Occurrence and Flow Behavior for Oil Transport in Mixed Wetting Nanoscale Shale Bedding Fractures

Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within nanoconfined spaces necessitate novel research approaches, as traditional percolation mathematical models are inadequate for accurately depicting th...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 40; no. 28; pp. 14399 - 14412
Main Authors Wang, Yuhan, Lei, Zhengdong, Xu, Zhenhua, Liu, Yishan, Zhou, Qiang, Liu, Pengcheng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.07.2024
Subjects
Online AccessGet full text
ISSN0743-7463
1520-5827
1520-5827
DOI10.1021/acs.langmuir.4c00983

Cover

Loading…
Abstract Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within nanoconfined spaces necessitate novel research approaches, as traditional percolation mathematical models are inadequate for accurately depicting these phenomena. This study takes the Gulong shale reservoir in China as the subject of its research. Initially, the unique mixed wetting characteristics of the Gulong shale reservoir are examined and characterized using actual micropore images. Subsequently, the occurrence and flow behavior of oil within the nanoscale bedding fractures under various wettability scenarios are described through a combination of microscopic pore image and molecular dynamics simulations. Ultimately, a mathematical model is established that depicts the velocity distribution of oil and its apparent permeability. This study findings indicate that when the scale of the shale bedding fractures is less than 100 nm, the impact of the nanoconfinement effect is significant and cannot be overlooked. In this scenario, the state of oil occurrence and its flow behavior are influenced by the initial oil-wet surface area on the mixed wetting walls. The study quantifies the velocity and density distribution of oil in mixed wetting nanoscale shale bedding fractures through a mathematical model, providing a crucial theoretical basis for upscaling from the nanoscale to the macroscale.
AbstractList Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within nanoconfined spaces necessitate novel research approaches, as traditional percolation mathematical models are inadequate for accurately depicting these phenomena. This study takes the Gulong shale reservoir in China as the subject of its research. Initially, the unique mixed wetting characteristics of the Gulong shale reservoir are examined and characterized using actual micropore images. Subsequently, the occurrence and flow behavior of oil within the nanoscale bedding fractures under various wettability scenarios are described through a combination of microscopic pore image and molecular dynamics simulations. Ultimately, a mathematical model is established that depicts the velocity distribution of oil and its apparent permeability. This study findings indicate that when the scale of the shale bedding fractures is less than 100 nm, the impact of the nanoconfinement effect is significant and cannot be overlooked. In this scenario, the state of oil occurrence and its flow behavior are influenced by the initial oil-wet surface area on the mixed wetting walls. The study quantifies the velocity and density distribution of oil in mixed wetting nanoscale shale bedding fractures through a mathematical model, providing a crucial theoretical basis for upscaling from the nanoscale to the macroscale.Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within nanoconfined spaces necessitate novel research approaches, as traditional percolation mathematical models are inadequate for accurately depicting these phenomena. This study takes the Gulong shale reservoir in China as the subject of its research. Initially, the unique mixed wetting characteristics of the Gulong shale reservoir are examined and characterized using actual micropore images. Subsequently, the occurrence and flow behavior of oil within the nanoscale bedding fractures under various wettability scenarios are described through a combination of microscopic pore image and molecular dynamics simulations. Ultimately, a mathematical model is established that depicts the velocity distribution of oil and its apparent permeability. This study findings indicate that when the scale of the shale bedding fractures is less than 100 nm, the impact of the nanoconfinement effect is significant and cannot be overlooked. In this scenario, the state of oil occurrence and its flow behavior are influenced by the initial oil-wet surface area on the mixed wetting walls. The study quantifies the velocity and density distribution of oil in mixed wetting nanoscale shale bedding fractures through a mathematical model, providing a crucial theoretical basis for upscaling from the nanoscale to the macroscale.
Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within nanoconfined spaces necessitate novel research approaches, as traditional percolation mathematical models are inadequate for accurately depicting these phenomena. This study takes the Gulong shale reservoir in China as the subject of its research. Initially, the unique mixed wetting characteristics of the Gulong shale reservoir are examined and characterized using actual micropore images. Subsequently, the occurrence and flow behavior of oil within the nanoscale bedding fractures under various wettability scenarios are described through a combination of microscopic pore image and molecular dynamics simulations. Ultimately, a mathematical model is established that depicts the velocity distribution of oil and its apparent permeability. This study findings indicate that when the scale of the shale bedding fractures is less than 100 nm, the impact of the nanoconfinement effect is significant and cannot be overlooked. In this scenario, the state of oil occurrence and its flow behavior are influenced by the initial oil-wet surface area on the mixed wetting walls. The study quantifies the velocity and density distribution of oil in mixed wetting nanoscale shale bedding fractures through a mathematical model, providing a crucial theoretical basis for upscaling from the nanoscale to the macroscale.
Author Lei, Zhengdong
Zhou, Qiang
Wang, Yuhan
Liu, Yishan
Xu, Zhenhua
Liu, Pengcheng
AuthorAffiliation School of Energy Resources
Research Institute of Petroleum Exploration and Development
AuthorAffiliation_xml – name: Research Institute of Petroleum Exploration and Development
– name: School of Energy Resources
Author_xml – sequence: 1
  givenname: Yuhan
  orcidid: 0009-0000-2878-8299
  surname: Wang
  fullname: Wang, Yuhan
  organization: School of Energy Resources
– sequence: 2
  givenname: Zhengdong
  surname: Lei
  fullname: Lei, Zhengdong
  organization: Research Institute of Petroleum Exploration and Development
– sequence: 3
  givenname: Zhenhua
  surname: Xu
  fullname: Xu, Zhenhua
  organization: School of Energy Resources
– sequence: 4
  givenname: Yishan
  orcidid: 0000-0002-6384-9955
  surname: Liu
  fullname: Liu, Yishan
  organization: Research Institute of Petroleum Exploration and Development
– sequence: 5
  givenname: Qiang
  surname: Zhou
  fullname: Zhou, Qiang
  organization: Research Institute of Petroleum Exploration and Development
– sequence: 6
  givenname: Pengcheng
  orcidid: 0000-0002-6110-1345
  surname: Liu
  fullname: Liu, Pengcheng
  email: liupengcheng8883@sohu.com
  organization: School of Energy Resources
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38960902$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1OGzEUhS0EgkD7BlXlZTeT2nNn4jE7QA1UArKAqkvrxvaA0cRObU9_3r6OkmxYwMLXku93jqxzTsmhD94S8omzKWc1_4o6TQf0T6vRxWmjGZMdHJAJb2tWtV0tDsmEiQYq0czghJym9MIKA408JifQyRmTrJ4QXGg9xmi9thS9ofMh_KGX9hl_uxBpX87CDfQxok_rEDN1nt65v9bQnzZn55_oPfqQNA6WPjxv5qU1ZvM-j6jzGG36QI56HJL9uLvPyI_5t8erm-p2cf396uK2Quh4rjQK7HT5l5xxiR2CFExq1jRcdD10sxZ6waXmZqkBpOlhCcwYIaHvW8brBs7Il63vOoZfo01ZrVzSdigZ2TAmBbyF4iJr_j7KRCuKqawL-nmHjsuVNWod3QrjP7VPsADnW0DHkFK0vdIuY3bB54huUJypTV2q1KX2daldXUXcvBLv_d-Rsa1ss30JY_Ql2Lcl_wFxaaz2
CitedBy_id crossref_primary_10_1155_er_5581586
Cites_doi 10.1016/j.petsci.2021.09.005
10.1016/j.molliq.2023.121507
10.1016/j.petrol.2019.03.088
10.2118/190246-PA
10.1016/0010-4655(80)90052-1
10.1016/S0142-727X(98)10043-7
10.2118/215847-PA
10.1063/1.449071
10.1002/andp.18812480110
10.1038/494307a
10.1063/5.0095965
10.1038/35102535
10.1021/nl802046b
10.1021/acs.energyfuels.2c00309
10.1021/acs.energyfuels.6b02278
10.2118/210564-PA
10.1016/j.cej.2020.124054
10.1016/j.fuel.2020.119299
10.1016/j.molliq.2022.119322
10.1016/j.fuel.2021.122389
10.1007/s10404-012-0949-z
10.1016/j.petrol.2020.107732
10.2118/131772-PA
10.1007/978-3-319-47003-0_5
10.1016/j.rser.2021.111391
10.1021/acs.langmuir.3c02421
10.1021/acs.langmuir.3c01570
10.2118/203905-PA
10.1016/j.coal.2019.103325
10.1021/ja9621760
10.1016/S1876-3804(21)60043-5
10.1007/s11242-018-1148-5
10.1007/s11242-017-0917-x
10.1155/2022/9355020
10.1016/j.fuel.2018.10.050
10.1016/j.fuel.2016.05.057
10.1073/pnas.1612608114
10.1007/s10450-013-9589-1
10.1016/B978-012267351-1/50005-5
10.1006/jcph.1995.1039
10.1016/j.petrol.2016.10.053
10.1016/j.petrol.2019.02.027
10.3390/en16083516
10.1016/j.ijheatmasstransfer.2017.08.024
10.1021/acs.langmuir.9b02925
10.1016/j.petrol.2019.03.072
10.1021/acs.iecr.5b04276
10.1016/0021-9797(83)90050-4
10.3390/su11072114
10.1126/science.1126298
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.langmuir.4c00983
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 14412
ExternalDocumentID 38960902
10_1021_acs_langmuir_4c00983
a65382682
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
-~X
.K2
4.4
53G
55A
5GY
5VS
7~N
AABXI
AAHBH
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
YQT
~02
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a381t-ca7a8c8969619a8a39709c044178f38653f719c1dbc339df3b30dd793ff501243
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 11 12:14:59 EDT 2025
Thu Jul 10 23:49:46 EDT 2025
Wed Feb 19 02:09:33 EST 2025
Tue Jul 01 03:28:44 EDT 2025
Thu Apr 24 23:10:29 EDT 2025
Tue Jul 23 03:10:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-ca7a8c8969619a8a39709c044178f38653f719c1dbc339df3b30dd793ff501243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0000-2878-8299
0000-0002-6110-1345
0000-0002-6384-9955
PMID 38960902
PQID 3075701292
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_3153653921
proquest_miscellaneous_3075701292
pubmed_primary_38960902
crossref_citationtrail_10_1021_acs_langmuir_4c00983
crossref_primary_10_1021_acs_langmuir_4c00983
acs_journals_10_1021_acs_langmuir_4c00983
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-16
PublicationDateYYYYMMDD 2024-07-16
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref30/cit30
  doi: 10.1016/j.petsci.2021.09.005
– ident: ref17/cit17
  doi: 10.1016/j.molliq.2023.121507
– ident: ref52/cit52
  doi: 10.1016/j.petrol.2019.03.088
– ident: ref10/cit10
  doi: 10.2118/190246-PA
– ident: ref44/cit44
  doi: 10.1016/0010-4655(80)90052-1
– ident: ref47/cit47
  doi: 10.1016/S0142-727X(98)10043-7
– ident: ref3/cit3
  doi: 10.2118/215847-PA
– ident: ref45/cit45
  doi: 10.1063/1.449071
– ident: ref43/cit43
  doi: 10.1002/andp.18812480110
– ident: ref1/cit1
  doi: 10.1038/494307a
– ident: ref21/cit21
  doi: 10.1063/5.0095965
– ident: ref24/cit24
  doi: 10.1038/35102535
– ident: ref26/cit26
  doi: 10.1021/nl802046b
– ident: ref8/cit8
  doi: 10.1021/acs.energyfuels.2c00309
– ident: ref42/cit42
  doi: 10.1021/acs.energyfuels.6b02278
– ident: ref12/cit12
  doi: 10.2118/210564-PA
– ident: ref16/cit16
  doi: 10.1016/j.cej.2020.124054
– ident: ref46/cit46
  doi: 10.1016/j.fuel.2020.119299
– ident: ref51/cit51
– ident: ref39/cit39
  doi: 10.1016/j.molliq.2022.119322
– ident: ref34/cit34
  doi: 10.1016/j.fuel.2021.122389
– ident: ref50/cit50
  doi: 10.1007/s10404-012-0949-z
– ident: ref18/cit18
  doi: 10.1016/j.petrol.2020.107732
– ident: ref13/cit13
  doi: 10.2118/131772-PA
– ident: ref29/cit29
  doi: 10.1007/978-3-319-47003-0_5
– ident: ref48/cit48
– ident: ref22/cit22
  doi: 10.1016/j.rser.2021.111391
– ident: ref9/cit9
  doi: 10.1021/acs.langmuir.3c02421
– ident: ref7/cit7
  doi: 10.1021/acs.langmuir.3c01570
– ident: ref11/cit11
  doi: 10.2118/203905-PA
– ident: ref14/cit14
  doi: 10.1016/j.coal.2019.103325
– ident: ref41/cit41
  doi: 10.1021/ja9621760
– ident: ref35/cit35
  doi: 10.1016/S1876-3804(21)60043-5
– ident: ref4/cit4
  doi: 10.1007/s11242-018-1148-5
– ident: ref19/cit19
  doi: 10.1007/s11242-017-0917-x
– ident: ref6/cit6
  doi: 10.1155/2022/9355020
– ident: ref23/cit23
  doi: 10.1016/j.fuel.2018.10.050
– ident: ref27/cit27
  doi: 10.1016/j.fuel.2016.05.057
– ident: ref32/cit32
  doi: 10.1073/pnas.1612608114
– ident: ref37/cit37
  doi: 10.1007/s10450-013-9589-1
– ident: ref36/cit36
  doi: 10.1016/B978-012267351-1/50005-5
– ident: ref40/cit40
  doi: 10.1006/jcph.1995.1039
– ident: ref2/cit2
  doi: 10.1016/j.petrol.2016.10.053
– ident: ref28/cit28
  doi: 10.1016/j.petrol.2019.02.027
– ident: ref31/cit31
  doi: 10.3390/en16083516
– ident: ref33/cit33
  doi: 10.1016/j.ijheatmasstransfer.2017.08.024
– ident: ref15/cit15
  doi: 10.1021/acs.langmuir.9b02925
– ident: ref20/cit20
  doi: 10.1016/j.petrol.2019.03.072
– ident: ref38/cit38
  doi: 10.1021/acs.iecr.5b04276
– ident: ref49/cit49
  doi: 10.1016/0021-9797(83)90050-4
– ident: ref5/cit5
  doi: 10.3390/su11072114
– ident: ref25/cit25
  doi: 10.1126/science.1126298
SSID ssj0009349
Score 2.459942
Snippet Shale reservoirs are characterized by an abundance of nanoscale porosities and microfractures. The states of fluid occurrence and flow behaviors within...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14399
SubjectTerms China
mathematical models
molecular dynamics
oils
permeability
shale
surface area
wettability
Title Occurrence and Flow Behavior for Oil Transport in Mixed Wetting Nanoscale Shale Bedding Fractures
URI http://dx.doi.org/10.1021/acs.langmuir.4c00983
https://www.ncbi.nlm.nih.gov/pubmed/38960902
https://www.proquest.com/docview/3075701292
https://www.proquest.com/docview/3153653921
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECWa9JBc0jZL425ggV5ykCOJMkkdU6OGUSD1wTHqm8AVMerKhWUhQb4-M1pstIXr5qIDQVLgcHmPy7wh5BPnJgbk1gELUxcknqeB9ixC2UqhhdfcVB5y19_4cJJ8nfamm43inzf4cXSpTNHFs7uf5WzZTQwKYLI98jzmUqBW_lV_vBHZZTXdRdlNkXDWusptqQUByRS_A9IWllmhzeAFGbU-O_Ujkx_dcqW75uFvCcf_bMhLctQQT3pVj5RX5JnLj8lBv433dkIUCg4vK-c_qnJLB_PFHW3kE5cUuC0dzeZ0LYZOZzm9nt07S7-76u00hYV6UUCXOzq-xe9nZxEY6QAdsUrY1p-SyeDLTX8YNAEYAgVAvgqMEkoaiQI6UaqkAu4SpibEqGXSY7BQ5kWUmshqw1hqPdMstBZmvPc9AL6EnZH9fJG7c0KBibjQSO0lbIFCC5VxJzRPe9JKLWLfIRdgn6yZQEVW3Y3HUYaJrdGyxmgdwtoey0yjZI4BNeY7SgXrUr9qJY8d-T-2gyGDnsB7FJW7RVlksCz2BB7gxf_IA0iCqr9x1CGv65G0_itwRI7PYd88oc1vyWEMdApPlSP-juyvlqV7D3RopT9Uc-ARKU4GnA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4FeoALtJRHoNBF6qUHB9trr-0jjRqlLaEHoHCzvC8RERwUxwLx65lx7ERFAsTFh9Xuet_ft4_5BuCbEMpH5JYOdxPjBFYkjrTcI9nKSEZWClVZyA1ORf8i-H0VXrUgbGxhsBAF5lRUl_gLdQHviMLoCO-2HE46gSIdTL4EH5CP-CSZf9w9W2jt8hnrJfXNKBC8sZh7IRfCJVX8j0svkM0KdHrr8G9e3OqtyU2nnMqOenym5Pju-nyEtZqGsuPZuPkELZNvwEq38f72GTKSH55UpoAsyzXrjcb3rBZTnDBkuuzvcMTm0uhsmLPB8MFodmmql9QMl-1xgQPAsLNr-v4wmmCS9cgsq8RN_iZc9H6ed_tO7Y7ByRDWp47KoixWMcnpeEkWZ8hk3ES55MMstuQ6lNvIS5SnpeI80ZZL7mqN89_aEGEw4FuwnI9zswMMeYlxVSxtjBsiV2NmwkRSJGGsYxn5tg3fsX3SejoVaXVT7nspBTaNltaN1gbedFyqal1zcq8xeiOVM091N9P1eCP-YTMmUuwJulXJcjMuixQXyTCi4zz_lTiIK6QB7Htt2J4NqPlfkTEKehy7-446f4WV_vngJD35dfpnD1Z9JFp03uyJL7A8nZRmH4nSVB5U0-IJxIgO_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7RINFeWl4toYVuJS4cnNpeZ20f04AVShOQSkXFxfK-1KjBieJYRfx6Zhw7PKRQtRcfVrvrfczufLuz8w3AGyGUj5pbOtyNjRNYETvSco9oK0MZWilU5SE3HInBRXB62b38I9QXNqLAmorKiE-reqZtzTDgHVM6XeN9L8fzTqCIC5NvwEOy3BFtfq9__ptvly-RLzFwhoHgjdfcmlpIN6nib920BnBWiifZgW-rJlfvTa475UJ21M9_2Bzv1afHsF3DUdZbys8TeGDyp7DZb6LAPYOMaIjnlUsgy3LNksn0htWkinOGiJd9Gk_YiiKdjXM2HP8wmn011Ytqhtv3tEBBMOz8ir4nRpO6ZAm5Z5V42H8OF8n7L_2BU4dlcDJU7wtHZWEWqYhodbw4izJENG6sXIplFlkKIcpt6MXK01JxHmvLJXe1xn3A2i6qw4DvQiuf5uYFMMQnxlWRtBEejFyNlQkTShF3Ix3J0LdteIvjk9bLqkgri7nvpZTYDFpaD1obeDN5qar5zSnMxuSWUs6q1GzJ73FL_qNGLlKcCbKuZLmZlkWKm2U3pGs9_z95UL8QF7DvtWFvKVSrvyJyFPRI9uUd-nwIjz6_S9KzD6OP-7DlI96ia2dPHEBrMS_NK8RLC_m6Whm_AHb7EYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occurrence+and+Flow+Behavior+for+Oil+Transport+in+Mixed+Wetting+Nanoscale+Shale+Bedding+Fractures&rft.jtitle=Langmuir&rft.au=Wang%2C+Yuhan&rft.au=Lei%2C+Zhengdong&rft.au=Xu%2C+Zhenhua&rft.au=Liu%2C+Yishan&rft.date=2024-07-16&rft.issn=1520-5827&rft.volume=40&rft.issue=28+p.14399-14412&rft.spage=14399&rft.epage=14412&rft_id=info:doi/10.1021%2Facs.langmuir.4c00983&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon