Dark Web Exploring and Data Mining the Dark Side of the Web
The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect 'ALL' web content gene...
Saved in:
Main Author | |
---|---|
Format | eBook Book Publication |
Language | English |
Published |
New York, NY
Springer Nature
2011
Springer-Verlag Springer Springer New York Springer Science+Business Media, LLC |
Edition | 1. Aufl. |
Series | Integrated Series in Information Systems |
Subjects | |
Online Access | Get full text |
ISBN | 1461415578 9781461415572 146141556X 9781461415565 9781489992864 1489992863 128344366X 9781283443661 |
ISSN | 1571-0270 2197-7968 |
DOI | 10.1007/978-1-4614-1557-2 |
Cover
Abstract | The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect 'ALL' web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical sophistication) analysis, sentiment analysis, authorship analysis, and video analysis in our research. The approaches and methods developed in this project contribute to advancing the field of Intelligence and Security Informatics (ISI). Such advances will help related stakeholders to perform terrorism research and facilitate international security and peace. This monograph aims to provide an overview of the Dark Web landscape, suggest a systematic, computational approach to understanding the problems, and illustrate with selected techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team members. This work aims to provide an interdisciplinary and understandable monograph about Dark Web research along three dimensions: methodological issues in Dark Web research; database and computational techniques to support information collection and data mining; and legal, social, privacy, and data confidentiality challenges and approaches. It will bring useful knowledge to scientists, security professionals, counterterrorism experts, and policy makers. The monograph can also serve as a reference material or textbook in graduate level courses related to information security, information policy, information assurance, information systems, terrorism, and public policy. |
---|---|
AbstractList | This book describes the Dark Web landscape of international terrorism, suggests a systematic, computational approach to understanding its problems, and presents techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team. The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect "ALL" web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical sophistication) analysis, sentiment analysis, authorship analysis, and video analysis in our research. The approaches and methods developed in this project contribute to advancing the field of Intelligence and Security Informatics (ISI). Such advances will help related stakeholders to perform terrorism research and facilitate international security and peace. This monograph aims to provide an overview of the Dark Web landscape, suggest a systematic, computational approach to understanding the problems, and illustrate with selected techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team members. This work aims to provide an interdisciplinary and understandable monograph about Dark Web research along three dimensions: methodological issues in Dark Web research; database and computational techniques to support information collection and data mining; and legal, social, privacy, and data confidentiality challenges and approaches. It will bring useful knowledge to scientists, security professionals, counterterrorism experts, and policy makers. The monograph can also serve as a reference material or textbook in graduate level courses related to information security, information policy, information assurance, information systems, terrorism, and public policy. The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect "ALL" web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical |
Author | Chen, Hsinchun |
Author_xml | – sequence: 1 fullname: Chen, Hsinchun |
BackLink | https://cir.nii.ac.jp/crid/1130282268709097216$$DView record in CiNii http://www.econis.eu/PPNSET?PPN=682095486$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften |
BookMark | eNpNkE1P3DAQhg0FxO7CD-BEhVClHtyd8beP7UI_JKReqnK0nMSBsCFe4oWq_x6bIIQPtkbz-PE7npO9IQ6BkBOELwigl1YbilQoFBSl1JTtkDmWslRml8wYWk21VebD-8YemaHUSIFp2CdzBohWoEI8IDOtrJBKcnVIjlO6g7ykNZqLGTm88OP643Wojsh-6_sUjl_PBfn7_fLP6ie9-v3j1-rrFfXccCtoY6ugGgGNalrtbVP5HKFt0YfaVuAteFlLzVsM2ArbmAZ1zYwxGiATUvIF-TyJfVqHf-k29tvknvpQxbhOLk__NhPL7OnEhjoOXXKbsbv343-nDAMrhVGZWE5Eyr3hJoxu8iC48pvF59AVoytKV5yfphubMT48hrR1L0_XYdiOvneX31bGCGYKeD6BQ9e5uis7IofcYiqPY8FqhiXB2YTVnR-a-JZxKjljDPg7yCffZ5e7j0O8Gf3mNjkplDAS-TPKgYnL |
ContentType | eBook Book Publication |
Copyright | Springer Science+Business Media, LLC 2012 |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2012 |
DBID | I4C 08O RYH OQ6 |
DEWEY | 004 |
DOI | 10.1007/978-1-4614-1557-2 |
DatabaseName | Casalini Torrossa eBooks Institutional Catalogue ciando eBooks CiNii Complete ECONIS |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Social Welfare & Social Work Computer Science |
EISBN | 1461415578 9781461415572 |
EISSN | 2197-7968 |
Edition | 1. Aufl. 1 |
ExternalDocumentID | 9781461415572 682095486 272845 EBC884282 BB1435270X ciando322203 5464851 |
GroupedDBID | -EI 089 0D6 0DA 0E8 20A 38. A4J AAPKO ABFCL ABFCV ABMNI ACBPT ADWNV AEJLV AEKFX AETDV AEZAY AFSBW AIJHZ AIMOO ALMA_UNASSIGNED_HOLDINGS CZZ I4C IEZ MA. MYL PH7 PI1 SBO TGCOT TPJZQ Z5O Z7R Z7U Z7W Z7X Z7Z Z81 Z83 Z84 Z85 Z87 Z88 08O KC NUC SAO Z7S Z7Y AAJYQ AATVQ ABBUY ABCYT ACDTA ACDUY AEHEY AHNNE ATJMZ RYH OQ6 |
ID | FETCH-LOGICAL-a38394-d9be6d40d6df7a9dba461ff1aec9b0a90a5c573f1e1f49d8d17c2888700ec9553 |
ISBN | 1461415578 9781461415572 146141556X 9781461415565 9781489992864 1489992863 128344366X 9781283443661 |
ISSN | 1571-0270 |
IngestDate | Fri Nov 08 00:22:53 EST 2024 Sat Mar 08 16:59:02 EST 2025 Tue Jul 29 19:59:45 EDT 2025 Mon Apr 21 07:47:59 EDT 2025 Thu Jun 26 22:41:19 EDT 2025 Tue Jan 05 19:39:16 EST 2021 Sun May 11 05:58:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Computer Informatik |
LCCN | 2011941611 |
LCCallNum_Ident | Q |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a38394-d9be6d40d6df7a9dba461ff1aec9b0a90a5c573f1e1f49d8d17c2888700ec9553 |
Notes | Includes bibliographical references and index |
OCLC | 769456536 |
PQID | EBC884282 |
PageCount | 460 |
ParticipantIDs | askewsholts_vlebooks_9781461415572 econis_primary_682095486 springer_books_10_1007_978_1_4614_1557_2 proquest_ebookcentral_EBC884282 nii_cinii_1130282268709097216 ciando_primary_ciando322203 casalini_monographs_5464851 |
PublicationCentury | 2000 |
PublicationDate | 2011 c2012 2012 2011-12-16 |
PublicationDateYYYYMMDD | 2011-01-01 2012-01-01 2011-12-16 |
PublicationDate_xml | – year: 2011 text: 2011 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: Netherlands – name: New York ; London – name: New York, NY |
PublicationSeriesTitle | Integrated Series in Information Systems |
PublicationSeriesTitleAlternate | Integrat.Ser.Inform.Syst. |
PublicationYear | 2011 2012 |
Publisher | Springer Nature Springer-Verlag Springer Springer New York Springer Science+Business Media, LLC |
Publisher_xml | – name: Springer Nature – name: Springer-Verlag – name: Springer – name: Springer New York – name: Springer Science+Business Media, LLC |
RelatedPersons | Sharda, Ramesh Voß, Stefan |
RelatedPersons_xml | – sequence: 1 givenname: Ramesh surname: Sharda fullname: Sharda, Ramesh organization: Oklahoma State University, Stillwater, USA – sequence: 2 givenname: Stefan surname: Voß fullname: Voß, Stefan organization: University of Hamburg, Hamburg, Germany |
SSID | ssj0000598734 ssib022654842 ssib023934327 ssib018525738 |
Score | 2.356295 |
Snippet | The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand... This book describes the Dark Web landscape of international terrorism, suggests a systematic, computational approach to understanding its problems, and... |
SourceID | askewsholts econis springer proquest nii ciando casalini |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Computer Science Dark Web Data mining Data Mining and Knowledge Discovery Data processing Computer science Internet Internet and terrorism IT in Business Management information systems Operations Research/Decision Theory University of Arizona. Artificial Intelligence Lab World Wide Web |
Subtitle | Exploring and Data Mining the Dark Side of the Web |
TableOfContents | Intro -- Dark Web -- Preface -- About the Author -- Contents -- Part I: Research Framework: Overview and Introduction -- Part II: Dark Web Research: Computational Approach and Techniques -- Part III: Dark Web Research: Case Studies -- Index |
Title | Dark Web |
URI | http://digital.casalini.it/9781461415572 http://ebooks.ciando.com/book/index.cfm/bok_id/322203 https://cir.nii.ac.jp/crid/1130282268709097216 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=884282 http://link.springer.com/10.1007/978-1-4614-1557-2 http://www.econis.eu/PPNSET?PPN=682095486 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781461415572&uid=none |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdoubDLYIDWfYCFEEKagpzEiR1udBRVE-I0tt4sJ3a0qiNFTceBv5737DhtBxKCS9TYVv3xq19_fn4fhLwuJS59ARvJVjziRheRrOokMkLW0gJ_7aJ9fsmnX_nFLJttMjU575J1-a76-Ue_kv9BFcoAV_SS_Qdk-y-FAvgM-MITEIbnPfLbv3pwP-rV4uzalu5Ab3szOlSCo8nn2TeX9sGRSoNNMSdnsAYAubm50_dCZ9rOm-rmrtlWAThbim0VQFAB7hwNMV83kgWfieE3QbmxjYAjJLSMoKnoHBF340-Px0ipEsFmAzIQQg7Jww-Ti89XvSYLCJoUKXdec12fsxBMK4wh3Cd3IX13-twje7pdgEgHcb9ukR_oVqNbKJAC1OyYJTqBVSDioHLQzOc7h4F799eOFlw-JkN0FXlCHtjmgOyHBBm0k5cH5MQ7P9Nre1vrlaVvaChYrhZPiYMRKkv6nvYgUhgKRRCpB5ECZhRBpAgiXdauAEB8Rq4-TS7Pp1GXziLSKdBQHpmitLnhzOSmFrowpYZVqOtY26oomS6YzqpMpHVs45oXRppYVImEfwHGoEWWpc_JsFk29pBQJmo0DI7zCuggZ0lpmEH2aNMyLbTMR-TV1pqqH7fu6r1VW6CIZESOw1Ir2Bk-RHqrMp5z4OFY61ZfffdxT5R_xas5lo7IoYekr81h12P0QOj7FECC1viM8WIcSGgOsyh8qKgReRngU25YnRmymozPpYTjMAzsbUBV-XGH4NowfhUrnIHCKajk6C-dHZNHmx1zQobr1Z09BRq5Ll90v-NfpDNfgQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Dark+Web+%3A+exploring+and+data+mining+the+dark+side+of+the+web&rft.au=Chen%2C+Hsinchun&rft.date=2012-01-01&rft.pub=Springer&rft.isbn=9781461415565&rft_id=info:doi/10.1007%2F978-1-4614-1557-2&rft.externalDocID=BB1435270X |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814614%2F9781461415572.jpg |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-1-4614-1557-2 |