A LuxP-FRET-Based Reporter for the Detection and Quantification of AI-2 Bacterial Quorum-Sensing Signal Compounds
Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied...
Saved in:
Published in | Biochemistry (Easton) Vol. 46; no. 13; pp. 3990 - 3997 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.04.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent. The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent K d = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed. |
---|---|
AbstractList | Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent K sub(d) = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed. Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent. The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent Kd = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed.Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent. The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent Kd = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed. Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent. The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent K d = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed. Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent. The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent Kd = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed. |
Author | Pei, Dehua Zhu, Jinge Sayre, Richard Rajamani, Sathish |
Author_xml | – sequence: 1 givenname: Sathish surname: Rajamani fullname: Rajamani, Sathish – sequence: 2 givenname: Jinge surname: Zhu fullname: Zhu, Jinge – sequence: 3 givenname: Dehua surname: Pei fullname: Pei, Dehua – sequence: 4 givenname: Richard surname: Sayre fullname: Sayre, Richard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17352493$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9PFDEUxRuDkQV98AuYvkjiQ6V_ZtqZx2UFIawR2dX41nQ6LRZn2qXtJPjtqSxiYkh8urk3v3Nu7j17YMcHbwB4TfB7gik57BzHtBKteQZmpKYYVW1b74AZxpgj2nK8C_ZSui5thUX1AuwSwWpatWwGbuZwOd1eoJPL4zU6Usn08NJsQswmQhsizD8M_GCy0dkFD5Xv4ZdJ-eys0-p-FCycnyEKj5QuGqeGAoQ4jWhlfHL-Cq7clS_TRRg3YfJ9egmeWzUk8-qh7oOvJ8frxSlafv54tpgvkWINzagnDamr1nBVi54z02Br-45ixq3qmnJkaYTmmLBe943trLaE45Y3uhEa15btg4Ot7yaGm8mkLEeXtBkG5U2YkhSYkUZU_L9g2clwW1cFfPMATt1oermJblTxl_zzzQK82wI6hpSisX8RLH8nJR-TKuzhP6x2-f6lOSo3PKlAW4VL2dw-Wqv4U3LBRC3XFyt5_p1-458WWJ4X_u2WVzrJ6zDFEkN6wvcOccGvMA |
CitedBy_id | crossref_primary_10_1016_j_bioorg_2025_108274 crossref_primary_10_1021_ac504172f crossref_primary_10_1016_j_bmc_2010_12_036 crossref_primary_10_1007_s00253_013_5121_5 crossref_primary_10_1016_j_bioorg_2019_103200 crossref_primary_10_2166_wst_2021_278 crossref_primary_10_1016_j_mimet_2010_11_017 crossref_primary_10_1021_cb7002048 crossref_primary_10_1134_S1990747815050104 crossref_primary_10_1111_j_1541_4337_2011_00150_x crossref_primary_10_1016_j_copbio_2010_01_009 crossref_primary_10_1074_jbc_M111_230227 crossref_primary_10_1016_j_bioorg_2018_12_022 crossref_primary_10_1021_acssynbio_1c00459 crossref_primary_10_3390_life3010131 crossref_primary_10_1002_cbic_201100767 crossref_primary_10_1093_femsle_fny075 crossref_primary_10_1111_j_1365_2958_2012_08010_x crossref_primary_10_1002_9780471729259_mc01c01s23 crossref_primary_10_1021_acs_orglett_2c00885 crossref_primary_10_1016_j_bmc_2011_11_007 crossref_primary_10_4315_0362_028X_71_7_1510 crossref_primary_10_1093_femsec_fiz035 crossref_primary_10_1007_s00449_013_1055_7 crossref_primary_10_1016_j_csbj_2021_03_029 crossref_primary_10_1002_biot_201300001 crossref_primary_10_1016_j_vetmic_2008_12_025 crossref_primary_10_1371_journal_pcbi_1002172 crossref_primary_10_1021_ac900824j crossref_primary_10_1371_journal_ppat_1004653 crossref_primary_10_1016_j_mimet_2012_12_023 crossref_primary_10_1016_j_mimet_2014_01_014 crossref_primary_10_1016_j_jbiotec_2018_01_009 |
Cites_doi | 10.1046/j.1365-2958.2000.01913.x 10.1128/JB.186.12.3794-3805.2004 10.1128/jb.178.22.6618-6622.1996 10.1074/jbc.M301333200 10.1146/annurev.biochem.67.1.509 10.1016/0003-9861(59)90090-6 10.1128/JB.187.1.238-248.2005 10.1128/JB.187.11.3620-3629.2005 10.1208/ps010202 10.1021/ol047695j 10.1006/jmbi.2001.4548 10.1046/j.1365-313X.1999.00526.x |
ContentType | Journal Article |
Copyright | Copyright © 2007 American Chemical Society |
Copyright_xml | – notice: Copyright © 2007 American Chemical Society |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1021/bi602479e |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Bacteriology Abstracts (Microbiology B) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 3997 |
ExternalDocumentID | 17352493 10_1021_bi602479e ark_67375_TPS_KX2V6MC0_K i63993701 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 08R 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFFNX AIDAL AJYGW ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 K78 KM L7B LG6 OHT P2P ROL TN5 UI2 UNC UQL VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 6TJ ABJNI ABQRX ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK XSW ZCA ~02 ~KM AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION CGR CUY CVF ECM EIF NPM VXZ 7QL 7T7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-a382t-d181549e6a57d63e80ffdb2036fab8520db27c6013dcd8fbfcf160968c87c05f3 |
IEDL.DBID | ACS |
ISSN | 0006-2960 |
IngestDate | Fri Jul 11 07:32:55 EDT 2025 Fri Jul 11 09:07:01 EDT 2025 Wed Feb 12 01:07:24 EST 2025 Tue Jul 01 02:05:10 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Wed Oct 30 09:27:17 EDT 2024 Thu Aug 27 13:42:06 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a382t-d181549e6a57d63e80ffdb2036fab8520db27c6013dcd8fbfcf160968c87c05f3 |
Notes | We thank NOAA/Ohio Sea Grant for the financial support. ark:/67375/TPS-KX2V6MC0-K istex:61C1549DCFA3E67F139A5E3DD709B6250A2480B0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17352493 |
PQID | 20330954 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_70318746 proquest_miscellaneous_20330954 pubmed_primary_17352493 crossref_primary_10_1021_bi602479e crossref_citationtrail_10_1021_bi602479e istex_primary_ark_67375_TPS_KX2V6MC0_K acs_journals_10_1021_bi602479e |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-03 |
PublicationDateYYYYMMDD | 2007-04-03 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-03 day: 03 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2007 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Henke J. M. (bi602479eb00003/bi602479eb00003_1) 2004; 186 Givskov M. (bi602479eb00037/bi602479eb00037_1) 1996; 178 Bassler B. L. (bi602479eb00001/bi602479eb00001_1) 2006 Fehr M. (bi602479eb00019/bi602479eb00019_1) 2003; 278 Zukin R. S. (bi602479eb00017/bi602479eb00017_1) 1936 Miller M. B. (bi602479eb00004/bi602479eb00004_1) 2002 Fehr M. (bi602479eb00018/bi602479eb00018_1) 2002 Teplitski M. (bi602479eb00034/bi602479eb00034_1) 2000 Henke J. M. (bi602479eb00009/bi602479eb00009_1) 2004; 186 Chen X. (bi602479eb00012/bi602479eb00012_1) 2002 Felder C. B. (bi602479eb00014/bi602479eb00014_1) 1999; 1 Neiditch M. B. (bi602479eb00006/bi602479eb00006_1) 2005 Teplitski M. (bi602479eb00035/bi602479eb00035_1) 2004 Fuhrmann M. (bi602479eb00021/bi602479eb00021_1) 1999; 19 Abbreviations QS (bi602479en00001/bi602479en00001_1) Shilton B. H. (bi602479eb00015/bi602479eb00015_1) 1996; 264 Mok K. C. (bi602479eb00010/bi602479eb00010_1) 2003; 22 Lilley B. N. (bi602479eb00007/bi602479eb00007_1) 2000; 36 de Lorimier R. M. (bi602479eb00013/bi602479eb00013_1) 2002 Zhu J. (bi602479eb00024/bi602479eb00024_1) 2003 Kim S. Y. (bi602479eb00031/bi602479eb00031_1) 2003 Bassler B. L. (bi602479eb00020/bi602479eb00020_1) 1994 Zacharias D. A. (bi602479eb00023/bi602479eb00023_1) 2002 Ellman G. L. (bi602479eb00026/bi602479eb00026_1) 1959; 82 Miller M. B. (bi602479eb00002/bi602479eb00002_1) 2001; 55 Bassler B. L. (bi602479eb00008/bi602479eb00008_1) 1993 Semmelhack M. F. (bi602479eb00027/bi602479eb00027_1) 2005; 7 Surette M. G. (bi602479eb00028/bi602479eb00028_1) 1998 DeKeersmaecker S. C. J. (bi602479eb00029/bi602479eb00029_1) 2003 Zukin R. S. (bi602479eb00016/bi602479eb00016_1) 1979 Versees W. (bi602479eb00025/bi602479eb00025_1) 2001; 307 Lupp C. (bi602479eb00005/bi602479eb00005_1) 2005; 187 Turovskiy Y. (bi602479eb00030/bi602479eb00030_1) 2006 Tsien R. Y. (bi602479eb00022/bi602479eb00022_1) 1998; 67 Surette M. G. (bi602479eb00032/bi602479eb00032_1) 1998 Xavier K. B. (bi602479eb00033/bi602479eb00033_1) 2005; 187 Miller S. T. (bi602479eb00011/bi602479eb00011_1) 2004 Smith K. M. (bi602479eb00036/bi602479eb00036_1) 2003 |
References_xml | – volume-title: Science 296, 913−916. year: 2002 ident: bi602479eb00023/bi602479eb00023_1 – volume-title: Biochemistry 42, 4717−4726. year: 2003 ident: bi602479eb00024/bi602479eb00024_1 – volume: 36 start-page: 940 year: 2000 ident: bi602479eb00007/bi602479eb00007_1 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2000.01913.x – volume: 186 start-page: 3794 year: 2004 ident: bi602479eb00009/bi602479eb00009_1 publication-title: J. Bacteriol. doi: 10.1128/JB.186.12.3794-3805.2004 – volume-title: Mol. Microbiol. 9, 773−786. year: 1993 ident: bi602479eb00008/bi602479eb00008_1 – volume: 22 year: 2003 ident: bi602479eb00010/bi602479eb00010_1 publication-title: EMBO J. – volume-title: Nature 415, 545−549. year: 2002 ident: bi602479eb00012/bi602479eb00012_1 – volume: 178 year: 1996 ident: bi602479eb00037/bi602479eb00037_1 publication-title: J. Bacteriol. doi: 10.1128/jb.178.22.6618-6622.1996 – volume: 278 year: 2003 ident: bi602479eb00019/bi602479eb00019_1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301333200 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 95 year: 1998 ident: bi602479eb00028/bi602479eb00028_1 – volume: 67 year: 1998 ident: bi602479eb00022/bi602479eb00022_1 publication-title: Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.509 – volume-title: quorum sensing ident: bi602479en00001/bi602479en00001_1 – volume: 82 start-page: 77 year: 1959 ident: bi602479eb00026/bi602479eb00026_1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(59)90090-6 – volume-title: Protein Sci. 11, 2655−2675. year: 2002 ident: bi602479eb00013/bi602479eb00013_1 – volume-title: Mol. Microbiol. 13, 273−286. year: 1994 ident: bi602479eb00020/bi602479eb00020_1 – volume: 55 year: 2001 ident: bi602479eb00002/bi602479eb00002_1 publication-title: Rev. Microbiol. – volume-title: Cell 110, 303−314. year: 2002 ident: bi602479eb00004/bi602479eb00004_1 – volume-title: Mol. Cell 15, 677−687. year: 2004 ident: bi602479eb00011/bi602479eb00011_1 – volume-title: Mol. Cell 18, 507−518. year: 2005 ident: bi602479eb00006/bi602479eb00006_1 – volume-title: Chem. Biol. 10, 563−571. year: 2003 ident: bi602479eb00036/bi602479eb00036_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 74, 1932 year: 1936 ident: bi602479eb00017/bi602479eb00017_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 99 year: 2002 ident: bi602479eb00018/bi602479eb00018_1 – volume: 187 year: 2005 ident: bi602479eb00033/bi602479eb00033_1 publication-title: J. Bacteriol. doi: 10.1128/JB.187.1.238-248.2005 – volume-title: Microbiology 149 year: 2003 ident: bi602479eb00029/bi602479eb00029_1 – volume: 187 year: 2005 ident: bi602479eb00005/bi602479eb00005_1 publication-title: J. Bacteriol. doi: 10.1128/JB.187.11.3620-3629.2005 – volume: 1 start-page: E2 year: 1999 ident: bi602479eb00014/bi602479eb00014_1 publication-title: AAPS PharmSci doi: 10.1208/ps010202 – volume-title: Mol. Plant-Microbe Interact. 13, 637−648. year: 2000 ident: bi602479eb00034/bi602479eb00034_1 – volume: 7 year: 2005 ident: bi602479eb00027/bi602479eb00027_1 publication-title: Org. Lett. doi: 10.1021/ol047695j – volume: 186 year: 2004 ident: bi602479eb00003/bi602479eb00003_1 publication-title: J. Bacteriol. – volume-title: J. Microbiol. Methods. year: 2006 ident: bi602479eb00030/bi602479eb00030_1 – volume-title: Cell 125, 237−246. year: 2006 ident: bi602479eb00001/bi602479eb00001_1 – volume: 307 year: 2001 ident: bi602479eb00025/bi602479eb00025_1 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4548 – volume: 264 year: 1996 ident: bi602479eb00015/bi602479eb00015_1 publication-title: J. Mol. Biol. – volume-title: Biochemistry 18, 5599−5605. year: 1979 ident: bi602479eb00016/bi602479eb00016_1 – volume-title: Mol. Microbiol. 48, 1647−1664. year: 2003 ident: bi602479eb00031/bi602479eb00031_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 95 year: 1998 ident: bi602479eb00032/bi602479eb00032_1 – volume: 19 year: 1999 ident: bi602479eb00021/bi602479eb00021_1 publication-title: Plant J. doi: 10.1046/j.1365-313X.1999.00526.x – volume-title: Plant Physiol. 134, 137−146. year: 2004 ident: bi602479eb00035/bi602479eb00035_1 |
SSID | ssj0004074 |
Score | 2.047749 |
Snippet | Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent... |
SourceID | proquest pubmed crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3990 |
SubjectTerms | Bacterial Proteins - chemistry Biosensing Techniques - methods Fluorescence Resonance Energy Transfer Green Fluorescent Proteins - chemistry Homoserine - analogs & derivatives Homoserine - analysis Lactones - analysis Signal Transduction Vibrio harveyi |
Title | A LuxP-FRET-Based Reporter for the Detection and Quantification of AI-2 Bacterial Quorum-Sensing Signal Compounds |
URI | http://dx.doi.org/10.1021/bi602479e https://api.istex.fr/ark:/67375/TPS-KX2V6MC0-K/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/17352493 https://www.proquest.com/docview/20330954 https://www.proquest.com/docview/70318746 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9RAEJ8gPOiLIPhxiLhRQ3xZ6O222-XxOLigiAHvMPfW7CchaE_v2gT9653tx6GR08cm02a6M9v5TWf2NwBvuNTMMu6p96mhsVaSKqFjmviuS0LpSrFwGvn0ozi-iN-Pk_ESvF5QwWfdPX0lMI6k--4erDCBmzfgn_7w9vBj1FAtY2rMEI-39EG_3xpCj5n9EXpWwireLMaVVXwZrMJhe0qnbiu53i0LvWt-_k3a-C_V1-Bhgy9Jr3aIR7Dk8nXY6OWYW3_9QXZI1fFZ_Upfh_v9dtrbBnzvkQ_lzRkdfDoa0QMMbZbU2NxNCeJagjiRHLqiatzKicotOS9V3WhU2ZZMPOm9o4wc1PTPqMN5GYge6DC0yOeXZHh1GTQLH6Awymn2GC4GR6P-MW3GMVDFJSuoRTCA2aQTKkmt4E5G3lsdCpleaZmwCC9Sgwket8ZKr73xXYEZkjQyNVHi-RNYzie5ewYkNtJwnVjtYxOGseOjVGq18sYIrRPVgW20V9Zsp1lWVcpZN5svaAfetqbMTENmHmZqfLlL9NVc9FvN4HGX0E7lD3MJNb0OLW9pko3OhtnJmH0Wp_0oO-nAy9ZhMrRQqK6o3E3KWYYLwRGvxoslwqgAmcaiA09rT7vVJ0UcHO_zzf-993N4UP9cjmnEt2C5mJbuBaKiQm9Xu-IXIXQFmQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELZaONBLH9BH-gCrqlAvho29D3NcUqLQJAiaUOVm-YkQZUOzWYn213fs3SRtBWqPK81aY3u8883O-BuEPjCuqKHMEecyTWIlOZGpikni2jbxqStJ_W3k4UnaO48_T5JJQ5Pj78KAEiWMVIYk_opdoL2vLlNwJ9mBfYjWAYRQb815Z7S6Axk1jMsQIVOA5QsWod9f9R5Il394oHW_mLf3w8vgZrpP6n5FQcFQXXK1V83Vnv75F3fj_83gKXrcoE2c1-bxDD2wxSbayguItK9_4F0c6j_Dj_VNtNFZ9H7bQt9zPKhuT0n3y9GYHIKjM7hG6naGAeViQI34k52HMq4Cy8Lgs0rWZUdhp_HU4fyYUHxYk0GDDmeVp30gI18wX1zg0eWF18x_jnxjp_I5Ou8ejTs90jRnIJJxOicGoAHEljaVSWZSZnnknFE-remk4gmN4CHTEO4xow13ymnXTiFe4ppnOkoce4HWimlhXyEca66ZSoxysfat2WEomRklndapUolsoW1YT9EcrlKEvDlti-WCttDHxY4K3VCb-w4b3-4Sfb8Uvan5PO4S2g1msZSQsytfAJclYnw6Ev0J_ZoOO5Hot9DOwm4E7JDPtcjCTqtSwEIwQK_x_RK-cQDP4rSFXtYGt9InA1QcH7DX_5r3DtrojYcDMTg-6b9Bj-rfzjGJ2Fu0Np9V9h3gpbnaDgflF9mYDfo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEG8UEuXFD1A5P6AxhvhS3Gv3ozwuBxfwAA_vMPfW9JMQdA9vdxP0r3fa3TvUQPRxk9lm2k53frMz_Q1C7xhX1FDmiHOZJrGSnMhUxSRxXZv41JWk_jby8Ul6cBZ_nCSTNlD0d2FAiRJGKkMS35_qK-NahoHuB3WRgkvJdux9tOzTdd6i897o5h5k1LIuQ5RMAZrPmYR-f9V7IV3-4YWW_YJe3w0xg6vpP0afFkqGCpPL7bpS2_rnX_yN_z-LJ-hRizpx3pjJU3TPFqtoLS8g4v72A2_hUAcafrCvooe9eQ-4NfQ9x0f19ZD0P--PyS44PIMbxG5nGNAuBvSI92wVyrkKLAuDT2vZlB-FHcdTh_NDQvFuQwoNOpzWnv6BjHzhfHGORxfnXjP_WfINnspn6Ky_P-4dkLZJA5GM04oYgAgQY9pUJplJmeWRc0b59KaTiic0godMQ9jHjDbcKaddN4W4iWue6Shx7DlaKqaFXUc41lwzlRjlYu1btMNQMjNKOq1TpRLZQRuwpqI9ZKUI-XPaFYsF7aD3810VuqU49502vt4m-nYhetXwetwmtBVMYyEhZ5e-EC5LxHg4EoMJ_ZIe9yIx6KDNue0I2CGfc5GFndalgIVggGLjuyV8AwGexWkHvWiM7kafDNBxvMNe_mvem-jBcK8vjg5PBq_QSvP3OSYRe42Wqllt3wBsqtRGOCu_AKDuEH0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+LuxP-FRET-Based+Reporter+for+the+Detection+and+Quantification+of+AI-2+Bacterial+Quorum-Sensing+Signal+Compounds&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Rajamani%2C+Sathish&rft.au=Zhu%2C+Jinge&rft.au=Pei%2C+Dehua&rft.au=Sayre%2C+Richard&rft.date=2007-04-03&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=46&rft.issue=13&rft.spage=3990&rft.epage=3997&rft_id=info:doi/10.1021%2Fbi602479e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_bi602479e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |