the DTMs was addressed by subtracting each DTM from TPS point elevations. The error was assessed using exploratory measures including statistics, histograms, and normal probability plots. The results showed that the internal measurement accuracy of TPS, GPS, and TLS was below a centimetre. TPS and GPS can be considered equally applicable alternatives for sampling the terrain in areas accessible on foot. The highest DTM vertical accuracy was achieved with GPS data, both on sloped terrain (RMSE 0.16m) and flat terrain (RMSE 0.02m). TLS surveying was the most efficient overall but veracity of terrain representation was subject to dense vegetation cover. Therefore, the DTM accuracy was the lowest for the sloped area with dense bracken (RMSE 0.52m) although it was the second highest on the flat unobscured terrain (RMSE 0.07m). ALS data represented the sloped terrain more realistically (RMSE 0.23m) than the TLS. However, due to a systematic bias identified on the flat terrain the DTM accuracy was the lowest (RMSE 0.29m) which was above the level stated by the data provider. Error distribution models were more closely approximated by normal distribution defined using median and normalized median absolute deviation which supports the use of the robust measures in DEM error modelling and its propagation. ► TPS, GPS, and TLS applicability and measurement error were assessed. ► Vertical error for GPS, TLS, and ALS DTM was checked against the TPS points. ► TLS sampling was very efficient, but TLS DTM was inaccurate for areas with bracken. ► Dense bracken was less influential for ALS, but systematic offset was present. ► Median and NMAD provided error models closer fitting the normal distribution.
Author Gallay, Michal
McKinley, Jennifer
Lloyd, Christopher D.
Barry, Lorraine
Author_xml – sequence: 1
  givenname: Michal
  surname: Gallay
  fullname: Gallay, Michal
  email: michal.gallay@upjs.sk
  organization: Institute of Geography, Faculty of Natural Sciences, Pavol Jozef Šafárik University in Košice, Jesenná 5, 040 01 Košice, Slovakia
– sequence: 2
  givenname: Christopher D.
  surname: Lloyd
  fullname: Lloyd, Christopher D.
  email: c.lloyd@qub.ac.uk
  organization: School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, BT7 1NN Belfast, UK
– sequence: 3
  givenname: Jennifer
  surname: McKinley
  fullname: McKinley, Jennifer
  email: j.mckinley@qub.ac.uk
  organization: School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, BT7 1NN Belfast, UK
– sequence: 4
  givenname: Lorraine
  surname: Barry
  fullname: Barry, Lorraine
  email: l.barry@qub.ac.uk
  organization: School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, BT7 1NN Belfast, UK
BookMark eNqFkM9u1DAQhy1UJLaFJ-CAjxxIGMeJ40XisCrlj7QSB-jZcuxJ6iWxi-1U2pfgmfF2OXGA00ie7zcz_i7JhQ8eCXnJoGbAxNtDbfSEoW6ANTXIGlj3hGyY7HnVS-AXZAOwlRUHaJ-Ry5QOANA0stuQX7uUMCXnJ7oEi9HTKYbVW5rW-IBHumC-CzZRXZ60i0OIHumsE0aajPb-FBxDpNZNLuuZZoxRO_84bJ5L9x3dUVN4mvJqj3SMYaH5Dule_0D6waUcnclv6I2f5rLjOXk66jnhiz_1itx-vPl-_bnaf_305Xq3rzSXPFdbbq1ldmjswHkn2kH3chQoW8Ek14PRpu860L2AUYAxtnxcctFvjRS2Yy3yK_L6PPc-hp8rpqwWl0y5WHsMa1JNEQRd2wEUlJ9RE0NKEUd1H92i41ExUCf76qAe7auTfQVSFfsltf0rZYqf7ILPxc_8n-yrc3bUQekpuqRuvxVAlJsE30pWiPdnAoujB4dRJePQG7QuosnKBvfPDb8BPIeu5A
CitedBy_id crossref_primary_10_3846_20296991_2015_1029755
crossref_primary_10_1080_00288306_2015_1130155
crossref_primary_10_3390_geosciences8120469
crossref_primary_10_1016_j_jag_2024_104115
crossref_primary_10_1007_s12665_016_5936_3
crossref_primary_10_1007_s12518_018_0217_3
crossref_primary_10_1080_13658816_2014_889299
crossref_primary_10_1111_jfr3_12304
crossref_primary_10_3390_rs12101615
crossref_primary_10_1007_s12518_020_00320_9
crossref_primary_10_1088_1755_1315_169_1_012093
crossref_primary_10_1590_2675_2824072_22127
crossref_primary_10_1002_esp_5366
crossref_primary_10_1007_s12665_024_11588_0
crossref_primary_10_3390_rs11182154
crossref_primary_10_1016_j_envsoft_2017_05_009
crossref_primary_10_1016_j_cageo_2015_06_021
crossref_primary_10_1016_j_isprsjprs_2014_06_003
crossref_primary_10_1016_j_geomorph_2014_06_029
crossref_primary_10_3390_rs16050840
crossref_primary_10_1016_j_catena_2019_104256
crossref_primary_10_1515_geo_2015_0013
crossref_primary_10_1007_s10064_014_0592_x
crossref_primary_10_3390_s20247234
crossref_primary_10_1007_s12594_018_1016_5
crossref_primary_10_1016_j_cageo_2016_11_006
crossref_primary_10_3389_feart_2018_00089
crossref_primary_10_3390_w10030252
crossref_primary_10_7183_2326_3768_2_2_123
Cites_doi 10.1002/hyp.7155
10.1111/j.1477-9730.2011.00647.x
10.1016/j.cageo.2009.06.005
10.1111/0033-0124.00250
10.3390/rs2030833
10.1093/biomet/60.3.613
10.1002/(SICI)1096-9837(199706)22:6<563::AID-ESP713>3.0.CO;2-3
10.1061/(ASCE)0733-9453(2009)135:4(173)
10.1016/j.isprsjprs.2009.02.003
10.1016/j.geomorph.2008.11.007
10.1016/j.isprsjprs.2008.09.007
10.1016/j.jas.2009.10.011
10.1002/esp.484
10.1016/j.rse.2012.01.018
10.1127/0372-8854/2011/0055S2-0043
10.1016/j.cageo.2007.05.003
10.1016/j.cageo.2008.09.001
10.1016/j.compenvurbsys.2008.02.003
10.1080/13658810600607337
10.1016/j.geomorph.2011.06.027
10.1016/j.isprsjprs.2009.09.003
10.1016/S0022-1694(00)00229-8
10.1016/S0924-2716(99)00014-3
10.1080/014311600210957
10.1016/j.cageo.2009.10.003
10.1016/j.cageo.2010.12.002
10.1016/S0924-2716(99)00011-8
10.1144/0016-76492007-100
10.1016/j.geomorph.2009.03.021
10.1016/j.tust.2005.12.057
10.1016/j.geomorph.2005.12.010
10.1016/j.coldregions.2008.07.002
10.1061/(ASCE)SU.1943-5428.0000022
10.1016/S0034-4257(02)00114-1
10.1080/136588197242257
10.1191/0309133306pp492ra
10.14358/PERS.70.3.331
10.5194/hess-11-1481-2007
10.1111/j.1365-3091.2009.01068.x
10.1016/j.jas.2010.06.031
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID FBQ
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cageo.2012.08.015
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
EndPage 227
ExternalDocumentID 10_1016_j_cageo_2012_08_015
US201600063981
S0098300412002944
GeographicLocations England
GeographicLocations_xml – name: England
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-a383t-93ddd1db2db33564ba78f6e846183abcac7550a760f60ccd30083679c86d514e3
IEDL.DBID AIKHN
ISSN 0098-3004
IngestDate Thu Sep 04 21:55:35 EDT 2025
Tue Jul 01 02:26:42 EDT 2025
Thu Apr 24 23:01:13 EDT 2025
Wed Dec 27 19:14:21 EST 2023
Fri Feb 23 02:34:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tachymetry
Laser scanning
DEM/DTM
Great Langdale
GPS
Vertical accuracy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a383t-93ddd1db2db33564ba78f6e846183abcac7550a760f60ccd30083679c86d514e3
Notes http://dx.doi.org/10.1016/j.cageo.2012.08.015
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000054500
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2000054500
crossref_primary_10_1016_j_cageo_2012_08_015
crossref_citationtrail_10_1016_j_cageo_2012_08_015
fao_agris_US201600063981
elsevier_sciencedirect_doi_10_1016_j_cageo_2012_08_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers & geosciences
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Šíma (bib62) 2011; 57/99
Lam, S.Y.W., 2006. Application of terrestrial laser scanning methodology in geometric tolerances analysis of tunnel structures. In: Tunnelling and Underground Space Technology Safety in the Underground Space—Proceedings of the ITA-AITES 2006 World Tunnel Congress and 32nd ITA General Assembly 21(3-4): 410.
Gallay, Lloyd, McKinley, Barry (bib27) 2011; 19
Coveney, Fotheringham (bib14) 2011; 26
(bib29) 2008; 33
(accessed 19 June 2012).
accessed 20 June 2010
Aguilar, Mills, Delgado, Aguilar, Negreiros, Pérez (bib1) 2010; 65
GPS%20Systems/SmartRover%20&%20GPS1200/GPS1200_TechnicalData_en.pdf (accessed 10 Nov 2011)
Hodgson, Jensen, Schmi, Schill, Davis (bib33) 2003; 84
Wise (bib67) 2011; 37
Hladik, Alber (bib31) 2012; 121
Krcho (bib41) 1990
Evans (bib21) 1972
Wechsler (bib63) 2007; 11
GPSGOV, 2011: Official U.S. Government information about the Global Positioning System (GPS) and related topics.
Leica Geosystems, 2006. Leica HDS3000 Versatile, high-accuracy 3D laser scanner (user guide). Leica Geosystems AG, Switzerland.
Wehr, Lohr (bib64) 1999; 54
Kraus (bib40) 1997; 1997
Atkinson, Tate (bib3) 2000; 52
Erdogan (bib20) 2010; 36
Hopkinson, Hayashi, Peddle (bib35) 2009; 23
Gallay, Lloyd, McKinley (bib25) 2010
Wuertz, D., Chauss, P., King, R., Gu, C., Gross, J., Scott, D., Lumley, T., Zeileis A., Aas. K. (2012). fBasics: Rmetrics—markets and basic statistics. R package version 2160.81.
Rees (bib56) 2000; 21
.
ESRI, 2009. ArcGIS 9.3. Environmental Systems Resource Institute, Redlands, California, USA.
(accessed 21 June 2011).
Desmet (bib18) 1997; 22
Armesto-González, Riveiro-Rodríguez, González-Aguilera, Rivas-Brea (bib2) 2010; 37
accessed 23 March 2011
Wilson, Gallant (bib65) 2000
Chaplot, Darboux, Bourennane, Leguédois, Silvera, Phachomphon (bib12) 2006; 77
Höfle, Rutzinger (bib36) 2009; 55
Baltsavias (bib5) 1999; 54
Heritage, Milan (bib30) 2009; 113
Lillesand, Kiefer, Chipman (bib48) 2008
Leica Geosystems, 2005. Leica TPS1200 Series Technical Data. Leica Geosystems (user guide). Leica Geosystems AG, Switzerland
French (bib23) 2003; 28
Höhle, Höhle (bib37) 2009; 64
Carrara, Bitelli, Carla (bib10) 1997; 11
Pfeifer, N., Briese, C., 2007. Geometrical aspects of airborne laser scanning and terrestrial laser scanning. In Proceedings of the ISPRS Workshop on Laser Scanning and SilviLaser 2007, Espoo, Finland, ISPRS. pp. 311–319.
Bannister, Raymond, Baker (bib4) 1998
Bishop, James, Shroder, Walsh (bib7) 2012; 137
Meng, Currit, Zhao (bib52) 2010; 2010
Seier, E., 2002. Comparison of Tests for Univariate Normality. Interstat (1), 1–17.
Hodge, Brasington, Richards (bib32) 2009; 56
Mallet, Bretar (bib50) 2009; 64
Holmes, Chadwick, Kyriakidis (bib39) 2000; 233
R Development Core Team, 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rayburg, Thoms, Neave (bib58) 2009; 106
Mercer, B., 2001. Combining LIDAR and IfSAR: What can you expect? Photogrammetric Week 2001. In: D. Fritsch and R. Spiller (Eds.). Heidelberg, Wichmann Verlag: pp. 227–237.
Lloyd, Atkinson (bib49) 2006; 20
Lerma, Navarro, Cabrelles, Villaverde (bib46) 2010; 37
Ruffell, McKinley (bib57) 2008
Darnell, Tate, Brunsdon (bib17) 2008; 32
Li, Zhu, Gold (bib47) 2005
Wise (bib66) 2007; 33
D'Agostino, Pearson (bib16) 1973; 60
Brimicombe (bib9) 2009
Hodgson, Bresnahan (bib34) 2004; 70
Coveney, Fotheringham, Charlton, McCarthy (bib15) 2011; 36
Buckley, Howell, Enge, Kurz (bib8) 2008; 165
Clarke (bib13) 1995
Fisher, Tate (bib24) 2006; 30
Scherer, Lerma (bib59) 2009; 135
accessed 10 Nov 2011
accessed 16 July 2012
Bater, Coops (bib6) 2009; 35
(accessed 16 March 2010).
Gallay, M., 2010. Assessing Alternative Methods of Acquiring and Processing Digital Elevation Data. Ph.D. Dissertation, Queen's University Belfast, Belfast, 389 pp.
Leica Geosystems, 2008. Leica GPS1200 Series Technical data (user guide). Leica Geosystems AG, Switzerland.
Höhle, J., Potuckova, M., 2012. Assessment of the Quality of Digital Terrain Models, Official Publication no. 60. European Spatial Data Research (EuroSDR).
Prokop (bib54) 2008; 54
Casula, Mora, Bianchi (bib11) 2010; 136
Sickle (bib61) 2001
Prokop (10.1016/j.cageo.2012.08.015_bib54) 2008; 54
Kraus (10.1016/j.cageo.2012.08.015_bib40) 1997; 1997
Chaplot (10.1016/j.cageo.2012.08.015_bib12) 2006; 77
10.1016/j.cageo.2012.08.015_bib68
10.1016/j.cageo.2012.08.015_bib26
Krcho (10.1016/j.cageo.2012.08.015_bib41) 1990
10.1016/j.cageo.2012.08.015_bib28
Hladik (10.1016/j.cageo.2012.08.015_bib31) 2012; 121
Coveney (10.1016/j.cageo.2012.08.015_bib14) 2011; 26
French (10.1016/j.cageo.2012.08.015_bib23) 2003; 28
Rayburg (10.1016/j.cageo.2012.08.015_bib58) 2009; 106
Meng (10.1016/j.cageo.2012.08.015_bib52) 2010; 2010
Li (10.1016/j.cageo.2012.08.015_bib47) 2005
Lerma (10.1016/j.cageo.2012.08.015_bib46) 2010; 37
Casula (10.1016/j.cageo.2012.08.015_bib11) 2010; 136
Höhle (10.1016/j.cageo.2012.08.015_bib37) 2009; 64
D'Agostino (10.1016/j.cageo.2012.08.015_bib16) 1973; 60
Gallay (10.1016/j.cageo.2012.08.015_bib25) 2010
Hodgson (10.1016/j.cageo.2012.08.015_bib33) 2003; 84
Darnell (10.1016/j.cageo.2012.08.015_bib17) 2008; 32
Ruffell (10.1016/j.cageo.2012.08.015_bib57) 2008
Bishop (10.1016/j.cageo.2012.08.015_bib7) 2012; 137
Baltsavias (10.1016/j.cageo.2012.08.015_bib5) 1999; 54
Hodgson (10.1016/j.cageo.2012.08.015_bib34) 2004; 70
Clarke (10.1016/j.cageo.2012.08.015_bib13) 1995
10.1016/j.cageo.2012.08.015_bib38
Wehr (10.1016/j.cageo.2012.08.015_bib64) 1999; 54
Buckley (10.1016/j.cageo.2012.08.015_bib8) 2008; 165
Coveney (10.1016/j.cageo.2012.08.015_bib15) 2011; 36
Wechsler (10.1016/j.cageo.2012.08.015_bib63) 2007; 11
10.1016/j.cageo.2012.08.015_bib42
10.1016/j.cageo.2012.08.015_bib43
Wise (10.1016/j.cageo.2012.08.015_bib66) 2007; 33
10.1016/j.cageo.2012.08.015_bib44
10.1016/j.cageo.2012.08.015_bib45
Brimicombe (10.1016/j.cageo.2012.08.015_bib9) 2009
Šíma (10.1016/j.cageo.2012.08.015_bib62) 2011; 57/99
Rees (10.1016/j.cageo.2012.08.015_bib56) 2000; 21
Armesto-González (10.1016/j.cageo.2012.08.015_bib2) 2010; 37
Desmet (10.1016/j.cageo.2012.08.015_bib18) 1997; 22
Sickle (10.1016/j.cageo.2012.08.015_bib61) 2001
Wilson (10.1016/j.cageo.2012.08.015_bib65) 2000
Carrara (10.1016/j.cageo.2012.08.015_bib10) 1997; 11
Lillesand (10.1016/j.cageo.2012.08.015_bib48) 2008
Höfle (10.1016/j.cageo.2012.08.015_bib36) 2009; 55
10.1016/j.cageo.2012.08.015_bib51
10.1016/j.cageo.2012.08.015_bib53
10.1016/j.cageo.2012.08.015_bib55
Hodge (10.1016/j.cageo.2012.08.015_bib32) 2009; 56
Bannister (10.1016/j.cageo.2012.08.015_bib4) 1998
Hopkinson (10.1016/j.cageo.2012.08.015_bib35) 2009; 23
Scherer (10.1016/j.cageo.2012.08.015_bib59) 2009; 135
Wise (10.1016/j.cageo.2012.08.015_bib67) 2011; 37
Fisher (10.1016/j.cageo.2012.08.015_bib24) 2006; 30
Mallet (10.1016/j.cageo.2012.08.015_bib50) 2009; 64
Aguilar (10.1016/j.cageo.2012.08.015_bib1) 2010; 65
Evans (10.1016/j.cageo.2012.08.015_bib21) 1972
Bater (10.1016/j.cageo.2012.08.015_bib6) 2009; 35
(10.1016/j.cageo.2012.08.015_bib29) 2008; 33
Gallay (10.1016/j.cageo.2012.08.015_bib27) 2011; 19
Heritage (10.1016/j.cageo.2012.08.015_bib30) 2009; 113
Erdogan (10.1016/j.cageo.2012.08.015_bib20) 2010; 36
Lloyd (10.1016/j.cageo.2012.08.015_bib49) 2006; 20
10.1016/j.cageo.2012.08.015_bib60
Atkinson (10.1016/j.cageo.2012.08.015_bib3) 2000; 52
10.1016/j.cageo.2012.08.015_bib22
Holmes (10.1016/j.cageo.2012.08.015_bib39) 2000; 233
References_xml – reference: Leica Geosystems, 2008. Leica GPS1200 Series Technical data (user guide). Leica Geosystems AG, Switzerland.
– volume: 19
  start-page: 61
  year: 2011
  end-page: 71
  ident: bib27
  article-title: Comparing the vertical accuracy of digital elevation models derived using modern ground survey and airborne laser scanning (in Slovak)
  publication-title: Cartographic letters (Kartografické Listy)
– reference: (accessed 23 March 2011)
– volume: 56
  start-page: 2024
  year: 2009
  end-page: 2043
  ident: bib32
  article-title: Analysing laser-scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics
  publication-title: Sedimentology
– volume: 60
  start-page: 22
  year: 1973
  end-page: 613
  ident: bib16
  article-title: Tests for departure from normality
  publication-title: Biometrika
– volume: 20
  start-page: 535
  year: 2006
  end-page: 563
  ident: bib49
  article-title: Deriving ground surface digital elevation models from LiDAR data with geostatistics
  publication-title: International Journal of Geographical Information Science
– reference: R Development Core Team, 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
– year: 1998
  ident: bib4
  article-title: Surveying
– volume: 233
  start-page: 154
  year: 2000
  end-page: 173
  ident: bib39
  article-title: Error in a USGS 30-meter digital elevation model and its impact on terrain modeling
  publication-title: Journal of Hydrology
– volume: 1997
  start-page: 120
  year: 1997
  end-page: 127
  ident: bib40
  article-title: Restitution of airborne laser scanner data in wooded areas
  publication-title: Advances in Remote Sensing Yearbook
– year: 2000
  ident: bib65
  article-title: Terrain Analysis: Principles and Applications
– volume: 26
  start-page: 307
  year: 2011
  end-page: 324
  ident: bib14
  article-title: Terrestrial laser scan error in the presence of dense ground vegetation
  publication-title: The Photogrammetric Record
– reference: Mercer, B., 2001. Combining LIDAR and IfSAR: What can you expect? Photogrammetric Week 2001. In: D. Fritsch and R. Spiller (Eds.). Heidelberg, Wichmann Verlag: pp. 227–237.
– volume: 77
  start-page: 126
  year: 2006
  end-page: 141
  ident: bib12
  article-title: Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density
  publication-title: Geomorphology
– volume: 22
  start-page: 563
  year: 1997
  end-page: 580
  ident: bib18
  article-title: Effects of interpolation errors on the analysis of DEMs
  publication-title: Earth Surface Processes and Landforms
– volume: 64
  start-page: 398
  year: 2009
  end-page: 406
  ident: bib37
  article-title: Accuracy assessment of digital elevation models by means of robust statistical methods
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– reference: Seier, E., 2002. Comparison of Tests for Univariate Normality. Interstat (1), 1–17.
– volume: 113
  start-page: 4
  year: 2009
  end-page: 11
  ident: bib30
  article-title: Terrestrial laser scanning of grain roughness in a gravel-bed river
  publication-title: Geomorphology
– volume: 70
  start-page: 331
  year: 2004
  end-page: 339
  ident: bib34
  article-title: Accuracy of airborne LiDAR-derived elevation: empirical assessment and error budget
  publication-title: Photogrametric Engineering and Remote Sensing
– reference: (accessed 20 June 2010)
– volume: 84
  start-page: 295
  year: 2003
  end-page: 308
  ident: bib33
  article-title: An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs
  publication-title: Remote Sensing of Environment
– volume: 36
  start-page: 34
  year: 2010
  end-page: 43
  ident: bib20
  article-title: Modelling the spatial distribution of DEM error with geographically weighted regression: an experimental study
  publication-title: Computers & Geosciences
– start-page: 109
  year: 2010
  end-page: 112
  ident: bib25
  article-title: Using geographically weighted regression for analysing elevation error of high-resolution DEMs
  publication-title: Accuracy 2010—The Ninth International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences
– volume: 33
  start-page: 772
  year: 2008
  ident: bib29
  publication-title: Developments in Soil Science
– reference: Leica Geosystems, 2005. Leica TPS1200 Series Technical Data. Leica Geosystems (user guide). Leica Geosystems AG, Switzerland,
– volume: 32
  start-page: 268
  year: 2008
  end-page: 277
  ident: bib17
  article-title: Improving user assessment of error implications in digital elevation models
  publication-title: Computers, Environment and Urban Systems Geographical Information Science Research
– reference: (accessed 10 Nov 2011)
– volume: 2010
  start-page: 833
  year: 2010
  end-page: 860
  ident: bib52
  article-title: Ground filtering algorithms for airborne LiDAR data: a review of critical issues
  publication-title: Remote Sensing
– year: 2009
  ident: bib9
  article-title: GIS, Environmental Modelling and Engineering
– volume: 64
  start-page: 1
  year: 2009
  end-page: 16
  ident: bib50
  article-title: Full-waveform topographic lidar: state-of-the-art
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– reference: Pfeifer, N., Briese, C., 2007. Geometrical aspects of airborne laser scanning and terrestrial laser scanning. In Proceedings of the ISPRS Workshop on Laser Scanning and SilviLaser 2007, Espoo, Finland, ISPRS. pp. 311–319.
– year: 2005
  ident: bib47
  article-title: Digital Terrain Modeling: Principles and Methodology
– reference: Höhle, J., Potuckova, M., 2012. Assessment of the Quality of Digital Terrain Models, Official Publication no. 60. European Spatial Data Research (EuroSDR).
– volume: 11
  start-page: 1481
  year: 2007
  end-page: 1500
  ident: bib63
  article-title: Uncertainties associated with digital elevation models for hydrologic applications: a review
  publication-title: Hydrology and Earth System Sciences
– volume: 57/99
  start-page: 101
  year: 2011
  end-page: 106
  ident: bib62
  article-title: Příspěvek k rozboru přesnosti digitálných modelů reliéfu odvozených z dat leteckého laserového skenování celého území ČR (Contribution to the accuracy analysis of digital terrain models derived from airborne laser scanning data of Entire Territory of the Czech Republic)
  publication-title: Geodetický a Kartografický Obzor
– volume: 11
  start-page: 451
  year: 1997
  end-page: 473
  ident: bib10
  article-title: Comparison of techniques for generating digital terrain models from contour lines
  publication-title: International Journal of Geographical Information Science
– volume: 36
  start-page: 489
  year: 2011
  end-page: 499
  ident: bib15
  article-title: Dual-scale validation of a medium-resolution coastal DEM with terrestrial LiDAR DSM and GPS
  publication-title: Computers & Geosciences
– reference: GPS%20Systems/SmartRover%20&%20GPS1200/GPS1200_TechnicalData_en.pdf (accessed 10 Nov 2011)
– volume: 137
  start-page: 5
  year: 2012
  end-page: 26
  ident: bib7
  article-title: Geospatial technologies and digital geomorphological mapping: concepts, issues and research
  publication-title: Geomorphology
– volume: 37
  start-page: 978
  year: 2011
  end-page: 991
  ident: bib67
  article-title: Cross-validation as a means of investigating DEM interpolation error
  publication-title: Computers and Geosciences
– reference: . (accessed 16 July 2012)
– volume: 121
  start-page: 224
  year: 2012
  end-page: 235
  ident: bib31
  article-title: Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model
  publication-title: Remote Sensing of Environment
– reference: ESRI, 2009. ArcGIS 9.3. Environmental Systems Resource Institute, Redlands, California, USA.
– volume: 136
  start-page: 132
  year: 2010
  end-page: 138
  ident: bib11
  article-title: Detection of terrain morphologic features using GPS, TLS, and Land surveys: “Tana della Volpe” blind valley case study
  publication-title: Journal of Surveying Engineering-ASCE
– volume: 37
  start-page: 499
  year: 2010
  end-page: 507
  ident: bib46
  article-title: Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the upper palaeolithic cave of Parpalló as a case study
  publication-title: Journal of Archaeological Science
– reference: (accessed 16 March 2010).
– volume: 54
  start-page: 68
  year: 1999
  end-page: 82
  ident: bib64
  article-title: Airborne laser scanning—an introduction and overview
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 30
  start-page: 467
  year: 2006
  end-page: 489
  ident: bib24
  article-title: Causes and consequences of error in digital elevation models
  publication-title: Progress in Physical Geography
– year: 2008
  ident: bib57
  article-title: Geoforensics
– year: 2001
  ident: bib61
  article-title: GPS for Land Surveyors
– reference: (accessed 21 June 2011).
– volume: 55
  start-page: 1
  year: 2009
  end-page: 29
  ident: bib36
  article-title: Topographic airborne LiDAR in geomorphology: a technological perspective
  publication-title: Zeitschrift für Geomorphologie
– volume: 33
  start-page: 1351
  year: 2007
  end-page: 1365
  ident: bib66
  article-title: Effect of differing DEM creation methods on the results from a hydrological model
  publication-title: Computers and Geosciences
– reference: Lam, S.Y.W., 2006. Application of terrestrial laser scanning methodology in geometric tolerances analysis of tunnel structures. In: Tunnelling and Underground Space Technology Safety in the Underground Space—Proceedings of the ITA-AITES 2006 World Tunnel Congress and 32nd ITA General Assembly 21(3-4): 410.
– volume: 28
  start-page: 321
  year: 2003
  end-page: 335
  ident: bib23
  article-title: Airborne LiDAR in support of geomorphological and hydraulic modelling
  publication-title: Earth Surface Processes and Landforms
– volume: 165
  start-page: 625
  year: 2008
  end-page: 638
  ident: bib8
  article-title: Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations
  publication-title: Journal of the Geological Society, London
– reference: (accessed 19 June 2012).
– volume: 106
  start-page: 261
  year: 2009
  end-page: 270
  ident: bib58
  article-title: A comparison of digital elevation models generated from different data sources
  publication-title: Geomorphology
– volume: 35
  start-page: 289
  year: 2009
  end-page: 300
  ident: bib6
  article-title: Evaluating error associated with lidar-derived DEM interpolation
  publication-title: Computers & Geosciences
– reference: Gallay, M., 2010. Assessing Alternative Methods of Acquiring and Processing Digital Elevation Data. Ph.D. Dissertation, Queen's University Belfast, Belfast, 389 pp.
– volume: 52
  start-page: 607
  year: 2000
  end-page: 623
  ident: bib3
  article-title: Spatial scale problems and geostatistical solutions: a review
  publication-title: The Professional Geographer
– volume: 54
  start-page: 155
  year: 2008
  end-page: 163
  ident: bib54
  article-title: Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements
  publication-title: Cold Regions Science and Technology
– year: 2008
  ident: bib48
  article-title: Remote Sensing and Image Interpretation
– start-page: 17
  year: 1972
  end-page: 90
  ident: bib21
  article-title: General geomorphometry, derivatives of altitude and descriptive statistic
  publication-title: Spatial Analysis in Geomorphology
– reference: .
– volume: 65
  start-page: 103
  year: 2010
  end-page: 110
  ident: bib1
  article-title: Modelling vertical error in LiDAR-derived digital elevation models
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 21
  start-page: 7
  year: 2000
  end-page: 20
  ident: bib56
  article-title: The accuracy of digital elevation models interpolated to higher resolutions
  publication-title: International Journal of Remote Sensing
– volume: 37
  start-page: 3037
  year: 2010
  end-page: 3047
  ident: bib2
  article-title: Terrestrial laser scanning intensity data applied to damage detection for historical buildings
  publication-title: Journal of Archaeological Science
– reference: Wuertz, D., Chauss, P., King, R., Gu, C., Gross, J., Scott, D., Lumley, T., Zeileis A., Aas. K. (2012). fBasics: Rmetrics—markets and basic statistics. R package version 2160.81.:
– year: 1995
  ident: bib13
  article-title: Analytical and Computer Cartography
– year: 1990
  ident: bib41
  article-title: Morfometrická Analýza a Digitálne Modely Georeliéfu (Morphometric Analysis and Digital Models of Georelief)
– reference: Leica Geosystems, 2006. Leica HDS3000 Versatile, high-accuracy 3D laser scanner (user guide). Leica Geosystems AG, Switzerland.
– volume: 54
  start-page: 83
  year: 1999
  end-page: 94
  ident: bib5
  article-title: A comparison between photogrametry and laser scanning
  publication-title: ISPRS Journal of Photogrametry and Remote Sensing
– volume: 135
  start-page: 173
  year: 2009
  end-page: 178
  ident: bib59
  article-title: From the conventional total station to the prospective image assisted photogrammetric scanning total station: comprehensive review
  publication-title: Journal of Surveying Engineering-ASCE
– volume: 23
  start-page: 451
  year: 2009
  end-page: 463
  ident: bib35
  article-title: Comparing alpine watershed attributes from LiDAR, Photogrammetric, and contour-based digital elevation models
  publication-title: Hydrological Processes
– reference: GPSGOV, 2011: Official U.S. Government information about the Global Positioning System (GPS) and related topics.
– year: 2005
  ident: 10.1016/j.cageo.2012.08.015_bib47
– ident: 10.1016/j.cageo.2012.08.015_bib55
– year: 1998
  ident: 10.1016/j.cageo.2012.08.015_bib4
– volume: 23
  start-page: 451
  year: 2009
  ident: 10.1016/j.cageo.2012.08.015_bib35
  article-title: Comparing alpine watershed attributes from LiDAR, Photogrammetric, and contour-based digital elevation models
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.7155
– volume: 57/99
  start-page: 101
  issue: 5
  year: 2011
  ident: 10.1016/j.cageo.2012.08.015_bib62
  publication-title: Geodetický a Kartografický Obzor
– volume: 26
  start-page: 307
  issue: 135
  year: 2011
  ident: 10.1016/j.cageo.2012.08.015_bib14
  article-title: Terrestrial laser scan error in the presence of dense ground vegetation
  publication-title: The Photogrammetric Record
  doi: 10.1111/j.1477-9730.2011.00647.x
– year: 2000
  ident: 10.1016/j.cageo.2012.08.015_bib65
– ident: 10.1016/j.cageo.2012.08.015_bib51
– volume: 36
  start-page: 34
  issue: 1
  year: 2010
  ident: 10.1016/j.cageo.2012.08.015_bib20
  article-title: Modelling the spatial distribution of DEM error with geographically weighted regression: an experimental study
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2009.06.005
– volume: 52
  start-page: 607
  year: 2000
  ident: 10.1016/j.cageo.2012.08.015_bib3
  article-title: Spatial scale problems and geostatistical solutions: a review
  publication-title: The Professional Geographer
  doi: 10.1111/0033-0124.00250
– start-page: 109
  year: 2010
  ident: 10.1016/j.cageo.2012.08.015_bib25
  article-title: Using geographically weighted regression for analysing elevation error of high-resolution DEMs
– volume: 1997
  start-page: 120
  issue: 5
  year: 1997
  ident: 10.1016/j.cageo.2012.08.015_bib40
  article-title: Restitution of airborne laser scanner data in wooded areas
  publication-title: Advances in Remote Sensing Yearbook
– ident: 10.1016/j.cageo.2012.08.015_bib68
– ident: 10.1016/j.cageo.2012.08.015_bib22
– volume: 2010
  start-page: 833
  issue: 2
  year: 2010
  ident: 10.1016/j.cageo.2012.08.015_bib52
  article-title: Ground filtering algorithms for airborne LiDAR data: a review of critical issues
  publication-title: Remote Sensing
  doi: 10.3390/rs2030833
– volume: 60
  start-page: 22
  issue: 3
  year: 1973
  ident: 10.1016/j.cageo.2012.08.015_bib16
  article-title: Tests for departure from normality
  publication-title: Biometrika
  doi: 10.1093/biomet/60.3.613
– ident: 10.1016/j.cageo.2012.08.015_bib26
– ident: 10.1016/j.cageo.2012.08.015_bib45
– volume: 22
  start-page: 563
  issue: 6
  year: 1997
  ident: 10.1016/j.cageo.2012.08.015_bib18
  article-title: Effects of interpolation errors on the analysis of DEMs
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/(SICI)1096-9837(199706)22:6<563::AID-ESP713>3.0.CO;2-3
– ident: 10.1016/j.cageo.2012.08.015_bib60
– volume: 135
  start-page: 173
  issue: 4
  year: 2009
  ident: 10.1016/j.cageo.2012.08.015_bib59
  article-title: From the conventional total station to the prospective image assisted photogrammetric scanning total station: comprehensive review
  publication-title: Journal of Surveying Engineering-ASCE
  doi: 10.1061/(ASCE)0733-9453(2009)135:4(173)
– year: 2001
  ident: 10.1016/j.cageo.2012.08.015_bib61
– volume: 64
  start-page: 398
  issue: 4
  year: 2009
  ident: 10.1016/j.cageo.2012.08.015_bib37
  article-title: Accuracy assessment of digital elevation models by means of robust statistical methods
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2009.02.003
– volume: 106
  start-page: 261
  year: 2009
  ident: 10.1016/j.cageo.2012.08.015_bib58
  article-title: A comparison of digital elevation models generated from different data sources
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.11.007
– year: 2008
  ident: 10.1016/j.cageo.2012.08.015_bib57
– volume: 64
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.cageo.2012.08.015_bib50
  article-title: Full-waveform topographic lidar: state-of-the-art
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2008.09.007
– volume: 33
  start-page: 772
  year: 2008
  ident: 10.1016/j.cageo.2012.08.015_bib29
– year: 1995
  ident: 10.1016/j.cageo.2012.08.015_bib13
– volume: 37
  start-page: 499
  issue: 3
  year: 2010
  ident: 10.1016/j.cageo.2012.08.015_bib46
  article-title: Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the upper palaeolithic cave of Parpalló as a case study
  publication-title: Journal of Archaeological Science
  doi: 10.1016/j.jas.2009.10.011
– year: 2009
  ident: 10.1016/j.cageo.2012.08.015_bib9
– volume: 28
  start-page: 321
  issue: 3
  year: 2003
  ident: 10.1016/j.cageo.2012.08.015_bib23
  article-title: Airborne LiDAR in support of geomorphological and hydraulic modelling
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/esp.484
– volume: 121
  start-page: 224
  year: 2012
  ident: 10.1016/j.cageo.2012.08.015_bib31
  article-title: Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2012.01.018
– volume: 55
  start-page: 1
  issue: 2
  year: 2009
  ident: 10.1016/j.cageo.2012.08.015_bib36
  article-title: Topographic airborne LiDAR in geomorphology: a technological perspective
  publication-title: Zeitschrift für Geomorphologie
  doi: 10.1127/0372-8854/2011/0055S2-0043
– volume: 33
  start-page: 1351
  issue: 10
  year: 2007
  ident: 10.1016/j.cageo.2012.08.015_bib66
  article-title: Effect of differing DEM creation methods on the results from a hydrological model
  publication-title: Computers and Geosciences
  doi: 10.1016/j.cageo.2007.05.003
– volume: 35
  start-page: 289
  issue: 2
  year: 2009
  ident: 10.1016/j.cageo.2012.08.015_bib6
  article-title: Evaluating error associated with lidar-derived DEM interpolation
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2008.09.001
– volume: 32
  start-page: 268
  issue: 4
  year: 2008
  ident: 10.1016/j.cageo.2012.08.015_bib17
  article-title: Improving user assessment of error implications in digital elevation models
  publication-title: Computers, Environment and Urban Systems Geographical Information Science Research
  doi: 10.1016/j.compenvurbsys.2008.02.003
– ident: 10.1016/j.cageo.2012.08.015_bib44
– volume: 20
  start-page: 535
  issue: 5
  year: 2006
  ident: 10.1016/j.cageo.2012.08.015_bib49
  article-title: Deriving ground surface digital elevation models from LiDAR data with geostatistics
  publication-title: International Journal of Geographical Information Science
  doi: 10.1080/13658810600607337
– volume: 137
  start-page: 5
  issue: 1
  year: 2012
  ident: 10.1016/j.cageo.2012.08.015_bib7
  article-title: Geospatial technologies and digital geomorphological mapping: concepts, issues and research
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.06.027
– volume: 65
  start-page: 103
  year: 2010
  ident: 10.1016/j.cageo.2012.08.015_bib1
  article-title: Modelling vertical error in LiDAR-derived digital elevation models
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2009.09.003
– volume: 233
  start-page: 154
  issue: 1–4
  year: 2000
  ident: 10.1016/j.cageo.2012.08.015_bib39
  article-title: Error in a USGS 30-meter digital elevation model and its impact on terrain modeling
  publication-title: Journal of Hydrology
  doi: 10.1016/S0022-1694(00)00229-8
– volume: 54
  start-page: 83
  year: 1999
  ident: 10.1016/j.cageo.2012.08.015_bib5
  article-title: A comparison between photogrametry and laser scanning
  publication-title: ISPRS Journal of Photogrametry and Remote Sensing
  doi: 10.1016/S0924-2716(99)00014-3
– volume: 21
  start-page: 7
  year: 2000
  ident: 10.1016/j.cageo.2012.08.015_bib56
  article-title: The accuracy of digital elevation models interpolated to higher resolutions
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311600210957
– volume: 36
  start-page: 489
  year: 2011
  ident: 10.1016/j.cageo.2012.08.015_bib15
  article-title: Dual-scale validation of a medium-resolution coastal DEM with terrestrial LiDAR DSM and GPS
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2009.10.003
– volume: 37
  start-page: 978
  issue: 8
  year: 2011
  ident: 10.1016/j.cageo.2012.08.015_bib67
  article-title: Cross-validation as a means of investigating DEM interpolation error
  publication-title: Computers and Geosciences
  doi: 10.1016/j.cageo.2010.12.002
– ident: 10.1016/j.cageo.2012.08.015_bib38
– volume: 54
  start-page: 68
  year: 1999
  ident: 10.1016/j.cageo.2012.08.015_bib64
  article-title: Airborne laser scanning—an introduction and overview
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/S0924-2716(99)00011-8
– ident: 10.1016/j.cageo.2012.08.015_bib53
– volume: 165
  start-page: 625
  issue: 3
  year: 2008
  ident: 10.1016/j.cageo.2012.08.015_bib8
  article-title: Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations
  publication-title: Journal of the Geological Society, London
  doi: 10.1144/0016-76492007-100
– ident: 10.1016/j.cageo.2012.08.015_bib43
– volume: 113
  start-page: 4
  year: 2009
  ident: 10.1016/j.cageo.2012.08.015_bib30
  article-title: Terrestrial laser scanning of grain roughness in a gravel-bed river
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.03.021
– year: 1990
  ident: 10.1016/j.cageo.2012.08.015_bib41
– start-page: 17
  year: 1972
  ident: 10.1016/j.cageo.2012.08.015_bib21
  article-title: General geomorphometry, derivatives of altitude and descriptive statistic
– volume: 19
  start-page: 61
  year: 2011
  ident: 10.1016/j.cageo.2012.08.015_bib27
  article-title: Comparing the vertical accuracy of digital elevation models derived using modern ground survey and airborne laser scanning (in Slovak)
  publication-title: Cartographic letters (Kartografické Listy)
– ident: 10.1016/j.cageo.2012.08.015_bib42
  doi: 10.1016/j.tust.2005.12.057
– ident: 10.1016/j.cageo.2012.08.015_bib28
– volume: 77
  start-page: 126
  issue: 1-2
  year: 2006
  ident: 10.1016/j.cageo.2012.08.015_bib12
  article-title: Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2005.12.010
– volume: 54
  start-page: 155
  issue: 3
  year: 2008
  ident: 10.1016/j.cageo.2012.08.015_bib54
  article-title: Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements
  publication-title: Cold Regions Science and Technology
  doi: 10.1016/j.coldregions.2008.07.002
– volume: 136
  start-page: 132
  issue: 3
  year: 2010
  ident: 10.1016/j.cageo.2012.08.015_bib11
  article-title: Detection of terrain morphologic features using GPS, TLS, and Land surveys: “Tana della Volpe” blind valley case study
  publication-title: Journal of Surveying Engineering-ASCE
  doi: 10.1061/(ASCE)SU.1943-5428.0000022
– volume: 84
  start-page: 295
  year: 2003
  ident: 10.1016/j.cageo.2012.08.015_bib33
  article-title: An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00114-1
– volume: 11
  start-page: 451
  issue: 5
  year: 1997
  ident: 10.1016/j.cageo.2012.08.015_bib10
  article-title: Comparison of techniques for generating digital terrain models from contour lines
  publication-title: International Journal of Geographical Information Science
  doi: 10.1080/136588197242257
– volume: 30
  start-page: 467
  issue: 4
  year: 2006
  ident: 10.1016/j.cageo.2012.08.015_bib24
  article-title: Causes and consequences of error in digital elevation models
  publication-title: Progress in Physical Geography
  doi: 10.1191/0309133306pp492ra
– volume: 70
  start-page: 331
  issue: 3
  year: 2004
  ident: 10.1016/j.cageo.2012.08.015_bib34
  article-title: Accuracy of airborne LiDAR-derived elevation: empirical assessment and error budget
  publication-title: Photogrametric Engineering and Remote Sensing
  doi: 10.14358/PERS.70.3.331
– volume: 11
  start-page: 1481
  issue: 4
  year: 2007
  ident: 10.1016/j.cageo.2012.08.015_bib63
  article-title: Uncertainties associated with digital elevation models for hydrologic applications: a review
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-11-1481-2007
– volume: 56
  start-page: 2024
  issue: 7
  year: 2009
  ident: 10.1016/j.cageo.2012.08.015_bib32
  article-title: Analysing laser-scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics
  publication-title: Sedimentology
  doi: 10.1111/j.1365-3091.2009.01068.x
– volume: 37
  start-page: 3037
  issue: 12
  year: 2010
  ident: 10.1016/j.cageo.2012.08.015_bib2
  article-title: Terrestrial laser scanning intensity data applied to damage detection for historical buildings
  publication-title: Journal of Archaeological Science
  doi: 10.1016/j.jas.2010.06.031
– year: 2008
  ident: 10.1016/j.cageo.2012.08.015_bib48
SSID ssj0002285
Score 2.2059119
Snippet This paper compares the applicability of three ground survey methods for modelling terrain: one man electronic tachymetry (TPS), real time kinematic GPS (GPS),...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 216
SubjectTerms case studies
computers
DEM/DTM
England
global positioning systems
GPS
Great Langdale
karsts
lakes
Laser scanning
normal distribution
probability
surveys
Tachymetry
vegetation cover
Vertical accuracy
Title Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: A case study from the Lake District, England
URI https://dx.doi.org/10.1016/j.cageo.2012.08.015
https://www.proquest.com/docview/2000054500
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbZDYVeQp9k0zZMocc4sa2Hvb0tadPtK5d2ITehZ3Af3rCPQi79Cf3NnZHtQGnJoTcjLNtopJlP1sz3MfbCiGiUzW0mlAuZoCsjqiqzto5euhiLVLf28VzNF-LdhbzYYadDLQylVfa-v_PpyVv3LSf9aJ5cNQ3V-E7rji-KjpaEGLHdkk-VHLPd2dv38_Mbh1yWtRyoM6nDQD6U0rwcLlsqAqR_gvVxTvK4_w5Qo2iWfznsFIXO7rG9Hj7CrPvC-2wntA_YnTdJnvf6IfvVneFiOILvSeQMqGqj9bDern6Ea-j0otdgsMk0K7R_GwDxc1jB2nXqRYAoFnxzSWIigINOEhLpYYm8-yXMwOH9kGhpgYpTACEkfDBfA7wiEt7GbY6glwZ5xBZnrz-fzrNecSEzuFPdZFPuvS-8Lb3lXCphTVVHFRCj4Mo31hlX4Y7GVCqPKnfOc0Jwqpq6WnlEXoE_ZuN22YZ9BtwTVRhHACJzYSqiCTNShhg9R9AZwoSVwzBr19ORkyrGNz3knX3RyTaabKNJK7OQE3Z00-mqY-O4_XY12E__Mak0xovbO-6jtbW5REerF59KouFLYK4uJuz5MAU0rkQ6XjFtWG7XJOhJAFjm-cH_vvcJu1smuQ1Kl3nKxpvVNjxD0LOxh2x0_LM47Kf2b86aAD4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIkQviKe6PMogcWzabPxIlltVWhbY9kJX6s3ys0qh2WofSL30J_Q3M-MkIATqgVtk2UnksWe-xDPfx9g7I6JRNreZUC5kgq6MKMvM2ip66WIcprq14xM1norPZ_JsjR30tTCUVtn5_tanJ2_dtex1s7l3VddU4zuqWr4oOloSYp3dE5KXlNe3e_M7z6MoKtkTZ1L3nnooJXk53LRUAkh_BKvdnMRx_x2e1qOZ_eWuUww6esQeduAR9tv3e8zWQvOE3f-YxHmvn7Lb9gQXgxFcJokzoJqNxsNiNf8RrqFVi16AwSZTz9H6TQBEz2EOC9dqFwFiWPD1OUmJAE45CUikmyXq7vewDw77QyKlBSpNAQSQMDHfAnwgCt7aLXegEwZ5xqZHh6cH46zTW8gMfqcusxH33g-9LbzlXCphTVlFFRCh4L431hlX4veMKVUeVe6c54TfVDlylfKIuwJ_zjaaWRO2GHBPRGEc4YfMhSmJJMxIGWL0HCFnCANW9NOsXUdGTpoY33WfdXahk2002UaTUuZQDtjOr0FXLRfH3d1Vbz_9x5LSGC3uHriF1tbmHN2snn4tiIQvQblqOGBv-yWgcR_S4Yppwmy1IDlPgr8yz1_873PfsAfj0-OJnnw6-fKSbRZJeIMSZ16xjeV8FV4j_Fna7bS8fwL4NAEJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+modern+ground+survey+methods+and+airborne+laser+scanning+for+digital+terrain+modelling%3A+A+case+study+from+the+Lake+District%2C+England&rft.jtitle=Computers+%26+geosciences&rft.au=Gallay%2C+Michal&rft.au=Lloyd%2C+Christopher+D&rft.au=McKinley%2C+Jennifer&rft.au=Barry%2C+Lorraine&rft.date=2013-02-01&rft.issn=0098-3004&rft.volume=51+p.216-227&rft.spage=216&rft.epage=227&rft_id=info:doi/10.1016%2Fj.cageo.2012.08.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon