Conformal Conductive Features on Curvilinear Surfaces with Self-Assembled Silver Nanoplate Thin Films
In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates (AgNPLs) with a dimension of 700 nm and a thickness of 35 nm were suspended in ethanol with an anionic surfactant, sodium dodecyl sulfate, to impro...
Saved in:
Published in | Langmuir Vol. 39; no. 26; pp. 9211 - 9218 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates (AgNPLs) with a dimension of 700 nm and a thickness of 35 nm were suspended in ethanol with an anionic surfactant, sodium dodecyl sulfate, to improve the suspension stability. The prepared AgNPL suspension was then spread over the water surface via the Langmuir–Blodgett approach to generate a self-assembled thin film. By dipping an accepting object with a robotic arm, the floating AgNPL thin film with nanometer thickness can be effectively transferred to the object surfaces and exhibited a superior conductivity up to 15% of bulk silver without thermal sintering. Besides good conductivity, the AgNPL conductive thin films can also be transferred efficiently on any curvilinear (concave and convex) surface. Moreover, with the help of masks, conductive patterns can be produced on water surfaces and transferred to curvilinear surfaces for electronic applications. As a proof of concept, several examples were demonstrated to display the capability of this approach for radiofrequency identification and other printed circuit applications. |
---|---|
AbstractList | In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates (AgNPLs) with a dimension of 700 nm and a thickness of 35 nm were suspended in ethanol with an anionic surfactant, sodium dodecyl sulfate, to improve the suspension stability. The prepared AgNPL suspension was then spread over the water surface via the Langmuir–Blodgett approach to generate a self-assembled thin film. By dipping an accepting object with a robotic arm, the floating AgNPL thin film with nanometer thickness can be effectively transferred to the object surfaces and exhibited a superior conductivity up to 15% of bulk silver without thermal sintering. Besides good conductivity, the AgNPL conductive thin films can also be transferred efficiently on any curvilinear (concave and convex) surface. Moreover, with the help of masks, conductive patterns can be produced on water surfaces and transferred to curvilinear surfaces for electronic applications. As a proof of concept, several examples were demonstrated to display the capability of this approach for radiofrequency identification and other printed circuit applications. In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates (AgNPLs) with a dimension of 700 nm and a thickness of 35 nm were suspended in ethanol with an anionic surfactant, sodium dodecyl sulfate, to improve the suspension stability. The prepared AgNPL suspension was then spread over the water surface via the Langmuir-Blodgett approach to generate a self-assembled thin film. By dipping an accepting object with a robotic arm, the floating AgNPL thin film with nanometer thickness can be effectively transferred to the object surfaces and exhibited a superior conductivity up to 15% of bulk silver without thermal sintering. Besides good conductivity, the AgNPL conductive thin films can also be transferred efficiently on any curvilinear (concave and convex) surface. Moreover, with the help of masks, conductive patterns can be produced on water surfaces and transferred to curvilinear surfaces for electronic applications. As a proof of concept, several examples were demonstrated to display the capability of this approach for radiofrequency identification and other printed circuit applications.In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates (AgNPLs) with a dimension of 700 nm and a thickness of 35 nm were suspended in ethanol with an anionic surfactant, sodium dodecyl sulfate, to improve the suspension stability. The prepared AgNPL suspension was then spread over the water surface via the Langmuir-Blodgett approach to generate a self-assembled thin film. By dipping an accepting object with a robotic arm, the floating AgNPL thin film with nanometer thickness can be effectively transferred to the object surfaces and exhibited a superior conductivity up to 15% of bulk silver without thermal sintering. Besides good conductivity, the AgNPL conductive thin films can also be transferred efficiently on any curvilinear (concave and convex) surface. Moreover, with the help of masks, conductive patterns can be produced on water surfaces and transferred to curvilinear surfaces for electronic applications. As a proof of concept, several examples were demonstrated to display the capability of this approach for radiofrequency identification and other printed circuit applications. |
Author | Chiu, Yu-Chieh Lai, Yi-Chin Chuang, Kai-Wen Ramachandran, Balaji Wu, I-Feng Liao, Ying-Chih |
AuthorAffiliation | Advanced Research Center of Green Materials Science & Technology, College of Engineering Department of Chemical Engineering |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Advanced Research Center of Green Materials Science & Technology, College of Engineering |
Author_xml | – sequence: 1 givenname: Yi-Chin surname: Lai fullname: Lai, Yi-Chin organization: Department of Chemical Engineering – sequence: 2 givenname: Yu-Chieh surname: Chiu fullname: Chiu, Yu-Chieh organization: Department of Chemical Engineering – sequence: 3 givenname: Kai-Wen surname: Chuang fullname: Chuang, Kai-Wen organization: Department of Chemical Engineering – sequence: 4 givenname: Balaji surname: Ramachandran fullname: Ramachandran, Balaji organization: Department of Chemical Engineering – sequence: 5 givenname: I-Feng surname: Wu fullname: Wu, I-Feng organization: Department of Chemical Engineering – sequence: 6 givenname: Ying-Chih orcidid: 0000-0001-9496-4190 surname: Liao fullname: Liao, Ying-Chih email: liaoy@ntu.edu.tw organization: Advanced Research Center of Green Materials Science & Technology, College of Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37339453$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEURi1URNPCGyDkJZsJ_p0Zs6siApUqWKSsLY_nmrry2MH2BPH2TJVkw6JdXev6nLv4vit0EVMEhN5TsqaE0U_GlnUw8dc0-7zmllDC6Su0opKRRvasu0Ar0gnedKLll-iqlEdCiOJCvUGXvONcCclXCDYpupQnE_DyGmdb_QHwFkydMxScIt7M-eCDj2Ay3s3ZGbvs__j6gHcQXHNTCkxDgBHvfDhAxt9NTPtgKuD7Bx_x1oepvEWvnQkF3p3mNfq5_XK_-dbc_fh6u7m5awzvaW3cCIy0iirGBzbwnoxWmVaIdpDOOWBcKQk9UCMMcMl6OypjJHdOSWs7K_g1-ni8u8_p9wyl6skXC2HJCdJcNCeCCNZK-TLKetbzlgtBFvTDCZ2HCUa9z34y-a8-p7gAn4-AzamUDE5bX031KdZsfNCU6KfK9FKZPlemT5UtsvhPPt9_QSNH7en3Mc05LsE-r_wDRcqwMQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_152862 |
Cites_doi | 10.1039/c6ta06018h 10.1016/j.tsf.2009.10.126 10.1021/acsaelm.2c00601 10.1021/nl0344209 10.1364/oe.23.006209 10.1039/c2cp41419h 10.1021/am401757y 10.1021/acsami.7b07327 10.1039/c3nr05479a 10.1038/s41598-018-25493-7 10.1016/j.colsurfa.2011.09.045 10.1016/j.matchemphys.2014.11.026 10.1126/science.297.5586.1536 10.1002/aelm.202100194 10.1016/j.apsusc.2012.10.031 10.1039/c7tc02637d 10.1016/j.micromeso.2017.07.049 10.1126/science.1122716 10.1002/admt.201600289 10.1038/s41598-020-58657-5 10.1109/MEMSYS.2016.7421545 10.1016/j.colsurfa.2011.12.020 10.1021/acs.langmuir.1c02331 10.1016/0022-3093(86)90026-8 10.1016/B978-1-4557-3141-1.50020-4 10.1021/ma980240n 10.1021/j100067a025 10.1016/j.jcis.2009.09.066 10.1016/j.apmt.2021.101152 10.1039/c5ee03229f 10.1016/j.apmt.2021.101236 10.1016/j.matlet.2006.04.021 10.1021/ar960016n 10.1016/j.apsusc.2017.01.042 10.1021/cr030063a 10.1002/adma.201602855 10.1039/c4nr06033d 10.1002/adma.201003734 10.1016/j.apsusc.2014.07.084 10.1016/j.apmt.2017.07.001 10.1126/science.1066541 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.langmuir.3c01031 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 9218 |
ExternalDocumentID | 37339453 10_1021_acs_langmuir_3c01031 b910646643 |
Genre | Journal Article |
GroupedDBID | --- -~X .K2 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABPTK ABQRX ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 UPT VF5 VG9 W1F YQT ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a381t-fde20691923b2b380dc9a6446b5fffe23995e8e1a4ae3528cd9aa53ff95cc7c43 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Fri Jul 11 10:47:19 EDT 2025 Fri Jul 11 00:01:57 EDT 2025 Thu May 08 07:32:54 EDT 2025 Tue Jul 01 03:28:26 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Thu Jul 06 08:30:34 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-fde20691923b2b380dc9a6446b5fffe23995e8e1a4ae3528cd9aa53ff95cc7c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9496-4190 |
PMID | 37339453 |
PQID | 2828363440 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3040426554 proquest_miscellaneous_2828363440 pubmed_primary_37339453 crossref_citationtrail_10_1021_acs_langmuir_3c01031 crossref_primary_10_1021_acs_langmuir_3c01031 acs_journals_10_1021_acs_langmuir_3c01031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-04 |
PublicationDateYYYYMMDD | 2023-07-04 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref14/cit14 doi: 10.1039/c6ta06018h – ident: ref10/cit10 doi: 10.1016/j.tsf.2009.10.126 – ident: ref11/cit11 doi: 10.1021/acsaelm.2c00601 – ident: ref20/cit20 doi: 10.1021/nl0344209 – ident: ref32/cit32 doi: 10.1364/oe.23.006209 – ident: ref23/cit23 doi: 10.1039/c2cp41419h – ident: ref8/cit8 doi: 10.1021/am401757y – ident: ref16/cit16 doi: 10.1021/acsami.7b07327 – ident: ref1/cit1 doi: 10.1039/c3nr05479a – ident: ref42/cit42 doi: 10.1038/s41598-018-25493-7 – ident: ref31/cit31 doi: 10.1016/j.colsurfa.2011.09.045 – ident: ref28/cit28 doi: 10.1016/j.matchemphys.2014.11.026 – ident: ref27/cit27 doi: 10.1126/science.297.5586.1536 – ident: ref12/cit12 doi: 10.1002/aelm.202100194 – ident: ref36/cit36 doi: 10.1016/j.apsusc.2012.10.031 – ident: ref18/cit18 doi: 10.1039/c7tc02637d – ident: ref19/cit19 doi: 10.1016/j.micromeso.2017.07.049 – ident: ref6/cit6 doi: 10.1126/science.1122716 – ident: ref2/cit2 doi: 10.1002/admt.201600289 – ident: ref15/cit15 doi: 10.1038/s41598-020-58657-5 – ident: ref17/cit17 doi: 10.1109/MEMSYS.2016.7421545 – ident: ref39/cit39 doi: 10.1016/j.colsurfa.2011.12.020 – ident: ref38/cit38 doi: 10.1021/acs.langmuir.1c02331 – ident: ref13/cit13 doi: 10.1016/0022-3093(86)90026-8 – ident: ref41/cit41 doi: 10.1016/B978-1-4557-3141-1.50020-4 – ident: ref22/cit22 doi: 10.1021/ma980240n – ident: ref24/cit24 doi: 10.1021/j100067a025 – ident: ref40/cit40 doi: 10.1016/j.jcis.2009.09.066 – ident: ref21/cit21 doi: 10.1016/j.apmt.2021.101152 – ident: ref33/cit33 doi: 10.1039/c5ee03229f – ident: ref3/cit3 doi: 10.1016/j.apmt.2021.101236 – ident: ref30/cit30 doi: 10.1016/j.matlet.2006.04.021 – ident: ref25/cit25 doi: 10.1021/ar960016n – ident: ref35/cit35 doi: 10.1016/j.apsusc.2017.01.042 – ident: ref26/cit26 doi: 10.1021/cr030063a – ident: ref9/cit9 doi: 10.1002/adma.201602855 – ident: ref7/cit7 – ident: ref34/cit34 doi: 10.1039/c4nr06033d – ident: ref5/cit5 doi: 10.1002/adma.201003734 – ident: ref37/cit37 doi: 10.1016/j.apsusc.2014.07.084 – ident: ref4/cit4 doi: 10.1016/j.apmt.2017.07.001 – ident: ref29/cit29 doi: 10.1126/science.1066541 |
SSID | ssj0009349 |
Score | 2.43041 |
Snippet | In this study, a water transfer method was developed to fabricate conducive thin-film patterns on 3D curvilinear surfaces. Crystalline silver nanoplates... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9211 |
SubjectTerms | anionic surfactants ethanol films (materials) radio frequency identification robots silver sodium dodecyl sulfate |
Title | Conformal Conductive Features on Curvilinear Surfaces with Self-Assembled Silver Nanoplate Thin Films |
URI | http://dx.doi.org/10.1021/acs.langmuir.3c01031 https://www.ncbi.nlm.nih.gov/pubmed/37339453 https://www.proquest.com/docview/2828363440 https://www.proquest.com/docview/3040426554 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZYOOxeeO0ulJeMxGUPKWnGzuOIKiqEBBwKErfInthSRZpWTXPh1-PJAwSoYrlFkZ3Ir5lvPDPfMHaWCVpVG3syjDS5GZWnJfqekgIglDpTdfD4zW149SCuH-Xjm6H40YMfDM4Vln26u5tWk0UfsK5L8INtBGEckbF1MRy_kexCA3eJdjMSIXSpciu-QgoJy_cKaQXKrLXNaIvddTk7TZDJU79a6j4-f6Zw_M-BbLPNFnjyi2an7LA1U-yyn8Ou3ttvZij5jxBszt0T0cA6QcgJIlbOJOezgg8rJ1cIlqoFH1cLS9FcnC5y-djk1iP_8VTnJuPjCcVbcye5Z_PcgVlO1UH5aJJPyz_sYXR5P7zy2iIMnnLKfOnZzAR-mBAQ1IGG2M8wUQ5EhVpaa02dGmtiM1BCGWKKwSxRSoK1iUSMUMBftl7MCrPPeCTiYGAxRhBWWAPaovCVCNDHLAIUPfbPzVHaHqIyrf3jwSCll93Epe3E9Rh0q5Ziy2ZORTXyL3p5r73mDZvHF-1Puw2RutUgX4oqzKwqU7JUIQQh_NVtwAlIB4AcYOuxvWY3vf4VIoBESDj4xpgP2S8qdl8HC4sjtr5cVObYQaKlPqnPwQuTRgnR |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lj9MwEB4ty2G58H6Up5HgwCElzTivA4dVoeqyj0t3pb0F27GlijRdJY0Q_B_-Cr-LmTTpCqRqxWElbpFlO7Zn7PnseQG8ySVT1SVeGMWa1YzK06HxPRVKxCjUuWqNx49PoumZ_Hwenu_Az94XhgZRU091q8S_jC4wes9l_IS3aObVEE2bnqCzpTy037_RTa3-cPCRyPo2CCafTsdTr0sm4CkSSivP5Tbwo5QBjQ40Jn5uUkVgINKhc862Lp42sSMlleWIJyZPlQrRuTQ0JjYSqd8bcJPwT8B3vP3x7DK2L65RNkf7jGWEvYfellGzHDT1n3JwC7hthdzkDvzaLE9r2_J12Kz00Pz4K3Lkf79-d-F2B7PF_npf3IMdW96HvXGf3e4BWHZ1ZLxeCPrioLd07AsGxE1la7EsxbihU5RBuKrErKkc264JfrYWM1s4j7XlC13YXMzmbF0uSE4tLwqC7oJzoYrJvFjUD-HsWmb5CHbLZWmfgIhlEoycSQxKJ51F7Yz0lQyMb_IYjRzAO6JJ1h0ZddZaAwSjjAt7QmUdoQaAPbNkpovdzilEiitaeZtWF-vYJVfUf93zYUbUYM2RKu2yqTO-l2OEUvrb6yCJA4J7BE8H8HjNxJu_YoyYyhCf_sOcX8He9PT4KDs6ODl8BrcCApetmbR8DrurqrEvCAyu9Mt2Kwr4ct28-xt0xG3z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tiwR74Q1bnkaCA4eUNOO8DhxWXapdFlZIZaW9BduxpYo0rZJGCP4Rf4VfxUyaFIFUrTjsgVtk2Y7tGXs-e14AL3LJVHWJF0axZjWj8nRofE-FEjEKda5a4_EPp9HRmXx3Hp7vwI_eF4YGUVNPdavE5129zF0XYWD0msv5GW_ezKohmjZFQWdPeWK_faXbWv3m-JBI-zIIJm8_jY-8LqGAp0gwrTyX28CPUgY1OtCY-LlJFQGCSIfOOdu6edrEjpRUlqOemDxVKkTn0tCY2Eikfq_AVdYU8j3vYDz9Hd8X10ibI37GMsLeS2_LqFkWmvpPWbgF4LaCbnITfm6WqLVv-TJsVnpovv8VPfK_WMNbcKOD2-JgvT9uw44t78D1cZ_l7i5Ydnlk3F4I-uLgt3T8CwbGTWVrsSjFuKHTlMG4qsS0qRzbsAl-vhZTWziPteZzXdhcTGdsZS5IXi2WBUF4wTlRxWRWzOt7cHYps7wPu-WitPsgYpkEI2cSg9JJZ1E7I30lA-ObPEYjB_CKaJJ1R0edtVYBwSjjwp5QWUeoAWDPMJnpYrhzKpHiglbeptVyHcPkgvrPe17MiBqsQVKlXTR1xvdzjFBKf3sdJLFAsI9g6gAerBl581eMEVMZ4sN_mPMzuPbxcJK9Pz49eQR7AWHM1lpaPobdVdXYJ4QJV_ppuxsFfL5s1v0FTSZwdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformal+Conductive+Features+on+Curvilinear+Surfaces+with+Self-Assembled+Silver+Nanoplate+Thin+Films&rft.jtitle=Langmuir&rft.au=Lai%2C+Yi-Chin&rft.au=Chiu%2C+Yu-Chieh&rft.au=Chuang%2C+Kai-Wen&rft.au=Ramachandran%2C+Balaji&rft.date=2023-07-04&rft.issn=1520-5827&rft.volume=39&rft.issue=26+p.9211-9218&rft.spage=9211&rft.epage=9218&rft_id=info:doi/10.1021%2Facs.langmuir.3c01031&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |