A LuxP-FRET-Based Reporter for the Detection and Quantification of AI-2 Bacterial Quorum-Sensing Signal Compounds

Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 46; no. 13; pp. 3990 - 3997
Main Authors Rajamani, Sathish, Zhu, Jinge, Pei, Dehua, Sayre, Richard
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.04.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent. The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent K d = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed.
AbstractList Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent K sub(d) = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed.
Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent. The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent Kd = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed.Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent. The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent Kd = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed.
Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent. The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent K d = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed.
Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent manner. This process is known as quorum sensing (QS). To date, the detection of QS signaling molecules from Gram-negative bacteria has relied primarily on bacterial reporter strains. These bioassays are subject to substantial interference by compounds that affect the growth and metabolism of the reporter strains. In addition, the sensitivity of reporter strains to QS signaling molecules is population density-dependent. Here, we describe the development of an in vitro assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer 2 (AI-2), QS molecules. The sensor is based on ligand binding-induced changes in fluorescence resonance energy transfer (FRET) between a cyan and yellow variant of GFP fused to the termini of the BAI-2 receptor, LuxP. Unexpectedly, the addition of synthetic BAI-2 to the purified biosensor induces a decrease in the level of FRET between the terminal fluorophores. Several lines of evidence, including mutation of the ligand binding sites, indicate that the observed FRET changes are BAI-2-dependent. The FRET-based BAI-2 biosensor responded to the addition of culture filtrates from wild-type Vibrio harveyi but exhibited no response to culture filtrates from V. harveyi mutants defective in BAI-2 synthesis. The sensitivity of the biosensor to BAI-2 (apparent Kd = 270 nM) was similar to that of BAI-2 bioassay systems. The limitations of microbial bioassay systems and the advantages and potential applications for the FRET-based BAI-2 biosensor are discussed.
Author Pei, Dehua
Zhu, Jinge
Sayre, Richard
Rajamani, Sathish
Author_xml – sequence: 1
  givenname: Sathish
  surname: Rajamani
  fullname: Rajamani, Sathish
– sequence: 2
  givenname: Jinge
  surname: Zhu
  fullname: Zhu, Jinge
– sequence: 3
  givenname: Dehua
  surname: Pei
  fullname: Pei, Dehua
– sequence: 4
  givenname: Richard
  surname: Sayre
  fullname: Sayre, Richard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17352493$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9PFDEUxRuDkQV98AuYvkjiQ6V_ZtqZx2UFIawR2dX41nQ6LRZn2qXtJPjtqSxiYkh8urk3v3Nu7j17YMcHbwB4TfB7gik57BzHtBKteQZmpKYYVW1b74AZxpgj2nK8C_ZSui5thUX1AuwSwWpatWwGbuZwOd1eoJPL4zU6Usn08NJsQswmQhsizD8M_GCy0dkFD5Xv4ZdJ-eys0-p-FCycnyEKj5QuGqeGAoQ4jWhlfHL-Cq7clS_TRRg3YfJ9egmeWzUk8-qh7oOvJ8frxSlafv54tpgvkWINzagnDamr1nBVi54z02Br-45ixq3qmnJkaYTmmLBe943trLaE45Y3uhEa15btg4Ot7yaGm8mkLEeXtBkG5U2YkhSYkUZU_L9g2clwW1cFfPMATt1oermJblTxl_zzzQK82wI6hpSisX8RLH8nJR-TKuzhP6x2-f6lOSo3PKlAW4VL2dw-Wqv4U3LBRC3XFyt5_p1-458WWJ4X_u2WVzrJ6zDFEkN6wvcOccGvMA
CitedBy_id crossref_primary_10_1016_j_bioorg_2025_108274
crossref_primary_10_1021_ac504172f
crossref_primary_10_1016_j_bmc_2010_12_036
crossref_primary_10_1007_s00253_013_5121_5
crossref_primary_10_1016_j_bioorg_2019_103200
crossref_primary_10_2166_wst_2021_278
crossref_primary_10_1016_j_mimet_2010_11_017
crossref_primary_10_1021_cb7002048
crossref_primary_10_1134_S1990747815050104
crossref_primary_10_1111_j_1541_4337_2011_00150_x
crossref_primary_10_1016_j_copbio_2010_01_009
crossref_primary_10_1074_jbc_M111_230227
crossref_primary_10_1016_j_bioorg_2018_12_022
crossref_primary_10_1021_acssynbio_1c00459
crossref_primary_10_3390_life3010131
crossref_primary_10_1002_cbic_201100767
crossref_primary_10_1093_femsle_fny075
crossref_primary_10_1111_j_1365_2958_2012_08010_x
crossref_primary_10_1002_9780471729259_mc01c01s23
crossref_primary_10_1021_acs_orglett_2c00885
crossref_primary_10_1016_j_bmc_2011_11_007
crossref_primary_10_4315_0362_028X_71_7_1510
crossref_primary_10_1093_femsec_fiz035
crossref_primary_10_1007_s00449_013_1055_7
crossref_primary_10_1016_j_csbj_2021_03_029
crossref_primary_10_1002_biot_201300001
crossref_primary_10_1016_j_vetmic_2008_12_025
crossref_primary_10_1371_journal_pcbi_1002172
crossref_primary_10_1021_ac900824j
crossref_primary_10_1371_journal_ppat_1004653
crossref_primary_10_1016_j_mimet_2012_12_023
crossref_primary_10_1016_j_mimet_2014_01_014
crossref_primary_10_1016_j_jbiotec_2018_01_009
Cites_doi 10.1046/j.1365-2958.2000.01913.x
10.1128/JB.186.12.3794-3805.2004
10.1128/jb.178.22.6618-6622.1996
10.1074/jbc.M301333200
10.1146/annurev.biochem.67.1.509
10.1016/0003-9861(59)90090-6
10.1128/JB.187.1.238-248.2005
10.1128/JB.187.11.3620-3629.2005
10.1208/ps010202
10.1021/ol047695j
10.1006/jmbi.2001.4548
10.1046/j.1365-313X.1999.00526.x
ContentType Journal Article
Copyright Copyright © 2007 American Chemical Society
Copyright_xml – notice: Copyright © 2007 American Chemical Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1021/bi602479e
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Bacteriology Abstracts (Microbiology B)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 3997
ExternalDocumentID 17352493
10_1021_bi602479e
ark_67375_TPS_KX2V6MC0_K
i63993701
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
08R
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFNX
AIDAL
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
K78
KM
L7B
LG6
OHT
P2P
ROL
TN5
UI2
UNC
UQL
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
6TJ
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
XSW
ZCA
~02
~KM
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7QL
7T7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-a382t-d181549e6a57d63e80ffdb2036fab8520db27c6013dcd8fbfcf160968c87c05f3
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Fri Jul 11 07:32:55 EDT 2025
Fri Jul 11 09:07:01 EDT 2025
Wed Feb 12 01:07:24 EST 2025
Tue Jul 01 02:05:10 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
Wed Oct 30 09:27:17 EDT 2024
Thu Aug 27 13:42:06 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a382t-d181549e6a57d63e80ffdb2036fab8520db27c6013dcd8fbfcf160968c87c05f3
Notes We thank NOAA/Ohio Sea Grant for the financial support.
ark:/67375/TPS-KX2V6MC0-K
istex:61C1549DCFA3E67F139A5E3DD709B6250A2480B0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17352493
PQID 20330954
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_70318746
proquest_miscellaneous_20330954
pubmed_primary_17352493
crossref_primary_10_1021_bi602479e
crossref_citationtrail_10_1021_bi602479e
istex_primary_ark_67375_TPS_KX2V6MC0_K
acs_journals_10_1021_bi602479e
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-03
PublicationDateYYYYMMDD 2007-04-03
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-03
  day: 03
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2007
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Henke J. M. (bi602479eb00003/bi602479eb00003_1) 2004; 186
Givskov M. (bi602479eb00037/bi602479eb00037_1) 1996; 178
Bassler B. L. (bi602479eb00001/bi602479eb00001_1) 2006
Fehr M. (bi602479eb00019/bi602479eb00019_1) 2003; 278
Zukin R. S. (bi602479eb00017/bi602479eb00017_1) 1936
Miller M. B. (bi602479eb00004/bi602479eb00004_1) 2002
Fehr M. (bi602479eb00018/bi602479eb00018_1) 2002
Teplitski M. (bi602479eb00034/bi602479eb00034_1) 2000
Henke J. M. (bi602479eb00009/bi602479eb00009_1) 2004; 186
Chen X. (bi602479eb00012/bi602479eb00012_1) 2002
Felder C. B. (bi602479eb00014/bi602479eb00014_1) 1999; 1
Neiditch M. B. (bi602479eb00006/bi602479eb00006_1) 2005
Teplitski M. (bi602479eb00035/bi602479eb00035_1) 2004
Fuhrmann M. (bi602479eb00021/bi602479eb00021_1) 1999; 19
Abbreviations QS (bi602479en00001/bi602479en00001_1)
Shilton B. H. (bi602479eb00015/bi602479eb00015_1) 1996; 264
Mok K. C. (bi602479eb00010/bi602479eb00010_1) 2003; 22
Lilley B. N. (bi602479eb00007/bi602479eb00007_1) 2000; 36
de Lorimier R. M. (bi602479eb00013/bi602479eb00013_1) 2002
Zhu J. (bi602479eb00024/bi602479eb00024_1) 2003
Kim S. Y. (bi602479eb00031/bi602479eb00031_1) 2003
Bassler B. L. (bi602479eb00020/bi602479eb00020_1) 1994
Zacharias D. A. (bi602479eb00023/bi602479eb00023_1) 2002
Ellman G. L. (bi602479eb00026/bi602479eb00026_1) 1959; 82
Miller M. B. (bi602479eb00002/bi602479eb00002_1) 2001; 55
Bassler B. L. (bi602479eb00008/bi602479eb00008_1) 1993
Semmelhack M. F. (bi602479eb00027/bi602479eb00027_1) 2005; 7
Surette M. G. (bi602479eb00028/bi602479eb00028_1) 1998
DeKeersmaecker S. C. J. (bi602479eb00029/bi602479eb00029_1) 2003
Zukin R. S. (bi602479eb00016/bi602479eb00016_1) 1979
Versees W. (bi602479eb00025/bi602479eb00025_1) 2001; 307
Lupp C. (bi602479eb00005/bi602479eb00005_1) 2005; 187
Turovskiy Y. (bi602479eb00030/bi602479eb00030_1) 2006
Tsien R. Y. (bi602479eb00022/bi602479eb00022_1) 1998; 67
Surette M. G. (bi602479eb00032/bi602479eb00032_1) 1998
Xavier K. B. (bi602479eb00033/bi602479eb00033_1) 2005; 187
Miller S. T. (bi602479eb00011/bi602479eb00011_1) 2004
Smith K. M. (bi602479eb00036/bi602479eb00036_1) 2003
References_xml – volume-title: Science 296, 913−916.
  year: 2002
  ident: bi602479eb00023/bi602479eb00023_1
– volume-title: Biochemistry 42, 4717−4726.
  year: 2003
  ident: bi602479eb00024/bi602479eb00024_1
– volume: 36
  start-page: 940
  year: 2000
  ident: bi602479eb00007/bi602479eb00007_1
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.01913.x
– volume: 186
  start-page: 3794
  year: 2004
  ident: bi602479eb00009/bi602479eb00009_1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.12.3794-3805.2004
– volume-title: Mol. Microbiol. 9, 773−786.
  year: 1993
  ident: bi602479eb00008/bi602479eb00008_1
– volume: 22
  year: 2003
  ident: bi602479eb00010/bi602479eb00010_1
  publication-title: EMBO J.
– volume-title: Nature 415, 545−549.
  year: 2002
  ident: bi602479eb00012/bi602479eb00012_1
– volume: 178
  year: 1996
  ident: bi602479eb00037/bi602479eb00037_1
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.178.22.6618-6622.1996
– volume: 278
  year: 2003
  ident: bi602479eb00019/bi602479eb00019_1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M301333200
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 95
  year: 1998
  ident: bi602479eb00028/bi602479eb00028_1
– volume: 67
  year: 1998
  ident: bi602479eb00022/bi602479eb00022_1
  publication-title: Rev. Biochem.
  doi: 10.1146/annurev.biochem.67.1.509
– volume-title: quorum sensing
  ident: bi602479en00001/bi602479en00001_1
– volume: 82
  start-page: 77
  year: 1959
  ident: bi602479eb00026/bi602479eb00026_1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(59)90090-6
– volume-title: Protein Sci. 11, 2655−2675.
  year: 2002
  ident: bi602479eb00013/bi602479eb00013_1
– volume-title: Mol. Microbiol. 13, 273−286.
  year: 1994
  ident: bi602479eb00020/bi602479eb00020_1
– volume: 55
  year: 2001
  ident: bi602479eb00002/bi602479eb00002_1
  publication-title: Rev. Microbiol.
– volume-title: Cell 110, 303−314.
  year: 2002
  ident: bi602479eb00004/bi602479eb00004_1
– volume-title: Mol. Cell 15, 677−687.
  year: 2004
  ident: bi602479eb00011/bi602479eb00011_1
– volume-title: Mol. Cell 18, 507−518.
  year: 2005
  ident: bi602479eb00006/bi602479eb00006_1
– volume-title: Chem. Biol. 10, 563−571.
  year: 2003
  ident: bi602479eb00036/bi602479eb00036_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 74, 1932
  year: 1936
  ident: bi602479eb00017/bi602479eb00017_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 99
  year: 2002
  ident: bi602479eb00018/bi602479eb00018_1
– volume: 187
  year: 2005
  ident: bi602479eb00033/bi602479eb00033_1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.1.238-248.2005
– volume-title: Microbiology 149
  year: 2003
  ident: bi602479eb00029/bi602479eb00029_1
– volume: 187
  year: 2005
  ident: bi602479eb00005/bi602479eb00005_1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.11.3620-3629.2005
– volume: 1
  start-page: E2
  year: 1999
  ident: bi602479eb00014/bi602479eb00014_1
  publication-title: AAPS PharmSci
  doi: 10.1208/ps010202
– volume-title: Mol. Plant-Microbe Interact. 13, 637−648.
  year: 2000
  ident: bi602479eb00034/bi602479eb00034_1
– volume: 7
  year: 2005
  ident: bi602479eb00027/bi602479eb00027_1
  publication-title: Org. Lett.
  doi: 10.1021/ol047695j
– volume: 186
  year: 2004
  ident: bi602479eb00003/bi602479eb00003_1
  publication-title: J. Bacteriol.
– volume-title: J. Microbiol. Methods.
  year: 2006
  ident: bi602479eb00030/bi602479eb00030_1
– volume-title: Cell 125, 237−246.
  year: 2006
  ident: bi602479eb00001/bi602479eb00001_1
– volume: 307
  year: 2001
  ident: bi602479eb00025/bi602479eb00025_1
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4548
– volume: 264
  year: 1996
  ident: bi602479eb00015/bi602479eb00015_1
  publication-title: J. Mol. Biol.
– volume-title: Biochemistry 18, 5599−5605.
  year: 1979
  ident: bi602479eb00016/bi602479eb00016_1
– volume-title: Mol. Microbiol. 48, 1647−1664.
  year: 2003
  ident: bi602479eb00031/bi602479eb00031_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 95
  year: 1998
  ident: bi602479eb00032/bi602479eb00032_1
– volume: 19
  year: 1999
  ident: bi602479eb00021/bi602479eb00021_1
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1999.00526.x
– volume-title: Plant Physiol. 134, 137−146.
  year: 2004
  ident: bi602479eb00035/bi602479eb00035_1
SSID ssj0004074
Score 2.047749
Snippet Various bacterial species produce and monitor low-molecular weight signaling molecules that regulate specific sets of genes in a population density-dependent...
SourceID proquest
pubmed
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3990
SubjectTerms Bacterial Proteins - chemistry
Biosensing Techniques - methods
Fluorescence Resonance Energy Transfer
Green Fluorescent Proteins - chemistry
Homoserine - analogs & derivatives
Homoserine - analysis
Lactones - analysis
Signal Transduction
Vibrio harveyi
Title A LuxP-FRET-Based Reporter for the Detection and Quantification of AI-2 Bacterial Quorum-Sensing Signal Compounds
URI http://dx.doi.org/10.1021/bi602479e
https://api.istex.fr/ark:/67375/TPS-KX2V6MC0-K/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17352493
https://www.proquest.com/docview/20330954
https://www.proquest.com/docview/70318746
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9RAEJ8gPOiLIPhxiLhRQ3xZ6O222-XxOLigiAHvMPfW7CchaE_v2gT9653tx6GR08cm02a6M9v5TWf2NwBvuNTMMu6p96mhsVaSKqFjmviuS0LpSrFwGvn0ozi-iN-Pk_ESvF5QwWfdPX0lMI6k--4erDCBmzfgn_7w9vBj1FAtY2rMEI-39EG_3xpCj5n9EXpWwireLMaVVXwZrMJhe0qnbiu53i0LvWt-_k3a-C_V1-Bhgy9Jr3aIR7Dk8nXY6OWYW3_9QXZI1fFZ_Upfh_v9dtrbBnzvkQ_lzRkdfDoa0QMMbZbU2NxNCeJagjiRHLqiatzKicotOS9V3WhU2ZZMPOm9o4wc1PTPqMN5GYge6DC0yOeXZHh1GTQLH6Awymn2GC4GR6P-MW3GMVDFJSuoRTCA2aQTKkmt4E5G3lsdCpleaZmwCC9Sgwket8ZKr73xXYEZkjQyNVHi-RNYzie5ewYkNtJwnVjtYxOGseOjVGq18sYIrRPVgW20V9Zsp1lWVcpZN5svaAfetqbMTENmHmZqfLlL9NVc9FvN4HGX0E7lD3MJNb0OLW9pko3OhtnJmH0Wp_0oO-nAy9ZhMrRQqK6o3E3KWYYLwRGvxoslwqgAmcaiA09rT7vVJ0UcHO_zzf-993N4UP9cjmnEt2C5mJbuBaKiQm9Xu-IXIXQFmQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELZaONBLH9BH-gCrqlAvho29D3NcUqLQJAiaUOVm-YkQZUOzWYn213fs3SRtBWqPK81aY3u8883O-BuEPjCuqKHMEecyTWIlOZGpikni2jbxqStJ_W3k4UnaO48_T5JJQ5Pj78KAEiWMVIYk_opdoL2vLlNwJ9mBfYjWAYRQb815Z7S6Axk1jMsQIVOA5QsWod9f9R5Il394oHW_mLf3w8vgZrpP6n5FQcFQXXK1V83Vnv75F3fj_83gKXrcoE2c1-bxDD2wxSbayguItK9_4F0c6j_Dj_VNtNFZ9H7bQt9zPKhuT0n3y9GYHIKjM7hG6naGAeViQI34k52HMq4Cy8Lgs0rWZUdhp_HU4fyYUHxYk0GDDmeVp30gI18wX1zg0eWF18x_jnxjp_I5Ou8ejTs90jRnIJJxOicGoAHEljaVSWZSZnnknFE-remk4gmN4CHTEO4xow13ymnXTiFe4ppnOkoce4HWimlhXyEca66ZSoxysfat2WEomRklndapUolsoW1YT9EcrlKEvDlti-WCttDHxY4K3VCb-w4b3-4Sfb8Uvan5PO4S2g1msZSQsytfAJclYnw6Ev0J_ZoOO5Hot9DOwm4E7JDPtcjCTqtSwEIwQK_x_RK-cQDP4rSFXtYGt9InA1QcH7DX_5r3DtrojYcDMTg-6b9Bj-rfzjGJ2Fu0Np9V9h3gpbnaDgflF9mYDfo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEG8UEuXFD1A5P6AxhvhS3Gv3ozwuBxfwAA_vMPfW9JMQdA9vdxP0r3fa3TvUQPRxk9lm2k53frMz_Q1C7xhX1FDmiHOZJrGSnMhUxSRxXZv41JWk_jby8Ul6cBZ_nCSTNlD0d2FAiRJGKkMS35_qK-NahoHuB3WRgkvJdux9tOzTdd6i897o5h5k1LIuQ5RMAZrPmYR-f9V7IV3-4YWW_YJe3w0xg6vpP0afFkqGCpPL7bpS2_rnX_yN_z-LJ-hRizpx3pjJU3TPFqtoLS8g4v72A2_hUAcafrCvooe9eQ-4NfQ9x0f19ZD0P--PyS44PIMbxG5nGNAuBvSI92wVyrkKLAuDT2vZlB-FHcdTh_NDQvFuQwoNOpzWnv6BjHzhfHGORxfnXjP_WfINnspn6Ky_P-4dkLZJA5GM04oYgAgQY9pUJplJmeWRc0b59KaTiic0godMQ9jHjDbcKaddN4W4iWue6Shx7DlaKqaFXUc41lwzlRjlYu1btMNQMjNKOq1TpRLZQRuwpqI9ZKUI-XPaFYsF7aD3810VuqU49502vt4m-nYhetXwetwmtBVMYyEhZ5e-EC5LxHg4EoMJ_ZIe9yIx6KDNue0I2CGfc5GFndalgIVggGLjuyV8AwGexWkHvWiM7kafDNBxvMNe_mvem-jBcK8vjg5PBq_QSvP3OSYRe42Wqllt3wBsqtRGOCu_AKDuEH0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+LuxP-FRET-Based+Reporter+for+the+Detection+and+Quantification+of+AI-2+Bacterial+Quorum-Sensing+Signal+Compounds&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Rajamani%2C+Sathish&rft.au=Zhu%2C+Jinge&rft.au=Pei%2C+Dehua&rft.au=Sayre%2C+Richard&rft.date=2007-04-03&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=46&rft.issue=13&rft.spage=3990&rft.epage=3997&rft_id=info:doi/10.1021%2Fbi602479e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_bi602479e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon