Photomechanical Azopolymers and Digital Polarization Optics: A Versatile Platform for Surface Microstructure Fabrication

The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarizati...

Full description

Saved in:
Bibliographic Details
Published inACS applied optical materials Vol. 3; no. 7; pp. 1461 - 1476
Main Authors Strobelt, Jonas, Santer, Svetlana, Abourahma, Heba, Music, Mika, Farzan, Zay, Nezamis, Phillip, Leon, Ryan, McGee, David J.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.07.2025
Subjects
Online AccessGet full text
ISSN2771-9855
2771-9855
DOI10.1021/acsaom.5c00038

Cover

Abstract The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarization technologies best matched to translate this phenomenon to practical devices. Here we present an overview of this field, with focus on a promising laser-writing platform based on structured polarized light projection from a high-resolution spatial light modulator. This photofabrication approach can print static and dynamic surface microstructures. It is also maskless and single-beam, writing structures with 600 nm feature size and >1 μm amplitude in real-time. The printed structures require no wet-chemical processing and are available for replication immediately after exposure. We also present a new application in color synthesis by printing surface gratings that collinearly diffract red, green, and blue light, demonstrating the potential of this approach in the field of structured color.
AbstractList The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarization technologies best matched to translate this phenomenon to practical devices. Here we present an overview of this field, with focus on a promising laser-writing platform based on structured polarized light projection from a high-resolution spatial light modulator. This photofabrication approach can print static and dynamic surface microstructures. It is also maskless and single-beam, writing structures with 600 nm feature size and >1 μm amplitude in real-time. The printed structures require no wet-chemical processing and are available for replication immediately after exposure. We also present a new application in color synthesis by printing surface gratings that collinearly diffract red, green, and blue light, demonstrating the potential of this approach in the field of structured color.
The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarization technologies best matched to translate this phenomenon to practical devices. Here we present an overview of this field, with focus on a promising laser-writing platform based on structured polarized light projection from a high-resolution spatial light modulator. This photofabrication approach can print static and dynamic surface microstructures. It is also maskless and single-beam, writing structures with 600 nm feature size and >1 μm amplitude in real-time. The printed structures require no wet-chemical processing and are available for replication immediately after exposure. We also present a new application in color synthesis by printing surface gratings that collinearly diffract red, green, and blue light, demonstrating the potential of this approach in the field of structured color.The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarization technologies best matched to translate this phenomenon to practical devices. Here we present an overview of this field, with focus on a promising laser-writing platform based on structured polarized light projection from a high-resolution spatial light modulator. This photofabrication approach can print static and dynamic surface microstructures. It is also maskless and single-beam, writing structures with 600 nm feature size and >1 μm amplitude in real-time. The printed structures require no wet-chemical processing and are available for replication immediately after exposure. We also present a new application in color synthesis by printing surface gratings that collinearly diffract red, green, and blue light, demonstrating the potential of this approach in the field of structured color.
The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarization technologies best matched to translate this phenomenon to practical devices. Here we present an overview of this field, with focus on a promising laser-writing platform based on structured polarized light projection from a high-resolution spatial light modulator. This photofabrication approach can print static and dynamic surface microstructures. It is also maskless and single-beam, writing structures with 600 nm feature size and >1 μm amplitude in real-time. The printed structures require no wet-chemical processing and are available for replication immediately after exposure. We also present a new application in color synthesis by printing surface gratings that collinearly diffract red, green, and blue light, demonstrating the potential of this approach in the field of structured color.
Author Music, Mika
McGee, David J.
Santer, Svetlana
Abourahma, Heba
Leon, Ryan
Strobelt, Jonas
Farzan, Zay
Nezamis, Phillip
AuthorAffiliation Department of Chemistry
Berliner Hochschule für Technik
The College of New Jersey
Universität Potsdam, Institut für Physik und Astronomie
Department of Physics
AuthorAffiliation_xml – name: The College of New Jersey
– name: Universität Potsdam, Institut für Physik und Astronomie
– name: Department of Physics
– name: Department of Chemistry
– name: Berliner Hochschule für Technik
Author_xml – sequence: 1
  givenname: Jonas
  orcidid: 0009-0008-8369-1228
  surname: Strobelt
  fullname: Strobelt, Jonas
  organization: Universität Potsdam, Institut für Physik und Astronomie
– sequence: 2
  givenname: Svetlana
  surname: Santer
  fullname: Santer, Svetlana
  organization: Universität Potsdam, Institut für Physik und Astronomie
– sequence: 3
  givenname: Heba
  orcidid: 0009-0008-4891-9098
  surname: Abourahma
  fullname: Abourahma, Heba
  organization: Department of Chemistry
– sequence: 4
  givenname: Mika
  surname: Music
  fullname: Music, Mika
  organization: Berliner Hochschule für Technik
– sequence: 5
  givenname: Zay
  surname: Farzan
  fullname: Farzan, Zay
  organization: Department of Physics
– sequence: 6
  givenname: Phillip
  surname: Nezamis
  fullname: Nezamis, Phillip
  organization: Department of Physics
– sequence: 7
  givenname: Ryan
  surname: Leon
  fullname: Leon, Ryan
  organization: Department of Physics
– sequence: 8
  givenname: David J.
  orcidid: 0000-0002-8082-1145
  surname: McGee
  fullname: McGee, David J.
  email: mcgeed@tcnj.edu
  organization: Department of Physics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40740612$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1vEzEQxS1UREvplSPyESEljNfr_eCCokIBqaiR-Lhak4m3ceW1U9uLaP96HCVU5cDFtp5_80Z67zk78sEbxl4KmAuoxFukhGGcKwIA2T1hJ1XbilnfKXX06H3MzlK62SEAPTTqGTuuoa2hEdUJ-73chBxGQxv0ltDxxX3YBnc3mpg4-jX_YK9tLvoyOIz2HrMNnl9ts6X0ji_4z8IVzRm-dJiHEEdeDv5tigOS4V8txZBynChP0fALXMWyZefxgj0d0CVzdrhP2Y-Lj9_PP88urz59OV9czlB2Ms8awkqtQVLTmQqNhAZa0TctSVp30BMCkarbnqBv69XQDzSQbFZdXZMYjKnkKXu_991Oq9Gsyfgc0elttCPGOx3Q6n9_vN3o6_BLi0qCampVHF4fHGK4nUzKerSJjHPoTZiSlpVUIIWq-4K-erzsYcvfvAsw3wO7WFI0wwMiQO861ftO9aHTMvBmP1B0fROm6EtY_4P_ABd3pmg
Cites_doi 10.1117/12.2582763
10.1038/ncomms15546
10.1038/nphoton.2009.172
10.1246/bcsj.20210348
10.1039/C5TC01776A
10.1021/acs.jpcb.9b00614
10.1063/1.113541
10.1002/adma.201200698
10.1117/12.2647393
10.1515/nanoph-2018-0040
10.1063/1.4891615
10.1002/anie.201500628
10.1364/OE.25.022959
10.1021/jp7096263
10.1021/acsami.5b02080
10.1063/1.113845
10.1038/s41598-020-71567-w
10.1002/advs.201801826
10.1021/am503501y
10.1021/ja310323y
10.1093/bulcsj/bcsj.20230219
10.1103/PhysRevLett.110.146102
10.1016/B978-0-12-816865-3.00010-X
10.1021/ar400103r
10.1007/s00339-013-7945-3
10.1364/AO.54.005252
10.1039/c0sm01164a
10.1002/adma.200402080
10.1002/adom.202202245
10.1143/JJAP.47.4566
10.1103/PhysRevLett.80.89
10.1039/B200810F
10.1002/macp.202100418
10.1039/C6SM00029K
10.1021/jp030902x
10.3390/jfb11010008
10.1139/v95-218
10.1021/acsami.9b12624
10.1002/adma.202404540
10.1364/OE.451414
10.1002/9780470439098
10.1016/j.actbio.2017.09.022
10.1063/1.1399025
10.1021/acsapm.0c00036
10.1039/C9RA02571E
10.1364/OE.15.002888
10.1002/polb.23390
10.1002/1099-1581(200008/12)11:8/12<570::AID-PAT7>3.0.CO;2-K
10.1002/admi.202101375
10.1021/cm900810r
10.1039/C1CS15179G
10.1021/nl502631s
10.1201/9780203495902
10.1002/adom.202301597
10.1002/adma.201104826
10.1039/C9SM01853K
10.1038/nature22987
10.1021/la061178n
10.1021/acsphotonics.3c00387
10.1021/ja906547d
10.1063/1.4978260
10.1021/la703091x
10.1038/nmat4433
10.1002/adom.202300823
10.1007/s00289-012-0792-0
10.1039/C7TC05005D
10.1155/2014/212637
10.1021/nl047956i
10.1364/OE.24.018297
10.1364/JOSAB.15.001257
10.1088/0957-4484/23/48/485304
10.1063/1.117292
10.1021/acsami.7b08025
10.1002/anie.201400370
10.1364/OE.542004
10.1063/1.4809640
10.1038/s41570-021-00334-w
10.1063/1.5140067
10.1021/acs.jpclett.1c04219
10.1021/acs.accounts.5b00270
10.1039/D0SM00601G
10.3390/ma14061454
10.1021/la050457s
10.1002/anie.200805179
10.1021/am400712r
10.1016/j.polymer.2013.08.058
10.1364/OE.27.025634
10.3390/molecules21121663
10.1039/C8BM00019K
10.1039/D4SM00104D
10.1021/jp800048a
10.3390/polym15020463
10.1117/12.2555447
10.3390/pr11010129
10.1002/smll.201907626
10.1038/ncomms1996
10.1364/AO.23.004309
10.1007/s00340-020-07500-w
10.1016/S0030-4018(02)01764-9
10.1021/jp8078265
10.1021/acs.jpcb.7b11644
10.1017/CBO9780511581489
10.1063/1.5097841
10.1021/acs.jpclett.7b00173
10.1364/OE.18.002913
10.1039/a902424g
10.1007/s003400100596
10.1038/s41598-019-43256-w
10.1364/OE.23.003614
ContentType Journal Article
Copyright 2025 The Authors. Published by American Chemical Society
2025 The Authors. Published by American Chemical Society.
2025 The Authors. Published by American Chemical Society 2025 The Authors
Copyright_xml – notice: 2025 The Authors. Published by American Chemical Society
– notice: 2025 The Authors. Published by American Chemical Society.
– notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1021/acsaom.5c00038
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2771-9855
EndPage 1476
ExternalDocumentID PMC12305645
40740612
10_1021_acsaom_5c00038
c812878308
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: NA
– fundername: ;
  grantid: 2024118
– fundername: ;
  grantid: 1919557
GroupedDBID ABBLG
ABJNI
ABLBI
ABQRX
ACS
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
VF5
VG9
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a383t-6ca25d03c68e2ae306071967c3cd809ca0cc5479c0974bf9fcfc36b844c1fee23
IEDL.DBID ACS
ISSN 2771-9855
IngestDate Thu Aug 21 18:33:38 EDT 2025
Thu Jul 31 18:31:30 EDT 2025
Sun Aug 03 01:51:13 EDT 2025
Thu Jul 31 00:24:20 EDT 2025
Mon Jul 28 03:10:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords maskless lithography
diffractive optics
surface relief grating
holography
direct laser-writing
photomechanics
dynamic microstructure
azobenzene containing polymers
spatial light modulator
Language English
License https://creativecommons.org/licenses/by/4.0
2025 The Authors. Published by American Chemical Society.
This article is licensed under CC-BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a383t-6ca25d03c68e2ae306071967c3cd809ca0cc5479c0974bf9fcfc36b844c1fee23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0009-0008-8369-1228
0000-0002-8082-1145
0009-0008-4891-9098
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC12305645
PMID 40740612
PQID 3235031549
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12305645
proquest_miscellaneous_3235031549
pubmed_primary_40740612
crossref_primary_10_1021_acsaom_5c00038
acs_journals_10_1021_acsaom_5c00038
PublicationCentury 2000
PublicationDate 2025-07-25
PublicationDateYYYYMMDD 2025-07-25
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied optical materials
PublicationTitleAlternate ACS Appl. Opt. Mater
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref16/cit16
ref52/cit52
ref23/cit23
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref109/cit109
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
Van Renesse R. L. (ref88/cit88) 1994
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
Horspool W. M. (ref81/cit81) 2003
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
Sekkat Z. (ref3/cit3) 2002
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref90/cit90
  doi: 10.1117/12.2582763
– ident: ref79/cit79
  doi: 10.1038/ncomms15546
– ident: ref103/cit103
  doi: 10.1038/nphoton.2009.172
– ident: ref61/cit61
  doi: 10.1246/bcsj.20210348
– ident: ref60/cit60
  doi: 10.1039/C5TC01776A
– ident: ref67/cit67
  doi: 10.1021/acs.jpcb.9b00614
– ident: ref23/cit23
  doi: 10.1063/1.113541
– ident: ref16/cit16
  doi: 10.1002/adma.201200698
– ident: ref97/cit97
  doi: 10.1117/12.2647393
– ident: ref30/cit30
  doi: 10.1515/nanoph-2018-0040
– ident: ref36/cit36
  doi: 10.1063/1.4891615
– ident: ref82/cit82
  doi: 10.1002/anie.201500628
– ident: ref89/cit89
  doi: 10.1364/OE.25.022959
– ident: ref43/cit43
  doi: 10.1021/jp7096263
– ident: ref112/cit112
  doi: 10.1021/acsami.5b02080
– ident: ref24/cit24
  doi: 10.1063/1.113845
– ident: ref101/cit101
  doi: 10.1038/s41598-020-71567-w
– ident: ref19/cit19
  doi: 10.1002/advs.201801826
– ident: ref47/cit47
  doi: 10.1021/am503501y
– ident: ref73/cit73
  doi: 10.1021/ja310323y
– ident: ref62/cit62
  doi: 10.1093/bulcsj/bcsj.20230219
– volume-title: Optical Document Security
  year: 1994
  ident: ref88/cit88
– ident: ref50/cit50
  doi: 10.1103/PhysRevLett.110.146102
– ident: ref4/cit4
  doi: 10.1016/B978-0-12-816865-3.00010-X
– ident: ref8/cit8
  doi: 10.1021/ar400103r
– ident: ref35/cit35
  doi: 10.1007/s00339-013-7945-3
– ident: ref86/cit86
  doi: 10.1364/AO.54.005252
– ident: ref45/cit45
  doi: 10.1039/c0sm01164a
– ident: ref17/cit17
  doi: 10.1002/adma.200402080
– ident: ref92/cit92
  doi: 10.1002/adom.202202245
– ident: ref52/cit52
  doi: 10.1143/JJAP.47.4566
– ident: ref9/cit9
  doi: 10.1103/PhysRevLett.80.89
– ident: ref58/cit58
  doi: 10.1039/B200810F
– ident: ref76/cit76
  doi: 10.1002/macp.202100418
– ident: ref38/cit38
  doi: 10.1039/C6SM00029K
– ident: ref37/cit37
  doi: 10.1021/jp030902x
– ident: ref102/cit102
  doi: 10.3390/jfb11010008
– ident: ref27/cit27
  doi: 10.1139/v95-218
– ident: ref40/cit40
  doi: 10.1021/acsami.9b12624
– ident: ref95/cit95
  doi: 10.1002/adma.202404540
– ident: ref91/cit91
  doi: 10.1364/OE.451414
– ident: ref5/cit5
  doi: 10.1002/9780470439098
– ident: ref98/cit98
– ident: ref111/cit111
  doi: 10.1016/j.actbio.2017.09.022
– ident: ref34/cit34
  doi: 10.1063/1.1399025
– ident: ref56/cit56
  doi: 10.1021/acsapm.0c00036
– ident: ref59/cit59
  doi: 10.1039/C9RA02571E
– ident: ref85/cit85
  doi: 10.1364/OE.15.002888
– ident: ref1/cit1
  doi: 10.1002/polb.23390
– ident: ref12/cit12
  doi: 10.1002/1099-1581(200008/12)11:8/12<570::AID-PAT7>3.0.CO;2-K
– ident: ref18/cit18
  doi: 10.1002/admi.202101375
– ident: ref74/cit74
  doi: 10.1021/cm900810r
– ident: ref83/cit83
  doi: 10.1039/C1CS15179G
– ident: ref70/cit70
  doi: 10.1021/nl502631s
– volume-title: CRC Handbook of Organic Photochemistry and Photobiology, Volumes 1 & 2
  year: 2003
  ident: ref81/cit81
  doi: 10.1201/9780203495902
– ident: ref108/cit108
  doi: 10.1002/adom.202301597
– ident: ref11/cit11
  doi: 10.1002/adma.201104826
– ident: ref65/cit65
  doi: 10.1039/C9SM01853K
– ident: ref80/cit80
  doi: 10.1038/nature22987
– ident: ref53/cit53
  doi: 10.1021/la061178n
– ident: ref55/cit55
  doi: 10.1021/acsphotonics.3c00387
– ident: ref72/cit72
  doi: 10.1021/ja906547d
– ident: ref20/cit20
  doi: 10.1063/1.4978260
– ident: ref54/cit54
  doi: 10.1021/la703091x
– ident: ref77/cit77
  doi: 10.1038/nmat4433
– ident: ref94/cit94
  doi: 10.1002/adom.202300823
– ident: ref2/cit2
  doi: 10.1007/s00289-012-0792-0
– ident: ref7/cit7
  doi: 10.1039/C7TC05005D
– ident: ref107/cit107
  doi: 10.1155/2014/212637
– ident: ref42/cit42
  doi: 10.1021/nl047956i
– ident: ref96/cit96
  doi: 10.1364/OE.24.018297
– ident: ref32/cit32
  doi: 10.1364/JOSAB.15.001257
– ident: ref46/cit46
  doi: 10.1088/0957-4484/23/48/485304
– volume-title: Photoreactive Organic Thin Films
  year: 2002
  ident: ref3/cit3
– ident: ref14/cit14
  doi: 10.1063/1.117292
– ident: ref21/cit21
  doi: 10.1021/acsami.7b08025
– ident: ref78/cit78
  doi: 10.1002/anie.201400370
– ident: ref113/cit113
  doi: 10.1364/OE.542004
– ident: ref31/cit31
  doi: 10.1063/1.4809640
– ident: ref6/cit6
  doi: 10.1038/s41570-021-00334-w
– ident: ref29/cit29
  doi: 10.1063/1.5140067
– ident: ref104/cit104
  doi: 10.1021/acs.jpclett.1c04219
– ident: ref71/cit71
  doi: 10.1021/acs.accounts.5b00270
– ident: ref51/cit51
  doi: 10.1039/D0SM00601G
– ident: ref64/cit64
  doi: 10.3390/ma14061454
– ident: ref75/cit75
  doi: 10.1021/la050457s
– ident: ref110/cit110
  doi: 10.1002/anie.200805179
– ident: ref44/cit44
  doi: 10.1021/am400712r
– ident: ref13/cit13
  doi: 10.1016/j.polymer.2013.08.058
– ident: ref15/cit15
  doi: 10.1364/OE.27.025634
– ident: ref22/cit22
  doi: 10.3390/molecules21121663
– ident: ref100/cit100
  doi: 10.1039/C8BM00019K
– ident: ref109/cit109
– ident: ref63/cit63
  doi: 10.1039/D4SM00104D
– ident: ref33/cit33
  doi: 10.1021/jp800048a
– ident: ref39/cit39
  doi: 10.3390/polym15020463
– ident: ref57/cit57
  doi: 10.1117/12.2555447
– ident: ref68/cit68
  doi: 10.3390/pr11010129
– ident: ref106/cit106
  doi: 10.1002/smll.201907626
– ident: ref49/cit49
  doi: 10.1038/ncomms1996
– ident: ref25/cit25
  doi: 10.1364/AO.23.004309
– ident: ref41/cit41
  doi: 10.1007/s00340-020-07500-w
– ident: ref48/cit48
  doi: 10.1016/S0030-4018(02)01764-9
– ident: ref84/cit84
  doi: 10.1021/jp8078265
– ident: ref69/cit69
  doi: 10.1021/acs.jpcb.7b11644
– ident: ref26/cit26
  doi: 10.1017/CBO9780511581489
– ident: ref99/cit99
  doi: 10.1063/1.5097841
– ident: ref66/cit66
  doi: 10.1021/acs.jpclett.7b00173
– ident: ref105/cit105
  doi: 10.1364/OE.18.002913
– ident: ref28/cit28
  doi: 10.1039/a902424g
– ident: ref10/cit10
  doi: 10.1007/s003400100596
– ident: ref93/cit93
  doi: 10.1038/s41598-019-43256-w
– ident: ref87/cit87
  doi: 10.1364/OE.23.003614
SSID ssj0003009065
Score 2.3043365
SecondaryResourceType review_article
Snippet The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a...
The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1461
SubjectTerms Spotlight on Applications
Title Photomechanical Azopolymers and Digital Polarization Optics: A Versatile Platform for Surface Microstructure Fabrication
URI http://dx.doi.org/10.1021/acsaom.5c00038
https://www.ncbi.nlm.nih.gov/pubmed/40740612
https://www.proquest.com/docview/3235031549
https://pubmed.ncbi.nlm.nih.gov/PMC12305645
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKvcChtAXapQ8ZFYlTlsR2Hu5tRbtClaArUSRukT1rAyokaJOVgF_fmSS7ZVmh9pJDMnZkz1j-Zsb-hrG9SNmxNESPp8EHyiU6MN76QHtIjfFJZCVdTj4-SY7O1I_z-PxvvONpBl9EBwYqU970Y2iyWCvspUjQxggEHZ7OoykSoULY1I0UaRoFOovjGUPjUhe0D0G1uA8tgcunZyQfbTrDjZYBqWq4Cumsye_-tLZ9eFhmcvzneF6zVx3y5IPWVN6wF654y9Yf8RFusrvRZVmXN45uA5Py-OCBaijcU2ybm2LMv11dUJERPiKHuLvByX_eEtXzVz7gFHzDd9eOj65NTXCY44OfTifegOPHdPivJaydThwfGjvpIoZb7Gz4_dfhUdCVZggMurR1kIAR8TiUkGROGId-B0IVnaQgYZyFGkwIEKtUQ4j-ivWoeQ8ysZlSEHnnhNxmq0VZuPeMx6Aj4UOv0fNRgNLY3huVIlaxLtK6x77glOXd0qryJmsuorydx7ybxx7bn6kzv215Op6V3J1pO8elRPkRU7hyWuVSyJiKXij857tW-_O-0O8l6CN6LFuwi7kA0XQvfimuLhu6bsQGIXH27PzXQD6wNUElhkMi0PjIVlEp7hPintp-bkz-D19uAVQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoAeyrN0eRqBxCnbxHYe5rYqrBbolpXaSr1FttemVduk2mQl6K9nJsku3VZIcMnBcRzbM5a_GXu-AXgfSTMVmujxlPWBdIkKtDc-UN6mWvskMoKCk8f7yehIfj2Oj9dgZxELg52osKWqOcT_wy4Q7WCZLi_6sW0Os-7AXUQinHI1DHYPlk4VgYghbNJH8jSNApXF8YKo8VYTtB3ZanU7uoUxb16VvLb3DB_AZNnr5srJWX9em769ukHo-B_DegibHQ5lg1ZxHsGaKx7DxjV2wifwc3JS1uWFo9hgEiUbXFFGhV_k6Wa6mLJPpz8o5QibkHncxXOy75dE_PyRDRi54rDs3LHJua4JHDN8sIP5zGvr2JiuArb0tfOZY0NtZp3_8CkcDT8f7o6CLlFDoNHArYPEah5PQ2GTzHHt0ApB4KKS1Ao7zUJldWhtLFNlQ7RejEc98FYkJpPSRt45LrZgvSgLtw0stiriPvQK7SBpsTZ-77VMEbkYFynVg3c4ZXm30Kq8OUPnUd7OY97NYw8-LKSaX7asHX-t-XYh9BwXFp2W6MKV8yoXXMSUAkPiP5-1SrBsC61gAkK8B9mKeiwrEGn36pvi9KQh70akEBKDz_N_GsgbuDc6HO_le1_2v72A-5ySD4dErfES1lFA7hUiotq8blbBb0P2CbU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaKlXlUPruQh-uWqmnbBPbebi3FXRFH9CVAIlbZE_sgoBktclKlF_fmSS7YkGV2ksOjuP4MSN_4_F8w9iHSNlCGqLH0-AD5RIdGG99oD2kxvgkspKCk_f2k90j9e04Pu7juCkWBjtRY0t168QnrZ4WvmcYiD5huakuhjG0Dq277B757Chfw2j7YHmwIhE1hG0KSZGmUaCzOF6QNd5qgrYkqFe3pFs48-Z1yWv7z3iDHS573l47ORvOGzuEqxukjv85tEfsYY9H-agToMfsjiufsPVrLIVP2eXkpGqqC0cxwrSkfHRFmRV-04k3N2XBd05_UeoRPiEzuY_r5D-nRAD9mY84Hclh2bnjk3PTEEjm-OAH85k34PgeXQnsaGznM8fHxs76c8Rn7Gj85XB7N-gTNgQGDd0mSMCIuAglJJkTxqE1ggBGJylIKLJQgwkBYpVqCNGKsR7lwYNMbKYURN45IZ-ztbIq3UvGY9CR8KHXaA8pwNr4vTcqRQRjXaT1gL3HKct7havz1pcuorybx7yfxwH7uFjZfNqxd_y15rvFwueoYOQ1MaWr5nUuhYwpFYbCf77oBGHZFlrDBIjEgGUrIrKsQOTdq2_K05OWxBsRQ0hMPpv_NJC37P5kZ5z_-Lr_fYs9EJSDOCSGjVdsDdfHvUZg1Ng3rSL8Ab5xDDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photomechanical+Azopolymers+and+Digital+Polarization+Optics%3A+A+Versatile+Platform+for+Surface+Microstructure+Fabrication&rft.jtitle=ACS+applied+optical+materials&rft.au=Strobelt%2C+Jonas&rft.au=Santer%2C+Svetlana&rft.au=Abourahma%2C+Heba&rft.au=Music%2C+Mika&rft.date=2025-07-25&rft.pub=American+Chemical+Society&rft.eissn=2771-9855&rft.volume=3&rft.issue=7&rft.spage=1461&rft.epage=1476&rft_id=info:doi/10.1021%2Facsaom.5c00038&rft.externalDocID=PMC12305645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9855&client=summon