Occurrence and Flow Behavior for Oil Transport in Mixed Wetting Nanoscale Shale Bedding Fractures
Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within nanoconfined spaces necessitate novel research approaches, as traditional percolation mathematical models are inadequate for accurately depicting th...
Saved in:
Published in | Langmuir Vol. 40; no. 28; pp. 14399 - 14412 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0743-7463 1520-5827 1520-5827 |
DOI | 10.1021/acs.langmuir.4c00983 |
Cover
Loading…
Abstract | Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within nanoconfined spaces necessitate novel research approaches, as traditional percolation mathematical models are inadequate for accurately depicting these phenomena. This study takes the Gulong shale reservoir in China as the subject of its research. Initially, the unique mixed wetting characteristics of the Gulong shale reservoir are examined and characterized using actual micropore images. Subsequently, the occurrence and flow behavior of oil within the nanoscale bedding fractures under various wettability scenarios are described through a combination of microscopic pore image and molecular dynamics simulations. Ultimately, a mathematical model is established that depicts the velocity distribution of oil and its apparent permeability. This study findings indicate that when the scale of the shale bedding fractures is less than 100 nm, the impact of the nanoconfinement effect is significant and cannot be overlooked. In this scenario, the state of oil occurrence and its flow behavior are influenced by the initial oil-wet surface area on the mixed wetting walls. The study quantifies the velocity and density distribution of oil in mixed wetting nanoscale shale bedding fractures through a mathematical model, providing a crucial theoretical basis for upscaling from the nanoscale to the macroscale. |
---|---|
AbstractList | Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within nanoconfined spaces necessitate novel research approaches, as traditional percolation mathematical models are inadequate for accurately depicting these phenomena. This study takes the Gulong shale reservoir in China as the subject of its research. Initially, the unique mixed wetting characteristics of the Gulong shale reservoir are examined and characterized using actual micropore images. Subsequently, the occurrence and flow behavior of oil within the nanoscale bedding fractures under various wettability scenarios are described through a combination of microscopic pore image and molecular dynamics simulations. Ultimately, a mathematical model is established that depicts the velocity distribution of oil and its apparent permeability. This study findings indicate that when the scale of the shale bedding fractures is less than 100 nm, the impact of the nanoconfinement effect is significant and cannot be overlooked. In this scenario, the state of oil occurrence and its flow behavior are influenced by the initial oil-wet surface area on the mixed wetting walls. The study quantifies the velocity and density distribution of oil in mixed wetting nanoscale shale bedding fractures through a mathematical model, providing a crucial theoretical basis for upscaling from the nanoscale to the macroscale.Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within nanoconfined spaces necessitate novel research approaches, as traditional percolation mathematical models are inadequate for accurately depicting these phenomena. This study takes the Gulong shale reservoir in China as the subject of its research. Initially, the unique mixed wetting characteristics of the Gulong shale reservoir are examined and characterized using actual micropore images. Subsequently, the occurrence and flow behavior of oil within the nanoscale bedding fractures under various wettability scenarios are described through a combination of microscopic pore image and molecular dynamics simulations. Ultimately, a mathematical model is established that depicts the velocity distribution of oil and its apparent permeability. This study findings indicate that when the scale of the shale bedding fractures is less than 100 nm, the impact of the nanoconfinement effect is significant and cannot be overlooked. In this scenario, the state of oil occurrence and its flow behavior are influenced by the initial oil-wet surface area on the mixed wetting walls. The study quantifies the velocity and density distribution of oil in mixed wetting nanoscale shale bedding fractures through a mathematical model, providing a crucial theoretical basis for upscaling from the nanoscale to the macroscale. Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within nanoconfined spaces necessitate novel research approaches, as traditional percolation mathematical models are inadequate for accurately depicting these phenomena. This study takes the Gulong shale reservoir in China as the subject of its research. Initially, the unique mixed wetting characteristics of the Gulong shale reservoir are examined and characterized using actual micropore images. Subsequently, the occurrence and flow behavior of oil within the nanoscale bedding fractures under various wettability scenarios are described through a combination of microscopic pore image and molecular dynamics simulations. Ultimately, a mathematical model is established that depicts the velocity distribution of oil and its apparent permeability. This study findings indicate that when the scale of the shale bedding fractures is less than 100 nm, the impact of the nanoconfinement effect is significant and cannot be overlooked. In this scenario, the state of oil occurrence and its flow behavior are influenced by the initial oil-wet surface area on the mixed wetting walls. The study quantifies the velocity and density distribution of oil in mixed wetting nanoscale shale bedding fractures through a mathematical model, providing a crucial theoretical basis for upscaling from the nanoscale to the macroscale. |
Author | Lei, Zhengdong Zhou, Qiang Wang, Yuhan Liu, Yishan Xu, Zhenhua Liu, Pengcheng |
AuthorAffiliation | School of Energy Resources Research Institute of Petroleum Exploration and Development |
AuthorAffiliation_xml | – name: Research Institute of Petroleum Exploration and Development – name: School of Energy Resources |
Author_xml | – sequence: 1 givenname: Yuhan orcidid: 0009-0000-2878-8299 surname: Wang fullname: Wang, Yuhan organization: School of Energy Resources – sequence: 2 givenname: Zhengdong surname: Lei fullname: Lei, Zhengdong organization: Research Institute of Petroleum Exploration and Development – sequence: 3 givenname: Zhenhua surname: Xu fullname: Xu, Zhenhua organization: School of Energy Resources – sequence: 4 givenname: Yishan orcidid: 0000-0002-6384-9955 surname: Liu fullname: Liu, Yishan organization: Research Institute of Petroleum Exploration and Development – sequence: 5 givenname: Qiang surname: Zhou fullname: Zhou, Qiang organization: Research Institute of Petroleum Exploration and Development – sequence: 6 givenname: Pengcheng orcidid: 0000-0002-6110-1345 surname: Liu fullname: Liu, Pengcheng email: liupengcheng8883@sohu.com organization: School of Energy Resources |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38960902$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1OGzEUhS0EgkD7BlXlZTeT2nNn4jE7QA1UArKAqkvrxvaA0cRObU9_3r6OkmxYwMLXku93jqxzTsmhD94S8omzKWc1_4o6TQf0T6vRxWmjGZMdHJAJb2tWtV0tDsmEiQYq0czghJym9MIKA408JifQyRmTrJ4QXGg9xmi9thS9ofMh_KGX9hl_uxBpX87CDfQxok_rEDN1nt65v9bQnzZn55_oPfqQNA6WPjxv5qU1ZvM-j6jzGG36QI56HJL9uLvPyI_5t8erm-p2cf396uK2Quh4rjQK7HT5l5xxiR2CFExq1jRcdD10sxZ6waXmZqkBpOlhCcwYIaHvW8brBs7Il63vOoZfo01ZrVzSdigZ2TAmBbyF4iJr_j7KRCuKqawL-nmHjsuVNWod3QrjP7VPsADnW0DHkFK0vdIuY3bB54huUJypTV2q1KX2daldXUXcvBLv_d-Rsa1ss30JY_Ql2Lcl_wFxaaz2 |
CitedBy_id | crossref_primary_10_1155_er_5581586 |
Cites_doi | 10.1016/j.petsci.2021.09.005 10.1016/j.molliq.2023.121507 10.1016/j.petrol.2019.03.088 10.2118/190246-PA 10.1016/0010-4655(80)90052-1 10.1016/S0142-727X(98)10043-7 10.2118/215847-PA 10.1063/1.449071 10.1002/andp.18812480110 10.1038/494307a 10.1063/5.0095965 10.1038/35102535 10.1021/nl802046b 10.1021/acs.energyfuels.2c00309 10.1021/acs.energyfuels.6b02278 10.2118/210564-PA 10.1016/j.cej.2020.124054 10.1016/j.fuel.2020.119299 10.1016/j.molliq.2022.119322 10.1016/j.fuel.2021.122389 10.1007/s10404-012-0949-z 10.1016/j.petrol.2020.107732 10.2118/131772-PA 10.1007/978-3-319-47003-0_5 10.1016/j.rser.2021.111391 10.1021/acs.langmuir.3c02421 10.1021/acs.langmuir.3c01570 10.2118/203905-PA 10.1016/j.coal.2019.103325 10.1021/ja9621760 10.1016/S1876-3804(21)60043-5 10.1007/s11242-018-1148-5 10.1007/s11242-017-0917-x 10.1155/2022/9355020 10.1016/j.fuel.2018.10.050 10.1016/j.fuel.2016.05.057 10.1073/pnas.1612608114 10.1007/s10450-013-9589-1 10.1016/B978-012267351-1/50005-5 10.1006/jcph.1995.1039 10.1016/j.petrol.2016.10.053 10.1016/j.petrol.2019.02.027 10.3390/en16083516 10.1016/j.ijheatmasstransfer.2017.08.024 10.1021/acs.langmuir.9b02925 10.1016/j.petrol.2019.03.072 10.1021/acs.iecr.5b04276 10.1016/0021-9797(83)90050-4 10.3390/su11072114 10.1126/science.1126298 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.langmuir.4c00983 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 14412 |
ExternalDocumentID | 38960902 10_1021_acs_langmuir_4c00983 a65382682 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- -~X .K2 4.4 53G 55A 5GY 5VS 7~N AABXI AAHBH ABFRP ABJNI ABMVS ABQRX ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 UPT VF5 VG9 W1F YQT ~02 AAYXX ABBLG ABLBI CITATION NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a381t-ca7a8c8969619a8a39709c044178f38653f719c1dbc339df3b30dd793ff501243 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Fri Jul 11 12:14:59 EDT 2025 Thu Jul 10 23:49:46 EDT 2025 Wed Feb 19 02:09:33 EST 2025 Tue Jul 01 03:28:44 EDT 2025 Thu Apr 24 23:10:29 EDT 2025 Tue Jul 23 03:10:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-ca7a8c8969619a8a39709c044178f38653f719c1dbc339df3b30dd793ff501243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0000-2878-8299 0000-0002-6110-1345 0000-0002-6384-9955 |
PMID | 38960902 |
PQID | 3075701292 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3153653921 proquest_miscellaneous_3075701292 pubmed_primary_38960902 crossref_citationtrail_10_1021_acs_langmuir_4c00983 crossref_primary_10_1021_acs_langmuir_4c00983 acs_journals_10_1021_acs_langmuir_4c00983 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-16 |
PublicationDateYYYYMMDD | 2024-07-16 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref30/cit30 doi: 10.1016/j.petsci.2021.09.005 – ident: ref17/cit17 doi: 10.1016/j.molliq.2023.121507 – ident: ref52/cit52 doi: 10.1016/j.petrol.2019.03.088 – ident: ref10/cit10 doi: 10.2118/190246-PA – ident: ref44/cit44 doi: 10.1016/0010-4655(80)90052-1 – ident: ref47/cit47 doi: 10.1016/S0142-727X(98)10043-7 – ident: ref3/cit3 doi: 10.2118/215847-PA – ident: ref45/cit45 doi: 10.1063/1.449071 – ident: ref43/cit43 doi: 10.1002/andp.18812480110 – ident: ref1/cit1 doi: 10.1038/494307a – ident: ref21/cit21 doi: 10.1063/5.0095965 – ident: ref24/cit24 doi: 10.1038/35102535 – ident: ref26/cit26 doi: 10.1021/nl802046b – ident: ref8/cit8 doi: 10.1021/acs.energyfuels.2c00309 – ident: ref42/cit42 doi: 10.1021/acs.energyfuels.6b02278 – ident: ref12/cit12 doi: 10.2118/210564-PA – ident: ref16/cit16 doi: 10.1016/j.cej.2020.124054 – ident: ref46/cit46 doi: 10.1016/j.fuel.2020.119299 – ident: ref51/cit51 – ident: ref39/cit39 doi: 10.1016/j.molliq.2022.119322 – ident: ref34/cit34 doi: 10.1016/j.fuel.2021.122389 – ident: ref50/cit50 doi: 10.1007/s10404-012-0949-z – ident: ref18/cit18 doi: 10.1016/j.petrol.2020.107732 – ident: ref13/cit13 doi: 10.2118/131772-PA – ident: ref29/cit29 doi: 10.1007/978-3-319-47003-0_5 – ident: ref48/cit48 – ident: ref22/cit22 doi: 10.1016/j.rser.2021.111391 – ident: ref9/cit9 doi: 10.1021/acs.langmuir.3c02421 – ident: ref7/cit7 doi: 10.1021/acs.langmuir.3c01570 – ident: ref11/cit11 doi: 10.2118/203905-PA – ident: ref14/cit14 doi: 10.1016/j.coal.2019.103325 – ident: ref41/cit41 doi: 10.1021/ja9621760 – ident: ref35/cit35 doi: 10.1016/S1876-3804(21)60043-5 – ident: ref4/cit4 doi: 10.1007/s11242-018-1148-5 – ident: ref19/cit19 doi: 10.1007/s11242-017-0917-x – ident: ref6/cit6 doi: 10.1155/2022/9355020 – ident: ref23/cit23 doi: 10.1016/j.fuel.2018.10.050 – ident: ref27/cit27 doi: 10.1016/j.fuel.2016.05.057 – ident: ref32/cit32 doi: 10.1073/pnas.1612608114 – ident: ref37/cit37 doi: 10.1007/s10450-013-9589-1 – ident: ref36/cit36 doi: 10.1016/B978-012267351-1/50005-5 – ident: ref40/cit40 doi: 10.1006/jcph.1995.1039 – ident: ref2/cit2 doi: 10.1016/j.petrol.2016.10.053 – ident: ref28/cit28 doi: 10.1016/j.petrol.2019.02.027 – ident: ref31/cit31 doi: 10.3390/en16083516 – ident: ref33/cit33 doi: 10.1016/j.ijheatmasstransfer.2017.08.024 – ident: ref15/cit15 doi: 10.1021/acs.langmuir.9b02925 – ident: ref20/cit20 doi: 10.1016/j.petrol.2019.03.072 – ident: ref38/cit38 doi: 10.1021/acs.iecr.5b04276 – ident: ref49/cit49 doi: 10.1016/0021-9797(83)90050-4 – ident: ref5/cit5 doi: 10.3390/su11072114 – ident: ref25/cit25 doi: 10.1126/science.1126298 |
SSID | ssj0009349 |
Score | 2.459942 |
Snippet | Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14399 |
SubjectTerms | China mathematical models molecular dynamics oils permeability shale surface area wettability |
Title | Occurrence and Flow Behavior for Oil Transport in Mixed Wetting Nanoscale Shale Bedding Fractures |
URI | http://dx.doi.org/10.1021/acs.langmuir.4c00983 https://www.ncbi.nlm.nih.gov/pubmed/38960902 https://www.proquest.com/docview/3075701292 https://www.proquest.com/docview/3153653921 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECWa9JBc0jZL425ggV5ykCOJMkkdU6OGUSD1wTHqm8AVMerKhWUhQb4-M1pstIXr5qIDQVLgcHmPy7wh5BPnJgbk1gELUxcknqeB9ixC2UqhhdfcVB5y19_4cJJ8nfamm43inzf4cXSpTNHFs7uf5WzZTQwKYLI98jzmUqBW_lV_vBHZZTXdRdlNkXDWusptqQUByRS_A9IWllmhzeAFGbU-O_Ujkx_dcqW75uFvCcf_bMhLctQQT3pVj5RX5JnLj8lBv433dkIUCg4vK-c_qnJLB_PFHW3kE5cUuC0dzeZ0LYZOZzm9nt07S7-76u00hYV6UUCXOzq-xe9nZxEY6QAdsUrY1p-SyeDLTX8YNAEYAgVAvgqMEkoaiQI6UaqkAu4SpibEqGXSY7BQ5kWUmshqw1hqPdMstBZmvPc9AL6EnZH9fJG7c0KBibjQSO0lbIFCC5VxJzRPe9JKLWLfIRdgn6yZQEVW3Y3HUYaJrdGyxmgdwtoey0yjZI4BNeY7SgXrUr9qJY8d-T-2gyGDnsB7FJW7RVlksCz2BB7gxf_IA0iCqr9x1CGv65G0_itwRI7PYd88oc1vyWEMdApPlSP-juyvlqV7D3RopT9Uc-ARKU4GnA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4FeoALtJRHoNBF6qUHB9trr-0jjRqlLaEHoHCzvC8RERwUxwLx65lx7ERFAsTFh9Xuet_ft4_5BuCbEMpH5JYOdxPjBFYkjrTcI9nKSEZWClVZyA1ORf8i-H0VXrUgbGxhsBAF5lRUl_gLdQHviMLoCO-2HE46gSIdTL4EH5CP-CSZf9w9W2jt8hnrJfXNKBC8sZh7IRfCJVX8j0svkM0KdHrr8G9e3OqtyU2nnMqOenym5Pju-nyEtZqGsuPZuPkELZNvwEq38f72GTKSH55UpoAsyzXrjcb3rBZTnDBkuuzvcMTm0uhsmLPB8MFodmmql9QMl-1xgQPAsLNr-v4wmmCS9cgsq8RN_iZc9H6ed_tO7Y7ByRDWp47KoixWMcnpeEkWZ8hk3ES55MMstuQ6lNvIS5SnpeI80ZZL7mqN89_aEGEw4FuwnI9zswMMeYlxVSxtjBsiV2NmwkRSJGGsYxn5tg3fsX3SejoVaXVT7nspBTaNltaN1gbedFyqal1zcq8xeiOVM091N9P1eCP-YTMmUuwJulXJcjMuixQXyTCi4zz_lTiIK6QB7Htt2J4NqPlfkTEKehy7-446f4WV_vngJD35dfpnD1Z9JFp03uyJL7A8nZRmH4nSVB5U0-IJxIgO_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7RINFeWl4toYVuJS4cnNpeZ20f04AVShOQSkXFxfK-1KjBieJYRfx6Zhw7PKRQtRcfVrvrfczufLuz8w3AGyGUj5pbOtyNjRNYETvSco9oK0MZWilU5SE3HInBRXB62b38I9QXNqLAmorKiE-reqZtzTDgHVM6XeN9L8fzTqCIC5NvwEOy3BFtfq9__ptvly-RLzFwhoHgjdfcmlpIN6nib920BnBWiifZgW-rJlfvTa475UJ21M9_2Bzv1afHsF3DUdZbys8TeGDyp7DZb6LAPYOMaIjnlUsgy3LNksn0htWkinOGiJd9Gk_YiiKdjXM2HP8wmn011Ytqhtv3tEBBMOz8ir4nRpO6ZAm5Z5V42H8OF8n7L_2BU4dlcDJU7wtHZWEWqYhodbw4izJENG6sXIplFlkKIcpt6MXK01JxHmvLJXe1xn3A2i6qw4DvQiuf5uYFMMQnxlWRtBEejFyNlQkTShF3Ix3J0LdteIvjk9bLqkgri7nvpZTYDFpaD1obeDN5qar5zSnMxuSWUs6q1GzJ73FL_qNGLlKcCbKuZLmZlkWKm2U3pGs9_z95UL8QF7DvtWFvKVSrvyJyFPRI9uUd-nwIjz6_S9KzD6OP-7DlI96ia2dPHEBrMS_NK8RLC_m6Whm_AHb7EYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occurrence+and+Flow+Behavior+for+Oil+Transport+in+Mixed+Wetting+Nanoscale+Shale+Bedding+Fractures&rft.jtitle=Langmuir&rft.au=Wang%2C+Yuhan&rft.au=Lei%2C+Zhengdong&rft.au=Xu%2C+Zhenhua&rft.au=Liu%2C+Yishan&rft.date=2024-07-16&rft.issn=1520-5827&rft.volume=40&rft.issue=28+p.14399-14412&rft.spage=14399&rft.epage=14412&rft_id=info:doi/10.1021%2Facs.langmuir.4c00983&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |