Visualizing the Low-Energy Electronic Structure of Prototypical Hybrid Halide Perovskite through Clear Band Measurements
Organic–inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to...
Saved in:
Published in | ACS Nano Vol. 18; no. 10; pp. 7570 - 7579 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.03.2024
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.3c12587 |
Cover
Loading…
Abstract | Organic–inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH3NH3PbI3 (MAPI3) using angle-resolved photoelectron spectroscopy combined with ab initio density functional theory. We successfully visualize the electronic structure of MAPI3 near the bulk valence band maximum by using a laboratory photon source (He Iα, 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20–0.21 m e, without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter (α R) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials. |
---|---|
AbstractList | Organic–inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH3NH3PbI3 (MAPI3) using angle-resolved photoelectron spectroscopy combined with ab initio density functional theory. We successfully visualize the electronic structure of MAPI3 near the bulk valence band maximum by using a laboratory photon source (He Iα, 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20–0.21 m e, without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter (α R) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials. Organic-inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH NH PbI (MAPI ) using angle-resolved photoelectron spectroscopy combined with density functional theory. We successfully visualize the electronic structure of MAPI near the bulk valence band maximum by using a laboratory photon source (He I , 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20-0.21 , without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter ( ) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials. Organic-inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH3NH3PbI3 (MAPI3) using angle-resolved photoelectron spectroscopy combined with ab initio density functional theory. We successfully visualize the electronic structure of MAPI3 near the bulk valence band maximum by using a laboratory photon source (He Iα, 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20-0.21 me, without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter (αR) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials.Organic-inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH3NH3PbI3 (MAPI3) using angle-resolved photoelectron spectroscopy combined with ab initio density functional theory. We successfully visualize the electronic structure of MAPI3 near the bulk valence band maximum by using a laboratory photon source (He Iα, 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20-0.21 me, without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter (αR) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials. |
Author | Choi, Hyoung Joon Huh, Soonsang Park, Jeehong Kim, Donghan Kim, Changyoung Choi, Young Woo Kim, Minsoo Kang, Donghee Park, Soohyung Yi, Yeonjin |
AuthorAffiliation | Van der Waals Materials Research Center Advanced Analysis Center Center for Correlated Electron System Yonsei University Department of Physics and Astronomy Institute for Basic Science (IBS) Department of Physics |
AuthorAffiliation_xml | – name: Van der Waals Materials Research Center – name: Advanced Analysis Center – name: Department of Physics and Astronomy – name: Institute for Basic Science (IBS) – name: Center for Correlated Electron System – name: Department of Physics – name: Yonsei University |
Author_xml | – sequence: 1 givenname: Jeehong orcidid: 0000-0001-9392-7849 surname: Park fullname: Park, Jeehong organization: Yonsei University – sequence: 2 givenname: Soonsang surname: Huh fullname: Huh, Soonsang organization: Institute for Basic Science (IBS) – sequence: 3 givenname: Young Woo orcidid: 0000-0003-4725-1299 surname: Choi fullname: Choi, Young Woo organization: Yonsei University – sequence: 4 givenname: Donghee surname: Kang fullname: Kang, Donghee organization: Yonsei University – sequence: 5 givenname: Minsoo surname: Kim fullname: Kim, Minsoo organization: Department of Physics and Astronomy – sequence: 6 givenname: Donghan surname: Kim fullname: Kim, Donghan organization: Department of Physics and Astronomy – sequence: 7 givenname: Soohyung orcidid: 0000-0002-6589-7045 surname: Park fullname: Park, Soohyung organization: Advanced Analysis Center – sequence: 8 givenname: Hyoung Joon orcidid: 0000-0001-8565-8597 surname: Choi fullname: Choi, Hyoung Joon email: h.j.choi@yonsei.ac.kr organization: Yonsei University – sequence: 9 givenname: Changyoung surname: Kim fullname: Kim, Changyoung email: changyoung@snu.ac.kr organization: Department of Physics and Astronomy – sequence: 10 givenname: Yeonjin orcidid: 0000-0003-4944-8319 surname: Yi fullname: Yi, Yeonjin email: yeonjin@yonsei.ac.kr organization: Yonsei University |
BackLink | https://cir.nii.ac.jp/crid/1870020693232266368$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/38377437$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtvEzEUhS1URB-wZoe8YIGEpvUjfi0hCgQpiEo8xM5yPHdSl4md2h4g_HpcJXTHxteL73yLc87RSUwREHpOySUljF45X6KL6ZJ7yoRWj9AZNVx2RMvvJw9_QU_ReSm3hAillXyCTrnmSs24OkO_v4UyuTH8CXGD6w3gVfrVLSLkzR4vRvA1pxg8_lzz5OuUAacBX-dUU93vgncjXu7XOfR42Rw94GvI6Wf5ESo0WU7T5gbPR3AZv3Wxxx_BlebYQqzlKXo8uLHAs-O9QF_fLb7Ml93q0_sP8zerznHNaudgcAo0cOLWThpDtRGUKc4VUYxozg0RYhCzQbYGiOF-LZR3QBwVves94Rfo1cG7y-luglLtNhQP4-gipKlYZpgRM9q8DX1xRKf1Fnq7y2Hr8t7-a6sBVwfA51RKhuEBocTe72GPe9jjHi3x8pCIIVgf7l-qFSGMSMMZZ0xKLnXDXh-wlre3acqxVfJf6V-6-Zjj |
Cites_doi | 10.1103/PhysRevLett.84.1272 10.1021/acs.jpcc.7b08948 10.1039/D0TC05618A 10.1039/C4TA06418F 10.1038/s41586-023-05825-y 10.1103/PhysRevLett.77.3865 10.1021/acs.jpclett.6b01749 10.1103/PhysRevB.90.245145 10.1103/PhysRevLett.124.206402 10.1103/PhysRevB.99.085207 10.1021/jz501510v 10.1038/s41467-019-10468-7 10.1021/acs.jpclett.9b02179 10.1021/acsnano.5b06420 10.1038/ncomms11755 10.1103/PhysRevLett.121.086402 10.1039/C4CC09944C 10.1038/ncomms8586 10.1002/adma.202107882 10.1103/PhysRevB.88.085117 10.1002/adma.202100211 10.1103/PhysRevLett.117.126401 10.1021/jz500279b 10.1103/PhysRevMaterials.7.L052401 10.1016/j.elspec.2014.12.009 10.1103/PhysRevB.34.5390 10.1103/PhysRevB.101.155137 10.1103/PhysRevLett.118.136001 10.1038/s41578-018-0065-0 10.1021/acsenergylett.8b02346 10.1103/PhysRevLett.128.176405 10.1021/acs.cgd.0c00370 10.1103/PhysRevLett.100.167402 10.1063/1.4864778 10.1021/acs.jpclett.6b00946 10.1088/2516-1075/ab168b 10.1021/acs.jpclett.8b03728 10.1088/1361-6463/aa71e7 10.1016/S0368-2048(03)00054-9 10.1021/cg400645t 10.1038/ncomms4586 10.1103/RevModPhys.93.025006 10.1016/j.cpc.2018.01.012 10.1007/978-3-662-09280-4 10.1021/acs.jpcc.5b00695 10.1002/sia.740010103 10.1016/0921-5107(90)90062-G 10.1038/ncomms9238 10.1038/s41427-022-00394-4 10.1002/solr.201800132 10.1103/PhysRevB.102.081116 10.1038/s41598-017-14435-4 10.1126/science.290.5491.501 10.1021/acs.jpcc.5b07891 10.1103/PhysRevB.89.155204 10.1038/nphys3357 10.1107/S0021889811038970 10.1088/0953-8984/21/39/395502 10.1126/science.ade3970 10.1016/j.matlet.2019.04.081 10.1038/s41578-021-00286-z 10.1038/s41467-017-02670-2 10.1021/acs.jpclett.7b02562 10.7567/1882-0786/ab6134 10.1038/srep04467 10.1038/s41467-018-04212-w 10.1021/acsenergylett.6b00381 10.1021/jacs.5b08227 10.1038/s42005-020-0319-1 10.1103/PhysRevLett.91.186406 10.1103/PhysRevB.102.245101 10.1063/1.3585113 10.1103/PhysRevB.48.17791 10.1002/aenm.202070116 10.1103/PhysRevLett.127.237601 10.1038/s41467-022-35255-9 10.1039/C5NR05435D 10.1103/PhysRevLett.104.156401 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | RYH AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.3c12587 |
DatabaseName | CiNii Complete CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 7579 |
ExternalDocumentID | 38377437 10_1021_acsnano_3c12587 a942377271 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABJNI ABMVS ABMYL ABQRX ABUCX ACBEA ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH ABBLG ABLBI ADHGD CUPRZ RYH AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-a382t-aefa7e8e30aba699189512733707208339055f54f6c12093cb57cae0a15dadc03 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 05:52:57 EDT 2025 Wed Feb 19 02:08:12 EST 2025 Tue Jul 01 02:59:19 EDT 2025 Thu Jun 26 22:12:30 EDT 2025 Wed Mar 13 05:13:56 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Rashba effect angle-resolved photoelectron spectroscopy effective mass density functional theory band folding halide perovskites spin-resolved photoelectron spectroscopy |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a382t-aefa7e8e30aba699189512733707208339055f54f6c12093cb57cae0a15dadc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4725-1299 0000-0002-6589-7045 0000-0003-4944-8319 0000-0001-9392-7849 0000-0001-8565-8597 |
PMID | 38377437 |
PQID | 2929541189 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2929541189 pubmed_primary_38377437 crossref_primary_10_1021_acsnano_3c12587 nii_cinii_1870020693232266368 acs_journals_10_1021_acsnano_3c12587 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-12 |
PublicationDateYYYYMMDD | 2024-03-12 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS Nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2024 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 Giustino F. (ref63/cit63) 2014 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 Hüfner S. (ref34/cit34) 2003 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 Peter Y. (ref8/cit8) 2010 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref53/cit53 doi: 10.1103/PhysRevLett.84.1272 – ident: ref5/cit5 doi: 10.1021/acs.jpcc.7b08948 – ident: ref50/cit50 doi: 10.1039/D0TC05618A – ident: ref6/cit6 doi: 10.1039/C4TA06418F – ident: ref2/cit2 doi: 10.1038/s41586-023-05825-y – ident: ref79/cit79 doi: 10.1103/PhysRevLett.77.3865 – ident: ref4/cit4 doi: 10.1021/acs.jpclett.6b01749 – ident: ref23/cit23 doi: 10.1103/PhysRevB.90.245145 – ident: ref42/cit42 doi: 10.1103/PhysRevLett.124.206402 – ident: ref20/cit20 doi: 10.1103/PhysRevB.99.085207 – ident: ref74/cit74 doi: 10.1021/jz501510v – ident: ref19/cit19 doi: 10.1038/s41467-019-10468-7 – ident: ref21/cit21 doi: 10.1021/acs.jpclett.9b02179 – ident: ref73/cit73 doi: 10.1021/acsnano.5b06420 – ident: ref13/cit13 doi: 10.1038/ncomms11755 – ident: ref31/cit31 doi: 10.1103/PhysRevLett.121.086402 – ident: ref47/cit47 doi: 10.1039/C4CC09944C – ident: ref75/cit75 doi: 10.1038/ncomms8586 – ident: ref46/cit46 doi: 10.1002/adma.202107882 – ident: ref80/cit80 doi: 10.1103/PhysRevB.88.085117 – ident: ref17/cit17 doi: 10.1002/adma.202100211 – ident: ref44/cit44 doi: 10.1103/PhysRevLett.117.126401 – ident: ref12/cit12 doi: 10.1021/jz500279b – ident: ref72/cit72 doi: 10.1103/PhysRevMaterials.7.L052401 – ident: ref70/cit70 doi: 10.1016/j.elspec.2014.12.009 – ident: ref64/cit64 doi: 10.1103/PhysRevB.34.5390 – ident: ref29/cit29 doi: 10.1103/PhysRevB.101.155137 – ident: ref28/cit28 doi: 10.1103/PhysRevLett.118.136001 – ident: ref68/cit68 doi: 10.1038/s41578-018-0065-0 – ident: ref67/cit67 doi: 10.1021/acsenergylett.8b02346 – ident: ref43/cit43 doi: 10.1103/PhysRevLett.128.176405 – ident: ref49/cit49 doi: 10.1021/acs.cgd.0c00370 – ident: ref62/cit62 doi: 10.1103/PhysRevLett.100.167402 – ident: ref10/cit10 doi: 10.1063/1.4864778 – ident: ref18/cit18 doi: 10.1021/acs.jpclett.6b00946 – ident: ref69/cit69 doi: 10.1088/2516-1075/ab168b – ident: ref38/cit38 doi: 10.1021/acs.jpclett.8b03728 – ident: ref36/cit36 doi: 10.1088/1361-6463/aa71e7 – volume-title: Fundamentals of Semiconductors: Physics and Materials Properties year: 2010 ident: ref8/cit8 – ident: ref57/cit57 doi: 10.1016/S0368-2048(03)00054-9 – ident: ref54/cit54 doi: 10.1021/cg400645t – ident: ref9/cit9 doi: 10.1038/ncomms4586 – ident: ref35/cit35 doi: 10.1103/RevModPhys.93.025006 – ident: ref81/cit81 doi: 10.1016/j.cpc.2018.01.012 – volume-title: Photoelectron Spectroscopy: Principles and Applications year: 2003 ident: ref34/cit34 doi: 10.1007/978-3-662-09280-4 – ident: ref7/cit7 doi: 10.1021/acs.jpcc.5b00695 – ident: ref56/cit56 doi: 10.1002/sia.740010103 – ident: ref48/cit48 doi: 10.1016/0921-5107(90)90062-G – ident: ref11/cit11 doi: 10.1038/ncomms9238 – ident: ref30/cit30 doi: 10.1038/s41427-022-00394-4 – ident: ref37/cit37 doi: 10.1002/solr.201800132 – ident: ref45/cit45 doi: 10.1103/PhysRevB.102.081116 – ident: ref26/cit26 doi: 10.1038/s41598-017-14435-4 – ident: ref52/cit52 doi: 10.1126/science.290.5491.501 – ident: ref25/cit25 doi: 10.1021/acs.jpcc.5b07891 – ident: ref22/cit22 doi: 10.1103/PhysRevB.89.155204 – ident: ref1/cit1 – ident: ref66/cit66 doi: 10.1038/nphys3357 – ident: ref76/cit76 doi: 10.1107/S0021889811038970 – ident: ref78/cit78 doi: 10.1088/0953-8984/21/39/395502 – ident: ref3/cit3 doi: 10.1126/science.ade3970 – ident: ref41/cit41 doi: 10.1016/j.matlet.2019.04.081 – ident: ref60/cit60 doi: 10.1038/s41578-021-00286-z – ident: ref61/cit61 doi: 10.1038/s41467-017-02670-2 – ident: ref15/cit15 doi: 10.1021/acs.jpclett.7b02562 – volume-title: Materials Modelling Using Density Functional Theory: Properties and Predictions year: 2014 ident: ref63/cit63 – ident: ref40/cit40 doi: 10.7567/1882-0786/ab6134 – ident: ref24/cit24 doi: 10.1038/srep04467 – ident: ref32/cit32 doi: 10.1038/s41467-018-04212-w – ident: ref27/cit27 doi: 10.1021/acsenergylett.6b00381 – ident: ref71/cit71 doi: 10.1021/jacs.5b08227 – ident: ref51/cit51 doi: 10.1038/s42005-020-0319-1 – ident: ref58/cit58 doi: 10.1103/PhysRevLett.91.186406 – ident: ref39/cit39 doi: 10.1103/PhysRevB.102.245101 – ident: ref59/cit59 doi: 10.1063/1.3585113 – ident: ref65/cit65 doi: 10.1103/PhysRevB.48.17791 – ident: ref16/cit16 doi: 10.1002/aenm.202070116 – ident: ref33/cit33 doi: 10.1103/PhysRevLett.127.237601 – ident: ref55/cit55 doi: 10.1038/s41467-022-35255-9 – ident: ref14/cit14 doi: 10.1039/C5NR05435D – ident: ref77/cit77 doi: 10.1103/PhysRevLett.104.156401 |
SSID | ssj0057876 |
Score | 2.4440074 |
Snippet | Organic–inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications.... Organic-inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications.... |
SourceID | proquest pubmed crossref nii acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7570 |
Title | Visualizing the Low-Energy Electronic Structure of Prototypical Hybrid Halide Perovskite through Clear Band Measurements |
URI | http://dx.doi.org/10.1021/acsnano.3c12587 https://cir.nii.ac.jp/crid/1870020693232266368 https://www.ncbi.nlm.nih.gov/pubmed/38377437 https://www.proquest.com/docview/2929541189 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3dT6QwEMAbXV_04e78vD1PUxMffGGFFgo86mbN5qLGxI_4RsrQJhsTMAvrx_71zgC7fsV4LyQEUqAzZX7tdGYY27fGVWkKviNNRiXMfHA02MjRJhQiQoumYoodPjtXw2v_321w-5os-qMHX3iHGspc50VPAtriKFxkS0KhkhEF9S9nP13SO9U4kHGCjBQxz-LzqQEyQ1C-M0OL-Wj0NWHWlubkZ7NHq6wTFNIGk7vepEp7MP2cvvH7j_jFfrS8yY8aBVllCyZfYytvshCus6ebUUmhlVM848iD_LR4dAZ1TCAfzKvk8Ms60-xkbHhh-cW4qIrq-Z5EzIfPFPbFh9hGZviFGRcPJS0K87YIEO9TbQp-rPOMn72uSZYb7PpkcNUfOm1BBkfLSFQoQKtDExnp6lQrJMsI-Qz5R4ZuKJDlZOwGgQ18q4BCciWkQQjauNoLMp2BKzdZJy9y85txUFEMqQW8Dn5mpUahWs8FLdJMhnHUZfvYZ0k7oMqk9pULL2k7Mmk7sssOZmJM7pv0HF_fuoNiTmBERw81CEFZIb3iHw2pS-ET92YKkOAQI7-Jzk0xKRMRkzMUZ2Jxl201mjF_GE3wEcLCP__3vttsWSAV0SY2T_xlHZSc2UGqqdLdWp9fAI3U8X0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3db5swEMBPafew7qHdd7Mtmyf1YS-kYIMxj22Uim1J1Knt1DfLGFuKJkEUSL_--p4JSfahSusLEh8yxnf4fua4O4ADa3yeZTr0mMldCbNQe0pb4SkTUyrQovHExQ6PJzy9CL9dRpcd8FexMNiJCluqGif-JrtAcIjHClWUfabRJIt4C54gilBXrOFocLaae5368aUfGdfJCBPrZD7_NOCska7-sEZbxXT6MGg2BudkD36su9r8Z_Krv6izvr77K4vjY57lOey29EmOluryAjqmeAnPfstJ-Apufk4rF2h5h3sE6ZCMymtv2EQIkuG6Zg45a_LOLuaGlJaczsu6rG9nTuAkvXVBYCTFNnJDTs28vKrcJ2LSlgQiA1epghyrIifjzRfK6jVcnAzPB6nXlmfwFBO0RnFaFRthmK8yxZEzBdIa0hCL_Zgi2bHEjyIbhZZrF6DLdBbFWhlfBVGucu2zN7BdlIXZB6K5SHRmNZ7XYW6ZolzYwNeKZjmLE9GFAxwz2b5elWw85zSQ7UDKdiC78GUlTTlbJut4-NIeSlvqqdsGOGkhNnNkWZzfkME43vHzSg8kvnDOi6IKUy4qSRPnGsV1WdKFt0sFWd_MLfcRyeJ3_9ffT_A0PR-P5Ojr5Pt72KHIS-73toB-gG2Uoukh79TZx0bF7wH3ffne |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0LwAOO7wJiR9sBLSmInjvM4SqsC21RpFO3NchxbqpCSqkmB7a_nLk3L2DRpvETKh2zHd_b97PPvDuDQu1DmuY0D4QpKYRbbwFivAuNSzhVaNJkRd_jkVI6n8Zfz5LwjhREXBhtRY0l168SnUT0vfBdhIPqAz0tTVn1h0SyrdBt2yWlHCRuOBmfr-ZdUUK58ybhWRkCxCehzowCySLb-xyJtl7PZ7WCzNTqjRzDdNLc9a_Kjv2zyvr28Fsnxf_9nDx52KJQdrdTmMWy58gk8uBKb8Cn8_j6riXB5iXcMUSI7rn4Fw5YpyIab3DnsrI0_u1w4Vnk2WVRN1VzMSfBsfEFkMDbGMgrHJm5R_axpq5h1qYHYgDJWsI-mLNjJ353K-hlMR8Nvg3HQpWkIjFC8QbF6kzrlRGhyIxFvKkRtiIpEGqYcEZ7IwiTxSeylJaKusHmSWuNCEyWFKWwonsNOWZXuJTArVWZzb_G9jQsvDJfKR6E1PC9EmqkeHGKf6W6Y1br1oPNIdx2pu47swfu1RPV8FbTj9k_3UeLazuga4eSF8FkipsV5DrGYxBrfrXVB48Ajb4opXbWsNc_IRYrrs6wHL1ZKsqmMlv0IzdJXd2vvAdybfBrp48-nX1_DfY6wiU65RfwN7KAQ3T7CniZ_22r5HxxK_GE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualizing+the+Low-Energy+Electronic+Structure+of+Prototypical+Hybrid+Halide+Perovskite+through+Clear+Band+Measurements&rft.jtitle=ACS+nano&rft.au=Park%2C+Jeehong&rft.au=Huh%2C+Soonsang&rft.au=Choi%2C+Young+Woo&rft.au=Kang%2C+Donghee&rft.date=2024-03-12&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=18&rft.issue=10&rft.spage=7570&rft.epage=7579&rft_id=info:doi/10.1021%2Facsnano.3c12587&rft.externalDocID=a942377271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |