Study on the Resistance Distribution at the Contact between Molybdenum Disulfide and Metals

Contact resistance hinders the high performance of electrical devices, especially devices based on two-dimensional (2D) materials, such as graphene and transition metal dichalcogenide. To engineer contact resistance, understanding the resistance distribution and carrier transport behavior at the con...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 8; no. 8; pp. 7771 - 7779
Main Authors Guo, Yao, Han, Yuxiang, Li, Jiapeng, Xiang, An, Wei, Xianlong, Gao, Song, Chen, Qing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Contact resistance hinders the high performance of electrical devices, especially devices based on two-dimensional (2D) materials, such as graphene and transition metal dichalcogenide. To engineer contact resistance, understanding the resistance distribution and carrier transport behavior at the contact area is essential. Here, we developed a method that can be used to obtain some key parameters of contact, such as transfer length (L t), sheet resistance of the 2D materials beneath the contacting metal (R sh), and contact resistivity between the 2D materials and the metal electrode (ρc). Using our method, we studied the contacts between molybdenum disulfide (MoS2) and metals, such as titanium and gold, in bilayer and few-layered MoS2 devices. Especially, we found that R sh is obviously larger than the sheet resistance of the same 2D materials in the channel (R ch) in all the devices we studied. With the increasing of the back-gate voltage, L t increases and R sh, ρc, R ch, and the contact resistance R c decrease in all the devices we studied. Our results are helpful for understanding the metal–MoS2 contact and improving the performances of MoS2 devices.
AbstractList Contact resistance hinders the high performance of electrical devices, especially devices based on two-dimensional (2D) materials, such as graphene and transition metal dichalcogenide. To engineer contact resistance, understanding the resistance distribution and carrier transport behavior at the contact area is essential. Here, we developed a method that can be used to obtain some key parameters of contact, such as transfer length (L t), sheet resistance of the 2D materials beneath the contacting metal (R sh), and contact resistivity between the 2D materials and the metal electrode (ρc). Using our method, we studied the contacts between molybdenum disulfide (MoS2) and metals, such as titanium and gold, in bilayer and few-layered MoS2 devices. Especially, we found that R sh is obviously larger than the sheet resistance of the same 2D materials in the channel (R ch) in all the devices we studied. With the increasing of the back-gate voltage, L t increases and R sh, ρc, R ch, and the contact resistance R c decrease in all the devices we studied. Our results are helpful for understanding the metal–MoS2 contact and improving the performances of MoS2 devices.
Contact resistance hinders the high performance of electrical devices, especially devices based on two-dimensional (2D) materials, such as graphene and transition metal dichalcogenide. To engineer contact resistance, understanding the resistance distribution and carrier transport behavior at the contact area is essential. Here, we developed a method that can be used to obtain some key parameters of contact, such as transfer length (Lt), sheet resistance of the 2D materials beneath the contacting metal (Rsh), and contact resistivity between the 2D materials and the metal electrode (ρc). Using our method, we studied the contacts between molybdenum disulfide (MoS2) and metals, such as titanium and gold, in bilayer and few-layered MoS2 devices. Especially, we found that Rsh is obviously larger than the sheet resistance of the same 2D materials in the channel (Rch) in all the devices we studied. With the increasing of the back-gate voltage, Lt increases and Rsh, ρc, Rch, and the contact resistance Rc decrease in all the devices we studied. Our results are helpful for understanding the metal–MoS2 contact and improving the performances of MoS2 devices.
Author Guo, Yao
Han, Yuxiang
Xiang, An
Chen, Qing
Li, Jiapeng
Wei, Xianlong
Gao, Song
AuthorAffiliation Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics
Peking University
AuthorAffiliation_xml – name: Peking University
– name: Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics
Author_xml – sequence: 1
  givenname: Yao
  surname: Guo
  fullname: Guo, Yao
– sequence: 2
  givenname: Yuxiang
  surname: Han
  fullname: Han, Yuxiang
– sequence: 3
  givenname: Jiapeng
  surname: Li
  fullname: Li, Jiapeng
– sequence: 4
  givenname: An
  surname: Xiang
  fullname: Xiang, An
– sequence: 5
  givenname: Xianlong
  surname: Wei
  fullname: Wei, Xianlong
– sequence: 6
  givenname: Song
  surname: Gao
  fullname: Gao, Song
– sequence: 7
  givenname: Qing
  surname: Chen
  fullname: Chen, Qing
  email: qingchen@pku.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25032780$$D View this record in MEDLINE/PubMed
BookMark eNpt0MtKxDAUBuAgI85FF76AZCPoopo0TdIuZbyCg-AFBBclTU6wQycdkxSZt7fjjLNydQ6cjx_OP0YD1zpA6JiSC0pSeukcJ4zy1O-hES2YSEgu3ge7ndMhGocwJ4TLXIoDNEx7n8qcjNDHS-zMCrcOx0_AzxDqEJXTgK_7xddVF-v-puLvedq6qHTEFcRvAIdnbbOqDLhuseZdY2sDWDmDZxBVEw7Rvu0HHG3nBL3d3rxO75PHp7uH6dVjolhOY2JVJbTiwljCWQXUWlJQy2VhpRY007KQLDcZEyLPSWaKyjJFODUgCuAVSdkEnW1yl7796iDEclEHDU2jHLRdKKmgRAqSpayn5xuqfRuCB1sufb1QflVSUq67LHdd9vZkG9tVCzA7-VdeD043QOlQztvOu_7Lf4J-ACaafPQ
CitedBy_id crossref_primary_10_1063_5_0004272
crossref_primary_10_1016_j_xcrp_2020_100298
crossref_primary_10_1021_acsami_9b13660
crossref_primary_10_1063_5_0073650
crossref_primary_10_1039_C7TC01001J
crossref_primary_10_1038_s41598_017_12816_3
crossref_primary_10_1002_aelm_201600048
crossref_primary_10_1021_acsnano_7b06417
crossref_primary_10_1039_C5NR06076A
crossref_primary_10_1002_adma_202210916
crossref_primary_10_1038_nmat4452
crossref_primary_10_1039_D0CP04160B
crossref_primary_10_1038_s41586_019_0892_1
crossref_primary_10_1063_1_4942409
crossref_primary_10_1002_smll_202206550
crossref_primary_10_1007_s40820_017_0152_6
crossref_primary_10_1002_adfm_201907860
crossref_primary_10_1109_TED_2018_2865642
crossref_primary_10_1109_TNANO_2016_2630698
crossref_primary_10_1039_C9NR10690A
crossref_primary_10_1088_2053_1583_ab6267
crossref_primary_10_1088_2053_1583_aadf47
crossref_primary_10_1002_smll_201502392
crossref_primary_10_1038_s41586_023_06145_x
crossref_primary_10_7498_aps_66_218503
crossref_primary_10_1039_D1TC01463C
crossref_primary_10_1063_1_4995690
crossref_primary_10_1039_C5CS00517E
crossref_primary_10_1088_1361_6528_ac0d7c
crossref_primary_10_1021_acsnano_6b02879
crossref_primary_10_1038_s41598_021_85968_y
crossref_primary_10_4028_p_x49od6
crossref_primary_10_1016_j_vacuum_2020_109386
crossref_primary_10_7566_JPSJ_84_121011
crossref_primary_10_1016_j_pmatsci_2017_06_002
crossref_primary_10_1038_s41699_023_00372_6
crossref_primary_10_1109_TED_2018_2863750
crossref_primary_10_1002_aelm_202300691
crossref_primary_10_1088_1361_648X_abadde
crossref_primary_10_1039_C8NH00419F
crossref_primary_10_1002_aelm_201900042
crossref_primary_10_1088_1361_6528_aacc22
crossref_primary_10_1088_2053_1583_abc187
crossref_primary_10_1088_2053_1583_3_4_045015
crossref_primary_10_1002_cphc_201700343
crossref_primary_10_3390_cryst8080316
crossref_primary_10_1021_acs_jpcc_7b07511
crossref_primary_10_1109_TED_2016_2635690
crossref_primary_10_1002_aelm_202201342
crossref_primary_10_1007_s11467_023_1305_3
crossref_primary_10_1039_C5CS00275C
crossref_primary_10_1103_PhysRevB_101_085112
crossref_primary_10_7567_JJAP_57_07MA04
crossref_primary_10_1088_2053_1583_ac1adb
crossref_primary_10_1038_s41928_022_00808_9
crossref_primary_10_1002_aelm_202200672
crossref_primary_10_1039_C7NR01501A
crossref_primary_10_3390_nano8110901
crossref_primary_10_1063_5_0189250
crossref_primary_10_3938_jkps_73_667
crossref_primary_10_1088_0957_4484_26_17_175202
crossref_primary_10_1557_adv_2019_283
crossref_primary_10_1002_adfm_201805614
crossref_primary_10_1038_nnano_2015_70
crossref_primary_10_1088_1361_6528_ab2feb
crossref_primary_10_1088_1361_6528_ad1afa
crossref_primary_10_1016_j_diamond_2022_109206
crossref_primary_10_1021_acs_jpcc_0c02657
crossref_primary_10_1039_C8SC02609B
crossref_primary_10_1038_s41467_022_35760_x
crossref_primary_10_1103_PhysRevMaterials_2_063401
crossref_primary_10_1021_acsnano_9b02785
crossref_primary_10_1021_nn506138y
crossref_primary_10_1007_s12274_021_3670_y
crossref_primary_10_1002_aelm_201500215
crossref_primary_10_1007_s13204_020_01438_3
crossref_primary_10_7567_JJAP_55_036501
Cites_doi 10.1021/nl401831u
10.1021/nn1003937
10.1021/nl301702r
10.1038/nmat3687
10.1103/PhysRevLett.108.156802
10.1063/1.3491804
10.1021/nn303513c
10.1063/1.4824893
10.1002/adfm.201102111
10.1021/nl2018178
10.1021/nn404961e
10.1109/LED.2013.2277311
10.1021/nn301320r
10.1021/nl303583v
10.1038/nnano.2011.196
10.1038/nnano.2010.89
10.1021/nl401916s
10.1063/1.121220
10.1021/nn405916t
10.1063/1.3290248
10.1109/JPROC.2013.2257633
10.1038/nnano.2011.6
10.1063/1.3549183
10.1021/nl4010157
10.1080/10408430390802431
10.1021/nl403465v
10.1021/nn500044q
10.1021/nn4024834
10.1038/nnano.2011.39
10.1016/S0026-2714(02)00027-6
10.1038/nnano.2010.279
10.1021/nn4052138
10.1088/0957-4484/22/12/125706
10.1103/PhysRevLett.105.136805
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/nn503152r
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 7779
ExternalDocumentID 10_1021_nn503152r
25032780
b175590116
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a381t-fab6ca56df053be1ff091f579f7c614c79738d43668804d9bf3a051de69e5b023
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Sat Aug 17 03:17:55 EDT 2024
Fri Aug 23 00:24:57 EDT 2024
Sat Sep 28 08:04:03 EDT 2024
Thu Aug 27 13:41:58 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords two-dimensional materials
FET
MoS2
contact resistance
transfer length
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-fab6ca56df053be1ff091f579f7c614c79738d43668804d9bf3a051de69e5b023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25032780
PQID 1610760423
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1610760423
crossref_primary_10_1021_nn503152r
pubmed_primary_25032780
acs_journals_10_1021_nn503152r
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2014-08-26
PublicationDateYYYYMMDD 2014-08-26
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Dankert A. (ref32/cit32) 2014; 8
Robinson J. A. (ref25/cit25) 2011; 98
Radisavljevic B. (ref11/cit11) 2013; 12
Zhang S. L. (ref2/cit2) 2003; 28
Liu D. (ref28/cit28) 2013; 103
Venugopal A. (ref26/cit26) 2010; 96
Radisavljevic B. (ref4/cit4) 2011; 6
Schwierz F. (ref5/cit5) 2013; 101
Schwierz F. (ref3/cit3) 2010; 5
Gong C. (ref15/cit15) 2014; 14
Du Y. C. (ref16/cit16) 2013; 34
Gong C. (ref29/cit29) 2013; 7
Yoon Y. (ref6/cit6) 2011; 11
Monch W. (ref13/cit13) 1998; 72
McDonnell S. (ref27/cit27) 2014; 8
Benameur M. M. (ref33/cit33) 2011; 22
Lee C. (ref34/cit34) 2010; 4
Leonard F. (ref1/cit1) 2011; 6
Grosse K. L. (ref22/cit22) 2011; 6
Liu H. (ref10/cit10) 2012; 6
Mak K. F. (ref24/cit24) 2010; 105
Fang H. (ref18/cit18) 2012; 12
Ortiz-Conde A. (ref20/cit20) 2002; 42
Nagashio K. (ref23/cit23) 2010; 97
Popov I. (ref12/cit12) 2012; 108
Baugher B. W. H. (ref8/cit8) 2013; 13
Liu H. (ref14/cit14) 2014; 8
Johari P. (ref31/cit31) 2012; 6
Hui Y. Y. (ref30/cit30) 2013; 7
Xia F. (ref21/cit21) 2011; 6
Das S. (ref9/cit9) 2013; 13
Li H. (ref19/cit19) 2012; 22
Chen J. R. (ref17/cit17) 2013; 13
Das S. (ref7/cit7) 2012; 13
References_xml – volume: 13
  start-page: 3396
  year: 2013
  ident: ref9/cit9
  publication-title: Nano Lett.
  doi: 10.1021/nl401831u
  contributor:
    fullname: Das S.
– volume: 4
  start-page: 2695
  year: 2010
  ident: ref34/cit34
  publication-title: ACS Nano
  doi: 10.1021/nn1003937
  contributor:
    fullname: Lee C.
– volume: 12
  start-page: 3788
  year: 2012
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl301702r
  contributor:
    fullname: Fang H.
– volume: 12
  start-page: 815
  year: 2013
  ident: ref11/cit11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3687
  contributor:
    fullname: Radisavljevic B.
– volume: 108
  start-page: 156802
  year: 2012
  ident: ref12/cit12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.156802
  contributor:
    fullname: Popov I.
– volume: 97
  start-page: 143514
  year: 2010
  ident: ref23/cit23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3491804
  contributor:
    fullname: Nagashio K.
– volume: 6
  start-page: 8563
  year: 2012
  ident: ref10/cit10
  publication-title: ACS Nano
  doi: 10.1021/nn303513c
  contributor:
    fullname: Liu H.
– volume: 103
  start-page: 183113
  year: 2013
  ident: ref28/cit28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4824893
  contributor:
    fullname: Liu D.
– volume: 22
  start-page: 1385
  year: 2012
  ident: ref19/cit19
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102111
  contributor:
    fullname: Li H.
– volume: 11
  start-page: 3768
  year: 2011
  ident: ref6/cit6
  publication-title: Nano Lett.
  doi: 10.1021/nl2018178
  contributor:
    fullname: Yoon Y.
– volume: 8
  start-page: 476
  year: 2014
  ident: ref32/cit32
  publication-title: ACS Nano
  doi: 10.1021/nn404961e
  contributor:
    fullname: Dankert A.
– volume: 34
  start-page: 1328
  year: 2013
  ident: ref16/cit16
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2013.2277311
  contributor:
    fullname: Du Y. C.
– volume: 6
  start-page: 5449
  year: 2012
  ident: ref31/cit31
  publication-title: ACS Nano
  doi: 10.1021/nn301320r
  contributor:
    fullname: Johari P.
– volume: 13
  start-page: 100
  year: 2012
  ident: ref7/cit7
  publication-title: Nano Lett.
  doi: 10.1021/nl303583v
  contributor:
    fullname: Das S.
– volume: 6
  start-page: 773
  year: 2011
  ident: ref1/cit1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.196
  contributor:
    fullname: Leonard F.
– volume: 5
  start-page: 487
  year: 2010
  ident: ref3/cit3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.89
  contributor:
    fullname: Schwierz F.
– volume: 13
  start-page: 4212
  year: 2013
  ident: ref8/cit8
  publication-title: Nano Lett.
  doi: 10.1021/nl401916s
  contributor:
    fullname: Baugher B. W. H.
– volume: 72
  start-page: 1899
  year: 1998
  ident: ref13/cit13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121220
  contributor:
    fullname: Monch W.
– volume: 8
  start-page: 1031
  year: 2014
  ident: ref14/cit14
  publication-title: ACS Nano
  doi: 10.1021/nn405916t
  contributor:
    fullname: Liu H.
– volume: 96
  start-page: 013512
  year: 2010
  ident: ref26/cit26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3290248
  contributor:
    fullname: Venugopal A.
– volume: 101
  start-page: 1567
  year: 2013
  ident: ref5/cit5
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2013.2257633
  contributor:
    fullname: Schwierz F.
– volume: 6
  start-page: 179
  year: 2011
  ident: ref21/cit21
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.6
  contributor:
    fullname: Xia F.
– volume: 98
  start-page: 053103
  year: 2011
  ident: ref25/cit25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3549183
  contributor:
    fullname: Robinson J. A.
– volume: 13
  start-page: 3106
  year: 2013
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl4010157
  contributor:
    fullname: Chen J. R.
– volume: 28
  start-page: 1
  year: 2003
  ident: ref2/cit2
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408430390802431
  contributor:
    fullname: Zhang S. L.
– volume: 14
  start-page: 1714
  year: 2014
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl403465v
  contributor:
    fullname: Gong C.
– volume: 8
  start-page: 2880
  year: 2014
  ident: ref27/cit27
  publication-title: ACS Nano
  doi: 10.1021/nn500044q
  contributor:
    fullname: McDonnell S.
– volume: 7
  start-page: 7126
  year: 2013
  ident: ref30/cit30
  publication-title: ACS Nano
  doi: 10.1021/nn4024834
  contributor:
    fullname: Hui Y. Y.
– volume: 6
  start-page: 287
  year: 2011
  ident: ref22/cit22
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.39
  contributor:
    fullname: Grosse K. L.
– volume: 42
  start-page: 583
  year: 2002
  ident: ref20/cit20
  publication-title: Microelectron. Reliab.
  doi: 10.1016/S0026-2714(02)00027-6
  contributor:
    fullname: Ortiz-Conde A.
– volume: 6
  start-page: 147
  year: 2011
  ident: ref4/cit4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
  contributor:
    fullname: Radisavljevic B.
– volume: 7
  start-page: 11350
  year: 2013
  ident: ref29/cit29
  publication-title: ACS Nano
  doi: 10.1021/nn4052138
  contributor:
    fullname: Gong C.
– volume: 22
  start-page: 125706
  year: 2011
  ident: ref33/cit33
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/12/125706
  contributor:
    fullname: Benameur M. M.
– volume: 105
  start-page: 136805
  year: 2010
  ident: ref24/cit24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
  contributor:
    fullname: Mak K. F.
SSID ssj0057876
Score 2.4688125
Snippet Contact resistance hinders the high performance of electrical devices, especially devices based on two-dimensional (2D) materials, such as graphene and...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 7771
Title Study on the Resistance Distribution at the Contact between Molybdenum Disulfide and Metals
URI http://dx.doi.org/10.1021/nn503152r
https://www.ncbi.nlm.nih.gov/pubmed/25032780
https://search.proquest.com/docview/1610760423
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3JTsMwEIZHpVzgwL6UpTLLNYU6iRMfUUtVIZUDUKkSh8iObQlRJahND-XpGWepiqBwjmNZHo__L5nxGOBaecoXgaFOjPjreKEQDlfCd5DMUT5Q71VozzsPHll_6D2M_FENrlZE8Gn7Jkl8exMBnazBOg3QKSz_dJ6r7dauOFaEjvHTGPmhKh-0_KqVnnj6XXpW8GSuK71t6Fanc4p0kvfWLJOt-PNnsca_hrwDWyVXkrtiIexCTSd7sLlUbXAfXm3O4JykCUHoI096atERbU66tnhuee8VEVn-2FatEnFGyjwuMkjHc6ls3rxtPhubN6WJSBQZaMT36QEMe_cvnb5T3q3gCNTozDFCslj4TBn0QqnbxiA4GD_gJohRseOAB26oPJcxdHBPcWlcgf6rNOPalyj0h1BP0kQfA1FtKagMfaU4t3HSkNsaaaFQIeU4D7wBTZz8qPSNaZSHvWk7WsxSAy4ru0QfRY2N3xpdVBaL0ANsWEMkOp1hf0iAAbP5PQ04Kky56AYBz6VBeHvy3xhOYQNRyLN_iyk7g3o2melzxI1MNvPl9gVGls1I
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDA-1EexSDWFJrGTjyiAirQdoBWqsQQ2bEtIaoUNelQfj13SVoKAsEcxzrZd_6-5M7fEXKuPc2kb10nAvrreIGUjtCSOcDMAT4A73WA953bHd7sefd91i9kcvAuDBiRwExJlsT_VBeoXcQxw4YE7miRLDEfgBJpUONpeuqi4_E8gwxfyEAjpipC868iAkXJVwT6hVZm8HK7nvcpygzLqkpeq-NUVaP3b5qN_7N8g6wVLJNe5W6xSRZMvEVW57QHt8kzVhBO6DCmQAHpo0mQSIIH0GuU0i26YFGZZo9Rw0pGKS2qumh7OJgojVX0OHw8sC_aUBlr2jZA5pMd0ru96TaaTtFpwZGA2KljpeKRZFxbiEllatYCjbDMF9aPAL8jX_j1QHt1ziHcPS2UrUuIZm24MEwB7O-SUjyMzT6huqakqwKmtRCYNQ0EKqYFUgeugHUQZVKBRQqLSEnCLAnu1sLZKpXJ2XR7wrdcceOnQafTjQshHjDJIWMzHMN8wAd9jtU-ZbKX7-hsGqB7ddcPLg_-suGELDe77VbYuus8HJIVIEke_kd2-REppaOxOQYikqpK5oEf1SPVrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58gOjB92N9rFG8Vm23SZuj7Lr4WhV1QfBQkiYBUbpiuwf99c50u4uKouemw5DM9PvSmXwB2DOh4SpygZci_fXCWClPGsU9ZOYIH4j3Jqbzzp1LcdINz-75fbVRpLMw6ESOlvKyiE9Z_WJcpTDgH2QZp0sJgtdxmOSRX5Zlj5q3wy8vBZ8YVJFxl4xUYqgk9PlVQqE0_4pCv1DLEmLac3A1cq7sLHna7xd6P33_ptv4f-_nYbZim-xoEB4LMGazRZj5pEG4BA_USfjGehlDKshubE6EEiOBtUhSt7oNi6mifExaViotWNXdxTq95zdtqJuehvef3aOxTGWGdSyS-nwZuu3ju-aJV9244ClE7sJzSotUcWEc5qa2vnNIJxyPpItSxPE0klEjNmFDCEz70EjtGgqz2lghLdcI_yswkfUyuwbM-FoFOubGSEnV01iSclqsTBxInAdZgzpOVFJlTJ6UxfDAT0azVIPd4RIlLwPljZ8G7QwXL8G8oGKHymyvj_aQF0aCun5qsDpY1ZEZpH2NIIoP1__yYRumrlvt5OL08nwDppErhfQ7ORCbMFG89u0W8pFC18sg_ADdf9gn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+resistance+distribution+at+the+contact+between+molybdenum+disulfide+and+metals&rft.jtitle=ACS+nano&rft.au=Guo%2C+Yao&rft.au=Han%2C+Yuxiang&rft.au=Li%2C+Jiapeng&rft.au=Xiang%2C+An&rft.date=2014-08-26&rft.eissn=1936-086X&rft.volume=8&rft.issue=8&rft.spage=7771&rft.epage=7779&rft_id=info:doi/10.1021%2Fnn503152r&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon