Conformal Conductive Features on Curvilinear Surfaces with Self-Assembled Silver Nanoplate Thin Films

In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates (AgNPLs) with a dimension of 700 nm and a thickness of 35 nm were suspended in ethanol with an anionic surfactant, sodium dodecyl sulfate, to impro...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 39; no. 26; pp. 9211 - 9218
Main Authors Lai, Yi-Chin, Chiu, Yu-Chieh, Chuang, Kai-Wen, Ramachandran, Balaji, Wu, I-Feng, Liao, Ying-Chih
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates (AgNPLs) with a dimension of 700 nm and a thickness of 35 nm were suspended in ethanol with an anionic surfactant, sodium dodecyl sulfate, to improve the suspension stability. The prepared AgNPL suspension was then spread over the water surface via the Langmuir–Blodgett approach to generate a self-assembled thin film. By dipping an accepting object with a robotic arm, the floating AgNPL thin film with nanometer thickness can be effectively transferred to the object surfaces and exhibited a superior conductivity up to 15% of bulk silver without thermal sintering. Besides good conductivity, the AgNPL conductive thin films can also be transferred efficiently on any curvilinear (concave and convex) surface. Moreover, with the help of masks, conductive patterns can be produced on water surfaces and transferred to curvilinear surfaces for electronic applications. As a proof of concept, several examples were demonstrated to display the capability of this approach for radiofrequency identification and other printed circuit applications.
AbstractList In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates (AgNPLs) with a dimension of 700 nm and a thickness of 35 nm were suspended in ethanol with an anionic surfactant, sodium dodecyl sulfate, to improve the suspension stability. The prepared AgNPL suspension was then spread over the water surface via the Langmuir–Blodgett approach to generate a self-assembled thin film. By dipping an accepting object with a robotic arm, the floating AgNPL thin film with nanometer thickness can be effectively transferred to the object surfaces and exhibited a superior conductivity up to 15% of bulk silver without thermal sintering. Besides good conductivity, the AgNPL conductive thin films can also be transferred efficiently on any curvilinear (concave and convex) surface. Moreover, with the help of masks, conductive patterns can be produced on water surfaces and transferred to curvilinear surfaces for electronic applications. As a proof of concept, several examples were demonstrated to display the capability of this approach for radiofrequency identification and other printed circuit applications.
In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates (AgNPLs) with a dimension of 700 nm and a thickness of 35 nm were suspended in ethanol with an anionic surfactant, sodium dodecyl sulfate, to improve the suspension stability. The prepared AgNPL suspension was then spread over the water surface via the Langmuir-Blodgett approach to generate a self-assembled thin film. By dipping an accepting object with a robotic arm, the floating AgNPL thin film with nanometer thickness can be effectively transferred to the object surfaces and exhibited a superior conductivity up to 15% of bulk silver without thermal sintering. Besides good conductivity, the AgNPL conductive thin films can also be transferred efficiently on any curvilinear (concave and convex) surface. Moreover, with the help of masks, conductive patterns can be produced on water surfaces and transferred to curvilinear surfaces for electronic applications. As a proof of concept, several examples were demonstrated to display the capability of this approach for radiofrequency identification and other printed circuit applications.In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates (AgNPLs) with a dimension of 700 nm and a thickness of 35 nm were suspended in ethanol with an anionic surfactant, sodium dodecyl sulfate, to improve the suspension stability. The prepared AgNPL suspension was then spread over the water surface via the Langmuir-Blodgett approach to generate a self-assembled thin film. By dipping an accepting object with a robotic arm, the floating AgNPL thin film with nanometer thickness can be effectively transferred to the object surfaces and exhibited a superior conductivity up to 15% of bulk silver without thermal sintering. Besides good conductivity, the AgNPL conductive thin films can also be transferred efficiently on any curvilinear (concave and convex) surface. Moreover, with the help of masks, conductive patterns can be produced on water surfaces and transferred to curvilinear surfaces for electronic applications. As a proof of concept, several examples were demonstrated to display the capability of this approach for radiofrequency identification and other printed circuit applications.
Author Chiu, Yu-Chieh
Lai, Yi-Chin
Chuang, Kai-Wen
Ramachandran, Balaji
Wu, I-Feng
Liao, Ying-Chih
AuthorAffiliation Advanced Research Center of Green Materials Science & Technology, College of Engineering
Department of Chemical Engineering
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Advanced Research Center of Green Materials Science & Technology, College of Engineering
Author_xml – sequence: 1
  givenname: Yi-Chin
  surname: Lai
  fullname: Lai, Yi-Chin
  organization: Department of Chemical Engineering
– sequence: 2
  givenname: Yu-Chieh
  surname: Chiu
  fullname: Chiu, Yu-Chieh
  organization: Department of Chemical Engineering
– sequence: 3
  givenname: Kai-Wen
  surname: Chuang
  fullname: Chuang, Kai-Wen
  organization: Department of Chemical Engineering
– sequence: 4
  givenname: Balaji
  surname: Ramachandran
  fullname: Ramachandran, Balaji
  organization: Department of Chemical Engineering
– sequence: 5
  givenname: I-Feng
  surname: Wu
  fullname: Wu, I-Feng
  organization: Department of Chemical Engineering
– sequence: 6
  givenname: Ying-Chih
  orcidid: 0000-0001-9496-4190
  surname: Liao
  fullname: Liao, Ying-Chih
  email: liaoy@ntu.edu.tw
  organization: Advanced Research Center of Green Materials Science & Technology, College of Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37339453$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEURi1URNPCGyDkJZsJ_p0Zs6siApUqWKSsLY_nmrry2MH2BPH2TJVkw6JdXev6nLv4vit0EVMEhN5TsqaE0U_GlnUw8dc0-7zmllDC6Su0opKRRvasu0Ar0gnedKLll-iqlEdCiOJCvUGXvONcCclXCDYpupQnE_DyGmdb_QHwFkydMxScIt7M-eCDj2Ay3s3ZGbvs__j6gHcQXHNTCkxDgBHvfDhAxt9NTPtgKuD7Bx_x1oepvEWvnQkF3p3mNfq5_XK_-dbc_fh6u7m5awzvaW3cCIy0iirGBzbwnoxWmVaIdpDOOWBcKQk9UCMMcMl6OypjJHdOSWs7K_g1-ni8u8_p9wyl6skXC2HJCdJcNCeCCNZK-TLKetbzlgtBFvTDCZ2HCUa9z34y-a8-p7gAn4-AzamUDE5bX031KdZsfNCU6KfK9FKZPlemT5UtsvhPPt9_QSNH7en3Mc05LsE-r_wDRcqwMQ
CitedBy_id crossref_primary_10_1016_j_cej_2024_152862
Cites_doi 10.1039/c6ta06018h
10.1016/j.tsf.2009.10.126
10.1021/acsaelm.2c00601
10.1021/nl0344209
10.1364/oe.23.006209
10.1039/c2cp41419h
10.1021/am401757y
10.1021/acsami.7b07327
10.1039/c3nr05479a
10.1038/s41598-018-25493-7
10.1016/j.colsurfa.2011.09.045
10.1016/j.matchemphys.2014.11.026
10.1126/science.297.5586.1536
10.1002/aelm.202100194
10.1016/j.apsusc.2012.10.031
10.1039/c7tc02637d
10.1016/j.micromeso.2017.07.049
10.1126/science.1122716
10.1002/admt.201600289
10.1038/s41598-020-58657-5
10.1109/MEMSYS.2016.7421545
10.1016/j.colsurfa.2011.12.020
10.1021/acs.langmuir.1c02331
10.1016/0022-3093(86)90026-8
10.1016/B978-1-4557-3141-1.50020-4
10.1021/ma980240n
10.1021/j100067a025
10.1016/j.jcis.2009.09.066
10.1016/j.apmt.2021.101152
10.1039/c5ee03229f
10.1016/j.apmt.2021.101236
10.1016/j.matlet.2006.04.021
10.1021/ar960016n
10.1016/j.apsusc.2017.01.042
10.1021/cr030063a
10.1002/adma.201602855
10.1039/c4nr06033d
10.1002/adma.201003734
10.1016/j.apsusc.2014.07.084
10.1016/j.apmt.2017.07.001
10.1126/science.1066541
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.langmuir.3c01031
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 9218
ExternalDocumentID 37339453
10_1021_acs_langmuir_3c01031
b910646643
Genre Journal Article
GroupedDBID ---
-~X
.K2
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
YQT
~02
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
CUPRZ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a381t-fde20691923b2b380dc9a6446b5fffe23995e8e1a4ae3528cd9aa53ff95cc7c43
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 11 10:47:19 EDT 2025
Fri Jul 11 00:01:57 EDT 2025
Thu May 08 07:32:54 EDT 2025
Tue Jul 01 03:28:26 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Thu Jul 06 08:30:34 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-fde20691923b2b380dc9a6446b5fffe23995e8e1a4ae3528cd9aa53ff95cc7c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9496-4190
PMID 37339453
PQID 2828363440
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_3040426554
proquest_miscellaneous_2828363440
pubmed_primary_37339453
crossref_citationtrail_10_1021_acs_langmuir_3c01031
crossref_primary_10_1021_acs_langmuir_3c01031
acs_journals_10_1021_acs_langmuir_3c01031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-04
PublicationDateYYYYMMDD 2023-07-04
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1039/c6ta06018h
– ident: ref10/cit10
  doi: 10.1016/j.tsf.2009.10.126
– ident: ref11/cit11
  doi: 10.1021/acsaelm.2c00601
– ident: ref20/cit20
  doi: 10.1021/nl0344209
– ident: ref32/cit32
  doi: 10.1364/oe.23.006209
– ident: ref23/cit23
  doi: 10.1039/c2cp41419h
– ident: ref8/cit8
  doi: 10.1021/am401757y
– ident: ref16/cit16
  doi: 10.1021/acsami.7b07327
– ident: ref1/cit1
  doi: 10.1039/c3nr05479a
– ident: ref42/cit42
  doi: 10.1038/s41598-018-25493-7
– ident: ref31/cit31
  doi: 10.1016/j.colsurfa.2011.09.045
– ident: ref28/cit28
  doi: 10.1016/j.matchemphys.2014.11.026
– ident: ref27/cit27
  doi: 10.1126/science.297.5586.1536
– ident: ref12/cit12
  doi: 10.1002/aelm.202100194
– ident: ref36/cit36
  doi: 10.1016/j.apsusc.2012.10.031
– ident: ref18/cit18
  doi: 10.1039/c7tc02637d
– ident: ref19/cit19
  doi: 10.1016/j.micromeso.2017.07.049
– ident: ref6/cit6
  doi: 10.1126/science.1122716
– ident: ref2/cit2
  doi: 10.1002/admt.201600289
– ident: ref15/cit15
  doi: 10.1038/s41598-020-58657-5
– ident: ref17/cit17
  doi: 10.1109/MEMSYS.2016.7421545
– ident: ref39/cit39
  doi: 10.1016/j.colsurfa.2011.12.020
– ident: ref38/cit38
  doi: 10.1021/acs.langmuir.1c02331
– ident: ref13/cit13
  doi: 10.1016/0022-3093(86)90026-8
– ident: ref41/cit41
  doi: 10.1016/B978-1-4557-3141-1.50020-4
– ident: ref22/cit22
  doi: 10.1021/ma980240n
– ident: ref24/cit24
  doi: 10.1021/j100067a025
– ident: ref40/cit40
  doi: 10.1016/j.jcis.2009.09.066
– ident: ref21/cit21
  doi: 10.1016/j.apmt.2021.101152
– ident: ref33/cit33
  doi: 10.1039/c5ee03229f
– ident: ref3/cit3
  doi: 10.1016/j.apmt.2021.101236
– ident: ref30/cit30
  doi: 10.1016/j.matlet.2006.04.021
– ident: ref25/cit25
  doi: 10.1021/ar960016n
– ident: ref35/cit35
  doi: 10.1016/j.apsusc.2017.01.042
– ident: ref26/cit26
  doi: 10.1021/cr030063a
– ident: ref9/cit9
  doi: 10.1002/adma.201602855
– ident: ref7/cit7
– ident: ref34/cit34
  doi: 10.1039/c4nr06033d
– ident: ref5/cit5
  doi: 10.1002/adma.201003734
– ident: ref37/cit37
  doi: 10.1016/j.apsusc.2014.07.084
– ident: ref4/cit4
  doi: 10.1016/j.apmt.2017.07.001
– ident: ref29/cit29
  doi: 10.1126/science.1066541
SSID ssj0009349
Score 2.43041
Snippet In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9211
SubjectTerms anionic surfactants
ethanol
films (materials)
radio frequency identification
robots
silver
sodium dodecyl sulfate
Title Conformal Conductive Features on Curvilinear Surfaces with Self-Assembled Silver Nanoplate Thin Films
URI http://dx.doi.org/10.1021/acs.langmuir.3c01031
https://www.ncbi.nlm.nih.gov/pubmed/37339453
https://www.proquest.com/docview/2828363440
https://www.proquest.com/docview/3040426554
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZYOOxeeO0ulJeMxGUPKWnGzuOIKiqEBBwKErfInthSRZpWTXPh1-PJAwSoYrlFkZ3Ir5lvPDPfMHaWCVpVG3syjDS5GZWnJfqekgIglDpTdfD4zW149SCuH-Xjm6H40YMfDM4Vln26u5tWk0UfsK5L8INtBGEckbF1MRy_kexCA3eJdjMSIXSpciu-QgoJy_cKaQXKrLXNaIvddTk7TZDJU79a6j4-f6Zw_M-BbLPNFnjyi2an7LA1U-yyn8Ou3ttvZij5jxBszt0T0cA6QcgJIlbOJOezgg8rJ1cIlqoFH1cLS9FcnC5y-djk1iP_8VTnJuPjCcVbcye5Z_PcgVlO1UH5aJJPyz_sYXR5P7zy2iIMnnLKfOnZzAR-mBAQ1IGG2M8wUQ5EhVpaa02dGmtiM1BCGWKKwSxRSoK1iUSMUMBftl7MCrPPeCTiYGAxRhBWWAPaovCVCNDHLAIUPfbPzVHaHqIyrf3jwSCll93Epe3E9Rh0q5Ziy2ZORTXyL3p5r73mDZvHF-1Puw2RutUgX4oqzKwqU7JUIQQh_NVtwAlIB4AcYOuxvWY3vf4VIoBESDj4xpgP2S8qdl8HC4sjtr5cVObYQaKlPqnPwQuTRgnR
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lj9MwEB4ty2G58H6Up5HgwCElzTivA4dVoeqyj0t3pb0F27GlijRdJY0Q_B_-Cr-LmTTpCqRqxWElbpFlO7Zn7PnseQG8ySVT1SVeGMWa1YzK06HxPRVKxCjUuWqNx49PoumZ_Hwenu_Az94XhgZRU091q8S_jC4wes9l_IS3aObVEE2bnqCzpTy037_RTa3-cPCRyPo2CCafTsdTr0sm4CkSSivP5Tbwo5QBjQ40Jn5uUkVgINKhc862Lp42sSMlleWIJyZPlQrRuTQ0JjYSqd8bcJPwT8B3vP3x7DK2L65RNkf7jGWEvYfellGzHDT1n3JwC7hthdzkDvzaLE9r2_J12Kz00Pz4K3Lkf79-d-F2B7PF_npf3IMdW96HvXGf3e4BWHZ1ZLxeCPrioLd07AsGxE1la7EsxbihU5RBuKrErKkc264JfrYWM1s4j7XlC13YXMzmbF0uSE4tLwqC7oJzoYrJvFjUD-HsWmb5CHbLZWmfgIhlEoycSQxKJ51F7Yz0lQyMb_IYjRzAO6JJ1h0ZddZaAwSjjAt7QmUdoQaAPbNkpovdzilEiitaeZtWF-vYJVfUf93zYUbUYM2RKu2yqTO-l2OEUvrb6yCJA4J7BE8H8HjNxJu_YoyYyhCf_sOcX8He9PT4KDs6ODl8BrcCApetmbR8DrurqrEvCAyu9Mt2Kwr4ct28-xt0xG3z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tiwR74Q1bnkaCA4eUNOO8DhxWXapdFlZIZaW9BduxpYo0rZJGCP4Rf4VfxUyaFIFUrTjsgVtk2Y7tGXs-e14AL3LJVHWJF0axZjWj8nRofE-FEjEKda5a4_EPp9HRmXx3Hp7vwI_eF4YGUVNPdavE5129zF0XYWD0msv5GW_ezKohmjZFQWdPeWK_faXbWv3m-JBI-zIIJm8_jY-8LqGAp0gwrTyX28CPUgY1OtCY-LlJFQGCSIfOOdu6edrEjpRUlqOemDxVKkTn0tCY2Eikfq_AVdYU8j3vYDz9Hd8X10ibI37GMsLeS2_LqFkWmvpPWbgF4LaCbnITfm6WqLVv-TJsVnpovv8VPfK_WMNbcKOD2-JgvT9uw44t78D1cZ_l7i5Ydnlk3F4I-uLgt3T8CwbGTWVrsSjFuKHTlMG4qsS0qRzbsAl-vhZTWziPteZzXdhcTGdsZS5IXi2WBUF4wTlRxWRWzOt7cHYps7wPu-WitPsgYpkEI2cSg9JJZ1E7I30lA-ObPEYjB_CKaJJ1R0edtVYBwSjjwp5QWUeoAWDPMJnpYrhzKpHiglbeptVyHcPkgvrPe17MiBqsQVKlXTR1xvdzjFBKf3sdJLFAsI9g6gAerBl581eMEVMZ4sN_mPMzuPbxcJK9Pz49eQR7AWHM1lpaPobdVdXYJ4QJV_ppuxsFfL5s1v0FTSZwdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformal+Conductive+Features+on+Curvilinear+Surfaces+with+Self-Assembled+Silver+Nanoplate+Thin+Films&rft.jtitle=Langmuir&rft.au=Lai%2C+Yi-Chin&rft.au=Chiu%2C+Yu-Chieh&rft.au=Chuang%2C+Kai-Wen&rft.au=Ramachandran%2C+Balaji&rft.date=2023-07-04&rft.issn=1520-5827&rft.volume=39&rft.issue=26+p.9211-9218&rft.spage=9211&rft.epage=9218&rft_id=info:doi/10.1021%2Facs.langmuir.3c01031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon