Photomechanical Azopolymers and Digital Polarization Optics: A Versatile Platform for Surface Microstructure Fabrication
The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarizati...
Saved in:
Published in | ACS applied optical materials Vol. 3; no. 7; pp. 1461 - 1476 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2771-9855 2771-9855 |
DOI | 10.1021/acsaom.5c00038 |
Cover
Abstract | The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarization technologies best matched to translate this phenomenon to practical devices. Here we present an overview of this field, with focus on a promising laser-writing platform based on structured polarized light projection from a high-resolution spatial light modulator. This photofabrication approach can print static and dynamic surface microstructures. It is also maskless and single-beam, writing structures with 600 nm feature size and >1 μm amplitude in real-time. The printed structures require no wet-chemical processing and are available for replication immediately after exposure. We also present a new application in color synthesis by printing surface gratings that collinearly diffract red, green, and blue light, demonstrating the potential of this approach in the field of structured color. |
---|---|
AbstractList | The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarization technologies best matched to translate this phenomenon to practical devices. Here we present an overview of this field, with focus on a promising laser-writing platform based on structured polarized light projection from a high-resolution spatial light modulator. This photofabrication approach can print static and dynamic surface microstructures. It is also maskless and single-beam, writing structures with 600 nm feature size and >1 μm amplitude in real-time. The printed structures require no wet-chemical processing and are available for replication immediately after exposure. We also present a new application in color synthesis by printing surface gratings that collinearly diffract red, green, and blue light, demonstrating the potential of this approach in the field of structured color. The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarization technologies best matched to translate this phenomenon to practical devices. Here we present an overview of this field, with focus on a promising laser-writing platform based on structured polarized light projection from a high-resolution spatial light modulator. This photofabrication approach can print static and dynamic surface microstructures. It is also maskless and single-beam, writing structures with 600 nm feature size and >1 μm amplitude in real-time. The printed structures require no wet-chemical processing and are available for replication immediately after exposure. We also present a new application in color synthesis by printing surface gratings that collinearly diffract red, green, and blue light, demonstrating the potential of this approach in the field of structured color.The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarization technologies best matched to translate this phenomenon to practical devices. Here we present an overview of this field, with focus on a promising laser-writing platform based on structured polarized light projection from a high-resolution spatial light modulator. This photofabrication approach can print static and dynamic surface microstructures. It is also maskless and single-beam, writing structures with 600 nm feature size and >1 μm amplitude in real-time. The printed structures require no wet-chemical processing and are available for replication immediately after exposure. We also present a new application in color synthesis by printing surface gratings that collinearly diffract red, green, and blue light, demonstrating the potential of this approach in the field of structured color. The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a multitude of photonics applications, such optically written microstructures have motivated research to identify azopolymers and optical polarization technologies best matched to translate this phenomenon to practical devices. Here we present an overview of this field, with focus on a promising laser-writing platform based on structured polarized light projection from a high-resolution spatial light modulator. This photofabrication approach can print static and dynamic surface microstructures. It is also maskless and single-beam, writing structures with 600 nm feature size and >1 μm amplitude in real-time. The printed structures require no wet-chemical processing and are available for replication immediately after exposure. We also present a new application in color synthesis by printing surface gratings that collinearly diffract red, green, and blue light, demonstrating the potential of this approach in the field of structured color. |
Author | Music, Mika McGee, David J. Santer, Svetlana Abourahma, Heba Leon, Ryan Strobelt, Jonas Farzan, Zay Nezamis, Phillip |
AuthorAffiliation | Department of Chemistry Berliner Hochschule für Technik The College of New Jersey Universität Potsdam, Institut für Physik und Astronomie Department of Physics |
AuthorAffiliation_xml | – name: The College of New Jersey – name: Universität Potsdam, Institut für Physik und Astronomie – name: Department of Physics – name: Department of Chemistry – name: Berliner Hochschule für Technik |
Author_xml | – sequence: 1 givenname: Jonas orcidid: 0009-0008-8369-1228 surname: Strobelt fullname: Strobelt, Jonas organization: Universität Potsdam, Institut für Physik und Astronomie – sequence: 2 givenname: Svetlana surname: Santer fullname: Santer, Svetlana organization: Universität Potsdam, Institut für Physik und Astronomie – sequence: 3 givenname: Heba orcidid: 0009-0008-4891-9098 surname: Abourahma fullname: Abourahma, Heba organization: Department of Chemistry – sequence: 4 givenname: Mika surname: Music fullname: Music, Mika organization: Berliner Hochschule für Technik – sequence: 5 givenname: Zay surname: Farzan fullname: Farzan, Zay organization: Department of Physics – sequence: 6 givenname: Phillip surname: Nezamis fullname: Nezamis, Phillip organization: Department of Physics – sequence: 7 givenname: Ryan surname: Leon fullname: Leon, Ryan organization: Department of Physics – sequence: 8 givenname: David J. orcidid: 0000-0002-8082-1145 surname: McGee fullname: McGee, David J. email: mcgeed@tcnj.edu organization: Department of Physics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40740612$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1vEzEQxS1UREvplSPyESEljNfr_eCCokIBqaiR-Lhak4m3ceW1U9uLaP96HCVU5cDFtp5_80Z67zk78sEbxl4KmAuoxFukhGGcKwIA2T1hJ1XbilnfKXX06H3MzlK62SEAPTTqGTuuoa2hEdUJ-73chBxGQxv0ltDxxX3YBnc3mpg4-jX_YK9tLvoyOIz2HrMNnl9ts6X0ji_4z8IVzRm-dJiHEEdeDv5tigOS4V8txZBynChP0fALXMWyZefxgj0d0CVzdrhP2Y-Lj9_PP88urz59OV9czlB2Ms8awkqtQVLTmQqNhAZa0TctSVp30BMCkarbnqBv69XQDzSQbFZdXZMYjKnkKXu_991Oq9Gsyfgc0elttCPGOx3Q6n9_vN3o6_BLi0qCampVHF4fHGK4nUzKerSJjHPoTZiSlpVUIIWq-4K-erzsYcvfvAsw3wO7WFI0wwMiQO861ftO9aHTMvBmP1B0fROm6EtY_4P_ABd3pmg |
Cites_doi | 10.1117/12.2582763 10.1038/ncomms15546 10.1038/nphoton.2009.172 10.1246/bcsj.20210348 10.1039/C5TC01776A 10.1021/acs.jpcb.9b00614 10.1063/1.113541 10.1002/adma.201200698 10.1117/12.2647393 10.1515/nanoph-2018-0040 10.1063/1.4891615 10.1002/anie.201500628 10.1364/OE.25.022959 10.1021/jp7096263 10.1021/acsami.5b02080 10.1063/1.113845 10.1038/s41598-020-71567-w 10.1002/advs.201801826 10.1021/am503501y 10.1021/ja310323y 10.1093/bulcsj/bcsj.20230219 10.1103/PhysRevLett.110.146102 10.1016/B978-0-12-816865-3.00010-X 10.1021/ar400103r 10.1007/s00339-013-7945-3 10.1364/AO.54.005252 10.1039/c0sm01164a 10.1002/adma.200402080 10.1002/adom.202202245 10.1143/JJAP.47.4566 10.1103/PhysRevLett.80.89 10.1039/B200810F 10.1002/macp.202100418 10.1039/C6SM00029K 10.1021/jp030902x 10.3390/jfb11010008 10.1139/v95-218 10.1021/acsami.9b12624 10.1002/adma.202404540 10.1364/OE.451414 10.1002/9780470439098 10.1016/j.actbio.2017.09.022 10.1063/1.1399025 10.1021/acsapm.0c00036 10.1039/C9RA02571E 10.1364/OE.15.002888 10.1002/polb.23390 10.1002/1099-1581(200008/12)11:8/12<570::AID-PAT7>3.0.CO;2-K 10.1002/admi.202101375 10.1021/cm900810r 10.1039/C1CS15179G 10.1021/nl502631s 10.1201/9780203495902 10.1002/adom.202301597 10.1002/adma.201104826 10.1039/C9SM01853K 10.1038/nature22987 10.1021/la061178n 10.1021/acsphotonics.3c00387 10.1021/ja906547d 10.1063/1.4978260 10.1021/la703091x 10.1038/nmat4433 10.1002/adom.202300823 10.1007/s00289-012-0792-0 10.1039/C7TC05005D 10.1155/2014/212637 10.1021/nl047956i 10.1364/OE.24.018297 10.1364/JOSAB.15.001257 10.1088/0957-4484/23/48/485304 10.1063/1.117292 10.1021/acsami.7b08025 10.1002/anie.201400370 10.1364/OE.542004 10.1063/1.4809640 10.1038/s41570-021-00334-w 10.1063/1.5140067 10.1021/acs.jpclett.1c04219 10.1021/acs.accounts.5b00270 10.1039/D0SM00601G 10.3390/ma14061454 10.1021/la050457s 10.1002/anie.200805179 10.1021/am400712r 10.1016/j.polymer.2013.08.058 10.1364/OE.27.025634 10.3390/molecules21121663 10.1039/C8BM00019K 10.1039/D4SM00104D 10.1021/jp800048a 10.3390/polym15020463 10.1117/12.2555447 10.3390/pr11010129 10.1002/smll.201907626 10.1038/ncomms1996 10.1364/AO.23.004309 10.1007/s00340-020-07500-w 10.1016/S0030-4018(02)01764-9 10.1021/jp8078265 10.1021/acs.jpcb.7b11644 10.1017/CBO9780511581489 10.1063/1.5097841 10.1021/acs.jpclett.7b00173 10.1364/OE.18.002913 10.1039/a902424g 10.1007/s003400100596 10.1038/s41598-019-43256-w 10.1364/OE.23.003614 |
ContentType | Journal Article |
Copyright | 2025 The Authors. Published by American Chemical Society 2025 The Authors. Published by American Chemical Society. 2025 The Authors. Published by American Chemical Society 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors. Published by American Chemical Society – notice: 2025 The Authors. Published by American Chemical Society. – notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1021/acsaom.5c00038 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2771-9855 |
EndPage | 1476 |
ExternalDocumentID | PMC12305645 40740612 10_1021_acsaom_5c00038 c812878308 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: NA – fundername: ; grantid: 2024118 – fundername: ; grantid: 1919557 |
GroupedDBID | ABBLG ABJNI ABLBI ABQRX ACS ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ EBS GGK VF5 VG9 AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a383t-6ca25d03c68e2ae306071967c3cd809ca0cc5479c0974bf9fcfc36b844c1fee23 |
IEDL.DBID | ACS |
ISSN | 2771-9855 |
IngestDate | Thu Aug 21 18:33:38 EDT 2025 Thu Jul 31 18:31:30 EDT 2025 Sun Aug 03 01:51:13 EDT 2025 Thu Jul 31 00:24:20 EDT 2025 Mon Jul 28 03:10:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | maskless lithography diffractive optics surface relief grating holography direct laser-writing photomechanics dynamic microstructure azobenzene containing polymers spatial light modulator |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2025 The Authors. Published by American Chemical Society. This article is licensed under CC-BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a383t-6ca25d03c68e2ae306071967c3cd809ca0cc5479c0974bf9fcfc36b844c1fee23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0009-0008-8369-1228 0000-0002-8082-1145 0009-0008-4891-9098 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC12305645 |
PMID | 40740612 |
PQID | 3235031549 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12305645 proquest_miscellaneous_3235031549 pubmed_primary_40740612 crossref_primary_10_1021_acsaom_5c00038 acs_journals_10_1021_acsaom_5c00038 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-25 |
PublicationDateYYYYMMDD | 2025-07-25 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied optical materials |
PublicationTitleAlternate | ACS Appl. Opt. Mater |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref16/cit16 ref52/cit52 ref23/cit23 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref109/cit109 ref13/cit13 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 Van Renesse R. L. (ref88/cit88) 1994 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 Horspool W. M. (ref81/cit81) 2003 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 Sekkat Z. (ref3/cit3) 2002 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref90/cit90 doi: 10.1117/12.2582763 – ident: ref79/cit79 doi: 10.1038/ncomms15546 – ident: ref103/cit103 doi: 10.1038/nphoton.2009.172 – ident: ref61/cit61 doi: 10.1246/bcsj.20210348 – ident: ref60/cit60 doi: 10.1039/C5TC01776A – ident: ref67/cit67 doi: 10.1021/acs.jpcb.9b00614 – ident: ref23/cit23 doi: 10.1063/1.113541 – ident: ref16/cit16 doi: 10.1002/adma.201200698 – ident: ref97/cit97 doi: 10.1117/12.2647393 – ident: ref30/cit30 doi: 10.1515/nanoph-2018-0040 – ident: ref36/cit36 doi: 10.1063/1.4891615 – ident: ref82/cit82 doi: 10.1002/anie.201500628 – ident: ref89/cit89 doi: 10.1364/OE.25.022959 – ident: ref43/cit43 doi: 10.1021/jp7096263 – ident: ref112/cit112 doi: 10.1021/acsami.5b02080 – ident: ref24/cit24 doi: 10.1063/1.113845 – ident: ref101/cit101 doi: 10.1038/s41598-020-71567-w – ident: ref19/cit19 doi: 10.1002/advs.201801826 – ident: ref47/cit47 doi: 10.1021/am503501y – ident: ref73/cit73 doi: 10.1021/ja310323y – ident: ref62/cit62 doi: 10.1093/bulcsj/bcsj.20230219 – volume-title: Optical Document Security year: 1994 ident: ref88/cit88 – ident: ref50/cit50 doi: 10.1103/PhysRevLett.110.146102 – ident: ref4/cit4 doi: 10.1016/B978-0-12-816865-3.00010-X – ident: ref8/cit8 doi: 10.1021/ar400103r – ident: ref35/cit35 doi: 10.1007/s00339-013-7945-3 – ident: ref86/cit86 doi: 10.1364/AO.54.005252 – ident: ref45/cit45 doi: 10.1039/c0sm01164a – ident: ref17/cit17 doi: 10.1002/adma.200402080 – ident: ref92/cit92 doi: 10.1002/adom.202202245 – ident: ref52/cit52 doi: 10.1143/JJAP.47.4566 – ident: ref9/cit9 doi: 10.1103/PhysRevLett.80.89 – ident: ref58/cit58 doi: 10.1039/B200810F – ident: ref76/cit76 doi: 10.1002/macp.202100418 – ident: ref38/cit38 doi: 10.1039/C6SM00029K – ident: ref37/cit37 doi: 10.1021/jp030902x – ident: ref102/cit102 doi: 10.3390/jfb11010008 – ident: ref27/cit27 doi: 10.1139/v95-218 – ident: ref40/cit40 doi: 10.1021/acsami.9b12624 – ident: ref95/cit95 doi: 10.1002/adma.202404540 – ident: ref91/cit91 doi: 10.1364/OE.451414 – ident: ref5/cit5 doi: 10.1002/9780470439098 – ident: ref98/cit98 – ident: ref111/cit111 doi: 10.1016/j.actbio.2017.09.022 – ident: ref34/cit34 doi: 10.1063/1.1399025 – ident: ref56/cit56 doi: 10.1021/acsapm.0c00036 – ident: ref59/cit59 doi: 10.1039/C9RA02571E – ident: ref85/cit85 doi: 10.1364/OE.15.002888 – ident: ref1/cit1 doi: 10.1002/polb.23390 – ident: ref12/cit12 doi: 10.1002/1099-1581(200008/12)11:8/12<570::AID-PAT7>3.0.CO;2-K – ident: ref18/cit18 doi: 10.1002/admi.202101375 – ident: ref74/cit74 doi: 10.1021/cm900810r – ident: ref83/cit83 doi: 10.1039/C1CS15179G – ident: ref70/cit70 doi: 10.1021/nl502631s – volume-title: CRC Handbook of Organic Photochemistry and Photobiology, Volumes 1 & 2 year: 2003 ident: ref81/cit81 doi: 10.1201/9780203495902 – ident: ref108/cit108 doi: 10.1002/adom.202301597 – ident: ref11/cit11 doi: 10.1002/adma.201104826 – ident: ref65/cit65 doi: 10.1039/C9SM01853K – ident: ref80/cit80 doi: 10.1038/nature22987 – ident: ref53/cit53 doi: 10.1021/la061178n – ident: ref55/cit55 doi: 10.1021/acsphotonics.3c00387 – ident: ref72/cit72 doi: 10.1021/ja906547d – ident: ref20/cit20 doi: 10.1063/1.4978260 – ident: ref54/cit54 doi: 10.1021/la703091x – ident: ref77/cit77 doi: 10.1038/nmat4433 – ident: ref94/cit94 doi: 10.1002/adom.202300823 – ident: ref2/cit2 doi: 10.1007/s00289-012-0792-0 – ident: ref7/cit7 doi: 10.1039/C7TC05005D – ident: ref107/cit107 doi: 10.1155/2014/212637 – ident: ref42/cit42 doi: 10.1021/nl047956i – ident: ref96/cit96 doi: 10.1364/OE.24.018297 – ident: ref32/cit32 doi: 10.1364/JOSAB.15.001257 – ident: ref46/cit46 doi: 10.1088/0957-4484/23/48/485304 – volume-title: Photoreactive Organic Thin Films year: 2002 ident: ref3/cit3 – ident: ref14/cit14 doi: 10.1063/1.117292 – ident: ref21/cit21 doi: 10.1021/acsami.7b08025 – ident: ref78/cit78 doi: 10.1002/anie.201400370 – ident: ref113/cit113 doi: 10.1364/OE.542004 – ident: ref31/cit31 doi: 10.1063/1.4809640 – ident: ref6/cit6 doi: 10.1038/s41570-021-00334-w – ident: ref29/cit29 doi: 10.1063/1.5140067 – ident: ref104/cit104 doi: 10.1021/acs.jpclett.1c04219 – ident: ref71/cit71 doi: 10.1021/acs.accounts.5b00270 – ident: ref51/cit51 doi: 10.1039/D0SM00601G – ident: ref64/cit64 doi: 10.3390/ma14061454 – ident: ref75/cit75 doi: 10.1021/la050457s – ident: ref110/cit110 doi: 10.1002/anie.200805179 – ident: ref44/cit44 doi: 10.1021/am400712r – ident: ref13/cit13 doi: 10.1016/j.polymer.2013.08.058 – ident: ref15/cit15 doi: 10.1364/OE.27.025634 – ident: ref22/cit22 doi: 10.3390/molecules21121663 – ident: ref100/cit100 doi: 10.1039/C8BM00019K – ident: ref109/cit109 – ident: ref63/cit63 doi: 10.1039/D4SM00104D – ident: ref33/cit33 doi: 10.1021/jp800048a – ident: ref39/cit39 doi: 10.3390/polym15020463 – ident: ref57/cit57 doi: 10.1117/12.2555447 – ident: ref68/cit68 doi: 10.3390/pr11010129 – ident: ref106/cit106 doi: 10.1002/smll.201907626 – ident: ref49/cit49 doi: 10.1038/ncomms1996 – ident: ref25/cit25 doi: 10.1364/AO.23.004309 – ident: ref41/cit41 doi: 10.1007/s00340-020-07500-w – ident: ref48/cit48 doi: 10.1016/S0030-4018(02)01764-9 – ident: ref84/cit84 doi: 10.1021/jp8078265 – ident: ref69/cit69 doi: 10.1021/acs.jpcb.7b11644 – ident: ref26/cit26 doi: 10.1017/CBO9780511581489 – ident: ref99/cit99 doi: 10.1063/1.5097841 – ident: ref66/cit66 doi: 10.1021/acs.jpclett.7b00173 – ident: ref105/cit105 doi: 10.1364/OE.18.002913 – ident: ref28/cit28 doi: 10.1039/a902424g – ident: ref10/cit10 doi: 10.1007/s003400100596 – ident: ref93/cit93 doi: 10.1038/s41598-019-43256-w – ident: ref87/cit87 doi: 10.1364/OE.23.003614 |
SSID | ssj0003009065 |
Score | 2.3043365 |
SecondaryResourceType | review_article |
Snippet | The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a... The photomechanical response of azobenzene-polymer films to polarized light is sufficiently strong to drive micron-scale surface relief formation. With a... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1461 |
SubjectTerms | Spotlight on Applications |
Title | Photomechanical Azopolymers and Digital Polarization Optics: A Versatile Platform for Surface Microstructure Fabrication |
URI | http://dx.doi.org/10.1021/acsaom.5c00038 https://www.ncbi.nlm.nih.gov/pubmed/40740612 https://www.proquest.com/docview/3235031549 https://pubmed.ncbi.nlm.nih.gov/PMC12305645 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKvcChtAXapQ8ZFYlTlsR2Hu5tRbtClaArUSRukT1rAyokaJOVgF_fmSS7ZVmh9pJDMnZkz1j-Zsb-hrG9SNmxNESPp8EHyiU6MN76QHtIjfFJZCVdTj4-SY7O1I_z-PxvvONpBl9EBwYqU970Y2iyWCvspUjQxggEHZ7OoykSoULY1I0UaRoFOovjGUPjUhe0D0G1uA8tgcunZyQfbTrDjZYBqWq4Cumsye_-tLZ9eFhmcvzneF6zVx3y5IPWVN6wF654y9Yf8RFusrvRZVmXN45uA5Py-OCBaijcU2ybm2LMv11dUJERPiKHuLvByX_eEtXzVz7gFHzDd9eOj65NTXCY44OfTifegOPHdPivJaydThwfGjvpIoZb7Gz4_dfhUdCVZggMurR1kIAR8TiUkGROGId-B0IVnaQgYZyFGkwIEKtUQ4j-ivWoeQ8ysZlSEHnnhNxmq0VZuPeMx6Aj4UOv0fNRgNLY3huVIlaxLtK6x77glOXd0qryJmsuorydx7ybxx7bn6kzv215Op6V3J1pO8elRPkRU7hyWuVSyJiKXij857tW-_O-0O8l6CN6LFuwi7kA0XQvfimuLhu6bsQGIXH27PzXQD6wNUElhkMi0PjIVlEp7hPintp-bkz-D19uAVQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoAeyrN0eRqBxCnbxHYe5rYqrBbolpXaSr1FttemVduk2mQl6K9nJsku3VZIcMnBcRzbM5a_GXu-AXgfSTMVmujxlPWBdIkKtDc-UN6mWvskMoKCk8f7yehIfj2Oj9dgZxELg52osKWqOcT_wy4Q7WCZLi_6sW0Os-7AXUQinHI1DHYPlk4VgYghbNJH8jSNApXF8YKo8VYTtB3ZanU7uoUxb16VvLb3DB_AZNnr5srJWX9em769ukHo-B_DegibHQ5lg1ZxHsGaKx7DxjV2wifwc3JS1uWFo9hgEiUbXFFGhV_k6Wa6mLJPpz8o5QibkHncxXOy75dE_PyRDRi54rDs3LHJua4JHDN8sIP5zGvr2JiuArb0tfOZY0NtZp3_8CkcDT8f7o6CLlFDoNHArYPEah5PQ2GTzHHt0ApB4KKS1Ao7zUJldWhtLFNlQ7RejEc98FYkJpPSRt45LrZgvSgLtw0stiriPvQK7SBpsTZ-77VMEbkYFynVg3c4ZXm30Kq8OUPnUd7OY97NYw8-LKSaX7asHX-t-XYh9BwXFp2W6MKV8yoXXMSUAkPiP5-1SrBsC61gAkK8B9mKeiwrEGn36pvi9KQh70akEBKDz_N_GsgbuDc6HO_le1_2v72A-5ySD4dErfES1lFA7hUiotq8blbBb0P2CbU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaKlXlUPruQh-uWqmnbBPbebi3FXRFH9CVAIlbZE_sgoBktclKlF_fmSS7YkGV2ksOjuP4MSN_4_F8w9iHSNlCGqLH0-AD5RIdGG99oD2kxvgkspKCk_f2k90j9e04Pu7juCkWBjtRY0t168QnrZ4WvmcYiD5huakuhjG0Dq277B757Chfw2j7YHmwIhE1hG0KSZGmUaCzOF6QNd5qgrYkqFe3pFs48-Z1yWv7z3iDHS573l47ORvOGzuEqxukjv85tEfsYY9H-agToMfsjiufsPVrLIVP2eXkpGqqC0cxwrSkfHRFmRV-04k3N2XBd05_UeoRPiEzuY_r5D-nRAD9mY84Hclh2bnjk3PTEEjm-OAH85k34PgeXQnsaGznM8fHxs76c8Rn7Gj85XB7N-gTNgQGDd0mSMCIuAglJJkTxqE1ggBGJylIKLJQgwkBYpVqCNGKsR7lwYNMbKYURN45IZ-ztbIq3UvGY9CR8KHXaA8pwNr4vTcqRQRjXaT1gL3HKct7havz1pcuorybx7yfxwH7uFjZfNqxd_y15rvFwueoYOQ1MaWr5nUuhYwpFYbCf77oBGHZFlrDBIjEgGUrIrKsQOTdq2_K05OWxBsRQ0hMPpv_NJC37P5kZ5z_-Lr_fYs9EJSDOCSGjVdsDdfHvUZg1Ng3rSL8Ab5xDDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photomechanical+Azopolymers+and+Digital+Polarization+Optics%3A+A+Versatile+Platform+for+Surface+Microstructure+Fabrication&rft.jtitle=ACS+applied+optical+materials&rft.au=Strobelt%2C+Jonas&rft.au=Santer%2C+Svetlana&rft.au=Abourahma%2C+Heba&rft.au=Music%2C+Mika&rft.date=2025-07-25&rft.pub=American+Chemical+Society&rft.eissn=2771-9855&rft.volume=3&rft.issue=7&rft.spage=1461&rft.epage=1476&rft_id=info:doi/10.1021%2Facsaom.5c00038&rft.externalDocID=PMC12305645 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9855&client=summon |