Dark Web Exploring and Data Mining the Dark Side of the Web

The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect 'ALL' web content gene...

Full description

Saved in:
Bibliographic Details
Main Author Chen, Hsinchun
Format eBook Book Publication
LanguageEnglish
Published New York, NY Springer Nature 2011
Springer-Verlag
Springer
Springer New York
Springer Science+Business Media, LLC
Edition1. Aufl.
SeriesIntegrated Series in Information Systems
Subjects
Online AccessGet full text
ISBN1461415578
9781461415572
146141556X
9781461415565
9781489992864
1489992863
128344366X
9781283443661
ISSN1571-0270
2197-7968
DOI10.1007/978-1-4614-1557-2

Cover

Abstract The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect 'ALL' web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical sophistication) analysis, sentiment analysis, authorship analysis, and video analysis in our research. The approaches and methods developed in this project contribute to advancing the field of Intelligence and Security Informatics (ISI). Such advances will help related stakeholders to perform terrorism research and facilitate international security and peace. This monograph aims to provide an overview of the Dark Web landscape, suggest a systematic, computational approach to understanding the problems, and illustrate with selected techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team members. This work aims to provide an interdisciplinary and understandable monograph about Dark Web research along three dimensions: methodological issues in Dark Web research; database and computational techniques to support information collection and data mining; and legal, social, privacy, and data confidentiality challenges and approaches.  It will bring useful knowledge to scientists, security professionals, counterterrorism experts, and policy makers. The monograph can also serve as a reference material or textbook in graduate level courses related to information security, information policy, information assurance, information systems, terrorism, and public policy.
AbstractList This book describes the Dark Web landscape of international terrorism, suggests a systematic, computational approach to understanding its problems, and presents techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team.
The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect "ALL" web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical sophistication) analysis, sentiment analysis, authorship analysis, and video analysis in our research. The approaches and methods developed in this project contribute to advancing the field of Intelligence and Security Informatics (ISI). Such advances will help related stakeholders to perform terrorism research and facilitate international security and peace. This monograph aims to provide an overview of the Dark Web landscape, suggest a systematic, computational approach to understanding the problems, and illustrate with selected techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team members. This work aims to provide an interdisciplinary and understandable monograph about Dark Web research along three dimensions: methodological issues in Dark Web research; database and computational techniques to support information collection and data mining; and legal, social, privacy, and data confidentiality challenges and approaches.  It will bring useful knowledge to scientists, security professionals, counterterrorism experts, and policy makers. The monograph can also serve as a reference material or textbook in graduate level courses related to information security, information policy, information assurance, information systems, terrorism, and public policy.
The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect "ALL" web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical
Author Chen, Hsinchun
Author_xml – sequence: 1
  fullname: Chen, Hsinchun
BackLink https://cir.nii.ac.jp/crid/1130282268709097216$$DView record in CiNii
http://www.econis.eu/PPNSET?PPN=682095486$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
BookMark eNpNkE1P3DAQhg0FxO7CD-BEhVClHtyd8beP7UI_JKReqnK0nMSBsCFe4oWq_x6bIIQPtkbz-PE7npO9IQ6BkBOELwigl1YbilQoFBSl1JTtkDmWslRml8wYWk21VebD-8YemaHUSIFp2CdzBohWoEI8IDOtrJBKcnVIjlO6g7ykNZqLGTm88OP643Wojsh-6_sUjl_PBfn7_fLP6ie9-v3j1-rrFfXccCtoY6ugGgGNalrtbVP5HKFt0YfaVuAteFlLzVsM2ArbmAZ1zYwxGiATUvIF-TyJfVqHf-k29tvknvpQxbhOLk__NhPL7OnEhjoOXXKbsbv343-nDAMrhVGZWE5Eyr3hJoxu8iC48pvF59AVoytKV5yfphubMT48hrR1L0_XYdiOvneX31bGCGYKeD6BQ9e5uis7IofcYiqPY8FqhiXB2YTVnR-a-JZxKjljDPg7yCffZ5e7j0O8Gf3mNjkplDAS-TPKgYnL
ContentType eBook
Book
Publication
Copyright Springer Science+Business Media, LLC 2012
Copyright_xml – notice: Springer Science+Business Media, LLC 2012
DBID I4C
08O
RYH
OQ6
DEWEY 004
DOI 10.1007/978-1-4614-1557-2
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
ciando eBooks
CiNii Complete
ECONIS
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
Computer Science
EISBN 1461415578
9781461415572
EISSN 2197-7968
Edition 1. Aufl.
1
ExternalDocumentID 9781461415572
682095486
272845
EBC884282
BB1435270X
ciando322203
5464851
GroupedDBID -EI
089
0D6
0DA
0E8
20A
38.
A4J
AAPKO
ABFCL
ABFCV
ABMNI
ACBPT
ADWNV
AEJLV
AEKFX
AETDV
AEZAY
AFSBW
AIJHZ
AIMOO
ALMA_UNASSIGNED_HOLDINGS
CZZ
I4C
IEZ
MA.
MYL
PH7
PI1
SBO
TGCOT
TPJZQ
Z5O
Z7R
Z7U
Z7W
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
08O
KC
NUC
SAO
Z7S
Z7Y
AAJYQ
AATVQ
ABBUY
ABCYT
ACDTA
ACDUY
AEHEY
AHNNE
ATJMZ
RYH
OQ6
ID FETCH-LOGICAL-a38394-d9be6d40d6df7a9dba461ff1aec9b0a90a5c573f1e1f49d8d17c2888700ec9553
ISBN 1461415578
9781461415572
146141556X
9781461415565
9781489992864
1489992863
128344366X
9781283443661
ISSN 1571-0270
IngestDate Fri Nov 08 00:22:53 EST 2024
Sat Mar 08 16:59:02 EST 2025
Tue Jul 29 19:59:45 EDT 2025
Mon Apr 21 07:47:59 EDT 2025
Thu Jun 26 22:41:19 EDT 2025
Tue Jan 05 19:39:16 EST 2021
Sun May 11 05:58:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Computer Informatik
LCCN 2011941611
LCCallNum_Ident Q
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a38394-d9be6d40d6df7a9dba461ff1aec9b0a90a5c573f1e1f49d8d17c2888700ec9553
Notes Includes bibliographical references and index
OCLC 769456536
PQID EBC884282
PageCount 460
ParticipantIDs askewsholts_vlebooks_9781461415572
econis_primary_682095486
springer_books_10_1007_978_1_4614_1557_2
proquest_ebookcentral_EBC884282
nii_cinii_1130282268709097216
ciando_primary_ciando322203
casalini_monographs_5464851
PublicationCentury 2000
PublicationDate 2011
c2012
2012
2011-12-16
PublicationDateYYYYMMDD 2011-01-01
2012-01-01
2011-12-16
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: Netherlands
– name: New York ; London
– name: New York, NY
PublicationSeriesTitle Integrated Series in Information Systems
PublicationSeriesTitleAlternate Integrat.Ser.Inform.Syst.
PublicationYear 2011
2012
Publisher Springer Nature
Springer-Verlag
Springer
Springer New York
Springer Science+Business Media, LLC
Publisher_xml – name: Springer Nature
– name: Springer-Verlag
– name: Springer
– name: Springer New York
– name: Springer Science+Business Media, LLC
RelatedPersons Sharda, Ramesh
Voß, Stefan
RelatedPersons_xml – sequence: 1
  givenname: Ramesh
  surname: Sharda
  fullname: Sharda, Ramesh
  organization: Oklahoma State University, Stillwater, USA
– sequence: 2
  givenname: Stefan
  surname: Voß
  fullname: Voß, Stefan
  organization: University of Hamburg, Hamburg, Germany
SSID ssj0000598734
ssib022654842
ssib023934327
ssib018525738
Score 2.356295
Snippet The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand...
This book describes the Dark Web landscape of international terrorism, suggests a systematic, computational approach to understanding its problems, and...
SourceID askewsholts
econis
springer
proquest
nii
ciando
casalini
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Computer Science
Dark Web
Data mining
Data Mining and Knowledge Discovery
Data processing Computer science
Internet
Internet and terrorism
IT in Business
Management information systems
Operations Research/Decision Theory
University of Arizona. Artificial Intelligence Lab
World Wide Web
Subtitle Exploring and Data Mining the Dark Side of the Web
TableOfContents Intro -- Dark Web -- Preface -- About the Author -- Contents -- Part I: Research Framework: Overview and Introduction -- Part II: Dark Web Research: Computational Approach and Techniques -- Part III: Dark Web Research: Case Studies -- Index
Title Dark Web
URI http://digital.casalini.it/9781461415572
http://ebooks.ciando.com/book/index.cfm/bok_id/322203
https://cir.nii.ac.jp/crid/1130282268709097216
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=884282
http://link.springer.com/10.1007/978-1-4614-1557-2
http://www.econis.eu/PPNSET?PPN=682095486
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781461415572&uid=none
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdoubDLYIDWfYCFEEKagpzEiR1udBRVE-I0tt4sJ3a0qiNFTceBv5737DhtBxKCS9TYVv3xq19_fn4fhLwuJS59ARvJVjziRheRrOokMkLW0gJ_7aJ9fsmnX_nFLJttMjU575J1-a76-Ue_kv9BFcoAV_SS_Qdk-y-FAvgM-MITEIbnPfLbv3pwP-rV4uzalu5Ab3szOlSCo8nn2TeX9sGRSoNNMSdnsAYAubm50_dCZ9rOm-rmrtlWAThbim0VQFAB7hwNMV83kgWfieE3QbmxjYAjJLSMoKnoHBF340-Px0ipEsFmAzIQQg7Jww-Ti89XvSYLCJoUKXdec12fsxBMK4wh3Cd3IX13-twje7pdgEgHcb9ukR_oVqNbKJAC1OyYJTqBVSDioHLQzOc7h4F799eOFlw-JkN0FXlCHtjmgOyHBBm0k5cH5MQ7P9Nre1vrlaVvaChYrhZPiYMRKkv6nvYgUhgKRRCpB5ECZhRBpAgiXdauAEB8Rq4-TS7Pp1GXziLSKdBQHpmitLnhzOSmFrowpYZVqOtY26oomS6YzqpMpHVs45oXRppYVImEfwHGoEWWpc_JsFk29pBQJmo0DI7zCuggZ0lpmEH2aNMyLbTMR-TV1pqqH7fu6r1VW6CIZESOw1Ir2Bk-RHqrMp5z4OFY61ZfffdxT5R_xas5lo7IoYekr81h12P0QOj7FECC1viM8WIcSGgOsyh8qKgReRngU25YnRmymozPpYTjMAzsbUBV-XGH4NowfhUrnIHCKajk6C-dHZNHmx1zQobr1Z09BRq5Ll90v-NfpDNfgQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Dark+Web+%3A+exploring+and+data+mining+the+dark+side+of+the+web&rft.au=Chen%2C+Hsinchun&rft.date=2012-01-01&rft.pub=Springer&rft.isbn=9781461415565&rft_id=info:doi/10.1007%2F978-1-4614-1557-2&rft.externalDocID=BB1435270X
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814614%2F9781461415572.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-1-4614-1557-2