Study on the Resistance Distribution at the Contact between Molybdenum Disulfide and Metals
Contact resistance hinders the high performance of electrical devices, especially devices based on two-dimensional (2D) materials, such as graphene and transition metal dichalcogenide. To engineer contact resistance, understanding the resistance distribution and carrier transport behavior at the con...
Saved in:
Published in | ACS nano Vol. 8; no. 8; pp. 7771 - 7779 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Contact resistance hinders the high performance of electrical devices, especially devices based on two-dimensional (2D) materials, such as graphene and transition metal dichalcogenide. To engineer contact resistance, understanding the resistance distribution and carrier transport behavior at the contact area is essential. Here, we developed a method that can be used to obtain some key parameters of contact, such as transfer length (L t), sheet resistance of the 2D materials beneath the contacting metal (R sh), and contact resistivity between the 2D materials and the metal electrode (ρc). Using our method, we studied the contacts between molybdenum disulfide (MoS2) and metals, such as titanium and gold, in bilayer and few-layered MoS2 devices. Especially, we found that R sh is obviously larger than the sheet resistance of the same 2D materials in the channel (R ch) in all the devices we studied. With the increasing of the back-gate voltage, L t increases and R sh, ρc, R ch, and the contact resistance R c decrease in all the devices we studied. Our results are helpful for understanding the metal–MoS2 contact and improving the performances of MoS2 devices. |
---|---|
AbstractList | Contact resistance hinders the high performance of electrical devices, especially devices based on two-dimensional (2D) materials, such as graphene and transition metal dichalcogenide. To engineer contact resistance, understanding the resistance distribution and carrier transport behavior at the contact area is essential. Here, we developed a method that can be used to obtain some key parameters of contact, such as transfer length (L t), sheet resistance of the 2D materials beneath the contacting metal (R sh), and contact resistivity between the 2D materials and the metal electrode (ρc). Using our method, we studied the contacts between molybdenum disulfide (MoS2) and metals, such as titanium and gold, in bilayer and few-layered MoS2 devices. Especially, we found that R sh is obviously larger than the sheet resistance of the same 2D materials in the channel (R ch) in all the devices we studied. With the increasing of the back-gate voltage, L t increases and R sh, ρc, R ch, and the contact resistance R c decrease in all the devices we studied. Our results are helpful for understanding the metal–MoS2 contact and improving the performances of MoS2 devices. Contact resistance hinders the high performance of electrical devices, especially devices based on two-dimensional (2D) materials, such as graphene and transition metal dichalcogenide. To engineer contact resistance, understanding the resistance distribution and carrier transport behavior at the contact area is essential. Here, we developed a method that can be used to obtain some key parameters of contact, such as transfer length (Lt), sheet resistance of the 2D materials beneath the contacting metal (Rsh), and contact resistivity between the 2D materials and the metal electrode (ρc). Using our method, we studied the contacts between molybdenum disulfide (MoS2) and metals, such as titanium and gold, in bilayer and few-layered MoS2 devices. Especially, we found that Rsh is obviously larger than the sheet resistance of the same 2D materials in the channel (Rch) in all the devices we studied. With the increasing of the back-gate voltage, Lt increases and Rsh, ρc, Rch, and the contact resistance Rc decrease in all the devices we studied. Our results are helpful for understanding the metal–MoS2 contact and improving the performances of MoS2 devices. |
Author | Guo, Yao Han, Yuxiang Xiang, An Chen, Qing Li, Jiapeng Wei, Xianlong Gao, Song |
AuthorAffiliation | Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics Peking University |
AuthorAffiliation_xml | – name: Peking University – name: Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics |
Author_xml | – sequence: 1 givenname: Yao surname: Guo fullname: Guo, Yao – sequence: 2 givenname: Yuxiang surname: Han fullname: Han, Yuxiang – sequence: 3 givenname: Jiapeng surname: Li fullname: Li, Jiapeng – sequence: 4 givenname: An surname: Xiang fullname: Xiang, An – sequence: 5 givenname: Xianlong surname: Wei fullname: Wei, Xianlong – sequence: 6 givenname: Song surname: Gao fullname: Gao, Song – sequence: 7 givenname: Qing surname: Chen fullname: Chen, Qing email: qingchen@pku.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25032780$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0MtKxDAUBuAgI85FF76AZCPoopo0TdIuZbyCg-AFBBclTU6wQycdkxSZt7fjjLNydQ6cjx_OP0YD1zpA6JiSC0pSeukcJ4zy1O-hES2YSEgu3ge7ndMhGocwJ4TLXIoDNEx7n8qcjNDHS-zMCrcOx0_AzxDqEJXTgK_7xddVF-v-puLvedq6qHTEFcRvAIdnbbOqDLhuseZdY2sDWDmDZxBVEw7Rvu0HHG3nBL3d3rxO75PHp7uH6dVjolhOY2JVJbTiwljCWQXUWlJQy2VhpRY007KQLDcZEyLPSWaKyjJFODUgCuAVSdkEnW1yl7796iDEclEHDU2jHLRdKKmgRAqSpayn5xuqfRuCB1sufb1QflVSUq67LHdd9vZkG9tVCzA7-VdeD043QOlQztvOu_7Lf4J-ACaafPQ |
CitedBy_id | crossref_primary_10_1063_5_0004272 crossref_primary_10_1016_j_xcrp_2020_100298 crossref_primary_10_1021_acsami_9b13660 crossref_primary_10_1063_5_0073650 crossref_primary_10_1039_C7TC01001J crossref_primary_10_1038_s41598_017_12816_3 crossref_primary_10_1002_aelm_201600048 crossref_primary_10_1021_acsnano_7b06417 crossref_primary_10_1039_C5NR06076A crossref_primary_10_1002_adma_202210916 crossref_primary_10_1038_nmat4452 crossref_primary_10_1039_D0CP04160B crossref_primary_10_1038_s41586_019_0892_1 crossref_primary_10_1063_1_4942409 crossref_primary_10_1002_smll_202206550 crossref_primary_10_1007_s40820_017_0152_6 crossref_primary_10_1002_adfm_201907860 crossref_primary_10_1109_TED_2018_2865642 crossref_primary_10_1109_TNANO_2016_2630698 crossref_primary_10_1039_C9NR10690A crossref_primary_10_1088_2053_1583_ab6267 crossref_primary_10_1088_2053_1583_aadf47 crossref_primary_10_1002_smll_201502392 crossref_primary_10_1038_s41586_023_06145_x crossref_primary_10_7498_aps_66_218503 crossref_primary_10_1039_D1TC01463C crossref_primary_10_1063_1_4995690 crossref_primary_10_1039_C5CS00517E crossref_primary_10_1088_1361_6528_ac0d7c crossref_primary_10_1021_acsnano_6b02879 crossref_primary_10_1038_s41598_021_85968_y crossref_primary_10_4028_p_x49od6 crossref_primary_10_1016_j_vacuum_2020_109386 crossref_primary_10_7566_JPSJ_84_121011 crossref_primary_10_1016_j_pmatsci_2017_06_002 crossref_primary_10_1038_s41699_023_00372_6 crossref_primary_10_1109_TED_2018_2863750 crossref_primary_10_1002_aelm_202300691 crossref_primary_10_1088_1361_648X_abadde crossref_primary_10_1039_C8NH00419F crossref_primary_10_1002_aelm_201900042 crossref_primary_10_1088_1361_6528_aacc22 crossref_primary_10_1088_2053_1583_abc187 crossref_primary_10_1088_2053_1583_3_4_045015 crossref_primary_10_1002_cphc_201700343 crossref_primary_10_3390_cryst8080316 crossref_primary_10_1021_acs_jpcc_7b07511 crossref_primary_10_1109_TED_2016_2635690 crossref_primary_10_1002_aelm_202201342 crossref_primary_10_1007_s11467_023_1305_3 crossref_primary_10_1039_C5CS00275C crossref_primary_10_1103_PhysRevB_101_085112 crossref_primary_10_7567_JJAP_57_07MA04 crossref_primary_10_1088_2053_1583_ac1adb crossref_primary_10_1038_s41928_022_00808_9 crossref_primary_10_1002_aelm_202200672 crossref_primary_10_1039_C7NR01501A crossref_primary_10_3390_nano8110901 crossref_primary_10_1063_5_0189250 crossref_primary_10_3938_jkps_73_667 crossref_primary_10_1088_0957_4484_26_17_175202 crossref_primary_10_1557_adv_2019_283 crossref_primary_10_1002_adfm_201805614 crossref_primary_10_1038_nnano_2015_70 crossref_primary_10_1088_1361_6528_ab2feb crossref_primary_10_1088_1361_6528_ad1afa crossref_primary_10_1016_j_diamond_2022_109206 crossref_primary_10_1021_acs_jpcc_0c02657 crossref_primary_10_1039_C8SC02609B crossref_primary_10_1038_s41467_022_35760_x crossref_primary_10_1103_PhysRevMaterials_2_063401 crossref_primary_10_1021_acsnano_9b02785 crossref_primary_10_1021_nn506138y crossref_primary_10_1007_s12274_021_3670_y crossref_primary_10_1002_aelm_201500215 crossref_primary_10_1007_s13204_020_01438_3 crossref_primary_10_7567_JJAP_55_036501 |
Cites_doi | 10.1021/nl401831u 10.1021/nn1003937 10.1021/nl301702r 10.1038/nmat3687 10.1103/PhysRevLett.108.156802 10.1063/1.3491804 10.1021/nn303513c 10.1063/1.4824893 10.1002/adfm.201102111 10.1021/nl2018178 10.1021/nn404961e 10.1109/LED.2013.2277311 10.1021/nn301320r 10.1021/nl303583v 10.1038/nnano.2011.196 10.1038/nnano.2010.89 10.1021/nl401916s 10.1063/1.121220 10.1021/nn405916t 10.1063/1.3290248 10.1109/JPROC.2013.2257633 10.1038/nnano.2011.6 10.1063/1.3549183 10.1021/nl4010157 10.1080/10408430390802431 10.1021/nl403465v 10.1021/nn500044q 10.1021/nn4024834 10.1038/nnano.2011.39 10.1016/S0026-2714(02)00027-6 10.1038/nnano.2010.279 10.1021/nn4052138 10.1088/0957-4484/22/12/125706 10.1103/PhysRevLett.105.136805 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/nn503152r |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 7779 |
ExternalDocumentID | 10_1021_nn503152r 25032780 b175590116 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a381t-fab6ca56df053be1ff091f579f7c614c79738d43668804d9bf3a051de69e5b023 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Sat Aug 17 03:17:55 EDT 2024 Fri Aug 23 00:24:57 EDT 2024 Sat Sep 28 08:04:03 EDT 2024 Thu Aug 27 13:41:58 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | two-dimensional materials FET MoS2 contact resistance transfer length |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-fab6ca56df053be1ff091f579f7c614c79738d43668804d9bf3a051de69e5b023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25032780 |
PQID | 1610760423 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1610760423 crossref_primary_10_1021_nn503152r pubmed_primary_25032780 acs_journals_10_1021_nn503152r |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2014-08-26 |
PublicationDateYYYYMMDD | 2014-08-26 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Dankert A. (ref32/cit32) 2014; 8 Robinson J. A. (ref25/cit25) 2011; 98 Radisavljevic B. (ref11/cit11) 2013; 12 Zhang S. L. (ref2/cit2) 2003; 28 Liu D. (ref28/cit28) 2013; 103 Venugopal A. (ref26/cit26) 2010; 96 Radisavljevic B. (ref4/cit4) 2011; 6 Schwierz F. (ref5/cit5) 2013; 101 Schwierz F. (ref3/cit3) 2010; 5 Gong C. (ref15/cit15) 2014; 14 Du Y. C. (ref16/cit16) 2013; 34 Gong C. (ref29/cit29) 2013; 7 Yoon Y. (ref6/cit6) 2011; 11 Monch W. (ref13/cit13) 1998; 72 McDonnell S. (ref27/cit27) 2014; 8 Benameur M. M. (ref33/cit33) 2011; 22 Lee C. (ref34/cit34) 2010; 4 Leonard F. (ref1/cit1) 2011; 6 Grosse K. L. (ref22/cit22) 2011; 6 Liu H. (ref10/cit10) 2012; 6 Mak K. F. (ref24/cit24) 2010; 105 Fang H. (ref18/cit18) 2012; 12 Ortiz-Conde A. (ref20/cit20) 2002; 42 Nagashio K. (ref23/cit23) 2010; 97 Popov I. (ref12/cit12) 2012; 108 Baugher B. W. H. (ref8/cit8) 2013; 13 Liu H. (ref14/cit14) 2014; 8 Johari P. (ref31/cit31) 2012; 6 Hui Y. Y. (ref30/cit30) 2013; 7 Xia F. (ref21/cit21) 2011; 6 Das S. (ref9/cit9) 2013; 13 Li H. (ref19/cit19) 2012; 22 Chen J. R. (ref17/cit17) 2013; 13 Das S. (ref7/cit7) 2012; 13 |
References_xml | – volume: 13 start-page: 3396 year: 2013 ident: ref9/cit9 publication-title: Nano Lett. doi: 10.1021/nl401831u contributor: fullname: Das S. – volume: 4 start-page: 2695 year: 2010 ident: ref34/cit34 publication-title: ACS Nano doi: 10.1021/nn1003937 contributor: fullname: Lee C. – volume: 12 start-page: 3788 year: 2012 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl301702r contributor: fullname: Fang H. – volume: 12 start-page: 815 year: 2013 ident: ref11/cit11 publication-title: Nat. Mater. doi: 10.1038/nmat3687 contributor: fullname: Radisavljevic B. – volume: 108 start-page: 156802 year: 2012 ident: ref12/cit12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.156802 contributor: fullname: Popov I. – volume: 97 start-page: 143514 year: 2010 ident: ref23/cit23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3491804 contributor: fullname: Nagashio K. – volume: 6 start-page: 8563 year: 2012 ident: ref10/cit10 publication-title: ACS Nano doi: 10.1021/nn303513c contributor: fullname: Liu H. – volume: 103 start-page: 183113 year: 2013 ident: ref28/cit28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4824893 contributor: fullname: Liu D. – volume: 22 start-page: 1385 year: 2012 ident: ref19/cit19 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102111 contributor: fullname: Li H. – volume: 11 start-page: 3768 year: 2011 ident: ref6/cit6 publication-title: Nano Lett. doi: 10.1021/nl2018178 contributor: fullname: Yoon Y. – volume: 8 start-page: 476 year: 2014 ident: ref32/cit32 publication-title: ACS Nano doi: 10.1021/nn404961e contributor: fullname: Dankert A. – volume: 34 start-page: 1328 year: 2013 ident: ref16/cit16 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2013.2277311 contributor: fullname: Du Y. C. – volume: 6 start-page: 5449 year: 2012 ident: ref31/cit31 publication-title: ACS Nano doi: 10.1021/nn301320r contributor: fullname: Johari P. – volume: 13 start-page: 100 year: 2012 ident: ref7/cit7 publication-title: Nano Lett. doi: 10.1021/nl303583v contributor: fullname: Das S. – volume: 6 start-page: 773 year: 2011 ident: ref1/cit1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.196 contributor: fullname: Leonard F. – volume: 5 start-page: 487 year: 2010 ident: ref3/cit3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.89 contributor: fullname: Schwierz F. – volume: 13 start-page: 4212 year: 2013 ident: ref8/cit8 publication-title: Nano Lett. doi: 10.1021/nl401916s contributor: fullname: Baugher B. W. H. – volume: 72 start-page: 1899 year: 1998 ident: ref13/cit13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.121220 contributor: fullname: Monch W. – volume: 8 start-page: 1031 year: 2014 ident: ref14/cit14 publication-title: ACS Nano doi: 10.1021/nn405916t contributor: fullname: Liu H. – volume: 96 start-page: 013512 year: 2010 ident: ref26/cit26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3290248 contributor: fullname: Venugopal A. – volume: 101 start-page: 1567 year: 2013 ident: ref5/cit5 publication-title: Proc. IEEE doi: 10.1109/JPROC.2013.2257633 contributor: fullname: Schwierz F. – volume: 6 start-page: 179 year: 2011 ident: ref21/cit21 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.6 contributor: fullname: Xia F. – volume: 98 start-page: 053103 year: 2011 ident: ref25/cit25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3549183 contributor: fullname: Robinson J. A. – volume: 13 start-page: 3106 year: 2013 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl4010157 contributor: fullname: Chen J. R. – volume: 28 start-page: 1 year: 2003 ident: ref2/cit2 publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408430390802431 contributor: fullname: Zhang S. L. – volume: 14 start-page: 1714 year: 2014 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl403465v contributor: fullname: Gong C. – volume: 8 start-page: 2880 year: 2014 ident: ref27/cit27 publication-title: ACS Nano doi: 10.1021/nn500044q contributor: fullname: McDonnell S. – volume: 7 start-page: 7126 year: 2013 ident: ref30/cit30 publication-title: ACS Nano doi: 10.1021/nn4024834 contributor: fullname: Hui Y. Y. – volume: 6 start-page: 287 year: 2011 ident: ref22/cit22 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.39 contributor: fullname: Grosse K. L. – volume: 42 start-page: 583 year: 2002 ident: ref20/cit20 publication-title: Microelectron. Reliab. doi: 10.1016/S0026-2714(02)00027-6 contributor: fullname: Ortiz-Conde A. – volume: 6 start-page: 147 year: 2011 ident: ref4/cit4 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 contributor: fullname: Radisavljevic B. – volume: 7 start-page: 11350 year: 2013 ident: ref29/cit29 publication-title: ACS Nano doi: 10.1021/nn4052138 contributor: fullname: Gong C. – volume: 22 start-page: 125706 year: 2011 ident: ref33/cit33 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/12/125706 contributor: fullname: Benameur M. M. – volume: 105 start-page: 136805 year: 2010 ident: ref24/cit24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 contributor: fullname: Mak K. F. |
SSID | ssj0057876 |
Score | 2.4688125 |
Snippet | Contact resistance hinders the high performance of electrical devices, especially devices based on two-dimensional (2D) materials, such as graphene and... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7771 |
Title | Study on the Resistance Distribution at the Contact between Molybdenum Disulfide and Metals |
URI | http://dx.doi.org/10.1021/nn503152r https://www.ncbi.nlm.nih.gov/pubmed/25032780 https://search.proquest.com/docview/1610760423 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3JTsMwEIZHpVzgwL6UpTLLNYU6iRMfUUtVIZUDUKkSh8iObQlRJahND-XpGWepiqBwjmNZHo__L5nxGOBaecoXgaFOjPjreKEQDlfCd5DMUT5Q71VozzsPHll_6D2M_FENrlZE8Gn7Jkl8exMBnazBOg3QKSz_dJ6r7dauOFaEjvHTGPmhKh-0_KqVnnj6XXpW8GSuK71t6Fanc4p0kvfWLJOt-PNnsca_hrwDWyVXkrtiIexCTSd7sLlUbXAfXm3O4JykCUHoI096atERbU66tnhuee8VEVn-2FatEnFGyjwuMkjHc6ls3rxtPhubN6WJSBQZaMT36QEMe_cvnb5T3q3gCNTozDFCslj4TBn0QqnbxiA4GD_gJohRseOAB26oPJcxdHBPcWlcgf6rNOPalyj0h1BP0kQfA1FtKagMfaU4t3HSkNsaaaFQIeU4D7wBTZz8qPSNaZSHvWk7WsxSAy4ru0QfRY2N3xpdVBaL0ANsWEMkOp1hf0iAAbP5PQ04Kky56AYBz6VBeHvy3xhOYQNRyLN_iyk7g3o2melzxI1MNvPl9gVGls1I |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDA-1EexSDWFJrGTjyiAirQdoBWqsQQ2bEtIaoUNelQfj13SVoKAsEcxzrZd_6-5M7fEXKuPc2kb10nAvrreIGUjtCSOcDMAT4A73WA953bHd7sefd91i9kcvAuDBiRwExJlsT_VBeoXcQxw4YE7miRLDEfgBJpUONpeuqi4_E8gwxfyEAjpipC868iAkXJVwT6hVZm8HK7nvcpygzLqkpeq-NUVaP3b5qN_7N8g6wVLJNe5W6xSRZMvEVW57QHt8kzVhBO6DCmQAHpo0mQSIIH0GuU0i26YFGZZo9Rw0pGKS2qumh7OJgojVX0OHw8sC_aUBlr2jZA5pMd0ru96TaaTtFpwZGA2KljpeKRZFxbiEllatYCjbDMF9aPAL8jX_j1QHt1ziHcPS2UrUuIZm24MEwB7O-SUjyMzT6huqakqwKmtRCYNQ0EKqYFUgeugHUQZVKBRQqLSEnCLAnu1sLZKpXJ2XR7wrdcceOnQafTjQshHjDJIWMzHMN8wAd9jtU-ZbKX7-hsGqB7ddcPLg_-suGELDe77VbYuus8HJIVIEke_kd2-REppaOxOQYikqpK5oEf1SPVrQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58gOjB92N9rFG8Vm23SZuj7Lr4WhV1QfBQkiYBUbpiuwf99c50u4uKouemw5DM9PvSmXwB2DOh4SpygZci_fXCWClPGsU9ZOYIH4j3Jqbzzp1LcdINz-75fbVRpLMw6ESOlvKyiE9Z_WJcpTDgH2QZp0sJgtdxmOSRX5Zlj5q3wy8vBZ8YVJFxl4xUYqgk9PlVQqE0_4pCv1DLEmLac3A1cq7sLHna7xd6P33_ptv4f-_nYbZim-xoEB4LMGazRZj5pEG4BA_USfjGehlDKshubE6EEiOBtUhSt7oNi6mifExaViotWNXdxTq95zdtqJuehvef3aOxTGWGdSyS-nwZuu3ju-aJV9244ClE7sJzSotUcWEc5qa2vnNIJxyPpItSxPE0klEjNmFDCEz70EjtGgqz2lghLdcI_yswkfUyuwbM-FoFOubGSEnV01iSclqsTBxInAdZgzpOVFJlTJ6UxfDAT0azVIPd4RIlLwPljZ8G7QwXL8G8oGKHymyvj_aQF0aCun5qsDpY1ZEZpH2NIIoP1__yYRumrlvt5OL08nwDppErhfQ7ORCbMFG89u0W8pFC18sg_ADdf9gn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+resistance+distribution+at+the+contact+between+molybdenum+disulfide+and+metals&rft.jtitle=ACS+nano&rft.au=Guo%2C+Yao&rft.au=Han%2C+Yuxiang&rft.au=Li%2C+Jiapeng&rft.au=Xiang%2C+An&rft.date=2014-08-26&rft.eissn=1936-086X&rft.volume=8&rft.issue=8&rft.spage=7771&rft.epage=7779&rft_id=info:doi/10.1021%2Fnn503152r&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |