Visualizing the Low-Energy Electronic Structure of Prototypical Hybrid Halide Perovskite through Clear Band Measurements

Organic–inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to...

Full description

Saved in:
Bibliographic Details
Published inACS Nano Vol. 18; no. 10; pp. 7570 - 7579
Main Authors Park, Jeehong, Huh, Soonsang, Choi, Young Woo, Kang, Donghee, Kim, Minsoo, Kim, Donghan, Park, Soohyung, Choi, Hyoung Joon, Kim, Changyoung, Yi, Yeonjin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.03.2024
American Chemical Society (ACS)
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.3c12587

Cover

Loading…
Abstract Organic–inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH3NH3PbI3 (MAPI3) using angle-resolved photoelectron spectroscopy combined with ab initio density functional theory. We successfully visualize the electronic structure of MAPI3 near the bulk valence band maximum by using a laboratory photon source (He Iα, 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20–0.21 m e, without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter (α R) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials.
AbstractList Organic–inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH3NH3PbI3 (MAPI3) using angle-resolved photoelectron spectroscopy combined with ab initio density functional theory. We successfully visualize the electronic structure of MAPI3 near the bulk valence band maximum by using a laboratory photon source (He Iα, 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20–0.21 m e, without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter (α R) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials.
Organic-inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH NH PbI (MAPI ) using angle-resolved photoelectron spectroscopy combined with density functional theory. We successfully visualize the electronic structure of MAPI near the bulk valence band maximum by using a laboratory photon source (He I , 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20-0.21 , without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter ( ) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials.
Organic-inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH3NH3PbI3 (MAPI3) using angle-resolved photoelectron spectroscopy combined with ab initio density functional theory. We successfully visualize the electronic structure of MAPI3 near the bulk valence band maximum by using a laboratory photon source (He Iα, 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20-0.21 me, without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter (αR) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials.Organic-inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH3NH3PbI3 (MAPI3) using angle-resolved photoelectron spectroscopy combined with ab initio density functional theory. We successfully visualize the electronic structure of MAPI3 near the bulk valence band maximum by using a laboratory photon source (He Iα, 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20-0.21 me, without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter (αR) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials.
Author Choi, Hyoung Joon
Huh, Soonsang
Park, Jeehong
Kim, Donghan
Kim, Changyoung
Choi, Young Woo
Kim, Minsoo
Kang, Donghee
Park, Soohyung
Yi, Yeonjin
AuthorAffiliation Van der Waals Materials Research Center
Advanced Analysis Center
Center for Correlated Electron System
Yonsei University
Department of Physics and Astronomy
Institute for Basic Science (IBS)
Department of Physics
AuthorAffiliation_xml – name: Van der Waals Materials Research Center
– name: Advanced Analysis Center
– name: Department of Physics and Astronomy
– name: Institute for Basic Science (IBS)
– name: Center for Correlated Electron System
– name: Department of Physics
– name: Yonsei University
Author_xml – sequence: 1
  givenname: Jeehong
  orcidid: 0000-0001-9392-7849
  surname: Park
  fullname: Park, Jeehong
  organization: Yonsei University
– sequence: 2
  givenname: Soonsang
  surname: Huh
  fullname: Huh, Soonsang
  organization: Institute for Basic Science (IBS)
– sequence: 3
  givenname: Young Woo
  orcidid: 0000-0003-4725-1299
  surname: Choi
  fullname: Choi, Young Woo
  organization: Yonsei University
– sequence: 4
  givenname: Donghee
  surname: Kang
  fullname: Kang, Donghee
  organization: Yonsei University
– sequence: 5
  givenname: Minsoo
  surname: Kim
  fullname: Kim, Minsoo
  organization: Department of Physics and Astronomy
– sequence: 6
  givenname: Donghan
  surname: Kim
  fullname: Kim, Donghan
  organization: Department of Physics and Astronomy
– sequence: 7
  givenname: Soohyung
  orcidid: 0000-0002-6589-7045
  surname: Park
  fullname: Park, Soohyung
  organization: Advanced Analysis Center
– sequence: 8
  givenname: Hyoung Joon
  orcidid: 0000-0001-8565-8597
  surname: Choi
  fullname: Choi, Hyoung Joon
  email: h.j.choi@yonsei.ac.kr
  organization: Yonsei University
– sequence: 9
  givenname: Changyoung
  surname: Kim
  fullname: Kim, Changyoung
  email: changyoung@snu.ac.kr
  organization: Department of Physics and Astronomy
– sequence: 10
  givenname: Yeonjin
  orcidid: 0000-0003-4944-8319
  surname: Yi
  fullname: Yi, Yeonjin
  email: yeonjin@yonsei.ac.kr
  organization: Yonsei University
BackLink https://cir.nii.ac.jp/crid/1870020693232266368$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/38377437$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtvEzEUhS1URB-wZoe8YIGEpvUjfi0hCgQpiEo8xM5yPHdSl4md2h4g_HpcJXTHxteL73yLc87RSUwREHpOySUljF45X6KL6ZJ7yoRWj9AZNVx2RMvvJw9_QU_ReSm3hAillXyCTrnmSs24OkO_v4UyuTH8CXGD6w3gVfrVLSLkzR4vRvA1pxg8_lzz5OuUAacBX-dUU93vgncjXu7XOfR42Rw94GvI6Wf5ESo0WU7T5gbPR3AZv3Wxxx_BlebYQqzlKXo8uLHAs-O9QF_fLb7Ml93q0_sP8zerznHNaudgcAo0cOLWThpDtRGUKc4VUYxozg0RYhCzQbYGiOF-LZR3QBwVves94Rfo1cG7y-luglLtNhQP4-gipKlYZpgRM9q8DX1xRKf1Fnq7y2Hr8t7-a6sBVwfA51RKhuEBocTe72GPe9jjHi3x8pCIIVgf7l-qFSGMSMMZZ0xKLnXDXh-wlre3acqxVfJf6V-6-Zjj
Cites_doi 10.1103/PhysRevLett.84.1272
10.1021/acs.jpcc.7b08948
10.1039/D0TC05618A
10.1039/C4TA06418F
10.1038/s41586-023-05825-y
10.1103/PhysRevLett.77.3865
10.1021/acs.jpclett.6b01749
10.1103/PhysRevB.90.245145
10.1103/PhysRevLett.124.206402
10.1103/PhysRevB.99.085207
10.1021/jz501510v
10.1038/s41467-019-10468-7
10.1021/acs.jpclett.9b02179
10.1021/acsnano.5b06420
10.1038/ncomms11755
10.1103/PhysRevLett.121.086402
10.1039/C4CC09944C
10.1038/ncomms8586
10.1002/adma.202107882
10.1103/PhysRevB.88.085117
10.1002/adma.202100211
10.1103/PhysRevLett.117.126401
10.1021/jz500279b
10.1103/PhysRevMaterials.7.L052401
10.1016/j.elspec.2014.12.009
10.1103/PhysRevB.34.5390
10.1103/PhysRevB.101.155137
10.1103/PhysRevLett.118.136001
10.1038/s41578-018-0065-0
10.1021/acsenergylett.8b02346
10.1103/PhysRevLett.128.176405
10.1021/acs.cgd.0c00370
10.1103/PhysRevLett.100.167402
10.1063/1.4864778
10.1021/acs.jpclett.6b00946
10.1088/2516-1075/ab168b
10.1021/acs.jpclett.8b03728
10.1088/1361-6463/aa71e7
10.1016/S0368-2048(03)00054-9
10.1021/cg400645t
10.1038/ncomms4586
10.1103/RevModPhys.93.025006
10.1016/j.cpc.2018.01.012
10.1007/978-3-662-09280-4
10.1021/acs.jpcc.5b00695
10.1002/sia.740010103
10.1016/0921-5107(90)90062-G
10.1038/ncomms9238
10.1038/s41427-022-00394-4
10.1002/solr.201800132
10.1103/PhysRevB.102.081116
10.1038/s41598-017-14435-4
10.1126/science.290.5491.501
10.1021/acs.jpcc.5b07891
10.1103/PhysRevB.89.155204
10.1038/nphys3357
10.1107/S0021889811038970
10.1088/0953-8984/21/39/395502
10.1126/science.ade3970
10.1016/j.matlet.2019.04.081
10.1038/s41578-021-00286-z
10.1038/s41467-017-02670-2
10.1021/acs.jpclett.7b02562
10.7567/1882-0786/ab6134
10.1038/srep04467
10.1038/s41467-018-04212-w
10.1021/acsenergylett.6b00381
10.1021/jacs.5b08227
10.1038/s42005-020-0319-1
10.1103/PhysRevLett.91.186406
10.1103/PhysRevB.102.245101
10.1063/1.3585113
10.1103/PhysRevB.48.17791
10.1002/aenm.202070116
10.1103/PhysRevLett.127.237601
10.1038/s41467-022-35255-9
10.1039/C5NR05435D
10.1103/PhysRevLett.104.156401
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID RYH
AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.3c12587
DatabaseName CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 7579
ExternalDocumentID 38377437
10_1021_acsnano_3c12587
a942377271
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABJNI
ABMVS
ABMYL
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAHBH
ABBLG
ABLBI
ADHGD
CUPRZ
RYH
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-a382t-aefa7e8e30aba699189512733707208339055f54f6c12093cb57cae0a15dadc03
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 05:52:57 EDT 2025
Wed Feb 19 02:08:12 EST 2025
Tue Jul 01 02:59:19 EDT 2025
Thu Jun 26 22:12:30 EDT 2025
Wed Mar 13 05:13:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Rashba effect
angle-resolved photoelectron spectroscopy
effective mass
density functional theory
band folding
halide perovskites
spin-resolved photoelectron spectroscopy
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a382t-aefa7e8e30aba699189512733707208339055f54f6c12093cb57cae0a15dadc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4725-1299
0000-0002-6589-7045
0000-0003-4944-8319
0000-0001-9392-7849
0000-0001-8565-8597
PMID 38377437
PQID 2929541189
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2929541189
pubmed_primary_38377437
crossref_primary_10_1021_acsnano_3c12587
nii_cinii_1870020693232266368
acs_journals_10_1021_acsnano_3c12587
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-12
PublicationDateYYYYMMDD 2024-03-12
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS Nano
PublicationTitleAlternate ACS Nano
PublicationYear 2024
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
Giustino F. (ref63/cit63) 2014
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
Hüfner S. (ref34/cit34) 2003
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
Peter Y. (ref8/cit8) 2010
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref53/cit53
  doi: 10.1103/PhysRevLett.84.1272
– ident: ref5/cit5
  doi: 10.1021/acs.jpcc.7b08948
– ident: ref50/cit50
  doi: 10.1039/D0TC05618A
– ident: ref6/cit6
  doi: 10.1039/C4TA06418F
– ident: ref2/cit2
  doi: 10.1038/s41586-023-05825-y
– ident: ref79/cit79
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref4/cit4
  doi: 10.1021/acs.jpclett.6b01749
– ident: ref23/cit23
  doi: 10.1103/PhysRevB.90.245145
– ident: ref42/cit42
  doi: 10.1103/PhysRevLett.124.206402
– ident: ref20/cit20
  doi: 10.1103/PhysRevB.99.085207
– ident: ref74/cit74
  doi: 10.1021/jz501510v
– ident: ref19/cit19
  doi: 10.1038/s41467-019-10468-7
– ident: ref21/cit21
  doi: 10.1021/acs.jpclett.9b02179
– ident: ref73/cit73
  doi: 10.1021/acsnano.5b06420
– ident: ref13/cit13
  doi: 10.1038/ncomms11755
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.121.086402
– ident: ref47/cit47
  doi: 10.1039/C4CC09944C
– ident: ref75/cit75
  doi: 10.1038/ncomms8586
– ident: ref46/cit46
  doi: 10.1002/adma.202107882
– ident: ref80/cit80
  doi: 10.1103/PhysRevB.88.085117
– ident: ref17/cit17
  doi: 10.1002/adma.202100211
– ident: ref44/cit44
  doi: 10.1103/PhysRevLett.117.126401
– ident: ref12/cit12
  doi: 10.1021/jz500279b
– ident: ref72/cit72
  doi: 10.1103/PhysRevMaterials.7.L052401
– ident: ref70/cit70
  doi: 10.1016/j.elspec.2014.12.009
– ident: ref64/cit64
  doi: 10.1103/PhysRevB.34.5390
– ident: ref29/cit29
  doi: 10.1103/PhysRevB.101.155137
– ident: ref28/cit28
  doi: 10.1103/PhysRevLett.118.136001
– ident: ref68/cit68
  doi: 10.1038/s41578-018-0065-0
– ident: ref67/cit67
  doi: 10.1021/acsenergylett.8b02346
– ident: ref43/cit43
  doi: 10.1103/PhysRevLett.128.176405
– ident: ref49/cit49
  doi: 10.1021/acs.cgd.0c00370
– ident: ref62/cit62
  doi: 10.1103/PhysRevLett.100.167402
– ident: ref10/cit10
  doi: 10.1063/1.4864778
– ident: ref18/cit18
  doi: 10.1021/acs.jpclett.6b00946
– ident: ref69/cit69
  doi: 10.1088/2516-1075/ab168b
– ident: ref38/cit38
  doi: 10.1021/acs.jpclett.8b03728
– ident: ref36/cit36
  doi: 10.1088/1361-6463/aa71e7
– volume-title: Fundamentals of Semiconductors: Physics and Materials Properties
  year: 2010
  ident: ref8/cit8
– ident: ref57/cit57
  doi: 10.1016/S0368-2048(03)00054-9
– ident: ref54/cit54
  doi: 10.1021/cg400645t
– ident: ref9/cit9
  doi: 10.1038/ncomms4586
– ident: ref35/cit35
  doi: 10.1103/RevModPhys.93.025006
– ident: ref81/cit81
  doi: 10.1016/j.cpc.2018.01.012
– volume-title: Photoelectron Spectroscopy: Principles and Applications
  year: 2003
  ident: ref34/cit34
  doi: 10.1007/978-3-662-09280-4
– ident: ref7/cit7
  doi: 10.1021/acs.jpcc.5b00695
– ident: ref56/cit56
  doi: 10.1002/sia.740010103
– ident: ref48/cit48
  doi: 10.1016/0921-5107(90)90062-G
– ident: ref11/cit11
  doi: 10.1038/ncomms9238
– ident: ref30/cit30
  doi: 10.1038/s41427-022-00394-4
– ident: ref37/cit37
  doi: 10.1002/solr.201800132
– ident: ref45/cit45
  doi: 10.1103/PhysRevB.102.081116
– ident: ref26/cit26
  doi: 10.1038/s41598-017-14435-4
– ident: ref52/cit52
  doi: 10.1126/science.290.5491.501
– ident: ref25/cit25
  doi: 10.1021/acs.jpcc.5b07891
– ident: ref22/cit22
  doi: 10.1103/PhysRevB.89.155204
– ident: ref1/cit1
– ident: ref66/cit66
  doi: 10.1038/nphys3357
– ident: ref76/cit76
  doi: 10.1107/S0021889811038970
– ident: ref78/cit78
  doi: 10.1088/0953-8984/21/39/395502
– ident: ref3/cit3
  doi: 10.1126/science.ade3970
– ident: ref41/cit41
  doi: 10.1016/j.matlet.2019.04.081
– ident: ref60/cit60
  doi: 10.1038/s41578-021-00286-z
– ident: ref61/cit61
  doi: 10.1038/s41467-017-02670-2
– ident: ref15/cit15
  doi: 10.1021/acs.jpclett.7b02562
– volume-title: Materials Modelling Using Density Functional Theory: Properties and Predictions
  year: 2014
  ident: ref63/cit63
– ident: ref40/cit40
  doi: 10.7567/1882-0786/ab6134
– ident: ref24/cit24
  doi: 10.1038/srep04467
– ident: ref32/cit32
  doi: 10.1038/s41467-018-04212-w
– ident: ref27/cit27
  doi: 10.1021/acsenergylett.6b00381
– ident: ref71/cit71
  doi: 10.1021/jacs.5b08227
– ident: ref51/cit51
  doi: 10.1038/s42005-020-0319-1
– ident: ref58/cit58
  doi: 10.1103/PhysRevLett.91.186406
– ident: ref39/cit39
  doi: 10.1103/PhysRevB.102.245101
– ident: ref59/cit59
  doi: 10.1063/1.3585113
– ident: ref65/cit65
  doi: 10.1103/PhysRevB.48.17791
– ident: ref16/cit16
  doi: 10.1002/aenm.202070116
– ident: ref33/cit33
  doi: 10.1103/PhysRevLett.127.237601
– ident: ref55/cit55
  doi: 10.1038/s41467-022-35255-9
– ident: ref14/cit14
  doi: 10.1039/C5NR05435D
– ident: ref77/cit77
  doi: 10.1103/PhysRevLett.104.156401
SSID ssj0057876
Score 2.4440074
Snippet Organic–inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications....
Organic-inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications....
SourceID proquest
pubmed
crossref
nii
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 7570
Title Visualizing the Low-Energy Electronic Structure of Prototypical Hybrid Halide Perovskite through Clear Band Measurements
URI http://dx.doi.org/10.1021/acsnano.3c12587
https://cir.nii.ac.jp/crid/1870020693232266368
https://www.ncbi.nlm.nih.gov/pubmed/38377437
https://www.proquest.com/docview/2929541189
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3dT6QwEMAbXV_04e78vD1PUxMffGGFFgo86mbN5qLGxI_4RsrQJhsTMAvrx_71zgC7fsV4LyQEUqAzZX7tdGYY27fGVWkKviNNRiXMfHA02MjRJhQiQoumYoodPjtXw2v_321w-5os-qMHX3iHGspc50VPAtriKFxkS0KhkhEF9S9nP13SO9U4kHGCjBQxz-LzqQEyQ1C-M0OL-Wj0NWHWlubkZ7NHq6wTFNIGk7vepEp7MP2cvvH7j_jFfrS8yY8aBVllCyZfYytvshCus6ebUUmhlVM848iD_LR4dAZ1TCAfzKvk8Ms60-xkbHhh-cW4qIrq-Z5EzIfPFPbFh9hGZviFGRcPJS0K87YIEO9TbQp-rPOMn72uSZYb7PpkcNUfOm1BBkfLSFQoQKtDExnp6lQrJMsI-Qz5R4ZuKJDlZOwGgQ18q4BCciWkQQjauNoLMp2BKzdZJy9y85txUFEMqQW8Dn5mpUahWs8FLdJMhnHUZfvYZ0k7oMqk9pULL2k7Mmk7sssOZmJM7pv0HF_fuoNiTmBERw81CEFZIb3iHw2pS-ET92YKkOAQI7-Jzk0xKRMRkzMUZ2Jxl201mjF_GE3wEcLCP__3vttsWSAV0SY2T_xlHZSc2UGqqdLdWp9fAI3U8X0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3db5swEMBPafew7qHdd7Mtmyf1YS-kYIMxj22Uim1J1Knt1DfLGFuKJkEUSL_--p4JSfahSusLEh8yxnf4fua4O4ADa3yeZTr0mMldCbNQe0pb4SkTUyrQovHExQ6PJzy9CL9dRpcd8FexMNiJCluqGif-JrtAcIjHClWUfabRJIt4C54gilBXrOFocLaae5368aUfGdfJCBPrZD7_NOCska7-sEZbxXT6MGg2BudkD36su9r8Z_Krv6izvr77K4vjY57lOey29EmOluryAjqmeAnPfstJ-Apufk4rF2h5h3sE6ZCMymtv2EQIkuG6Zg45a_LOLuaGlJaczsu6rG9nTuAkvXVBYCTFNnJDTs28vKrcJ2LSlgQiA1epghyrIifjzRfK6jVcnAzPB6nXlmfwFBO0RnFaFRthmK8yxZEzBdIa0hCL_Zgi2bHEjyIbhZZrF6DLdBbFWhlfBVGucu2zN7BdlIXZB6K5SHRmNZ7XYW6ZolzYwNeKZjmLE9GFAxwz2b5elWw85zSQ7UDKdiC78GUlTTlbJut4-NIeSlvqqdsGOGkhNnNkWZzfkME43vHzSg8kvnDOi6IKUy4qSRPnGsV1WdKFt0sFWd_MLfcRyeJ3_9ffT_A0PR-P5Ojr5Pt72KHIS-73toB-gG2Uoukh79TZx0bF7wH3ffne
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0LwAOO7wJiR9sBLSmInjvM4SqsC21RpFO3NchxbqpCSqkmB7a_nLk3L2DRpvETKh2zHd_b97PPvDuDQu1DmuY0D4QpKYRbbwFivAuNSzhVaNJkRd_jkVI6n8Zfz5LwjhREXBhtRY0l168SnUT0vfBdhIPqAz0tTVn1h0SyrdBt2yWlHCRuOBmfr-ZdUUK58ybhWRkCxCehzowCySLb-xyJtl7PZ7WCzNTqjRzDdNLc9a_Kjv2zyvr28Fsnxf_9nDx52KJQdrdTmMWy58gk8uBKb8Cn8_j6riXB5iXcMUSI7rn4Fw5YpyIab3DnsrI0_u1w4Vnk2WVRN1VzMSfBsfEFkMDbGMgrHJm5R_axpq5h1qYHYgDJWsI-mLNjJ353K-hlMR8Nvg3HQpWkIjFC8QbF6kzrlRGhyIxFvKkRtiIpEGqYcEZ7IwiTxSeylJaKusHmSWuNCEyWFKWwonsNOWZXuJTArVWZzb_G9jQsvDJfKR6E1PC9EmqkeHGKf6W6Y1br1oPNIdx2pu47swfu1RPV8FbTj9k_3UeLazuga4eSF8FkipsV5DrGYxBrfrXVB48Ajb4opXbWsNc_IRYrrs6wHL1ZKsqmMlv0IzdJXd2vvAdybfBrp48-nX1_DfY6wiU65RfwN7KAQ3T7CniZ_22r5HxxK_GE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualizing+the+Low-Energy+Electronic+Structure+of+Prototypical+Hybrid+Halide+Perovskite+through+Clear+Band+Measurements&rft.jtitle=ACS+nano&rft.au=Park%2C+Jeehong&rft.au=Huh%2C+Soonsang&rft.au=Choi%2C+Young+Woo&rft.au=Kang%2C+Donghee&rft.date=2024-03-12&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=18&rft.issue=10&rft.spage=7570&rft.epage=7579&rft_id=info:doi/10.1021%2Facsnano.3c12587&rft.externalDocID=a942377271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon