Next-Generation Metal Anticancer Complexes: Multitargeting via Redox Modulation
Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Arti...
Saved in:
Published in | Inorganic chemistry Vol. 52; no. 21; pp. 12276 - 12291 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Article, we discuss the possibility that targeting the redox balance in cancer cells may also be a highly effective strategy, especially because it is a multiple-site approach and offers selectivity over normal cells. Metal complexes can interfere in cellular redox chemistry in several ways: directly through metal or ligand redox centers or indirectly by binding to biomolecules involved in cellular redox pathways. We illustrate that a surprisingly large number of active metal anticancer agents have a potential redox arm to their mechanism of action. For such complexes, the possibility arises of using combination therapy together with redox modulators to increase the anticancer potency: attractive for lowering the doses of metal complexes that need to be administered. We illustrate that organometallic ruthenium(II) and osmium(II) arene complexes and iridium(III) cyclopentadienyl complexes of the type [(arene/CpxPh)M(N,N)Cl/I] n+ can achieve nanomolar potency toward cancer cells in combination with the redox modulator l-buthionine sulfoximine. Our discussion highlights the importance of determining not only the distribution of metal anticancer complexes in cells but also their speciation, the chemical form of the metal complex, including the oxidation state of the metal, the fate of the ligands, and dynamic processes such as efflux. This will be aided in the future by proteomic and genomic analyses but needs to be supplemented by new analytical methods that have the sensitivity and spatial and temporal resolution to reveal such information. To achieve this, major new funding programs are needed that support global research on the design of novel metal-based drugs with new mechanisms of action, tailored to patient needs. |
---|---|
AbstractList | Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Article, we discuss the possibility that targeting the redox balance in cancer cells may also be a highly effective strategy, especially because it is a multiple-site approach and offers selectivity over normal cells. Metal complexes can interfere in cellular redox chemistry in several ways: directly through metal or ligand redox centers or indirectly by binding to biomolecules involved in cellular redox pathways. We illustrate that a surprisingly large number of active metal anticancer agents have a potential redox arm to their mechanism of action. For such complexes, the possibility arises of using combination therapy together with redox modulators to increase the anticancer potency: attractive for lowering the doses of metal complexes that need to be administered. We illustrate that organometallic ruthenium(II) and osmium(II) arene complexes and iridium(III) cyclopentadienyl complexes of the type [(arene/CpxPh)M(N,N)Cl/I] n+ can achieve nanomolar potency toward cancer cells in combination with the redox modulator l-buthionine sulfoximine. Our discussion highlights the importance of determining not only the distribution of metal anticancer complexes in cells but also their speciation, the chemical form of the metal complex, including the oxidation state of the metal, the fate of the ligands, and dynamic processes such as efflux. This will be aided in the future by proteomic and genomic analyses but needs to be supplemented by new analytical methods that have the sensitivity and spatial and temporal resolution to reveal such information. To achieve this, major new funding programs are needed that support global research on the design of novel metal-based drugs with new mechanisms of action, tailored to patient needs. Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Article, we discuss the possibility that targeting the redox balance in cancer cells may also be a highly effective strategy, especially because it is a multiple-site approach and offers selectivity over normal cells. Metal complexes can interfere in cellular redox chemistry in several ways: directly through metal or ligand redox centers or indirectly by binding to biomolecules involved in cellular redox pathways. We illustrate that a surprisingly large number of active metal anticancer agents have a potential redox arm to their mechanism of action. For such complexes, the possibility arises of using combination therapy together with redox modulators to increase the anticancer potency: attractive for lowering the doses of metal complexes that need to be administered. We illustrate that organometallic ruthenium(II) and osmium(II) arene complexes and iridium(III) cyclopentadienyl complexes of the type [(arene/Cp(xPh))M(N,N)Cl/I](n+) can achieve nanomolar potency toward cancer cells in combination with the redox modulator l-buthionine sulfoximine. Our discussion highlights the importance of determining not only the distribution of metal anticancer complexes in cells but also their speciation, the chemical form of the metal complex, including the oxidation state of the metal, the fate of the ligands, and dynamic processes such as efflux. This will be aided in the future by proteomic and genomic analyses but needs to be supplemented by new analytical methods that have the sensitivity and spatial and temporal resolution to reveal such information. To achieve this, major new funding programs are needed that support global research on the design of novel metal-based drugs with new mechanisms of action, tailored to patient needs. Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Article, we discuss the possibility that targeting the redox balance in cancer cells may also be a highly effective strategy, especially because it is a multiple-site approach and offers selectivity over normal cells. Metal complexes can interfere in cellular redox chemistry in several ways: directly through metal or ligand redox centers or indirectly by binding to biomolecules involved in cellular redox pathways. We illustrate that a surprisingly large number of active metal anticancer agents have a potential redox arm to their mechanism of action. For such complexes, the possibility arises of using combination therapy together with redox modulators to increase the anticancer potency: attractive for lowering the doses of metal complexes that need to be administered. We illustrate that organometallic ruthenium(II) and osmium(II) arene complexes and iridium(III) cyclopentadienyl complexes of the type [(arene/Cp(xPh))M(N,N)Cl/I](n+) can achieve nanomolar potency toward cancer cells in combination with the redox modulator l-buthionine sulfoximine. Our discussion highlights the importance of determining not only the distribution of metal anticancer complexes in cells but also their speciation, the chemical form of the metal complex, including the oxidation state of the metal, the fate of the ligands, and dynamic processes such as efflux. This will be aided in the future by proteomic and genomic analyses but needs to be supplemented by new analytical methods that have the sensitivity and spatial and temporal resolution to reveal such information. To achieve this, major new funding programs are needed that support global research on the design of novel metal-based drugs with new mechanisms of action, tailored to patient needs.Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Article, we discuss the possibility that targeting the redox balance in cancer cells may also be a highly effective strategy, especially because it is a multiple-site approach and offers selectivity over normal cells. Metal complexes can interfere in cellular redox chemistry in several ways: directly through metal or ligand redox centers or indirectly by binding to biomolecules involved in cellular redox pathways. We illustrate that a surprisingly large number of active metal anticancer agents have a potential redox arm to their mechanism of action. For such complexes, the possibility arises of using combination therapy together with redox modulators to increase the anticancer potency: attractive for lowering the doses of metal complexes that need to be administered. We illustrate that organometallic ruthenium(II) and osmium(II) arene complexes and iridium(III) cyclopentadienyl complexes of the type [(arene/Cp(xPh))M(N,N)Cl/I](n+) can achieve nanomolar potency toward cancer cells in combination with the redox modulator l-buthionine sulfoximine. Our discussion highlights the importance of determining not only the distribution of metal anticancer complexes in cells but also their speciation, the chemical form of the metal complex, including the oxidation state of the metal, the fate of the ligands, and dynamic processes such as efflux. This will be aided in the future by proteomic and genomic analyses but needs to be supplemented by new analytical methods that have the sensitivity and spatial and temporal resolution to reveal such information. To achieve this, major new funding programs are needed that support global research on the design of novel metal-based drugs with new mechanisms of action, tailored to patient needs. |
Author | Romero-Canelón, Isolda Sadler, Peter J. |
AuthorAffiliation | The University of Hong Kong University of Warwick |
AuthorAffiliation_xml | – name: University of Warwick – name: The University of Hong Kong |
Author_xml | – sequence: 1 givenname: Isolda surname: Romero-Canelón fullname: Romero-Canelón, Isolda – sequence: 2 givenname: Peter J. surname: Sadler fullname: Sadler, Peter J. email: P.J.Sadler@warwick.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23879584$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1LAzEQhoMotlYP_gHZi6CHtfncD29StAqtBVHwFtLstKRsk5pkpf57t7b1IDKHmcPzvjDPCTq0zgJC5wTfEExJ32iOccGEPUBdIihOBcHvh6iLcXuTLCs76CSEBca4ZDw7Rh3KirwUBe-iyTOsYzoEC15F42wyhqjq5M5Go5XV4JOBW65qWEO4TcZNHU1Ufg7R2HnyaVTyApVbJ2NXNfVP_hQdzVQd4Gy3e-jt4f518JiOJsOnwd0oVawgMZ2yKaN5NuWUMjEj7YisUKIigAUvqCBU04xVBWWqnOWQ5YRRvKGIqITmmvXQ1bZ35d1HAyHKpQka6lpZcE2QhPOS5jzPRIte7NBmuoRKrrxZKv8l9xJaoL8FtHcheJhJ3X65-SZ6ZWpJsNxolr-a28T1n8S-9D_2cssqHeTCNd62Xv7hvgHK64eB |
CitedBy_id | crossref_primary_10_1016_j_jorganchem_2014_10_044 crossref_primary_10_1021_ic501865h crossref_primary_10_3184_003685014X13904811808460 crossref_primary_10_1080_00958972_2016_1204649 crossref_primary_10_1080_00958972_2015_1074684 crossref_primary_10_1021_acs_inorgchem_2c00984 crossref_primary_10_1039_D3DT01667F crossref_primary_10_1002_ejic_201601149 crossref_primary_10_1039_C5DT03266K crossref_primary_10_1016_j_cdc_2022_100853 crossref_primary_10_1021_acs_inorgchem_9b01199 crossref_primary_10_1039_C6MD00071A crossref_primary_10_1039_C5CS00132C crossref_primary_10_1016_j_jinorgbio_2023_112223 crossref_primary_10_1039_C4DT02710H crossref_primary_10_1016_j_jinorgbio_2020_111099 crossref_primary_10_1002_jccs_201800275 crossref_primary_10_1039_C8CS00304A crossref_primary_10_1080_00958972_2020_1782895 crossref_primary_10_1002_jccs_202400207 crossref_primary_10_1039_C8CC05622F crossref_primary_10_1002_ijch_201600044 crossref_primary_10_1016_j_jinorgbio_2016_02_018 crossref_primary_10_1016_j_isci_2024_109899 crossref_primary_10_1002_anie_202012620 crossref_primary_10_1016_j_inoche_2024_112462 crossref_primary_10_1039_C4SC03635B crossref_primary_10_55529_ijrise_22_22_29 crossref_primary_10_1016_j_ccr_2021_214104 crossref_primary_10_55529_ijrise_22_22_28 crossref_primary_10_1002_ejic_201800081 crossref_primary_10_4155_fmc_2016_0153 crossref_primary_10_1002_ange_201604236 crossref_primary_10_1016_j_dit_2013_09_001 crossref_primary_10_1039_C9DT04620H crossref_primary_10_1016_j_jinorgbio_2024_112631 crossref_primary_10_1016_j_jinorgbio_2021_111360 crossref_primary_10_1007_s00775_016_1353_z crossref_primary_10_1039_C8RA03626H crossref_primary_10_1039_D2CS00099G crossref_primary_10_1002_anie_201309576 crossref_primary_10_1002_aoc_4663 crossref_primary_10_1016_j_jinorgbio_2018_01_008 crossref_primary_10_3390_molecules24061050 crossref_primary_10_1021_acs_inorgchem_5b02697 crossref_primary_10_1016_j_poly_2013_12_014 crossref_primary_10_1021_acs_chemrev_8b00493 crossref_primary_10_1016_j_bioorg_2019_103561 crossref_primary_10_1021_acs_organomet_3c00430 crossref_primary_10_1039_C7CS00332C crossref_primary_10_3184_146867818X15319903829191 crossref_primary_10_1039_D0SC04082G crossref_primary_10_1002_ejic_201800857 crossref_primary_10_1039_D1DT03856G crossref_primary_10_1016_j_ejmech_2021_113166 crossref_primary_10_1021_acs_inorgchem_7b01693 crossref_primary_10_1021_jacs_8b09999 crossref_primary_10_1039_C9NJ02502B crossref_primary_10_1016_j_canlet_2017_04_041 crossref_primary_10_1021_acs_inorgchem_5b01236 crossref_primary_10_1016_j_jinorgbio_2016_09_008 crossref_primary_10_1007_s10637_014_0175_5 crossref_primary_10_1016_j_jorganchem_2019_120918 crossref_primary_10_1021_acs_inorgchem_0c00694 crossref_primary_10_1016_j_ejmech_2017_06_027 crossref_primary_10_1002_ange_202000247 crossref_primary_10_1016_j_poly_2023_116322 crossref_primary_10_1021_acs_organomet_8b00415 crossref_primary_10_1002_ejic_201500587 crossref_primary_10_1016_j_ejmech_2014_09_075 crossref_primary_10_1007_s10895_014_1456_2 crossref_primary_10_1039_C7NR02229H crossref_primary_10_1002_ejic_201900677 crossref_primary_10_3389_fchem_2022_967337 crossref_primary_10_1002_aoc_6906 crossref_primary_10_1371_journal_pone_0136338 crossref_primary_10_1039_C6CC05537K crossref_primary_10_1073_pnas_1500925112 crossref_primary_10_1016_j_jinorgbio_2017_06_001 crossref_primary_10_1016_j_jorganchem_2015_02_004 crossref_primary_10_1016_j_jtemb_2023_127245 crossref_primary_10_3390_ijms23094976 crossref_primary_10_1016_j_ejmech_2014_04_001 crossref_primary_10_1002_aoc_4287 crossref_primary_10_1002_chem_201701714 crossref_primary_10_1002_ejic_201501469 crossref_primary_10_1039_C7DT04604A crossref_primary_10_1016_j_ejmech_2017_04_007 crossref_primary_10_1016_j_jorganchem_2018_08_027 crossref_primary_10_1080_07391102_2020_1733664 crossref_primary_10_1021_acs_inorgchem_0c01613 crossref_primary_10_1002_anie_201915828 crossref_primary_10_1016_j_ijbiomac_2018_12_128 crossref_primary_10_1039_C5DT03412D crossref_primary_10_1002_ejic_201601350 crossref_primary_10_3389_fchem_2023_1150164 crossref_primary_10_3389_fphar_2022_1035217 crossref_primary_10_1021_acs_inorgchem_3c03471 crossref_primary_10_1039_C4QI00098F crossref_primary_10_3389_fchem_2020_00379 crossref_primary_10_1002_adma_202416122 crossref_primary_10_1111_cbdd_12945 crossref_primary_10_1002_ejic_201700439 crossref_primary_10_1016_j_poly_2022_115837 crossref_primary_10_1007_s10904_018_0957_x crossref_primary_10_1039_D3RA00982C crossref_primary_10_1021_acs_inorgchem_8b02542 crossref_primary_10_1016_j_saa_2019_117457 crossref_primary_10_1007_s11426_020_9856_7 crossref_primary_10_1039_C5RA04498G crossref_primary_10_1016_j_ccr_2023_215169 crossref_primary_10_3390_molecules23051232 crossref_primary_10_1021_acs_inorgchem_3c02118 crossref_primary_10_1080_00958972_2016_1142536 crossref_primary_10_1007_s00775_021_01872_w crossref_primary_10_3892_ijmm_2018_3472 crossref_primary_10_1007_s12039_015_1017_5 crossref_primary_10_1021_acs_chemrev_8b00211 crossref_primary_10_1016_j_ultsonch_2018_02_050 crossref_primary_10_1002_ange_202011273 crossref_primary_10_1016_j_jinorgbio_2017_05_015 crossref_primary_10_1002_ejic_201600908 crossref_primary_10_1039_C9RA10357K crossref_primary_10_1039_C6RA18504E crossref_primary_10_1016_j_ccr_2021_213977 crossref_primary_10_1021_ic402341n crossref_primary_10_1002_adsc_201400354 crossref_primary_10_1007_s11094_019_02011_1 crossref_primary_10_1016_j_jorganchem_2019_04_003 crossref_primary_10_1007_s12274_018_2138_1 crossref_primary_10_1016_j_ica_2015_06_024 crossref_primary_10_1016_j_ejmech_2014_05_060 crossref_primary_10_1016_j_poly_2024_116951 crossref_primary_10_1021_acs_inorgchem_7b02345 crossref_primary_10_1039_D0NJ04137H crossref_primary_10_1016_j_saa_2024_124448 crossref_primary_10_1039_C8RA07926A crossref_primary_10_3390_ma13163491 crossref_primary_10_1021_acs_inorgchem_7b01370 crossref_primary_10_1080_00958972_2016_1178387 crossref_primary_10_1002_ejic_201601216 crossref_primary_10_1039_C4DT01033G crossref_primary_10_1002_anie_202011273 crossref_primary_10_1021_acs_inorgchem_5b01832 crossref_primary_10_1021_acsami_5b03739 crossref_primary_10_1039_D2DT01127A crossref_primary_10_1021_acs_organomet_7b00250 crossref_primary_10_18632_oncotarget_18991 crossref_primary_10_1098_rsos_220659 crossref_primary_10_1021_acs_molpharmaceut_8b00407 crossref_primary_10_1016_j_poly_2019_114262 crossref_primary_10_1002_ange_201915828 crossref_primary_10_1021_acs_jmedchem_5b00288 crossref_primary_10_1016_j_cclet_2022_107945 crossref_primary_10_1039_D5DT00194C crossref_primary_10_1016_j_ejmech_2014_06_052 crossref_primary_10_1016_j_jinorgbio_2016_07_007 crossref_primary_10_1016_j_jorganchem_2015_05_011 crossref_primary_10_1039_D0NJ01192D crossref_primary_10_1002_anie_202000247 crossref_primary_10_1039_C7NJ01998J crossref_primary_10_1016_j_jscs_2021_101366 crossref_primary_10_1016_j_ica_2022_120936 crossref_primary_10_1002_adhm_202000864 crossref_primary_10_1073_pnas_1503858112 crossref_primary_10_1016_j_poly_2020_114829 crossref_primary_10_1021_acs_inorgchem_9b00708 crossref_primary_10_1021_acs_jpcb_7b01427 crossref_primary_10_1039_C8DT03432J crossref_primary_10_1039_C4CC02093F crossref_primary_10_1016_j_canlet_2017_11_041 crossref_primary_10_1002_ange_201309576 crossref_primary_10_1016_j_rechem_2023_101155 crossref_primary_10_1021_acs_inorgchem_6b00554 crossref_primary_10_1039_C8BM01039K crossref_primary_10_1002_cplu_201300425 crossref_primary_10_1039_C6DT02590K crossref_primary_10_1155_2014_209845 crossref_primary_10_1007_s00775_019_01640_x crossref_primary_10_1016_j_inoche_2021_109044 crossref_primary_10_3389_fchem_2020_00182 crossref_primary_10_1002_adfm_201804227 crossref_primary_10_1002_cmdc_201600320 crossref_primary_10_1021_acs_inorgchem_6b00309 crossref_primary_10_1016_j_bioorg_2025_108148 crossref_primary_10_1016_j_jinorgbio_2020_111260 crossref_primary_10_3389_fchem_2018_00180 crossref_primary_10_1016_j_jinorgbio_2025_112852 crossref_primary_10_1016_j_poly_2015_02_009 crossref_primary_10_1021_acs_inorgchem_1c02682 crossref_primary_10_1021_acs_inorgchem_8b03552 crossref_primary_10_1021_acs_organomet_0c00107 crossref_primary_10_1039_C5NJ01449B crossref_primary_10_1021_acs_chemrev_8b00209 crossref_primary_10_1016_j_ccr_2023_215366 crossref_primary_10_1016_j_eurpolymj_2016_12_011 crossref_primary_10_1016_j_jinorgbio_2014_12_017 crossref_primary_10_1002_jcc_24373 crossref_primary_10_1002_ejic_201801426 crossref_primary_10_1021_acs_inorgchem_0c02928 crossref_primary_10_1016_j_jinorgbio_2017_02_002 crossref_primary_10_3390_biom14050530 crossref_primary_10_1016_j_jinorgbio_2020_111154 crossref_primary_10_1515_revic_2024_0068 crossref_primary_10_1007_s12039_021_01896_4 crossref_primary_10_1016_j_ejmech_2021_113689 crossref_primary_10_1515_revic_2024_0066 crossref_primary_10_1016_j_ejmech_2017_04_030 crossref_primary_10_1021_cr400460s crossref_primary_10_1002_ejoc_201700988 crossref_primary_10_53360_2788_7995_2024_3_15__38 crossref_primary_10_1016_j_envres_2024_118489 crossref_primary_10_1016_j_jorganchem_2014_04_027 crossref_primary_10_1016_j_molstruc_2022_133457 crossref_primary_10_1016_j_ica_2021_120754 crossref_primary_10_1016_j_poly_2020_114606 crossref_primary_10_1039_D0DT00451K crossref_primary_10_1016_j_ccr_2016_01_001 crossref_primary_10_1016_j_ccr_2021_214403 crossref_primary_10_1002_slct_202003334 crossref_primary_10_3390_biomedicines10061417 crossref_primary_10_47836_pjst_30_4_25 crossref_primary_10_1002_slct_201800306 crossref_primary_10_1002_chem_201503555 crossref_primary_10_1016_j_freeradbiomed_2016_03_006 crossref_primary_10_3390_inorganics11100394 crossref_primary_10_1021_bc400385d crossref_primary_10_1039_C4DT00845F crossref_primary_10_1039_D1TB00753J crossref_primary_10_1371_journal_pone_0123595 crossref_primary_10_1002_ejic_201800225 crossref_primary_10_1016_j_jinorgbio_2019_110714 crossref_primary_10_1016_j_jorganchem_2016_02_001 crossref_primary_10_1002_cplu_201400014 crossref_primary_10_1039_C4DT02165G crossref_primary_10_1039_c4mt00034j crossref_primary_10_3389_fphar_2018_01511 crossref_primary_10_3390_molecules26185679 crossref_primary_10_3390_ijms17111818 crossref_primary_10_1039_C6DT00849F crossref_primary_10_1002_ange_202012620 crossref_primary_10_1021_acs_jpcb_1c05794 crossref_primary_10_1039_D4NJ03255A crossref_primary_10_1016_j_ica_2014_07_050 crossref_primary_10_1039_C6DT01264G crossref_primary_10_1039_C7MD00462A crossref_primary_10_4155_fmc_2017_0248 crossref_primary_10_5604_01_3001_0013_8549 crossref_primary_10_1039_D4QI02472A crossref_primary_10_1002_slct_201800015 crossref_primary_10_1080_00958972_2020_1796986 crossref_primary_10_1039_d0mt00064g crossref_primary_10_1016_j_jinorgbio_2017_08_019 crossref_primary_10_1021_acs_inorgchem_9b01031 crossref_primary_10_1002_chem_201700588 crossref_primary_10_1016_j_jinorgbio_2014_08_014 crossref_primary_10_1039_C6OB00470A crossref_primary_10_1039_C7NJ03819D crossref_primary_10_3390_ijms23126669 crossref_primary_10_1016_j_jinorgbio_2019_110869 crossref_primary_10_1021_ic5027625 crossref_primary_10_1002_chem_201903109 crossref_primary_10_1016_j_ica_2019_06_002 crossref_primary_10_1039_C6DT03660K crossref_primary_10_1016_j_ica_2015_08_017 crossref_primary_10_1021_acs_inorgchem_4c04937 crossref_primary_10_1016_j_ica_2017_09_056 crossref_primary_10_1016_j_ica_2020_119449 crossref_primary_10_1016_j_jinorgbio_2022_111975 crossref_primary_10_1021_acs_inorgchem_4c01766 crossref_primary_10_1039_D0SC03628E crossref_primary_10_1002_anie_201604236 crossref_primary_10_1002_aoc_5785 crossref_primary_10_1002_cmdc_201800432 crossref_primary_10_1007_s12013_021_00984_z crossref_primary_10_1002_cmdc_201800672 crossref_primary_10_1080_00958972_2017_1349313 crossref_primary_10_1039_C7DT03917D crossref_primary_10_1016_j_ica_2019_119208 crossref_primary_10_1016_j_jorganchem_2017_03_038 crossref_primary_10_1021_acs_inorgchem_0c01442 crossref_primary_10_1039_C4RA13718C crossref_primary_10_1002_ejic_201402532 crossref_primary_10_1002_ejic_201402412 crossref_primary_10_1021_acs_inorgchem_4c03975 crossref_primary_10_1021_acs_jmedchem_5b00655 crossref_primary_10_1021_acsmedchemlett_9b00337 crossref_primary_10_1021_acs_organomet_1c00572 crossref_primary_10_1039_D1TB01289D crossref_primary_10_1007_s12039_018_1584_3 crossref_primary_10_1021_acsomega_9b02948 crossref_primary_10_1038_ncomms7582 crossref_primary_10_1039_D4DT01796J crossref_primary_10_1016_j_ica_2021_120701 crossref_primary_10_1039_C4DT03764B crossref_primary_10_1016_j_ejmech_2021_113770 crossref_primary_10_1016_j_jinorgbio_2016_06_021 crossref_primary_10_3390_ph16121729 crossref_primary_10_1016_j_ccr_2021_214311 crossref_primary_10_1039_c8mt00352a crossref_primary_10_1002_cbdv_202300061 crossref_primary_10_1007_s40242_018_8077_2 crossref_primary_10_1016_j_ccr_2014_08_002 crossref_primary_10_1016_j_molstruc_2020_129348 crossref_primary_10_1002_ejic_201402884 crossref_primary_10_1016_j_ccr_2022_214506 crossref_primary_10_1021_acs_inorgchem_4c03389 crossref_primary_10_1021_acs_organomet_8b00604 crossref_primary_10_1039_D3DT04045C crossref_primary_10_1002_chem_201600236 crossref_primary_10_1039_C5DT04529K crossref_primary_10_1021_acsomega_1c06465 crossref_primary_10_1016_j_jinorgbio_2023_112440 crossref_primary_10_1002_ejic_201403173 crossref_primary_10_1002_chem_201800403 crossref_primary_10_1080_00958972_2017_1372573 crossref_primary_10_1021_acs_chemrev_6b00400 crossref_primary_10_1016_j_ejmech_2018_04_013 crossref_primary_10_2174_0929867328666210917114912 crossref_primary_10_1002_ange_201400142 crossref_primary_10_2174_1871520621666210713112105 crossref_primary_10_15406_ppij_2018_06_00177 crossref_primary_10_1039_C7RA09102H crossref_primary_10_1039_D3SC01874A crossref_primary_10_1039_C8MT00111A crossref_primary_10_1002_aoc_70050 crossref_primary_10_1039_D4DT02643H crossref_primary_10_1002_anie_201400142 crossref_primary_10_1021_acs_organomet_5b00097 crossref_primary_10_3390_molecules28062499 crossref_primary_10_1016_j_jinorgbio_2019_110754 crossref_primary_10_1039_D0NJ06210C crossref_primary_10_1021_acs_molpharmaceut_8b00045 crossref_primary_10_3390_inorganics8090049 crossref_primary_10_1016_j_ica_2020_119542 crossref_primary_10_1016_j_jinorgbio_2016_06_018 |
Cites_doi | 10.1021/tx300057y 10.1016/0090-8258(83)90100-2 10.1021/ja3074159 10.1021/ic971047x 10.1039/c2cc30678f 10.1089/ars.2009.2541 10.1021/ja053387k 10.1021/jm070740j 10.1039/C2DT32617E 10.1016/j.ica.2011.07.032 10.1002/asia.200800149 10.1016/j.jinorgbio.2006.02.015 10.2174/187152007779314044 10.1038/nm1001-1111 10.1007/s00775-011-0841-4 10.1146/annurev.med.53.082901.103929 10.1039/b913570g 10.1634/theoncologist.6-suppl_2-3 10.1016/j.drup.2008.02.002 10.1021/cr068207j 10.1016/j.jinorgbio.2007.11.003 10.1007/s00280-002-0504-9 10.1002/anie.201108175 10.1021/ic700799w 10.1073/pnas.0805965105 10.1158/1535-7163.MCT-08-0298 10.1016/j.tox.2009.12.010 10.1124/mol.106.022624 10.1039/c3sc21972k 10.2174/1874846501003020029 10.1182/asheducation.V2006.1.219.0010219 10.1089/ars.2011.3993 10.1111/j.1476-5381.2009.00341.x 10.1007/s13361-012-0539-z 10.1021/jo00067a060 10.1039/c2cc36808k 10.1016/j.biopha.2011.07.001 10.1007/s10863-006-9059-5 10.1016/j.canlet.2005.07.046 10.1039/c2sc20220d 10.1039/b902861g 10.1158/1535-7163.MCT-11-0959 10.1039/B916860P 10.1016/j.freeradbiomed.2010.09.008 10.1016/j.taap.2012.09.001 10.1039/c1md00075f 10.1111/j.2042-7158.2012.01470.x 10.1021/jm010051m 10.1038/nrc2167 10.1038/nrc903 10.1002/jcp.21966 10.1074/jbc.M703973200 10.1634/theoncologist.6-suppl_2-1 10.1007/s10637-010-9395-5 10.1002/anie.201003399 10.1351/pac199870040863 10.1351/pac198759020181 10.1002/jat.1284 10.1007/s10863-008-9188-0 10.1007/978-0-387-89445-4_2 10.1007/s00280-005-0069-5 10.1021/cr020010d 10.1016/j.ica.2006.12.005 10.1146/annurev.pharmtox.48.080907.180426 10.1007/s00280-010-1293-1 10.1016/S0027-5107(01)00141-5 10.1016/j.drudis.2009.07.011 10.1016/S0010-8545(02)00026-7 10.1039/B511792E 10.1098/rsob.120144 10.1073/pnas.0800076105 10.3390/toxins2112490 10.1016/j.ica.2011.08.047 10.1039/b821603g 10.1016/j.jinorgbio.2011.09.008 10.1038/nprot.2006.179 10.1007/BF00744664 10.1016/j.ica.2012.06.046 10.1158/0008-5472.CAN-04-1830 10.1039/b508531b 10.1021/jm050015d 10.1007/s00775-007-0272-4 10.1016/j.jinorgbio.2007.10.015 10.1177/107327480901600204 10.1073/pnas.0505798102 10.1016/j.ejmech.2011.01.019 10.1002/ardp.200600151 10.1007/BF02703651 10.1038/sj.bjc.6600906 10.1016/j.chembiol.2004.11.008 10.1021/jm2000932 10.1039/c1mt00062d 10.1002/(SICI)1521-3773(19991004)38:19<2949::AID-ANIE2949>3.0.CO;2-Q 10.1038/nrc2817 10.1158/1078-0432.CCR-06-1037 10.1016/j.biochi.2011.07.025 10.1002/anie.200352303 10.1038/bjc.1992.249 10.1021/ic030045b 10.1038/nrd2803 10.1021/jm900138u 10.1016/j.ica.2012.06.003 10.1016/j.bcp.2005.11.009 10.1016/j.jinorgbio.2006.07.003 10.1002/cmdc.201200505 10.1038/nrc3297 10.1016/j.freeradbiomed.2008.05.031 10.1039/C1CC15378A 10.1016/j.jinorgbio.2007.04.018 10.1039/c1cc10860c 10.1016/j.poly.2012.01.024 10.1016/S0021-9258(18)96186-7 10.1021/jm3017442 10.1016/S0898-8838(08)60035-5 10.1016/j.jinorgbio.2012.06.013 10.1016/S0162-0134(99)00147-6 10.1002/anie.200502925 10.3322/caac.20107 10.1074/jbc.M709062200 10.1158/0008-5472.CAN-12-0979 10.1002/ijc.21484 10.1038/nature07733 10.1523/JNEUROSCI.1544-10.2010 10.1242/jcs.110486 10.1016/j.jinorgbio.2009.10.005 10.1016/S0021-9258(20)80702-9 10.1016/j.bcp.2009.07.023 10.1007/PL00010658 10.1073/pnas.1105941108 10.1039/c2dt31654d 10.1002/ejic.200900054 10.1089/ars.2010.3663 10.1089/ars.2012.4880 10.1038/sj.bjc.6600176 10.1039/b705551j 10.1038/205698a0 10.1021/ic8020222 10.1021/ja1112996 10.1158/0008-5472.CAN-07-6611 10.1021/ic061460h 10.1002/9783906390420 10.1002/anie.201202939 10.1002/ejic.200390156 10.1158/0008-5472.948.65.3 10.1002/cbdv.200890195 10.1186/1471-2407-12-147 10.1039/c2mt20189e 10.1007/s00775-008-0460-x 10.1097/MAJ.0b013e31812dfe1e 10.1007/s00775-009-0558-9 10.1124/mol.59.4.657 10.1038/sj.bmt.1703605 10.1021/bc100369p 10.1039/c2dt30727h 10.1021/ja805555a 10.1002/cncr.23651 10.1021/jm301648f 10.1021/jm060436a 10.2533/chimia.2007.692 10.1021/ja056726i 10.1021/jm060596m 10.1124/pr.111.005637 10.1016/S0162-0134(99)00135-X 10.2174/156800909789056962 10.1021/jm3014713 10.1038/sj.bjc.6600290 10.1007/BF02307573 10.1039/c1dt10084j 10.1002/chem.201103378 10.1074/jbc.273.24.14721 10.1093/jnci/92.16.1295 10.1016/j.jasms.2007.12.002 10.1038/nature10167 10.1021/jm100560f 10.1358/dof.2012.037.011.1830167 10.4155/fmc.12.69 10.1021/cb400070a 10.1016/j.bbrc.2004.09.047 10.1021/jm8003043 10.1021/jm8006678 10.1517/13543780903362437 10.1021/ic100277w 10.1071/CH06307 10.1007/s00280-004-0932-9 10.1039/c0dt00292e 10.1021/ja055886r 10.1016/j.addr.2012.01.007 10.1007/s10637-009-9336-3 10.1016/j.jinorgbio.2004.04.020 10.1016/S1470-2045(07)70342-X 10.1016/j.drup.2012.01.008 10.1016/j.jinorgbio.2004.05.017 10.1038/bjc.1993.221 10.1016/S1040-8428(01)00225-6 10.1042/bj3460001 10.1595/147106710X534326 10.1007/s00775-003-0471-6 10.1007/s00775-009-0506-8 10.1021/ja804027j 10.1158/1535-7163.MCT-08-0840 10.1016/j.addr.2009.05.010 10.1016/j.chembiol.2007.08.016 10.1002/ejic.200700206 10.1002/anie.201300747 10.4161/cbt.7.12.7067 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/ic400835n |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-510X |
EndPage | 12291 |
ExternalDocumentID | 23879584 10_1021_ic400835n g20529982 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .K2 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABPPZ ABPTK ABQRX ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ EJD F5P GGK GNL IH2 IH9 IHE JG~ LG6 ROL RXW TAE TN5 TWZ UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YZZ ~02 AAYXX ABBLG ABLBI AGXLV CITATION CUPRZ CGR CUY CVF ECM EIF NPM YIN 7X8 |
ID | FETCH-LOGICAL-a381t-b3b3276b42235f1f1f568a5d1e05482512c263d823a9f7e671320f1f515d5c4c3 |
IEDL.DBID | ACS |
ISSN | 0020-1669 1520-510X |
IngestDate | Fri Jul 11 11:23:06 EDT 2025 Wed Feb 19 02:06:38 EST 2025 Tue Jul 01 03:40:46 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Thu Dec 07 09:20:08 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-b3b3276b42235f1f1f568a5d1e05482512c263d823a9f7e671320f1f515d5c4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23879584 |
PQID | 1449274765 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1449274765 pubmed_primary_23879584 crossref_citationtrail_10_1021_ic400835n crossref_primary_10_1021_ic400835n acs_journals_10_1021_ic400835n |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-04 |
PublicationDateYYYYMMDD | 2013-11-04 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Inorganic chemistry |
PublicationTitleAlternate | Inorg. Chem |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Yao X. (ref63/cit63) 2007; 334 Sadler P. J. (ref55/cit55) 1998; 70 Peacock A. (ref184/cit184) 2008; 3 Dahan L. (ref78/cit78) 2009; 158 McWhinney S. R. (ref65/cit65) 2009; 8 Jung Y. (ref51/cit51) 2007; 107 Pizarro A. M. (ref170/cit170) 2010; 32 Collins Y. (ref25/cit25) 2012; 125 Kim K. K. (ref208/cit208) 2012; 12 Süss-Fink G. (ref131/cit131) 2010; 39 Peacock A. F. A. (ref128/cit128) 2006; 128 Carr J. L. (ref159/cit159) 2006; 57 Bock C. (ref21/cit21) 2012; 12 Navakoski de Oliveira K. (ref209/cit209) 2013; 8 Reedijk J. (ref49/cit49) 1985; 7 ref42/cit42 Van Rijt S. H. (ref187/cit187) 2009; 48 Allen T. M. (ref10/cit10) 2002; 2 Lessa J. (ref92/cit92) 2011; 105 Billecke C. (ref83/cit83) 2006; 8 Antonarakis E. S. (ref121/cit121) 2010; 66 Raj L. (ref33/cit33) 2011; 475 Fu Y. (ref189/cit189) 2012; 3 Rigobello M. P. (ref91/cit91) 2004; 98 Morbidelli L. (ref171/cit171) 2003; 88 Fakih S. (ref82/cit82) 2003; 2003 Brown R. L. (ref66/cit66) 1983; 16 Vashisht Gopal Y. N. (ref136/cit136) 2001; 26 Wang F. (ref175/cit175) 2008; 19 Sultana S. (ref73/cit73) 2012; 64 Sun R. W. Y. (ref102/cit102) 2013; 4 Hickey J. L. (ref95/cit95) 2008; 130 Frausin F. (ref166/cit166) 2002; 50 Scolaro C. (ref124/cit124) 2005; 48 Pizarro A. M. (ref89/cit89) 2003; 42 Goldie J. H. (ref11/cit11) 1984; 44 Vera-Ramirez L. (ref39/cit39) 2011; 15 Saggioro D. (ref90/cit90) 2007; 14 Gonzalez V. M. (ref53/cit53) 2001; 59 Casini A. (ref105/cit105) 2009; 14 Casini A. (ref103/cit103) 2006; 49 Berners-Price S. J. (ref97/cit97) 2011; 3 Wexselblatt E. (ref204/cit204) 2012; 117 Timmer-Bosscha H. (ref58/cit58) 1992; 66 Cepeda V. (ref52/cit52) 2007; 7 Chitambar C. R. (ref107/cit107) 2012; 4 Dougan S. J. (ref138/cit138) 2006; 45 Gottesman M. M. (ref61/cit61) 2002; 53 Betanzos-Lara S. (ref193/cit193) 2012; 51 Bonnitcha P. D. (ref216/cit216) 2006; 100 Liu Z. (ref190/cit190) 2011; 54 Casini A. (ref132/cit132) 2010; 32 Apperley J. F. (ref17/cit17) 2007; 8 Wang F. (ref126/cit126) 2005; 102 Ishikawas T. (ref68/cit68) 1993; 268 More S. S. (ref67/cit67) 2010; 30 Cullen K. J. (ref76/cit76) 2007; 39 Feng L. (ref150/cit150) 2011; 133 Geldmacher Y. (ref149/cit149) 2012; 393 Van Rijt S. H. (ref186/cit186) 2011; 22 Hegreness M. (ref20/cit20) 2008; 105 Martins N. M. (ref75/cit75) 2008; 28 Bugarcic T. (ref172/cit172) 2008; 51 Reedijk J. (ref50/cit50) 1987; 59 Osinsky S. (ref220/cit220) 2004; 26 Kluza J. (ref34/cit34) 2012; 72 Hong R. (ref157/cit157) 2006; 128 Gandin V. (ref93/cit93) 2010; 79 Wilting R. H. (ref19/cit19) 2012; 15 Zhang C. (ref119/cit119) 2010; 222 Rosenberg B. (ref1/cit1) 1965; 200 Yu J. (ref206/cit206) 2003; 63 Morris R. E. (ref123/cit123) 2001; 44 Lemma K. (ref154/cit154) 2000; 5 Graf N. (ref156/cit156) 2012; 64 Anderson C. P. (ref198/cit198) 2002; 30 Antman K. H. (ref117/cit117) 2001; 6 Reisner E. (ref168/cit168) 2008; 361 Wang F. (ref176/cit176) 2005; 127 Waxman S. (ref120/cit120) 2001; 6 Watson J. (ref30/cit30) 2013; 3 Gately D. P. (ref57/cit57) 1993; 67 Baerga R. (ref114/cit114) 2012 Chen H. H. W. (ref199/cit199) 2010; 2010 Hall M. D. (ref158/cit158) 2002; 232 Shnyder S. D. (ref195/cit195) 2011; 2 Ivanov I. (ref44/cit44) 1998; 273 Wu K. (ref177/cit177) 2013; 24 Jie W. (ref27/cit27) 2008; 7 Mauro M. J. (ref18/cit18) 2006 Jemal A. (ref7/cit7) 2011; 61 Aldinucci D. (ref99/cit99) 2009; 14 Gianferrara T. (ref5/cit5) 2009 Romero-Canelón I. (ref182/cit182) 2013; 56 Bonnitcha P. D. (ref219/cit219) 2012; 41 Liebmann J. E. (ref200/cit200) 1993; 53 Kachadourian R. (ref222/cit222) 2010; 268 Schäfer S. (ref125/cit125) 2007 Schluga P. (ref169/cit169) 2006 ref15/cit15 Hall M. D. (ref56/cit56) 2008; 48 Kruidering M. (ref74/cit74) 1997; 280 Prast-Nielsen S. (ref70/cit70) 2010; 49 Screnci D. (ref64/cit64) 1999; 77 Diehn M. (ref26/cit26) 2009; 458 Maksimoska J. (ref140/cit140) 2008; 130 Mulcahy S. P. (ref6/cit6) 2010; 32 Rashed L. (ref72/cit72) 2011; 65 Olszewski U. (ref210/cit210) 2011; 29 Oehlsen M. E. (ref87/cit87) 2003; 42 Wondrak G. T. (ref23/cit23) 2009; 11 Chen T. (ref144/cit144) 2010; 49 Meyer A. (ref94/cit94) 2012; 51 Romero-Canelón I. (ref181/cit181) 2012; 4 Tennant D. (ref9/cit9) 2010; 10 Quintás-Cardama A. (ref16/cit16) 2009; 16 Ruiz J. (ref211/cit211) 2012; 41 Nemirovski A. (ref160/cit160) 2007; 50 Jungwirth U. (ref22/cit22) 2011; 15 Florian J. (ref86/cit86) 2012; 17 Borst P. (ref14/cit14) 2000; 92 Lum C. T. (ref101/cit101) 2006; 118 Choi S. (ref227/cit227) 1998; 37 Shaw A. T. (ref32/cit32) 2011; 108 Raymond E. (ref79/cit79) 2002; 1 Lessa J. (ref110/cit110) 2012; 393 Hall M. D. (ref155/cit155) 2003; 8 Mustacich D. (ref71/cit71) 2000; 346 Timerbaev A. R. (ref112/cit112) 2009; 1 Lippert B. (ref3/cit3) 1999 Chen X. (ref142/cit142) 2011; 378 Trachootham D. (ref31/cit31) 2009; 8 Wang Y. (ref81/cit81) 2012; 265 Kim J. S. (ref36/cit36) 2008; 40 Fuertes M. (ref48/cit48) 2003; 103 Yang X. (ref146/cit146) 2011; 94 Fu Y. (ref188/cit188) 2010; 53 Casini A. (ref104/cit104) 2008; 102 Dy G. K. (ref12/cit12) 2008; 113 ref191/cit191 ref13/cit13 Kartalou M. (ref59/cit59) 2001; 478 Yamamoto N. (ref218/cit218) 2012; 55 Halliwell B. (ref29/cit29) 2007 Marverti G. (ref196/cit196) 2008; 102 Bergamo A. (ref183/cit183) 2010; 104 Holzer A. K. (ref45/cit45) 2006; 70 Pathania D. (ref28/cit28) 2009; 61 Kirshner J. R. (ref35/cit35) 2008; 7 Marverti G. (ref197/cit197) 2011; 29 Gaiddon C. (ref145/cit145) 2005; 315 Safaei R. (ref47/cit47) 2006; 234 Aird R. E. (ref178/cit178) 2002; 86 Murdoch S. (ref88/cit88) 1999; 38 Casini A. (ref148/cit148) 2008; 51 Reedijk J. (ref80/cit80) 2009 Farrell N. P. (ref85/cit85) 2012; 37 Millis K. K. (ref225/cit225) 1993; 58 Ott I. (ref98/cit98) 2007; 340 Miller R. P. (ref62/cit62) 2010; 2 Vichai V. (ref212/cit212) 2006; 1 Sinani D. (ref46/cit46) 2007; 282 Du K. J. (ref135/cit135) 2011; 46 Melchart M. (ref173/cit173) 2007; 46 Sadler P. J. (ref4/cit4) 1991; 36 Trapasso F. (ref205/cit205) 2008; 283 Heffeter P. (ref113/cit113) 2008; 11 Melchart M. (ref137/cit137) 2007; 101 Oehninger L. (ref96/cit96) 2013; 42 Dougan S. J. (ref180/cit180) 2008; 105 Heffeter P. (ref223/cit223) 2009; 9 Hwang P. M. (ref207/cit207) 2001; 7 Hayward R. L. (ref179/cit179) 2005; 55 Yang M. (ref109/cit109) 2008; 45 Rudnev A. V. (ref111/cit111) 2006; 100 Corral E. (ref141/cit141) 2009; 14 Hillard E. (ref214/cit214) 2006; 45 Laurent A. (ref38/cit38) 2005; 65 Novakova O. (ref174/cit174) 2005; 12 Ganusevich I. I. (ref221/cit221) 2007; 29 Collery P. (ref108/cit108) 2002; 42 Yang Z. (ref77/cit77) 2006; 12 Bernstein L. R. (ref116/cit116) 1998; 50 Yan Y. K. (ref130/cit130) 2005 Gabbiani C. (ref106/cit106) 2010; 3 Lincoln K. M. (ref24/cit24) 2013; 49 Tan Y. L. K. (ref215/cit215) 2009 Messina P. (ref213/cit213) 2012; 18 Habtemariam A. (ref127/cit127) 2006; 49 Wheate N. J. (ref153/cit153) 2010; 39 Ford J. M. (ref54/cit54) 1993; 12 Ko Y. H. (ref37/cit37) 2004; 324 Kasherman Y. (ref69/cit69) 2009; 52 Bratsos I. (ref122/cit122) 2007; 61 Bruijnincx P. C. (ref129/cit129) 2009 DeVita V. T. (ref8/cit8) 2008; 68 Farrer N. J. (ref161/cit161) 2010; 49 Kang Y. H. (ref118/cit118) 2004; 64 Vacca A. (ref167/cit167) 2002; 4 Shen D. W. (ref60/cit60) 2012; 64 Rosenberg B. (ref2/cit2) 1967; 242 Che C. M. (ref100/cit100) 2011; 47 Kauffman G. B. (ref40/cit40) 2010; 54 Pracharova J. (ref163/cit163) 2012; 25 Gao F. (ref134/cit134) 2007; 12 Hall M. D. (ref217/cit217) 2007; 60 Fricker S. P. (ref41/cit41) 2007 ref201/cit201 Tan C. (ref147/cit147) 2011; 40 Kastl A. (ref151/cit151) 2012; 48 Hummer A. (ref202/cit202) 2013; 56 Noffke A. L. (ref185/cit185) 2012; 48 Liu Z. (ref194/cit194) 2013; 52 New E. J. (ref203/cit203) 2009 Westendorf A. F. (ref162/cit162) 2012; 11 Heffeter P. (ref224/cit224) 2006; 71 Streu C. (ref139/cit139) 2011; 377 Ali Ezadyar S. (ref143/cit143) 2012; 36 Roberts J. D. (ref84/cit84) 1999; 77 Hall M. D. (ref226/cit226) 2004; 98 ref192/cit192 Chitambar C. R. (ref115/cit115) 2013; 18 Loughrey B. T. (ref133/cit133) 2009; 14 Bhargave A. (ref152/cit152) 2009; 18 Butler J. S. (ref164/cit164) 2012; 134 Kelland L. (ref43/cit43) 2007; 7 Hartinger C. G. (ref165/cit165) 2008; 5 |
References_xml | – volume: 8 start-page: 215 year: 2006 ident: ref83/cit83 publication-title: Neurooncology – volume: 25 start-page: 1099 year: 2012 ident: ref163/cit163 publication-title: Chem. Res. Toxicol. doi: 10.1021/tx300057y – volume: 16 start-page: 254 year: 1983 ident: ref66/cit66 publication-title: Gynecol. Oncol. doi: 10.1016/0090-8258(83)90100-2 – volume: 134 start-page: 16508 year: 2012 ident: ref164/cit164 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3074159 – volume: 37 start-page: 2500 year: 1998 ident: ref227/cit227 publication-title: Inorg. Chem. doi: 10.1021/ic971047x – volume: 48 start-page: 5219 year: 2012 ident: ref185/cit185 publication-title: Chem. Commun. doi: 10.1039/c2cc30678f – volume: 11 start-page: 3013 year: 2009 ident: ref23/cit23 publication-title: Antioxid. Redox Signaling doi: 10.1089/ars.2009.2541 – volume: 127 start-page: 17734 year: 2005 ident: ref176/cit176 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja053387k – volume: 50 start-page: 5554 year: 2007 ident: ref160/cit160 publication-title: J. Med. Chem. doi: 10.1021/jm070740j – volume: 42 start-page: 3269 year: 2013 ident: ref96/cit96 publication-title: Dalton Trans. doi: 10.1039/C2DT32617E – volume: 377 start-page: 34 year: 2011 ident: ref139/cit139 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2011.07.032 – volume: 3 start-page: 1890 year: 2008 ident: ref184/cit184 publication-title: Chem.—Asian J. doi: 10.1002/asia.200800149 – volume: 100 start-page: 963 year: 2006 ident: ref216/cit216 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2006.02.015 – volume: 7 start-page: 3 year: 2007 ident: ref52/cit52 publication-title: Anti-Cancer Agents Med. Chem. doi: 10.2174/187152007779314044 – volume: 7 start-page: 1111 year: 2001 ident: ref207/cit207 publication-title: Nat. Med. doi: 10.1038/nm1001-1111 – volume: 17 start-page: 187 year: 2012 ident: ref86/cit86 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-011-0841-4 – volume: 53 start-page: 615 year: 2002 ident: ref61/cit61 publication-title: Annu. Rev. Med. doi: 10.1146/annurev.med.53.082901.103929 – start-page: 10871 year: 2009 ident: ref215/cit215 publication-title: Dalton Trans. doi: 10.1039/b913570g – volume: 6 start-page: 3 year: 2001 ident: ref120/cit120 publication-title: Oncologist doi: 10.1634/theoncologist.6-suppl_2-3 – volume: 11 start-page: 1 year: 2008 ident: ref113/cit113 publication-title: Drug Resist. Update doi: 10.1016/j.drup.2008.02.002 – volume: 107 start-page: 1387 year: 2007 ident: ref51/cit51 publication-title: Chem. Rev. doi: 10.1021/cr068207j – volume: 102 start-page: 564 year: 2008 ident: ref104/cit104 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2007.11.003 – volume: 50 start-page: 405 year: 2002 ident: ref166/cit166 publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-002-0504-9 – volume: 51 start-page: 3897 year: 2012 ident: ref193/cit193 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201108175 – volume: 46 start-page: 8950 year: 2007 ident: ref173/cit173 publication-title: Inorg. Chem. doi: 10.1021/ic700799w – volume: 105 start-page: 13977 year: 2008 ident: ref20/cit20 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0805965105 – volume: 7 start-page: 2319 year: 2008 ident: ref35/cit35 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-08-0298 – volume: 268 start-page: 176 year: 2010 ident: ref222/cit222 publication-title: Toxicology doi: 10.1016/j.tox.2009.12.010 – volume: 70 start-page: 1390 year: 2006 ident: ref45/cit45 publication-title: Mol. Pharmacol. doi: 10.1124/mol.106.022624 – volume: 4 start-page: 1979 year: 2013 ident: ref102/cit102 publication-title: Chem. Sci. doi: 10.1039/c3sc21972k – volume: 3 start-page: 29 year: 2010 ident: ref106/cit106 publication-title: Open Crystallogr. J. doi: 10.2174/1874846501003020029 – ident: ref192/cit192 – start-page: 219 year: 2006 ident: ref18/cit18 publication-title: Hematology doi: 10.1182/asheducation.V2006.1.219.0010219 – volume: 15 start-page: 903 year: 2011 ident: ref39/cit39 publication-title: Antioxid. Redox Signaling doi: 10.1089/ars.2011.3993 – volume: 158 start-page: 610 year: 2009 ident: ref78/cit78 publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2009.00341.x – volume: 24 start-page: 410 year: 2013 ident: ref177/cit177 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-012-0539-z – volume: 58 start-page: 4144 year: 1993 ident: ref225/cit225 publication-title: J. Org. Chem. doi: 10.1021/jo00067a060 – volume: 49 start-page: 2712 year: 2013 ident: ref24/cit24 publication-title: Chem. Commun. doi: 10.1039/c2cc36808k – volume: 65 start-page: 474 year: 2011 ident: ref72/cit72 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2011.07.001 – volume: 280 start-page: 638 year: 1997 ident: ref74/cit74 publication-title: J. Pharmacol. Exp. Ther. – volume: 39 start-page: 43 year: 2007 ident: ref76/cit76 publication-title: J. Bioenerg. Biomembr. doi: 10.1007/s10863-006-9059-5 – volume: 50 start-page: 665 year: 1998 ident: ref116/cit116 publication-title: Pharmacol. Rev. – volume: 234 start-page: 34 year: 2006 ident: ref47/cit47 publication-title: Cancer Lett. doi: 10.1016/j.canlet.2005.07.046 – volume: 3 start-page: 2485 year: 2012 ident: ref189/cit189 publication-title: Chem. Sci. doi: 10.1039/c2sc20220d – volume: 1 start-page: 193 year: 2009 ident: ref112/cit112 publication-title: Metallomics doi: 10.1039/b902861g – volume: 11 start-page: 1894 year: 2012 ident: ref162/cit162 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-11-0959 – volume: 44 start-page: 3643 year: 1984 ident: ref11/cit11 publication-title: Cancer Res. – volume: 39 start-page: 1673 year: 2010 ident: ref131/cit131 publication-title: Dalton Trans. doi: 10.1039/B916860P – volume: 49 start-page: 1765 year: 2010 ident: ref70/cit70 publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2010.09.008 – volume: 265 start-page: 342 year: 2012 ident: ref81/cit81 publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2012.09.001 – volume: 2 start-page: 666 year: 2011 ident: ref195/cit195 publication-title: MedChemComm doi: 10.1039/c1md00075f – volume: 64 start-page: 872 year: 2012 ident: ref73/cit73 publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.2012.01470.x – volume: 44 start-page: 3616 year: 2001 ident: ref123/cit123 publication-title: J. Med. Chem. doi: 10.1021/jm010051m – volume: 7 start-page: 573 year: 2007 ident: ref43/cit43 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2167 – volume: 29 start-page: 203 year: 2007 ident: ref221/cit221 publication-title: Exp. Oncol. – volume: 2 start-page: 750 year: 2002 ident: ref10/cit10 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc903 – volume: 222 start-page: 444 year: 2010 ident: ref119/cit119 publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21966 – volume: 282 start-page: 26775 year: 2007 ident: ref46/cit46 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M703973200 – volume: 6 start-page: 1 year: 2001 ident: ref117/cit117 publication-title: Oncologist doi: 10.1634/theoncologist.6-suppl_2-1 – volume: 29 start-page: 607 year: 2011 ident: ref210/cit210 publication-title: Invest. New Drugs doi: 10.1007/s10637-010-9395-5 – volume: 49 start-page: 8905 year: 2010 ident: ref161/cit161 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201003399 – volume: 70 start-page: 863 year: 1998 ident: ref55/cit55 publication-title: Pure Appl. Chem. doi: 10.1351/pac199870040863 – volume: 59 start-page: 181 year: 1987 ident: ref50/cit50 publication-title: Pure Appl. Chem. doi: 10.1351/pac198759020181 – volume: 28 start-page: 337 year: 2008 ident: ref75/cit75 publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1284 – volume: 40 start-page: 607 year: 2008 ident: ref36/cit36 publication-title: J. Bioenerg. Biomembr. doi: 10.1007/s10863-008-9188-0 – ident: ref13/cit13 doi: 10.1007/978-0-387-89445-4_2 – volume: 57 start-page: 483 year: 2006 ident: ref159/cit159 publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-005-0069-5 – volume: 103 start-page: 645 year: 2003 ident: ref48/cit48 publication-title: Chem. Rev. doi: 10.1021/cr020010d – volume: 361 start-page: 1569 year: 2008 ident: ref168/cit168 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2006.12.005 – volume: 48 start-page: 495 year: 2008 ident: ref56/cit56 publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.48.080907.180426 – volume: 66 start-page: 1 year: 2010 ident: ref121/cit121 publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-010-1293-1 – volume: 478 start-page: 23 year: 2001 ident: ref59/cit59 publication-title: Mutat. Res. doi: 10.1016/S0027-5107(01)00141-5 – volume: 14 start-page: 1075 year: 2009 ident: ref99/cit99 publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2009.07.011 – volume: 232 start-page: 49 year: 2002 ident: ref158/cit158 publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(02)00026-7 – start-page: 1796 year: 2006 ident: ref169/cit169 publication-title: Dalton Trans. doi: 10.1039/B511792E – volume: 3 start-page: 120144 year: 2013 ident: ref30/cit30 publication-title: Open Biol. doi: 10.1098/rsob.120144 – volume: 105 start-page: 11628 year: 2008 ident: ref180/cit180 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0800076105 – volume: 2 start-page: 2490 year: 2010 ident: ref62/cit62 publication-title: Toxins doi: 10.3390/toxins2112490 – volume: 378 start-page: 140 year: 2011 ident: ref142/cit142 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2011.08.047 – start-page: 3092 year: 2009 ident: ref203/cit203 publication-title: Dalton Trans. doi: 10.1039/b821603g – volume: 105 start-page: 1729 year: 2011 ident: ref92/cit92 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2011.09.008 – volume: 1 start-page: 1112 year: 2006 ident: ref212/cit212 publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.179 – volume: 12 start-page: 171 year: 1993 ident: ref54/cit54 publication-title: Cytotechnology doi: 10.1007/BF00744664 – ident: ref42/cit42 – volume: 393 start-page: 84 year: 2012 ident: ref149/cit149 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2012.06.046 – volume: 64 start-page: 8960 year: 2004 ident: ref118/cit118 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-1830 – start-page: 4764 year: 2005 ident: ref130/cit130 publication-title: Chem. Commun. doi: 10.1039/b508531b – volume: 48 start-page: 4161 year: 2005 ident: ref124/cit124 publication-title: J. Med. Chem. doi: 10.1021/jm050015d – volume: 12 start-page: 1015 year: 2007 ident: ref134/cit134 publication-title: J. Inorg. Chem. doi: 10.1007/s00775-007-0272-4 – volume: 102 start-page: 699 year: 2008 ident: ref196/cit196 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2007.10.015 – volume: 16 start-page: 122 year: 2009 ident: ref16/cit16 publication-title: Cancer Control doi: 10.1177/107327480901600204 – volume: 102 start-page: 18269 year: 2005 ident: ref126/cit126 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0505798102 – volume: 32 start-page: 57 year: 2010 ident: ref132/cit132 publication-title: Top. Organomet. Chem. – volume: 46 start-page: 1056 year: 2011 ident: ref135/cit135 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2011.01.019 – volume: 340 start-page: 117 year: 2007 ident: ref98/cit98 publication-title: Arch. Pharm. doi: 10.1002/ardp.200600151 – volume: 26 start-page: 271 year: 2001 ident: ref136/cit136 publication-title: J. Biosci. doi: 10.1007/BF02703651 – volume: 88 start-page: 1484 year: 2003 ident: ref171/cit171 publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6600906 – volume: 12 start-page: 121 year: 2005 ident: ref174/cit174 publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2004.11.008 – volume: 54 start-page: 3011 year: 2011 ident: ref190/cit190 publication-title: J. Med. Chem. doi: 10.1021/jm2000932 – volume: 3 start-page: 863 year: 2011 ident: ref97/cit97 publication-title: Metallomics doi: 10.1039/c1mt00062d – volume: 38 start-page: 2949 year: 1999 ident: ref88/cit88 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19991004)38:19<2949::AID-ANIE2949>3.0.CO;2-Q – volume: 10 start-page: 267 year: 2010 ident: ref9/cit9 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2817 – volume: 12 start-page: 5817 year: 2006 ident: ref77/cit77 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-1037 – volume: 94 start-page: 345 year: 2011 ident: ref146/cit146 publication-title: Biochimie doi: 10.1016/j.biochi.2011.07.025 – volume: 42 start-page: 5339 year: 2003 ident: ref89/cit89 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200352303 – volume: 66 start-page: 227 year: 1992 ident: ref58/cit58 publication-title: Br. J. Cancer doi: 10.1038/bjc.1992.249 – start-page: 1 year: 2009 ident: ref129/cit129 publication-title: Adv. Inorg. Chem. – volume: 42 start-page: 5498 year: 2003 ident: ref87/cit87 publication-title: Inorg. Chem. doi: 10.1021/ic030045b – volume: 8 start-page: 579 year: 2009 ident: ref31/cit31 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2803 – volume: 52 start-page: 4319 year: 2009 ident: ref69/cit69 publication-title: J. Med. Chem. doi: 10.1021/jm900138u – volume: 393 start-page: 53 year: 2012 ident: ref110/cit110 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2012.06.003 – volume: 71 start-page: 426 year: 2006 ident: ref224/cit224 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2005.11.009 – volume: 100 start-page: 1819 year: 2006 ident: ref111/cit111 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2006.07.003 – volume: 8 start-page: 256 year: 2013 ident: ref209/cit209 publication-title: Chem. Med. Chem. doi: 10.1002/cmdc.201200505 – volume: 12 start-page: 494 year: 2012 ident: ref21/cit21 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3297 – volume: 45 start-page: 763 year: 2008 ident: ref109/cit109 publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2008.05.031 – volume: 48 start-page: 1863 year: 2012 ident: ref151/cit151 publication-title: Chem. Commun. doi: 10.1039/C1CC15378A – volume: 101 start-page: 1903 year: 2007 ident: ref137/cit137 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2007.04.018 – volume: 47 start-page: 9554 year: 2011 ident: ref100/cit100 publication-title: Chem. Commun. doi: 10.1039/c1cc10860c – volume: 36 start-page: 45 year: 2012 ident: ref143/cit143 publication-title: Polyhedron doi: 10.1016/j.poly.2012.01.024 – volume: 1 start-page: 227 year: 2002 ident: ref79/cit79 publication-title: Mol. Cancer Ther. – volume: 242 start-page: 1347 year: 1967 ident: ref2/cit2 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)96186-7 – volume: 56 start-page: 1291 year: 2013 ident: ref182/cit182 publication-title: J. Med. Chem. doi: 10.1021/jm3017442 – volume: 36 start-page: 1 year: 1991 ident: ref4/cit4 publication-title: Adv. Inorg. Chem. doi: 10.1016/S0898-8838(08)60035-5 – volume: 53 start-page: 2066 year: 1993 ident: ref200/cit200 publication-title: Cancer Res. – volume: 117 start-page: 220 year: 2012 ident: ref204/cit204 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2012.06.013 – volume: 77 start-page: 51 year: 1999 ident: ref84/cit84 publication-title: J. Inorg. Biochem. doi: 10.1016/S0162-0134(99)00147-6 – volume: 45 start-page: 285 year: 2006 ident: ref214/cit214 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200502925 – volume: 61 start-page: 69 year: 2011 ident: ref7/cit7 publication-title: Ca-Cancer J. Clin. doi: 10.3322/caac.20107 – volume-title: AACR 103rd Annual Meeting 2012—Targeting Metabolism and Gene Expression year: 2012 ident: ref114/cit114 – volume: 283 start-page: 13736 year: 2008 ident: ref205/cit205 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M709062200 – volume: 72 start-page: 5035 year: 2012 ident: ref34/cit34 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-0979 – volume: 118 start-page: 1527 year: 2006 ident: ref101/cit101 publication-title: Int. J. Cancer doi: 10.1002/ijc.21484 – volume: 458 start-page: 780 year: 2009 ident: ref26/cit26 publication-title: Nature doi: 10.1038/nature07733 – volume: 30 start-page: 9500 year: 2010 ident: ref67/cit67 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1544-10.2010 – volume: 125 start-page: 1837 year: 2012 ident: ref25/cit25 publication-title: J. Cell Sci. doi: 10.1242/jcs.110486 – volume: 104 start-page: 79 year: 2010 ident: ref183/cit183 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2009.10.005 – volume: 268 start-page: 20116 year: 1993 ident: ref68/cit68 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)80702-9 – volume: 79 start-page: 90 year: 2010 ident: ref93/cit93 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2009.07.023 – volume: 5 start-page: 300 year: 2000 ident: ref154/cit154 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/PL00010658 – volume: 108 start-page: 8773 year: 2011 ident: ref32/cit32 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1105941108 – volume: 41 start-page: 12847 year: 2012 ident: ref211/cit211 publication-title: Dalton Trans. doi: 10.1039/c2dt31654d – start-page: 1303 year: 2009 ident: ref80/cit80 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200900054 – volume: 15 start-page: 1085 year: 2011 ident: ref22/cit22 publication-title: Antioxid. Redox Signaling doi: 10.1089/ars.2010.3663 – volume: 18 start-page: 956 year: 2013 ident: ref115/cit115 publication-title: . Redox Signaling doi: 10.1089/ars.2012.4880 – volume: 4 start-page: 993 year: 2002 ident: ref167/cit167 publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6600176 – start-page: 4903 year: 2007 ident: ref41/cit41 publication-title: Dalton Trans. doi: 10.1039/b705551j – volume: 200 start-page: 698 year: 1965 ident: ref1/cit1 publication-title: Nature doi: 10.1038/205698a0 – volume: 48 start-page: 1753 year: 2009 ident: ref187/cit187 publication-title: Inorg. Chem. doi: 10.1021/ic8020222 – volume: 133 start-page: 5976 year: 2011 ident: ref150/cit150 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1112996 – volume: 68 start-page: 8643 year: 2008 ident: ref8/cit8 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-6611 – volume: 45 start-page: 10882 year: 2006 ident: ref138/cit138 publication-title: Inorg. Chem. doi: 10.1021/ic061460h – volume-title: Cisplatin year: 1999 ident: ref3/cit3 doi: 10.1002/9783906390420 – volume: 51 start-page: 8895 year: 2012 ident: ref94/cit94 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201202939 – volume: 2003 start-page: 1206 year: 2003 ident: ref82/cit82 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200390156 – volume: 65 start-page: 948 year: 2005 ident: ref38/cit38 publication-title: Cancer Res. doi: 10.1158/0008-5472.948.65.3 – volume: 5 start-page: 2140 year: 2008 ident: ref165/cit165 publication-title: Chem. Biodiversity doi: 10.1002/cbdv.200890195 – volume: 12 start-page: 147 year: 2012 ident: ref208/cit208 publication-title: BMC Cancer doi: 10.1186/1471-2407-12-147 – volume: 4 start-page: 1271 year: 2012 ident: ref181/cit181 publication-title: Metallomics doi: 10.1039/c2mt20189e – volume: 14 start-page: 439 year: 2009 ident: ref141/cit141 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-008-0460-x – volume: 334 start-page: 115 year: 2007 ident: ref63/cit63 publication-title: Am. J. Med. Sci. doi: 10.1097/MAJ.0b013e31812dfe1e – volume: 14 start-page: 1139 year: 2009 ident: ref105/cit105 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-009-0558-9 – volume: 59 start-page: 657 year: 2001 ident: ref53/cit53 publication-title: Mol. Pharmacol. doi: 10.1124/mol.59.4.657 – ident: ref15/cit15 – volume: 30 start-page: 135 year: 2002 ident: ref198/cit198 publication-title: Bone Marrow Transplant. doi: 10.1038/sj.bmt.1703605 – volume: 22 start-page: 218 year: 2011 ident: ref186/cit186 publication-title: Bioconjugate Chem. doi: 10.1021/bc100369p – volume: 41 start-page: 11293 year: 2012 ident: ref219/cit219 publication-title: Dalton Trans. doi: 10.1039/c2dt30727h – volume: 130 start-page: 15764 year: 2008 ident: ref140/cit140 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805555a – volume: 113 start-page: 1857 year: 2008 ident: ref12/cit12 publication-title: Cancer doi: 10.1002/cncr.23651 – volume: 56 start-page: 1182 year: 2013 ident: ref202/cit202 publication-title: J. Med. Chem. doi: 10.1021/jm301648f – volume: 49 start-page: 5524 year: 2006 ident: ref103/cit103 publication-title: J. Med. Chem. doi: 10.1021/jm060436a – volume: 61 start-page: 692 year: 2007 ident: ref122/cit122 publication-title: Chimia doi: 10.2533/chimia.2007.692 – volume: 128 start-page: 1078 year: 2006 ident: ref157/cit157 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056726i – volume: 49 start-page: 6858 year: 2006 ident: ref127/cit127 publication-title: J. Med. Chem. doi: 10.1021/jm060596m – volume: 64 start-page: 706 year: 2012 ident: ref60/cit60 publication-title: Pharmacol. Rev. doi: 10.1124/pr.111.005637 – volume: 77 start-page: 105 year: 1999 ident: ref64/cit64 publication-title: J. Inorg. Biochem. doi: 10.1016/S0162-0134(99)00135-X – volume: 9 start-page: 595 year: 2009 ident: ref223/cit223 publication-title: Curr. Cancer Drug Targets doi: 10.2174/156800909789056962 – volume: 55 start-page: 11013 year: 2012 ident: ref218/cit218 publication-title: J. Med. Chem. doi: 10.1021/jm3014713 – volume: 86 start-page: 1652 year: 2002 ident: ref178/cit178 publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6600290 – volume: 7 start-page: 173 year: 1985 ident: ref49/cit49 publication-title: Pharm. Weekbl. doi: 10.1007/BF02307573 – volume: 40 start-page: 8611 year: 2011 ident: ref147/cit147 publication-title: Dalton Trans. doi: 10.1039/c1dt10084j – volume: 32 start-page: 21 year: 2010 ident: ref170/cit170 publication-title: Top. Organomet. Chem. – volume: 18 start-page: 6581 year: 2012 ident: ref213/cit213 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201103378 – volume: 273 start-page: 14721 year: 1998 ident: ref44/cit44 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.24.14721 – volume: 92 start-page: 1295 year: 2000 ident: ref14/cit14 publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/92.16.1295 – volume: 19 start-page: 544 year: 2008 ident: ref175/cit175 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/j.jasms.2007.12.002 – volume: 475 start-page: 231 year: 2011 ident: ref33/cit33 publication-title: Nature doi: 10.1038/nature10167 – volume: 53 start-page: 8192 year: 2010 ident: ref188/cit188 publication-title: J. Med. Chem. doi: 10.1021/jm100560f – volume: 37 start-page: 795 year: 2012 ident: ref85/cit85 publication-title: Drugs Future doi: 10.1358/dof.2012.037.011.1830167 – start-page: 10651 year: 2009 ident: ref5/cit5 publication-title: Dalton Trans. – volume: 4 start-page: 1257 year: 2012 ident: ref107/cit107 publication-title: Future Med. Chem. doi: 10.4155/fmc.12.69 – ident: ref191/cit191 doi: 10.1021/cb400070a – volume: 324 start-page: 269 year: 2004 ident: ref37/cit37 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.09.047 – volume: 51 start-page: 5310 year: 2008 ident: ref172/cit172 publication-title: J. Med. Chem. doi: 10.1021/jm8003043 – volume: 63 start-page: 6170 year: 2003 ident: ref206/cit206 publication-title: Cancer Res. – volume: 2010 start-page: pii:430939 year: 2010 ident: ref199/cit199 publication-title: Met.-Based Drugs – volume: 51 start-page: 6773 year: 2008 ident: ref148/cit148 publication-title: J. Med. Chem. doi: 10.1021/jm8006678 – volume: 18 start-page: 1787 year: 2009 ident: ref152/cit152 publication-title: Expert Opin. Invest. Drugs doi: 10.1517/13543780903362437 – volume: 49 start-page: 6366 year: 2010 ident: ref144/cit144 publication-title: Inorg. Chem. doi: 10.1021/ic100277w – volume: 60 start-page: 180 year: 2007 ident: ref217/cit217 publication-title: Aust. J. Chem. doi: 10.1071/CH06307 – volume: 315 start-page: 1403 year: 2005 ident: ref145/cit145 publication-title: Pharmacology – volume: 55 start-page: 577 year: 2005 ident: ref179/cit179 publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-004-0932-9 – volume: 39 start-page: 8113 year: 2010 ident: ref153/cit153 publication-title: Dalton Trans. doi: 10.1039/c0dt00292e – volume: 128 start-page: 1739 year: 2006 ident: ref128/cit128 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055886r – volume: 64 start-page: 993 year: 2012 ident: ref156/cit156 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2012.01.007 – volume: 29 start-page: 73 year: 2011 ident: ref197/cit197 publication-title: Invest. New Drugs doi: 10.1007/s10637-009-9336-3 – volume: 32 start-page: 141 year: 2010 ident: ref6/cit6 publication-title: Top. Organomet. Chem. – volume: 98 start-page: 1634 year: 2004 ident: ref91/cit91 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2004.04.020 – volume: 8 start-page: 1018 year: 2007 ident: ref17/cit17 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(07)70342-X – volume: 15 start-page: 21 year: 2012 ident: ref19/cit19 publication-title: Drug Resist. Update doi: 10.1016/j.drup.2012.01.008 – volume: 98 start-page: 1614 year: 2004 ident: ref226/cit226 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2004.05.017 – volume: 67 start-page: 1171 year: 1993 ident: ref57/cit57 publication-title: Br. J. Cancer doi: 10.1038/bjc.1993.221 – volume: 42 start-page: 283 year: 2002 ident: ref108/cit108 publication-title: CRC Crit. Rev. Oncol–Hem. doi: 10.1016/S1040-8428(01)00225-6 – volume: 26 start-page: 140 year: 2004 ident: ref220/cit220 publication-title: Exp. Oncol. – volume-title: Free Radicals in Biology and Medicine year: 2007 ident: ref29/cit29 – volume: 346 start-page: 1 issue: 1 year: 2000 ident: ref71/cit71 publication-title: Biochem. J. doi: 10.1042/bj3460001 – volume: 54 start-page: 250 year: 2010 ident: ref40/cit40 publication-title: Platinum Met. Rev. doi: 10.1595/147106710X534326 – volume: 8 start-page: 726 year: 2003 ident: ref155/cit155 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-003-0471-6 – volume: 14 start-page: 935 year: 2009 ident: ref133/cit133 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-009-0506-8 – volume: 130 start-page: 12570 year: 2008 ident: ref95/cit95 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804027j – volume: 8 start-page: 10 year: 2009 ident: ref65/cit65 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-08-0840 – volume: 61 start-page: 1250 year: 2009 ident: ref28/cit28 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2009.05.010 – volume: 14 start-page: 1128 year: 2007 ident: ref90/cit90 publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2007.08.016 – start-page: 3034 year: 2007 ident: ref125/cit125 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200700206 – ident: ref201/cit201 – volume: 52 start-page: 4194 year: 2013 ident: ref194/cit194 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201300747 – volume: 7 start-page: 1875 year: 2008 ident: ref27/cit27 publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.7.12.7067 |
SSID | ssj0009346 |
Score | 2.573506 |
Snippet | Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12276 |
SubjectTerms | Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Cell Line, Tumor Drug Screening Assays, Antitumor - methods Humans Iridium - chemistry Organometallic Compounds - chemical synthesis Organometallic Compounds - chemistry Organometallic Compounds - pharmacology Osmium - chemistry Oxidation-Reduction Ruthenium - chemistry |
Title | Next-Generation Metal Anticancer Complexes: Multitargeting via Redox Modulation |
URI | http://dx.doi.org/10.1021/ic400835n https://www.ncbi.nlm.nih.gov/pubmed/23879584 https://www.proquest.com/docview/1449274765 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoAL-1KWKiwHLgHi2E7DDRWqCqlFAir1FnmVKqoEtSmq-HrsLAVEC8p1nFgzduaNx_MG4JwZTM-xxK7QSLuYCO0ygqjLkWZKap-GGZF2p0vbPfzQJ_0KnC3I4CPvaiBwhhPiJVhG1Gxei3-az1_Mun5ejWPjII_SsKQP-j7Uuh4x_ul6FuDJzK-01uGurM7Jr5O8Xk5Sfik-fpM1_jXlDVgrcKVzmy-ETaioeAtWmmU7t2147NoYN2eZtsZwOiq1A2J7mG0sP3Lsr2Gopmp84-RludklcePanPcBc56UTKZOJ5FFv68d6LXuX5ptt-im4DLjlVOX-9xHAeXYAAKiPfMQ2mBEesqgNlvAigSivmwgn4U6UDSwxdVWyiOSCCz8XajGSaz2wUGcUX1tbOxrghlWDCFp1C8CSRgLuKxB3ag7KnbDOMoS3ciLZnqpwUVpiUgUXOS2JcZwnujpTPQtJ-CYJ3RSmjMyarU5DxarZGI-jXFoA29KarCX23n2GoNWgtAAsIP_pnsIq8h2wbCnyfgIqulooo4NFkl5PVuLnx_V1wo |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEA4eD_rifaxnFR98qdo0Sa1vsijrsSt4gG8lJyxKV2xXxF_vTNpdDxSlr5N0yEw7XzKZbwjZkYDpFTMs1I66kHHtQsmpCBV10hoXi9QTabc7onXHzu_5fU2Tg7UwoEQBMxU-if_BLhDtdzXzcCEfJeMAQih683Hz5oNgN66KcnA7FAmRDliEPg_FCKSLrxHoF1jpw8vpdNWnyCvmb5U87PVLtaffvnE2_k_zGTJVo8zguHKLWTJi8zky0Rw0d5snVx3c8Vac02iaoG1LHJDj0Tb4wXOAP4pH-2qLo6Aq0vVXxiHQBS9dGVxb03sN2j1Td_9aIHenJ7fNVlj3VgglxOgyVLGKaSIUA3jAXQQPF4eSm8gChsNyVqqpiM0hjWXqEisSLLVGqYgbrpmOF8lY3svtMgmoksIdgMVjx5lkVlJqwAo6MVzKRJkG2YBlyepvo8h82ptG2XBdGmR3YJBM18zk2CDj8SfR7aHoU0XH8ZPQ1sCqGSwrZkBkbnt9eDVjKW7DBW-Qpcrcw2kAuyQpwLGVv9TdJBOt2_ZldnnWuVglkxT7Y-A5M1sjY-Vz364DSinVhnfPd8IJ32s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4VKpVe6LukUOpWHHpxqNe7a9wbShvRR0JFGyk3a59SBLKj2EGov54ZP1JAVCBfx-vRzqzn252dbwD2FGJ6zS0PjWc-5ML4UAkmQ828ctbHMq2JtEdjeTTh36di2m4UqRYGlShxpLJO4tOqnlvfMgxE-zPDa8iQr8FDSteRRx8Ofv8j2Y2bwhzaEkVSph2T0NVXKQqZ8noU-g-0rEPM8Akcr5Srb5ac9peV7pu_N3gb76_9U9hs0WZw2LjHM3jg8uewMeiavL2A4zHtfBvuaTJRMHIVvZDTETf6wyKgH8aZu3Dl56Ap1q2vjmPAC85nKjhxtrgIRoVtu4C9hMnw65_BUdj2WAgVxuoq1LGOWSI1R5ggfISPkAdK2MghlqOyVmaYjO0Bi1XqEycTKrkmqUhYYbiJX8F6XuRuCwKmlfSf0PKxF1xxpxizaAmTWKFUom0PdnFqsnaNlFmd_mZRtpqXHnzsjJKZlqGcGmWc3Sb6YSU6b2g5bhN631k2w2mlTIjKXbHET3Oe0nZcih68bky-GgYxTJIiLHtzl7rv4NGvL8Ps57fxj214zKhNBh038x1YrxZL9xbBSqV3aw-9BDBa4e4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Next-Generation+Metal+Anticancer+Complexes%3A+Multitargeting+via+Redox+Modulation&rft.jtitle=Inorganic+chemistry&rft.au=Romero-Canelo%CC%81n%2C+Isolda&rft.au=Sadler%2C+Peter+J.&rft.date=2013-11-04&rft.pub=American+Chemical+Society&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=52&rft.issue=21&rft.spage=12276&rft.epage=12291&rft_id=info:doi/10.1021%2Fic400835n&rft.externalDocID=g20529982 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon |