A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization
Fine-resolution soil maps constitute important data for many different environmental studies. Digital soil mapping techniques represent a cost-effective method to obtain detailed information about soil types and soil properties over large areas. The main objective of the study was to extend predicti...
Saved in:
Published in | Geoderma Vol. 285; pp. 35 - 49 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fine-resolution soil maps constitute important data for many different environmental studies. Digital soil mapping techniques represent a cost-effective method to obtain detailed information about soil types and soil properties over large areas. The main objective of the study was to extend predictions from 1:25,000 legacy soil surveys (including WRB soil groups, soil depth and soil texture classes) to the larger area of Cyprus. A multiple-trees classification technique, namely Random Forest (RF), was applied. Specific objectives were: (i) to analyze the role and importance of a large data set of environmental predictors, (ii) to investigate the effect of the number of training points, forest size (ntree), the numbers of predictors sampled per node (mtry) and tree size (nodesize) in RF; (iii) to compare RF-derived maps with maps derived with a multinomial logistic regression model, in terms of validation error (test set and independent profiles) and map uncertainty, using the confusion index and a newly developed reliability index. The optimized RF model was run using half of the input points available (over a million) and with ntree equal to 350. The mtry parameter was set to 5 (close to half the number of the environmental variables used) for both soil series and soil properties. The nodesize calibration showed no relevant performance increase and was kept at its default value (1). In terms of environmental variables, the model used 10 predictors, covering all the soil formation factors considered in the scorpan formula, to derive the three maps. Soil properties, derived from geochemistry data, showed a high importance in deriving soil groups, depths and texture. Random Forest constructed a better predictive model than multinomial logistic regression, showing comparable predictive uncertainty but much lower validation error. The RF-derived maps show very low out of bag (OOB) errors (around 10% for both soil groups and soil properties) but relatively high validation error from independent profiles (45% for soil depth, 51% for soil texture). The resulting reliability index was low in the main mountainous area of Cyprus, where predictions were extrapolations as indicated by the multivariate environmental similarity surface, but medium to high in the main agricultural areas of the country.
[Display omitted]
•We created a digital soil map of Cyprus (1:25,000) using Random Forest.•We developed a reliability index to qualitatively show prediction uncertainties.•The model showed greater sensitivity to the number of input points than trees grown.•Soil geochemistry predictors had a prevalent role in identifying soil properties. |
---|---|
AbstractList | Fine-resolution soil maps constitute important data for many different environmental studies. Digital soil mapping techniques represent a cost-effective method to obtain detailed information about soil types and soil properties over large areas. The main objective of the study was to extend predictions from 1:25,000 legacy soil surveys (including WRB soil groups, soil depth and soil texture classes) to the larger area of Cyprus. A multiple-trees classification technique, namely Random Forest (RF), was applied. Specific objectives were: (i) to analyze the role and importance of a large data set of environmental predictors, (ii) to investigate the effect of the number of training points, forest size (ntree), the numbers of predictors sampled per node (mtry) and tree size (nodesize) in RF; (iii) to compare RF-derived maps with maps derived with a multinomial logistic regression model, in terms of validation error (test set and independent profiles) and map uncertainty, using the confusion index and a newly developed reliability index. The optimized RF model was run using half of the input points available (over a million) and with ntree equal to 350. The mtry parameter was set to 5 (close to half the number of the environmental variables used) for both soil series and soil properties. The nodesize calibration showed no relevant performance increase and was kept at its default value (1). In terms of environmental variables, the model used 10 predictors, covering all the soil formation factors considered in the scorpan formula, to derive the three maps. Soil properties, derived from geochemistry data, showed a high importance in deriving soil groups, depths and texture. Random Forest constructed a better predictive model than multinomial logistic regression, showing comparable predictive uncertainty but much lower validation error. The RF-derived maps show very low out of bag (OOB) errors (around 10% for both soil groups and soil properties) but relatively high validation error from independent profiles (45% for soil depth, 51% for soil texture). The resulting reliability index was low in the main mountainous area of Cyprus, where predictions were extrapolations as indicated by the multivariate environmental similarity surface, but medium to high in the main agricultural areas of the country.
[Display omitted]
•We created a digital soil map of Cyprus (1:25,000) using Random Forest.•We developed a reliability index to qualitatively show prediction uncertainties.•The model showed greater sensitivity to the number of input points than trees grown.•Soil geochemistry predictors had a prevalent role in identifying soil properties. |
Author | Zomeni, Zomenia Noller, Jay S. Bruggeman, Adriana Zissimos, Andreas M. Christoforou, Irene C. Camera, Corrado |
Author_xml | – sequence: 1 givenname: Corrado surname: Camera fullname: Camera, Corrado email: c.camera@cyi.ac.cy organization: Energy, Environment and Water Research Centre, The Cyprus Institute, Aglantzia, Lefkosia 2121, Cyprus – sequence: 2 givenname: Zomenia surname: Zomeni fullname: Zomeni, Zomenia organization: Cyprus Geological Survey, Ministry of Agriculture, Rural Development and the Environment, Strovolos, Lefkosia 2064, Cyprus – sequence: 3 givenname: Jay S. surname: Noller fullname: Noller, Jay S. organization: Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, United States – sequence: 4 givenname: Andreas M. surname: Zissimos fullname: Zissimos, Andreas M. organization: Cyprus Geological Survey, Ministry of Agriculture, Rural Development and the Environment, Strovolos, Lefkosia 2064, Cyprus – sequence: 5 givenname: Irene C. surname: Christoforou fullname: Christoforou, Irene C. organization: Cyprus Geological Survey, Ministry of Agriculture, Rural Development and the Environment, Strovolos, Lefkosia 2064, Cyprus – sequence: 6 givenname: Adriana surname: Bruggeman fullname: Bruggeman, Adriana organization: Energy, Environment and Water Research Centre, The Cyprus Institute, Aglantzia, Lefkosia 2121, Cyprus |
BookMark | eNqFkFtLwzAYhoMouE3_guQPtCZpm7ReOYYnGHiz-5Dm0GW2TUg6of56M6fXXn18h_fh41mCy9GNGoA7jHKMML0_5J12SodB5CT1OWpyhJsLsMA1IxklVXMJFihtMoYovgbLGA-pZYigBfhYw73t9jDo6PrjZN0IB-GhMzA628Np9jpCMSro93O0UvTQB-d1mGyaGxfgZvbhGB_gGirb2Skd_AQTxNuxg85PdrBf4kS-AVdG9FHf_tYV2D0_7Tav2fb95W2z3maiqIspK0um2oJJSk1RVoJoISvCCCpbRqgsFZFCGW0qIYVAZU1bKrRBhglS4qZuixWgZ6wMLsagDffBDiLMHCN-MsYP_M8YPxnjqOHJWAo-noM6PfdpdeBRWj1KrWzQcuLK2f8Q3_UvfK8 |
CitedBy_id | crossref_primary_10_1016_j_catena_2020_104810 crossref_primary_10_1016_j_geoderma_2024_116873 crossref_primary_10_3390_agronomy10040573 crossref_primary_10_1007_s10346_023_02091_x crossref_primary_10_1007_s12665_023_10919_x crossref_primary_10_1016_j_geoderma_2023_116557 crossref_primary_10_1080_23311916_2020_1779563 crossref_primary_10_3390_land12040819 crossref_primary_10_1016_j_asr_2024_04_042 crossref_primary_10_1134_S1064229323600951 crossref_primary_10_1016_j_jag_2020_102111 crossref_primary_10_1016_j_jasrep_2023_104038 crossref_primary_10_1016_j_gexplo_2018_10_005 crossref_primary_10_3390_su15118511 crossref_primary_10_1029_2023JD040335 crossref_primary_10_1016_j_catena_2017_10_002 crossref_primary_10_1016_j_geoderma_2017_10_048 crossref_primary_10_1016_j_geoderma_2020_114779 crossref_primary_10_17491_jgsi_2024_173873 crossref_primary_10_1016_j_catena_2022_106204 crossref_primary_10_1016_j_geodrs_2022_e00532 crossref_primary_10_1111_sum_12668 crossref_primary_10_1080_00758914_2021_1972609 crossref_primary_10_5091_plecevo_90511 crossref_primary_10_1016_j_catena_2020_104741 crossref_primary_10_3390_w9020093 crossref_primary_10_31857_S0032180X2360018X crossref_primary_10_5194_soil_6_35_2020 crossref_primary_10_1590_1413_7054201943015619 crossref_primary_10_1016_j_geodrs_2023_e00713 crossref_primary_10_1016_j_geodrs_2021_e00437 crossref_primary_10_17660_ActaHortic_2019_1253_49 crossref_primary_10_1016_j_biosystemseng_2022_10_011 crossref_primary_10_3390_agronomy12102375 crossref_primary_10_3390_su122410274 crossref_primary_10_1007_s12517_020_06076_1 crossref_primary_10_1016_j_geoderma_2023_116383 crossref_primary_10_5194_nhess_20_2791_2020 crossref_primary_10_3390_rs15061624 crossref_primary_10_1007_s12517_020_05576_4 crossref_primary_10_1016_j_catena_2021_105442 crossref_primary_10_1016_j_catena_2023_106932 crossref_primary_10_1016_j_scitotenv_2020_142030 crossref_primary_10_1016_j_geodrs_2022_e00584 crossref_primary_10_1016_j_catena_2020_104953 crossref_primary_10_1016_j_jhydrol_2023_129399 crossref_primary_10_3390_s22072685 crossref_primary_10_5194_hess_24_2505_2020 crossref_primary_10_1016_j_ecoser_2021_101378 crossref_primary_10_1016_j_geoderma_2020_114233 crossref_primary_10_1088_2515_7620_abf15f crossref_primary_10_1007_s10661_023_12088_7 crossref_primary_10_1016_j_geoderma_2023_116571 crossref_primary_10_1016_j_catena_2019_104149 crossref_primary_10_1590_1413_7054202145007921 crossref_primary_10_1134_S1064229320090136 crossref_primary_10_1016_j_jhydrol_2024_131352 crossref_primary_10_3390_w11051055 crossref_primary_10_5194_soil_8_587_2022 crossref_primary_10_1590_18069657rbcs20170133 crossref_primary_10_1016_j_compag_2019_03_015 crossref_primary_10_1016_j_scitotenv_2019_03_151 crossref_primary_10_1016_j_geoderma_2023_116418 crossref_primary_10_36783_18069657rbcs20190120 crossref_primary_10_1016_j_catena_2023_107677 crossref_primary_10_1016_j_jsames_2023_104640 crossref_primary_10_2139_ssrn_4143185 crossref_primary_10_1007_s10064_018_1400_9 crossref_primary_10_1016_j_geomorph_2022_108401 crossref_primary_10_1016_j_catena_2021_105258 crossref_primary_10_1038_s41598_019_50376_w crossref_primary_10_1371_journal_pone_0289286 crossref_primary_10_3390_w16131789 crossref_primary_10_1016_j_scitotenv_2021_147360 crossref_primary_10_1038_s41598_022_10159_2 crossref_primary_10_1007_s10661_023_11980_6 crossref_primary_10_1016_j_jhydrol_2022_128991 crossref_primary_10_3390_land12091680 crossref_primary_10_3390_land12071295 crossref_primary_10_3390_su16104312 crossref_primary_10_1007_s10661_023_11126_8 crossref_primary_10_3390_su12218812 crossref_primary_10_1007_s10661_021_09543_8 crossref_primary_10_1016_j_ecolind_2022_108545 crossref_primary_10_1016_j_watres_2019_114893 crossref_primary_10_1016_j_gexplo_2024_107539 crossref_primary_10_1016_j_scitotenv_2023_161973 crossref_primary_10_1080_01431161_2020_1763506 crossref_primary_10_1016_j_atmosenv_2018_07_048 crossref_primary_10_3390_agronomy12092224 crossref_primary_10_1016_j_geoderma_2019_07_005 crossref_primary_10_1111_sum_12833 crossref_primary_10_1007_s13157_023_01705_3 crossref_primary_10_3389_fenvs_2023_1213069 crossref_primary_10_1016_j_scitotenv_2018_02_204 |
Cites_doi | 10.1016/j.geoderma.2007.11.004 10.1111/j.2041-210X.2010.00036.x 10.2136/sssaj2005.0117 10.1016/j.chemgeo.2013.10.027 10.1016/j.scitotenv.2012.01.036 10.1016/j.geoderma.2008.05.008 10.1016/j.geoderma.2015.11.014 10.1016/j.envsoft.2008.02.010 10.1080/00103628809368027 10.1016/S0016-7061(97)00018-9 10.1186/1471-2105-9-307 10.1016/j.ecolmodel.2004.06.036 10.1016/j.geoderma.2013.05.029 10.1080/02693799008941555 10.1016/j.jaridenv.2012.08.004 10.1080/00103629109368465 10.1002/widm.1072 10.1144/geochem2011-111 10.1016/j.geoderma.2011.03.010 10.1016/j.apgeochem.2015.02.011 10.1016/j.geoderma.2016.02.021 10.1016/j.geoderma.2008.05.010 10.1016/j.envsoft.2014.03.004 10.1016/j.geoderma.2015.07.005 10.1016/j.geoderma.2014.04.036 10.1016/j.scitotenv.2015.07.035 10.1016/j.geoderma.2013.09.016 10.1016/j.gexplo.2014.07.004 10.18637/jss.v028.i05 10.1016/j.geoderma.2016.02.002 10.1007/s11104-010-0425-z 10.1023/A:1010933404324 10.1016/j.jas.2012.02.010 10.1016/j.geoderma.2015.07.017 10.1191/0309133303pp366ra 10.1016/j.catena.2008.12.001 10.1016/j.geoderma.2015.04.008 10.1016/0016-7061(94)00040-H 10.1186/1471-2105-8-25 10.1016/j.geoderma.2009.07.010 10.1016/S0016-7061(03)00223-4 10.1007/s10980-008-9261-4 10.1111/j.1365-2389.2012.01425.x 10.1016/j.geodrs.2014.07.001 10.1016/j.catena.2016.01.001 10.1016/j.geoderma.2009.04.023 10.2136/sssaj2011.0424 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.geoderma.2016.09.019 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 49 |
ExternalDocumentID | 10_1016_j_geoderma_2016_09_019 S0016706116304864 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 0SF 29H AAHBH AALCJ AAQXK AAXKI AAYXX ABEFU ABFNM ABXDB ADMUD ADVLN AFFNX AFJKZ AI. AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW VH1 WUQ XPP Y6R ZMT |
ID | FETCH-LOGICAL-a383t-447db37c66f345a2eac527204b726c4d2cadfef5acaa0486b6aef0f7a24198b3 |
IEDL.DBID | AIKHN |
ISSN | 0016-7061 |
IngestDate | Thu Sep 26 16:53:53 EDT 2024 Fri Feb 23 02:27:13 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Model optimization Soil landscape model Cyprus Digital soil mapping World Reference Base Random Forest |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a383t-447db37c66f345a2eac527204b726c4d2cadfef5acaa0486b6aef0f7a24198b3 |
OpenAccessLink | https://air.unimi.it/bitstream/2434/551385/4/Camera_et_al_2017b_postprint_Digital_soil_map_Cyprus.pdf |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_geoderma_2016_09_019 elsevier_sciencedirect_doi_10_1016_j_geoderma_2016_09_019 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 2017-01-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Koumis (10.1016/j.geoderma.2016.09.019_bb0220) 1970 Shary (10.1016/j.geoderma.2016.09.019_bb0375) 2008 Taghizadeh-Mehrjardi (10.1016/j.geoderma.2016.09.019_bb0430) 2015; 253 Cohen (10.1016/j.geoderma.2016.09.019_bb0080) 2012; 12 Pahlavan Rad (10.1016/j.geoderma.2016.09.019_bb0325) 2014; 232–234 Debella-Gilo (10.1016/j.geoderma.2016.09.019_bb0100) 2009; 77 Djuma (10.1016/j.geoderma.2016.09.019_bb0110) 2016 Venables (10.1016/j.geoderma.2016.09.019_bb0435) 2002 Markides (10.1016/j.geoderma.2016.09.019_bb0290) 1973 Heung (10.1016/j.geoderma.2016.09.019_bb0165) 2014; 214–215 Kempen (10.1016/j.geoderma.2016.09.019_bb0205) 2012; 76 10.1016/j.geoderma.2016.09.019_bb0190 Soteriades (10.1016/j.geoderma.2016.09.019_bb0390) 1968 Schmidt (10.1016/j.geoderma.2016.09.019_bb0360) 2008; 146 Xiong (10.1016/j.geoderma.2016.09.019_bb0445) 2014; 57 Bolstad (10.1016/j.geoderma.2016.09.019_bb0035) 1990; 4 Grivas (10.1016/j.geoderma.2016.09.019_bb0155) 1972 Barthold (10.1016/j.geoderma.2016.09.019_bb0020) 2013; 88 Kempen (10.1016/j.geoderma.2016.09.019_bb0200) 2009; 151 Camera (10.1016/j.geoderma.2016.09.019_bb0070) 2013 Peters (10.1016/j.geoderma.2016.09.019_bb0335) 2008; 23 Strobl (10.1016/j.geoderma.2016.09.019_bb0415) 2008; 9 Babechuk (10.1016/j.geoderma.2016.09.019_bb0015) 2014; 363 McBratney (10.1016/j.geoderma.2016.09.019_bb0310) 2003; 117 Panagos (10.1016/j.geoderma.2016.09.019_bb0330) 2008; 23 Stum (10.1016/j.geoderma.2016.09.019_bb0425) 2010 Heung (10.1016/j.geoderma.2016.09.019_bb0170) 2016; 265 Zissimos (10.1016/j.geoderma.2016.09.019_bb0455) 2014; 146 Boulesteix (10.1016/j.geoderma.2016.09.019_bb0040) 2012; 2 Hutchinson (10.1016/j.geoderma.2016.09.019_bb0180) 1993 Burrough (10.1016/j.geoderma.2016.09.019_bb0055) 1986 Kuhn (10.1016/j.geoderma.2016.09.019_bb0245) 2008; 28 Noller (10.1016/j.geoderma.2016.09.019_bb0320) 2009 Burrough (10.1016/j.geoderma.2016.09.019_bb0060) 1997; 77 Soteriades (10.1016/j.geoderma.2016.09.019_bb0400) 1969 Koumis (10.1016/j.geoderma.2016.09.019_bb0230) 1980 Saxton (10.1016/j.geoderma.2016.09.019_bb0355) 2006; 70 Cohen (10.1016/j.geoderma.2016.09.019_bb0085) 2011 Grimm (10.1016/j.geoderma.2016.09.019_bb0135) 2008; 146 Markides (10.1016/j.geoderma.2016.09.019_bb0300) 1985 Zomeni (10.1016/j.geoderma.2016.09.019_bb0460) 2012 Ren (10.1016/j.geoderma.2016.09.019_bb0345) 2015; 56 Yeomans (10.1016/j.geoderma.2016.09.019_bb0450) 1988; 19 Breiman (10.1016/j.geoderma.2016.09.019_bb0045) 2001; 45 Lagacherie (10.1016/j.geoderma.2016.09.019_bb0255) 2007 Grivas (10.1016/j.geoderma.2016.09.019_bb0150) 1988 IUSS Working Group WRB (10.1016/j.geoderma.2016.09.019_bb0185) 2015 Koudounas (10.1016/j.geoderma.2016.09.019_bb0210) 1978 Poggio (10.1016/j.geoderma.2016.09.019_bb0340) 2013; 209–210 Büttner (10.1016/j.geoderma.2016.09.019_bb0065) Hastie (10.1016/j.geoderma.2016.09.019_bb0160) 2009 Lagacherie (10.1016/j.geoderma.2016.09.019_bb0260) 2013 Markides (10.1016/j.geoderma.2016.09.019_bb0295) 1975 Minasny (10.1016/j.geoderma.2016.09.019_bb0315) 2016; 264 Elith (10.1016/j.geoderma.2016.09.019_bb0115) 2010; 1 Scull (10.1016/j.geoderma.2016.09.019_bb0370) 2003; 27 Allen (10.1016/j.geoderma.2016.09.019_bb0010) 1998 10.1016/j.geoderma.2016.09.019_bb0130 Lang (10.1016/j.geoderma.2016.09.019_bb0265) 2016; 263 Scull (10.1016/j.geoderma.2016.09.019_bb0365) 2005; 181 Jenny (10.1016/j.geoderma.2016.09.019_bb0195) 1941 Koumis (10.1016/j.geoderma.2016.09.019_bb0225) 1970 Soteriades (10.1016/j.geoderma.2016.09.019_bb0385) 1967 Soteriades (10.1016/j.geoderma.2016.09.019_bb0395) 1968 Koumis (10.1016/j.geoderma.2016.09.019_bb0215) 1970 Akpa (10.1016/j.geoderma.2016.09.019_bb0005) 2016; 271 Markides (10.1016/j.geoderma.2016.09.019_bb0305) 1985 Lawley (10.1016/j.geoderma.2016.09.019_bb0270) 2008 Lemercier (10.1016/j.geoderma.2016.09.019_bb0275) 2012; 171–172 Zomeni (10.1016/j.geoderma.2016.09.019_bb0465) 2013 Cohen (10.1016/j.geoderma.2016.09.019_bb0090) 2012; 420 FAO (10.1016/j.geoderma.2016.09.019_bb0125) 2006 Strobl (10.1016/j.geoderma.2016.09.019_bb0420) 2007; 8 Liaw (10.1016/j.geoderma.2016.09.019_bb0280) Robins (10.1016/j.geoderma.2016.09.019_bb0350) 2004 Diaz-Uriate (10.1016/j.geoderma.2016.09.019_bb0105) 2006; 7 Behrens (10.1016/j.geoderma.2016.09.019_bb0025) 2010; 155 Hijmans (10.1016/j.geoderma.2016.09.019_bb0175) Grinand (10.1016/j.geoderma.2016.09.019_bb0140) 2008; 143 Soteriades (10.1016/j.geoderma.2016.09.019_bb0405) 1968 Markides (10.1016/j.geoderma.2016.09.019_bb0285) 1969 Collard (10.1016/j.geoderma.2016.09.019_bb0095) 2014; 1 Koumis (10.1016/j.geoderma.2016.09.019_bb0240) 1980 Sreenivas (10.1016/j.geoderma.2016.09.019_bb0410) 2016; 269 Fall (10.1016/j.geoderma.2016.09.019_bb0120) 2012; 39 Chagas (10.1016/j.geoderma.2016.09.019_bb0075) 2016; 139 Koumis (10.1016/j.geoderma.2016.09.019_bb0235) 1980 Soon (10.1016/j.geoderma.2016.09.019_bb0380) 1991; 22 Brungard (10.1016/j.geoderma.2016.09.019_bb0050) 2015; 239–240 Bird (10.1016/j.geoderma.2016.09.019_bb0030) 2016; 543 Lagacherie (10.1016/j.geoderma.2016.09.019_bb0250) 1995; 65 Wiesmeier (10.1016/j.geoderma.2016.09.019_bb0440) 2011; 340 Grivas (10.1016/j.geoderma.2016.09.019_bb0145) 1969 |
References_xml | – volume: 143 start-page: 180 year: 2008 ident: 10.1016/j.geoderma.2016.09.019_bb0140 article-title: Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context publication-title: Geoderma doi: 10.1016/j.geoderma.2007.11.004 contributor: fullname: Grinand – year: 2011 ident: 10.1016/j.geoderma.2016.09.019_bb0085 contributor: fullname: Cohen – volume: 1 start-page: 330 year: 2010 ident: 10.1016/j.geoderma.2016.09.019_bb0115 article-title: The art of modelling range-shifting species publication-title: Methods Ecol. Evol. doi: 10.1111/j.2041-210X.2010.00036.x contributor: fullname: Elith – volume: 70 start-page: 1569 year: 2006 ident: 10.1016/j.geoderma.2016.09.019_bb0355 article-title: Soil water characteristic estimates by texture and organic matter for hydrologic solutions publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0117 contributor: fullname: Saxton – year: 1998 ident: 10.1016/j.geoderma.2016.09.019_bb0010 contributor: fullname: Allen – volume: 363 start-page: 56 year: 2014 ident: 10.1016/j.geoderma.2016.09.019_bb0015 article-title: Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2013.10.027 contributor: fullname: Babechuk – volume: 420 start-page: 250 year: 2012 ident: 10.1016/j.geoderma.2016.09.019_bb0090 article-title: Geochemical patterns in the soils of Cyprus publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.01.036 contributor: fullname: Cohen – year: 2002 ident: 10.1016/j.geoderma.2016.09.019_bb0435 contributor: fullname: Venables – volume: 239–240 start-page: 63 year: 2015 ident: 10.1016/j.geoderma.2016.09.019_bb0050 article-title: Machine learning for predicting soil series in three semi-arid landscapes publication-title: Geoderma contributor: fullname: Brungard – volume: 146 start-page: 102 year: 2008 ident: 10.1016/j.geoderma.2016.09.019_bb0135 article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island — digital soil mapping using Random Forests analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.008 contributor: fullname: Grimm – volume: 265 start-page: 62 year: 2016 ident: 10.1016/j.geoderma.2016.09.019_bb0170 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.014 contributor: fullname: Heung – volume: 23 start-page: 1207 year: 2008 ident: 10.1016/j.geoderma.2016.09.019_bb0330 article-title: Soil organic carbon content indicators and web mapping applications publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2008.02.010 contributor: fullname: Panagos – start-page: 392 year: 1993 ident: 10.1016/j.geoderma.2016.09.019_bb0180 article-title: Development of a continent-wide DEM with applications to terrain and climate analysis contributor: fullname: Hutchinson – volume: 19 start-page: 1467 year: 1988 ident: 10.1016/j.geoderma.2016.09.019_bb0450 article-title: A rapid and precise method for routine determination of organic carbon in soil publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103628809368027 contributor: fullname: Yeomans – year: 1986 ident: 10.1016/j.geoderma.2016.09.019_bb0055 contributor: fullname: Burrough – volume: 77 start-page: 115 year: 1997 ident: 10.1016/j.geoderma.2016.09.019_bb0060 article-title: Continuous classification in soil survey: spatial correlation, confusion and boundaries publication-title: Geoderma doi: 10.1016/S0016-7061(97)00018-9 contributor: fullname: Burrough – start-page: 209 year: 2013 ident: 10.1016/j.geoderma.2016.09.019_bb0260 article-title: Combining vis–NIR hyperspectral imagery and legacy measured soil profiles to map subsurface soil properties in a Mediterranean area (Cap-Bon, Tunisia) publication-title: Geoderma contributor: fullname: Lagacherie – year: 2006 ident: 10.1016/j.geoderma.2016.09.019_bb0125 contributor: fullname: FAO – volume: 9 start-page: 307 year: 2008 ident: 10.1016/j.geoderma.2016.09.019_bb0415 article-title: Conditional variable importance for random forests publication-title: BMC Bioinform. doi: 10.1186/1471-2105-9-307 contributor: fullname: Strobl – year: 1972 ident: 10.1016/j.geoderma.2016.09.019_bb0155 contributor: fullname: Grivas – volume: 181 start-page: 1 year: 2005 ident: 10.1016/j.geoderma.2016.09.019_bb0365 article-title: The application of classification tree analysis to soil type prediction in a desert landscape publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2004.06.036 contributor: fullname: Scull – year: 2009 ident: 10.1016/j.geoderma.2016.09.019_bb0160 contributor: fullname: Hastie – year: 1978 ident: 10.1016/j.geoderma.2016.09.019_bb0210 contributor: fullname: Koudounas – year: 1968 ident: 10.1016/j.geoderma.2016.09.019_bb0390 contributor: fullname: Soteriades – year: 1941 ident: 10.1016/j.geoderma.2016.09.019_bb0195 contributor: fullname: Jenny – volume: 209–210 start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2016.09.019_bb0340 article-title: Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates publication-title: Geoderma doi: 10.1016/j.geoderma.2013.05.029 contributor: fullname: Poggio – volume: 4 start-page: 399 year: 1990 ident: 10.1016/j.geoderma.2016.09.019_bb0035 article-title: Positional uncertainty in manually digitized map data publication-title: Intl. Jr. Geog. Info. doi: 10.1080/02693799008941555 contributor: fullname: Bolstad – volume: 88 start-page: 194 year: 2013 ident: 10.1016/j.geoderma.2016.09.019_bb0020 article-title: Landuse and climate control the spatial distribution of soil types in the grasslands of Inner Mongolia publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2012.08.004 contributor: fullname: Barthold – year: 2004 ident: 10.1016/j.geoderma.2016.09.019_bb0350 contributor: fullname: Robins – year: 1980 ident: 10.1016/j.geoderma.2016.09.019_bb0235 contributor: fullname: Koumis – volume: 22 start-page: 943 year: 1991 ident: 10.1016/j.geoderma.2016.09.019_bb0380 article-title: A comparison of some methods for soil organic carbon determination publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103629109368465 contributor: fullname: Soon – volume: 2 start-page: 493 year: 2012 ident: 10.1016/j.geoderma.2016.09.019_bb0040 article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics publication-title: WIREs Data Mining Knowl. Discov. doi: 10.1002/widm.1072 contributor: fullname: Boulesteix – volume: 12 start-page: 349 year: 2012 ident: 10.1016/j.geoderma.2016.09.019_bb0080 article-title: Anthropogenic versus lithological influences on soil geochemical patterns in Cyprus publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2011-111 contributor: fullname: Cohen – volume: 171–172 start-page: 75 year: 2012 ident: 10.1016/j.geoderma.2016.09.019_bb0275 article-title: Extrapolation at regional scale of local soil knowledge using boosted classification trees: a two-step approach publication-title: Geoderma doi: 10.1016/j.geoderma.2011.03.010 contributor: fullname: Lemercier – volume: 56 start-page: 80 year: 2015 ident: 10.1016/j.geoderma.2016.09.019_bb0345 article-title: Reflections of the geological characteristics of Cyprus in soil rare earth element patterns publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2015.02.011 contributor: fullname: Ren – volume: 271 start-page: 202 year: 2016 ident: 10.1016/j.geoderma.2016.09.019_bb0005 article-title: Total soil organic carbon and carbon sequestration potential in Nigeria publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.021 contributor: fullname: Akpa – year: 1970 ident: 10.1016/j.geoderma.2016.09.019_bb0225 contributor: fullname: Koumis – volume: 146 start-page: 138 year: 2008 ident: 10.1016/j.geoderma.2016.09.019_bb0360 article-title: Instance selection and classification tree analysis for large spatial datasets in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.010 contributor: fullname: Schmidt – year: 2007 ident: 10.1016/j.geoderma.2016.09.019_bb0255 contributor: fullname: Lagacherie – year: 1969 ident: 10.1016/j.geoderma.2016.09.019_bb0400 contributor: fullname: Soteriades – volume: 57 start-page: 202 year: 2014 ident: 10.1016/j.geoderma.2016.09.019_bb0445 article-title: Holistic environmental soil–landscape modeling of soil organic carbon publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.03.004 contributor: fullname: Xiong – year: 1980 ident: 10.1016/j.geoderma.2016.09.019_bb0240 contributor: fullname: Koumis – start-page: 37 year: 2013 ident: 10.1016/j.geoderma.2016.09.019_bb0465 article-title: Chapter III, Soil Resources of Cyprus contributor: fullname: Zomeni – volume: 263 start-page: 226 year: 2016 ident: 10.1016/j.geoderma.2016.09.019_bb0265 article-title: Deriving World Reference Base Reference Soil Groups from the prospective Global Soil Map product - a case study on major soil types of Africa publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.005 contributor: fullname: Lang – year: 2009 ident: 10.1016/j.geoderma.2016.09.019_bb0320 contributor: fullname: Noller – ident: 10.1016/j.geoderma.2016.09.019_bb0065 contributor: fullname: Büttner – ident: 10.1016/j.geoderma.2016.09.019_bb0130 – year: 1975 ident: 10.1016/j.geoderma.2016.09.019_bb0295 contributor: fullname: Markides – year: 1968 ident: 10.1016/j.geoderma.2016.09.019_bb0395 article-title: Soils Memoirs of Pafos, Sheet no contributor: fullname: Soteriades – year: 1973 ident: 10.1016/j.geoderma.2016.09.019_bb0290 contributor: fullname: Markides – start-page: 29 year: 2008 ident: 10.1016/j.geoderma.2016.09.019_bb0375 article-title: Models of Topography contributor: fullname: Shary – start-page: 179 year: 2010 ident: 10.1016/j.geoderma.2016.09.019_bb0425 article-title: Random Forests applied as a soil spatial predictive model in Arid Utah contributor: fullname: Stum – year: 1967 ident: 10.1016/j.geoderma.2016.09.019_bb0385 contributor: fullname: Soteriades – year: 1968 ident: 10.1016/j.geoderma.2016.09.019_bb0405 contributor: fullname: Soteriades – volume: 232–234 start-page: 97 year: 2014 ident: 10.1016/j.geoderma.2016.09.019_bb0325 article-title: Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2014.04.036 contributor: fullname: Pahlavan Rad – volume: 543 start-page: 1019 year: 2016 ident: 10.1016/j.geoderma.2016.09.019_bb0030 article-title: Modelling climate change impacts on and adaptation strategies for agriculture in Sardinia and Tunisia using AquaCrop and value-at-risk publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.07.035 contributor: fullname: Bird – year: 2013 ident: 10.1016/j.geoderma.2016.09.019_bb0070 contributor: fullname: Camera – volume: 214–215 start-page: 141 year: 2014 ident: 10.1016/j.geoderma.2016.09.019_bb0165 article-title: Predictive soil parent material mapping at a regional-scale: a Random Forest approach publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.016 contributor: fullname: Heung – year: 1985 ident: 10.1016/j.geoderma.2016.09.019_bb0300 contributor: fullname: Markides – year: 2015 ident: 10.1016/j.geoderma.2016.09.019_bb0185 article-title: World Reference Base for Soil Resources 2014, update 2015 contributor: fullname: IUSS Working Group WRB – volume: 146 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2016.09.019_bb0455 article-title: Distribution of water-soluble inorganic ions in the soils of Cyprus publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2014.07.004 contributor: fullname: Zissimos – volume: 28 start-page: 1 year: 2008 ident: 10.1016/j.geoderma.2016.09.019_bb0245 article-title: Building predictive models in R using the caret package publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i05 contributor: fullname: Kuhn – volume: 269 start-page: 160 year: 2016 ident: 10.1016/j.geoderma.2016.09.019_bb0410 article-title: Digital mapping of soil organic and inorganic carbon status in India publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.002 contributor: fullname: Sreenivas – volume: 340 start-page: 7 year: 2011 ident: 10.1016/j.geoderma.2016.09.019_bb0440 article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem publication-title: Plant Soil doi: 10.1007/s11104-010-0425-z contributor: fullname: Wiesmeier – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geoderma.2016.09.019_bb0045 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – year: 2016 ident: 10.1016/j.geoderma.2016.09.019_bb0110 article-title: Combining qualitative and quantitative methods for soil erosion assessments: an application in a sloping Mediterranean watershed, Cyprus publication-title: Land Degrad. Dev. contributor: fullname: Djuma – year: 1969 ident: 10.1016/j.geoderma.2016.09.019_bb0145 contributor: fullname: Grivas – ident: 10.1016/j.geoderma.2016.09.019_bb0175 contributor: fullname: Hijmans – year: 2012 ident: 10.1016/j.geoderma.2016.09.019_bb0460 contributor: fullname: Zomeni – year: 1969 ident: 10.1016/j.geoderma.2016.09.019_bb0285 contributor: fullname: Markides – volume: 39 start-page: 2335 year: 2012 ident: 10.1016/j.geoderma.2016.09.019_bb0120 article-title: Long-term agrarian landscapes in the Troodos foothills, Cyprus publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2012.02.010 contributor: fullname: Fall – ident: 10.1016/j.geoderma.2016.09.019_bb0280 contributor: fullname: Liaw – volume: 264 start-page: 301 year: 2016 ident: 10.1016/j.geoderma.2016.09.019_bb0315 article-title: Digital soil mapping: a brief history and some lessons publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.017 contributor: fullname: Minasny – year: 1988 ident: 10.1016/j.geoderma.2016.09.019_bb0150 article-title: Development of Land Resources in Cyprus contributor: fullname: Grivas – start-page: 173 year: 2008 ident: 10.1016/j.geoderma.2016.09.019_bb0270 article-title: Digital soil mapping at a national scale: A knowledge and GIS based approach to improving parent material and property information contributor: fullname: Lawley – volume: 7 year: 2006 ident: 10.1016/j.geoderma.2016.09.019_bb0105 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinform. contributor: fullname: Diaz-Uriate – volume: 27 start-page: 171 year: 2003 ident: 10.1016/j.geoderma.2016.09.019_bb0370 article-title: Predictive soil mapping: a review publication-title: Prog. Phys. Geogr. doi: 10.1191/0309133303pp366ra contributor: fullname: Scull – volume: 77 start-page: 8 year: 2009 ident: 10.1016/j.geoderma.2016.09.019_bb0100 article-title: Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: examples from Vestfold County, Norway publication-title: Catena doi: 10.1016/j.catena.2008.12.001 contributor: fullname: Debella-Gilo – year: 1970 ident: 10.1016/j.geoderma.2016.09.019_bb0220 contributor: fullname: Koumis – volume: 253 start-page: 67 year: 2015 ident: 10.1016/j.geoderma.2016.09.019_bb0430 article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh Region, Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2015.04.008 contributor: fullname: Taghizadeh-Mehrjardi – year: 1970 ident: 10.1016/j.geoderma.2016.09.019_bb0215 contributor: fullname: Koumis – volume: 65 start-page: 283 year: 1995 ident: 10.1016/j.geoderma.2016.09.019_bb0250 article-title: A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area publication-title: Geoderma doi: 10.1016/0016-7061(94)00040-H contributor: fullname: Lagacherie – year: 1980 ident: 10.1016/j.geoderma.2016.09.019_bb0230 contributor: fullname: Koumis – year: 1985 ident: 10.1016/j.geoderma.2016.09.019_bb0305 contributor: fullname: Markides – volume: 8 start-page: 25 year: 2007 ident: 10.1016/j.geoderma.2016.09.019_bb0420 article-title: Bias in random forest variable importance measures: illustrations, sources and a solution publication-title: BMC Bioinform. doi: 10.1186/1471-2105-8-25 contributor: fullname: Strobl – volume: 155 start-page: 175 year: 2010 ident: 10.1016/j.geoderma.2016.09.019_bb0025 article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2009.07.010 contributor: fullname: Behrens – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.geoderma.2016.09.019_bb0310 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 contributor: fullname: McBratney – volume: 23 start-page: 1049 year: 2008 ident: 10.1016/j.geoderma.2016.09.019_bb0335 article-title: Wetland vegetation distribution modelling for the identification of constraining environmental variables publication-title: Landsc. Ecol. doi: 10.1007/s10980-008-9261-4 contributor: fullname: Peters – ident: 10.1016/j.geoderma.2016.09.019_bb0190 doi: 10.1111/j.1365-2389.2012.01425.x – volume: 1 start-page: 21 year: 2014 ident: 10.1016/j.geoderma.2016.09.019_bb0095 article-title: Refining a reconnaissance soil map by calibrating regression models with data from the same map (Normandy, France) publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2014.07.001 contributor: fullname: Collard – volume: 139 start-page: 232 year: 2016 ident: 10.1016/j.geoderma.2016.09.019_bb0075 article-title: Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions publication-title: Catena doi: 10.1016/j.catena.2016.01.001 contributor: fullname: Chagas – volume: 151 start-page: 311 year: 2009 ident: 10.1016/j.geoderma.2016.09.019_bb0200 article-title: Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach publication-title: Geoderma doi: 10.1016/j.geoderma.2009.04.023 contributor: fullname: Kempen – volume: 76 start-page: 2097 issue: 6 year: 2012 ident: 10.1016/j.geoderma.2016.09.019_bb0205 article-title: Efficiency comparison of conventional and digital soil mapping for updating soil maps publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0424 contributor: fullname: Kempen |
SSID | ssj0017020 |
Score | 2.5622792 |
Snippet | Fine-resolution soil maps constitute important data for many different environmental studies. Digital soil mapping techniques represent a cost-effective method... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 35 |
SubjectTerms | Cyprus Digital soil mapping Model optimization Random Forest Soil landscape model World Reference Base |
Title | A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization |
URI | https://dx.doi.org/10.1016/j.geoderma.2016.09.019 |
Volume | 285 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED71scCAeIryqDywhjap4zRsUUVVQOpUpG6RXdtVC22iPgYWfjt3qYOKhMTAGuki67N1393Z9x3AHQmi-Do0nkb68jj1AMcmkB7SiewqbblUhdrnUAxe-fM4HFegV_bC0LNK5_t3Pr3w1u5Ly6HZymcz6vH1RYR0hBEF6cbxKtSRjjivQT15ehkMvy8TorZTZ_SFRwZ7jcJz3CaaOVZIEPmikDwl0Z3fOGqPd_rHcOQCRpbs1nQCFbM8hcNkunKiGeYM3hJGqsMMM2d3kNhC5iyzbJ3N3hlVWddMLjXL3aawnErwK9JSZRi0st5HvtquH1jC9GxKU0R2hvgT6qZiGbqVhevXPIdR_3HUG3huiIInMfnceJxHWnWiiRC2w0MZoKMN6e6VqygQE66DidTW2FBOpCQYlZDGtm0kEcu4qzoXUFtmS3MJrMt1aCXHfE4IHvtGCbTqtq0KuDRhIBvQKlFL851URlq-IZunJc4p4Zy24xRxbkBcgpv-2PQU_fkftlf_sL2Gg4DYuaik3EBts9qaW4wtNqoJ1ftPv-lO0BdUa9Do |
link.rule.ids | 315,786,790,4521,24144,27955,27956,45618,45712 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTl6YE1tEkdp2GLKqoCpVORull2bVcttIn6GFj47dwlDioSEgNrlLOiz9Z9d87dd4TcoiCKr0PjaaAvj2EPcGwC6QGdyJbSlkmVq332efeVPQ3DYYW0y14YLKt0vr_w6bm3dk_qDs16Nplgj6_PI6AjiChQN45tkW2MBrCu6-7zu87DjxpOm9HnHr6-0SY8hU3CiWO5AJHPc8FTlNz5jaE2WKdzQPZduEiT4osOScXMj8heMl44yQxzTN4SiprDFPJmd4zoTGY0tXSZTt4p3rEuqZxrmrktoRlewC9QSZVCyErbH9livbynCdWTMc4QKQxhEeyloik4lZnr1jwhg87DoN313AgFT0LqufIYi7RqRiPObZOFMgA3G-KfV6aigI-YDkZSW2NDOZISQVRcGtuwkQRij1uqeUqq83RuzghtMR1aySCb45zFvlEcrFoNqwImTRjIGqmXqImsEMoQZQXZVJQ4C8RZNGIBONdIXIIrfmy5AG_-h-35P2xvyE538NITvcf-8wXZDZCn8zuVS1JdLdbmCqKMlbrOT9EXMKPRvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high+resolution+map+of+soil+types+and+physical+properties+for+Cyprus%3A+A+digital+soil+mapping+optimization&rft.jtitle=Geoderma&rft.au=Camera%2C+Corrado&rft.au=Zomeni%2C+Zomenia&rft.au=Noller%2C+Jay+S.&rft.au=Zissimos%2C+Andreas+M.&rft.date=2017-01-01&rft.issn=0016-7061&rft.volume=285&rft.spage=35&rft.epage=49&rft_id=info:doi/10.1016%2Fj.geoderma.2016.09.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2016_09_019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |