Next-Generation Metal Anticancer Complexes: Multitargeting via Redox Modulation

Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Arti...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 52; no. 21; pp. 12276 - 12291
Main Authors Romero-Canelón, Isolda, Sadler, Peter J.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Article, we discuss the possibility that targeting the redox balance in cancer cells may also be a highly effective strategy, especially because it is a multiple-site approach and offers selectivity over normal cells. Metal complexes can interfere in cellular redox chemistry in several ways: directly through metal or ligand redox centers or indirectly by binding to biomolecules involved in cellular redox pathways. We illustrate that a surprisingly large number of active metal anticancer agents have a potential redox arm to their mechanism of action. For such complexes, the possibility arises of using combination therapy together with redox modulators to increase the anticancer potency: attractive for lowering the doses of metal complexes that need to be administered. We illustrate that organometallic ruthenium­(II) and osmium­(II) arene complexes and iridium­(III) cyclopentadienyl complexes of the type [(arene/CpxPh)­M­(N,N)­Cl/I] n+ can achieve nanomolar potency toward cancer cells in combination with the redox modulator l-buthionine sulfoximine. Our discussion highlights the importance of determining not only the distribution of metal anticancer complexes in cells but also their speciation, the chemical form of the metal complex, including the oxidation state of the metal, the fate of the ligands, and dynamic processes such as efflux. This will be aided in the future by proteomic and genomic analyses but needs to be supplemented by new analytical methods that have the sensitivity and spatial and temporal resolution to reveal such information. To achieve this, major new funding programs are needed that support global research on the design of novel metal-based drugs with new mechanisms of action, tailored to patient needs.
AbstractList Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Article, we discuss the possibility that targeting the redox balance in cancer cells may also be a highly effective strategy, especially because it is a multiple-site approach and offers selectivity over normal cells. Metal complexes can interfere in cellular redox chemistry in several ways: directly through metal or ligand redox centers or indirectly by binding to biomolecules involved in cellular redox pathways. We illustrate that a surprisingly large number of active metal anticancer agents have a potential redox arm to their mechanism of action. For such complexes, the possibility arises of using combination therapy together with redox modulators to increase the anticancer potency: attractive for lowering the doses of metal complexes that need to be administered. We illustrate that organometallic ruthenium­(II) and osmium­(II) arene complexes and iridium­(III) cyclopentadienyl complexes of the type [(arene/CpxPh)­M­(N,N)­Cl/I] n+ can achieve nanomolar potency toward cancer cells in combination with the redox modulator l-buthionine sulfoximine. Our discussion highlights the importance of determining not only the distribution of metal anticancer complexes in cells but also their speciation, the chemical form of the metal complex, including the oxidation state of the metal, the fate of the ligands, and dynamic processes such as efflux. This will be aided in the future by proteomic and genomic analyses but needs to be supplemented by new analytical methods that have the sensitivity and spatial and temporal resolution to reveal such information. To achieve this, major new funding programs are needed that support global research on the design of novel metal-based drugs with new mechanisms of action, tailored to patient needs.
Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Article, we discuss the possibility that targeting the redox balance in cancer cells may also be a highly effective strategy, especially because it is a multiple-site approach and offers selectivity over normal cells. Metal complexes can interfere in cellular redox chemistry in several ways: directly through metal or ligand redox centers or indirectly by binding to biomolecules involved in cellular redox pathways. We illustrate that a surprisingly large number of active metal anticancer agents have a potential redox arm to their mechanism of action. For such complexes, the possibility arises of using combination therapy together with redox modulators to increase the anticancer potency: attractive for lowering the doses of metal complexes that need to be administered. We illustrate that organometallic ruthenium(II) and osmium(II) arene complexes and iridium(III) cyclopentadienyl complexes of the type [(arene/Cp(xPh))M(N,N)Cl/I](n+) can achieve nanomolar potency toward cancer cells in combination with the redox modulator l-buthionine sulfoximine. Our discussion highlights the importance of determining not only the distribution of metal anticancer complexes in cells but also their speciation, the chemical form of the metal complex, including the oxidation state of the metal, the fate of the ligands, and dynamic processes such as efflux. This will be aided in the future by proteomic and genomic analyses but needs to be supplemented by new analytical methods that have the sensitivity and spatial and temporal resolution to reveal such information. To achieve this, major new funding programs are needed that support global research on the design of novel metal-based drugs with new mechanisms of action, tailored to patient needs.
Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Article, we discuss the possibility that targeting the redox balance in cancer cells may also be a highly effective strategy, especially because it is a multiple-site approach and offers selectivity over normal cells. Metal complexes can interfere in cellular redox chemistry in several ways: directly through metal or ligand redox centers or indirectly by binding to biomolecules involved in cellular redox pathways. We illustrate that a surprisingly large number of active metal anticancer agents have a potential redox arm to their mechanism of action. For such complexes, the possibility arises of using combination therapy together with redox modulators to increase the anticancer potency: attractive for lowering the doses of metal complexes that need to be administered. We illustrate that organometallic ruthenium(II) and osmium(II) arene complexes and iridium(III) cyclopentadienyl complexes of the type [(arene/Cp(xPh))M(N,N)Cl/I](n+) can achieve nanomolar potency toward cancer cells in combination with the redox modulator l-buthionine sulfoximine. Our discussion highlights the importance of determining not only the distribution of metal anticancer complexes in cells but also their speciation, the chemical form of the metal complex, including the oxidation state of the metal, the fate of the ligands, and dynamic processes such as efflux. This will be aided in the future by proteomic and genomic analyses but needs to be supplemented by new analytical methods that have the sensitivity and spatial and temporal resolution to reveal such information. To achieve this, major new funding programs are needed that support global research on the design of novel metal-based drugs with new mechanisms of action, tailored to patient needs.Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and expanding the range of treatable cancers. Such new complexes might be effective if they form distinctly different lesions on DNA. In this Forum Article, we discuss the possibility that targeting the redox balance in cancer cells may also be a highly effective strategy, especially because it is a multiple-site approach and offers selectivity over normal cells. Metal complexes can interfere in cellular redox chemistry in several ways: directly through metal or ligand redox centers or indirectly by binding to biomolecules involved in cellular redox pathways. We illustrate that a surprisingly large number of active metal anticancer agents have a potential redox arm to their mechanism of action. For such complexes, the possibility arises of using combination therapy together with redox modulators to increase the anticancer potency: attractive for lowering the doses of metal complexes that need to be administered. We illustrate that organometallic ruthenium(II) and osmium(II) arene complexes and iridium(III) cyclopentadienyl complexes of the type [(arene/Cp(xPh))M(N,N)Cl/I](n+) can achieve nanomolar potency toward cancer cells in combination with the redox modulator l-buthionine sulfoximine. Our discussion highlights the importance of determining not only the distribution of metal anticancer complexes in cells but also their speciation, the chemical form of the metal complex, including the oxidation state of the metal, the fate of the ligands, and dynamic processes such as efflux. This will be aided in the future by proteomic and genomic analyses but needs to be supplemented by new analytical methods that have the sensitivity and spatial and temporal resolution to reveal such information. To achieve this, major new funding programs are needed that support global research on the design of novel metal-based drugs with new mechanisms of action, tailored to patient needs.
Author Romero-Canelón, Isolda
Sadler, Peter J.
AuthorAffiliation The University of Hong Kong
University of Warwick
AuthorAffiliation_xml – name: University of Warwick
– name: The University of Hong Kong
Author_xml – sequence: 1
  givenname: Isolda
  surname: Romero-Canelón
  fullname: Romero-Canelón, Isolda
– sequence: 2
  givenname: Peter J.
  surname: Sadler
  fullname: Sadler, Peter J.
  email: P.J.Sadler@warwick.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23879584$$D View this record in MEDLINE/PubMed
BookMark eNptkE1LAzEQhoMotlYP_gHZi6CHtfncD29StAqtBVHwFtLstKRsk5pkpf57t7b1IDKHmcPzvjDPCTq0zgJC5wTfEExJ32iOccGEPUBdIihOBcHvh6iLcXuTLCs76CSEBca4ZDw7Rh3KirwUBe-iyTOsYzoEC15F42wyhqjq5M5Go5XV4JOBW65qWEO4TcZNHU1Ufg7R2HnyaVTyApVbJ2NXNfVP_hQdzVQd4Gy3e-jt4f518JiOJsOnwd0oVawgMZ2yKaN5NuWUMjEj7YisUKIigAUvqCBU04xVBWWqnOWQ5YRRvKGIqITmmvXQ1bZ35d1HAyHKpQka6lpZcE2QhPOS5jzPRIte7NBmuoRKrrxZKv8l9xJaoL8FtHcheJhJ3X65-SZ6ZWpJsNxolr-a28T1n8S-9D_2cssqHeTCNd62Xv7hvgHK64eB
CitedBy_id crossref_primary_10_1016_j_jorganchem_2014_10_044
crossref_primary_10_1021_ic501865h
crossref_primary_10_3184_003685014X13904811808460
crossref_primary_10_1080_00958972_2016_1204649
crossref_primary_10_1080_00958972_2015_1074684
crossref_primary_10_1021_acs_inorgchem_2c00984
crossref_primary_10_1039_D3DT01667F
crossref_primary_10_1002_ejic_201601149
crossref_primary_10_1039_C5DT03266K
crossref_primary_10_1016_j_cdc_2022_100853
crossref_primary_10_1021_acs_inorgchem_9b01199
crossref_primary_10_1039_C6MD00071A
crossref_primary_10_1039_C5CS00132C
crossref_primary_10_1016_j_jinorgbio_2023_112223
crossref_primary_10_1039_C4DT02710H
crossref_primary_10_1016_j_jinorgbio_2020_111099
crossref_primary_10_1002_jccs_201800275
crossref_primary_10_1039_C8CS00304A
crossref_primary_10_1080_00958972_2020_1782895
crossref_primary_10_1002_jccs_202400207
crossref_primary_10_1039_C8CC05622F
crossref_primary_10_1002_ijch_201600044
crossref_primary_10_1016_j_jinorgbio_2016_02_018
crossref_primary_10_1016_j_isci_2024_109899
crossref_primary_10_1002_anie_202012620
crossref_primary_10_1016_j_inoche_2024_112462
crossref_primary_10_1039_C4SC03635B
crossref_primary_10_55529_ijrise_22_22_29
crossref_primary_10_1016_j_ccr_2021_214104
crossref_primary_10_55529_ijrise_22_22_28
crossref_primary_10_1002_ejic_201800081
crossref_primary_10_4155_fmc_2016_0153
crossref_primary_10_1002_ange_201604236
crossref_primary_10_1016_j_dit_2013_09_001
crossref_primary_10_1039_C9DT04620H
crossref_primary_10_1016_j_jinorgbio_2024_112631
crossref_primary_10_1016_j_jinorgbio_2021_111360
crossref_primary_10_1007_s00775_016_1353_z
crossref_primary_10_1039_C8RA03626H
crossref_primary_10_1039_D2CS00099G
crossref_primary_10_1002_anie_201309576
crossref_primary_10_1002_aoc_4663
crossref_primary_10_1016_j_jinorgbio_2018_01_008
crossref_primary_10_3390_molecules24061050
crossref_primary_10_1021_acs_inorgchem_5b02697
crossref_primary_10_1016_j_poly_2013_12_014
crossref_primary_10_1021_acs_chemrev_8b00493
crossref_primary_10_1016_j_bioorg_2019_103561
crossref_primary_10_1021_acs_organomet_3c00430
crossref_primary_10_1039_C7CS00332C
crossref_primary_10_3184_146867818X15319903829191
crossref_primary_10_1039_D0SC04082G
crossref_primary_10_1002_ejic_201800857
crossref_primary_10_1039_D1DT03856G
crossref_primary_10_1016_j_ejmech_2021_113166
crossref_primary_10_1021_acs_inorgchem_7b01693
crossref_primary_10_1021_jacs_8b09999
crossref_primary_10_1039_C9NJ02502B
crossref_primary_10_1016_j_canlet_2017_04_041
crossref_primary_10_1021_acs_inorgchem_5b01236
crossref_primary_10_1016_j_jinorgbio_2016_09_008
crossref_primary_10_1007_s10637_014_0175_5
crossref_primary_10_1016_j_jorganchem_2019_120918
crossref_primary_10_1021_acs_inorgchem_0c00694
crossref_primary_10_1016_j_ejmech_2017_06_027
crossref_primary_10_1002_ange_202000247
crossref_primary_10_1016_j_poly_2023_116322
crossref_primary_10_1021_acs_organomet_8b00415
crossref_primary_10_1002_ejic_201500587
crossref_primary_10_1016_j_ejmech_2014_09_075
crossref_primary_10_1007_s10895_014_1456_2
crossref_primary_10_1039_C7NR02229H
crossref_primary_10_1002_ejic_201900677
crossref_primary_10_3389_fchem_2022_967337
crossref_primary_10_1002_aoc_6906
crossref_primary_10_1371_journal_pone_0136338
crossref_primary_10_1039_C6CC05537K
crossref_primary_10_1073_pnas_1500925112
crossref_primary_10_1016_j_jinorgbio_2017_06_001
crossref_primary_10_1016_j_jorganchem_2015_02_004
crossref_primary_10_1016_j_jtemb_2023_127245
crossref_primary_10_3390_ijms23094976
crossref_primary_10_1016_j_ejmech_2014_04_001
crossref_primary_10_1002_aoc_4287
crossref_primary_10_1002_chem_201701714
crossref_primary_10_1002_ejic_201501469
crossref_primary_10_1039_C7DT04604A
crossref_primary_10_1016_j_ejmech_2017_04_007
crossref_primary_10_1016_j_jorganchem_2018_08_027
crossref_primary_10_1080_07391102_2020_1733664
crossref_primary_10_1021_acs_inorgchem_0c01613
crossref_primary_10_1002_anie_201915828
crossref_primary_10_1016_j_ijbiomac_2018_12_128
crossref_primary_10_1039_C5DT03412D
crossref_primary_10_1002_ejic_201601350
crossref_primary_10_3389_fchem_2023_1150164
crossref_primary_10_3389_fphar_2022_1035217
crossref_primary_10_1021_acs_inorgchem_3c03471
crossref_primary_10_1039_C4QI00098F
crossref_primary_10_3389_fchem_2020_00379
crossref_primary_10_1002_adma_202416122
crossref_primary_10_1111_cbdd_12945
crossref_primary_10_1002_ejic_201700439
crossref_primary_10_1016_j_poly_2022_115837
crossref_primary_10_1007_s10904_018_0957_x
crossref_primary_10_1039_D3RA00982C
crossref_primary_10_1021_acs_inorgchem_8b02542
crossref_primary_10_1016_j_saa_2019_117457
crossref_primary_10_1007_s11426_020_9856_7
crossref_primary_10_1039_C5RA04498G
crossref_primary_10_1016_j_ccr_2023_215169
crossref_primary_10_3390_molecules23051232
crossref_primary_10_1021_acs_inorgchem_3c02118
crossref_primary_10_1080_00958972_2016_1142536
crossref_primary_10_1007_s00775_021_01872_w
crossref_primary_10_3892_ijmm_2018_3472
crossref_primary_10_1007_s12039_015_1017_5
crossref_primary_10_1021_acs_chemrev_8b00211
crossref_primary_10_1016_j_ultsonch_2018_02_050
crossref_primary_10_1002_ange_202011273
crossref_primary_10_1016_j_jinorgbio_2017_05_015
crossref_primary_10_1002_ejic_201600908
crossref_primary_10_1039_C9RA10357K
crossref_primary_10_1039_C6RA18504E
crossref_primary_10_1016_j_ccr_2021_213977
crossref_primary_10_1021_ic402341n
crossref_primary_10_1002_adsc_201400354
crossref_primary_10_1007_s11094_019_02011_1
crossref_primary_10_1016_j_jorganchem_2019_04_003
crossref_primary_10_1007_s12274_018_2138_1
crossref_primary_10_1016_j_ica_2015_06_024
crossref_primary_10_1016_j_ejmech_2014_05_060
crossref_primary_10_1016_j_poly_2024_116951
crossref_primary_10_1021_acs_inorgchem_7b02345
crossref_primary_10_1039_D0NJ04137H
crossref_primary_10_1016_j_saa_2024_124448
crossref_primary_10_1039_C8RA07926A
crossref_primary_10_3390_ma13163491
crossref_primary_10_1021_acs_inorgchem_7b01370
crossref_primary_10_1080_00958972_2016_1178387
crossref_primary_10_1002_ejic_201601216
crossref_primary_10_1039_C4DT01033G
crossref_primary_10_1002_anie_202011273
crossref_primary_10_1021_acs_inorgchem_5b01832
crossref_primary_10_1021_acsami_5b03739
crossref_primary_10_1039_D2DT01127A
crossref_primary_10_1021_acs_organomet_7b00250
crossref_primary_10_18632_oncotarget_18991
crossref_primary_10_1098_rsos_220659
crossref_primary_10_1021_acs_molpharmaceut_8b00407
crossref_primary_10_1016_j_poly_2019_114262
crossref_primary_10_1002_ange_201915828
crossref_primary_10_1021_acs_jmedchem_5b00288
crossref_primary_10_1016_j_cclet_2022_107945
crossref_primary_10_1039_D5DT00194C
crossref_primary_10_1016_j_ejmech_2014_06_052
crossref_primary_10_1016_j_jinorgbio_2016_07_007
crossref_primary_10_1016_j_jorganchem_2015_05_011
crossref_primary_10_1039_D0NJ01192D
crossref_primary_10_1002_anie_202000247
crossref_primary_10_1039_C7NJ01998J
crossref_primary_10_1016_j_jscs_2021_101366
crossref_primary_10_1016_j_ica_2022_120936
crossref_primary_10_1002_adhm_202000864
crossref_primary_10_1073_pnas_1503858112
crossref_primary_10_1016_j_poly_2020_114829
crossref_primary_10_1021_acs_inorgchem_9b00708
crossref_primary_10_1021_acs_jpcb_7b01427
crossref_primary_10_1039_C8DT03432J
crossref_primary_10_1039_C4CC02093F
crossref_primary_10_1016_j_canlet_2017_11_041
crossref_primary_10_1002_ange_201309576
crossref_primary_10_1016_j_rechem_2023_101155
crossref_primary_10_1021_acs_inorgchem_6b00554
crossref_primary_10_1039_C8BM01039K
crossref_primary_10_1002_cplu_201300425
crossref_primary_10_1039_C6DT02590K
crossref_primary_10_1155_2014_209845
crossref_primary_10_1007_s00775_019_01640_x
crossref_primary_10_1016_j_inoche_2021_109044
crossref_primary_10_3389_fchem_2020_00182
crossref_primary_10_1002_adfm_201804227
crossref_primary_10_1002_cmdc_201600320
crossref_primary_10_1021_acs_inorgchem_6b00309
crossref_primary_10_1016_j_bioorg_2025_108148
crossref_primary_10_1016_j_jinorgbio_2020_111260
crossref_primary_10_3389_fchem_2018_00180
crossref_primary_10_1016_j_jinorgbio_2025_112852
crossref_primary_10_1016_j_poly_2015_02_009
crossref_primary_10_1021_acs_inorgchem_1c02682
crossref_primary_10_1021_acs_inorgchem_8b03552
crossref_primary_10_1021_acs_organomet_0c00107
crossref_primary_10_1039_C5NJ01449B
crossref_primary_10_1021_acs_chemrev_8b00209
crossref_primary_10_1016_j_ccr_2023_215366
crossref_primary_10_1016_j_eurpolymj_2016_12_011
crossref_primary_10_1016_j_jinorgbio_2014_12_017
crossref_primary_10_1002_jcc_24373
crossref_primary_10_1002_ejic_201801426
crossref_primary_10_1021_acs_inorgchem_0c02928
crossref_primary_10_1016_j_jinorgbio_2017_02_002
crossref_primary_10_3390_biom14050530
crossref_primary_10_1016_j_jinorgbio_2020_111154
crossref_primary_10_1515_revic_2024_0068
crossref_primary_10_1007_s12039_021_01896_4
crossref_primary_10_1016_j_ejmech_2021_113689
crossref_primary_10_1515_revic_2024_0066
crossref_primary_10_1016_j_ejmech_2017_04_030
crossref_primary_10_1021_cr400460s
crossref_primary_10_1002_ejoc_201700988
crossref_primary_10_53360_2788_7995_2024_3_15__38
crossref_primary_10_1016_j_envres_2024_118489
crossref_primary_10_1016_j_jorganchem_2014_04_027
crossref_primary_10_1016_j_molstruc_2022_133457
crossref_primary_10_1016_j_ica_2021_120754
crossref_primary_10_1016_j_poly_2020_114606
crossref_primary_10_1039_D0DT00451K
crossref_primary_10_1016_j_ccr_2016_01_001
crossref_primary_10_1016_j_ccr_2021_214403
crossref_primary_10_1002_slct_202003334
crossref_primary_10_3390_biomedicines10061417
crossref_primary_10_47836_pjst_30_4_25
crossref_primary_10_1002_slct_201800306
crossref_primary_10_1002_chem_201503555
crossref_primary_10_1016_j_freeradbiomed_2016_03_006
crossref_primary_10_3390_inorganics11100394
crossref_primary_10_1021_bc400385d
crossref_primary_10_1039_C4DT00845F
crossref_primary_10_1039_D1TB00753J
crossref_primary_10_1371_journal_pone_0123595
crossref_primary_10_1002_ejic_201800225
crossref_primary_10_1016_j_jinorgbio_2019_110714
crossref_primary_10_1016_j_jorganchem_2016_02_001
crossref_primary_10_1002_cplu_201400014
crossref_primary_10_1039_C4DT02165G
crossref_primary_10_1039_c4mt00034j
crossref_primary_10_3389_fphar_2018_01511
crossref_primary_10_3390_molecules26185679
crossref_primary_10_3390_ijms17111818
crossref_primary_10_1039_C6DT00849F
crossref_primary_10_1002_ange_202012620
crossref_primary_10_1021_acs_jpcb_1c05794
crossref_primary_10_1039_D4NJ03255A
crossref_primary_10_1016_j_ica_2014_07_050
crossref_primary_10_1039_C6DT01264G
crossref_primary_10_1039_C7MD00462A
crossref_primary_10_4155_fmc_2017_0248
crossref_primary_10_5604_01_3001_0013_8549
crossref_primary_10_1039_D4QI02472A
crossref_primary_10_1002_slct_201800015
crossref_primary_10_1080_00958972_2020_1796986
crossref_primary_10_1039_d0mt00064g
crossref_primary_10_1016_j_jinorgbio_2017_08_019
crossref_primary_10_1021_acs_inorgchem_9b01031
crossref_primary_10_1002_chem_201700588
crossref_primary_10_1016_j_jinorgbio_2014_08_014
crossref_primary_10_1039_C6OB00470A
crossref_primary_10_1039_C7NJ03819D
crossref_primary_10_3390_ijms23126669
crossref_primary_10_1016_j_jinorgbio_2019_110869
crossref_primary_10_1021_ic5027625
crossref_primary_10_1002_chem_201903109
crossref_primary_10_1016_j_ica_2019_06_002
crossref_primary_10_1039_C6DT03660K
crossref_primary_10_1016_j_ica_2015_08_017
crossref_primary_10_1021_acs_inorgchem_4c04937
crossref_primary_10_1016_j_ica_2017_09_056
crossref_primary_10_1016_j_ica_2020_119449
crossref_primary_10_1016_j_jinorgbio_2022_111975
crossref_primary_10_1021_acs_inorgchem_4c01766
crossref_primary_10_1039_D0SC03628E
crossref_primary_10_1002_anie_201604236
crossref_primary_10_1002_aoc_5785
crossref_primary_10_1002_cmdc_201800432
crossref_primary_10_1007_s12013_021_00984_z
crossref_primary_10_1002_cmdc_201800672
crossref_primary_10_1080_00958972_2017_1349313
crossref_primary_10_1039_C7DT03917D
crossref_primary_10_1016_j_ica_2019_119208
crossref_primary_10_1016_j_jorganchem_2017_03_038
crossref_primary_10_1021_acs_inorgchem_0c01442
crossref_primary_10_1039_C4RA13718C
crossref_primary_10_1002_ejic_201402532
crossref_primary_10_1002_ejic_201402412
crossref_primary_10_1021_acs_inorgchem_4c03975
crossref_primary_10_1021_acs_jmedchem_5b00655
crossref_primary_10_1021_acsmedchemlett_9b00337
crossref_primary_10_1021_acs_organomet_1c00572
crossref_primary_10_1039_D1TB01289D
crossref_primary_10_1007_s12039_018_1584_3
crossref_primary_10_1021_acsomega_9b02948
crossref_primary_10_1038_ncomms7582
crossref_primary_10_1039_D4DT01796J
crossref_primary_10_1016_j_ica_2021_120701
crossref_primary_10_1039_C4DT03764B
crossref_primary_10_1016_j_ejmech_2021_113770
crossref_primary_10_1016_j_jinorgbio_2016_06_021
crossref_primary_10_3390_ph16121729
crossref_primary_10_1016_j_ccr_2021_214311
crossref_primary_10_1039_c8mt00352a
crossref_primary_10_1002_cbdv_202300061
crossref_primary_10_1007_s40242_018_8077_2
crossref_primary_10_1016_j_ccr_2014_08_002
crossref_primary_10_1016_j_molstruc_2020_129348
crossref_primary_10_1002_ejic_201402884
crossref_primary_10_1016_j_ccr_2022_214506
crossref_primary_10_1021_acs_inorgchem_4c03389
crossref_primary_10_1021_acs_organomet_8b00604
crossref_primary_10_1039_D3DT04045C
crossref_primary_10_1002_chem_201600236
crossref_primary_10_1039_C5DT04529K
crossref_primary_10_1021_acsomega_1c06465
crossref_primary_10_1016_j_jinorgbio_2023_112440
crossref_primary_10_1002_ejic_201403173
crossref_primary_10_1002_chem_201800403
crossref_primary_10_1080_00958972_2017_1372573
crossref_primary_10_1021_acs_chemrev_6b00400
crossref_primary_10_1016_j_ejmech_2018_04_013
crossref_primary_10_2174_0929867328666210917114912
crossref_primary_10_1002_ange_201400142
crossref_primary_10_2174_1871520621666210713112105
crossref_primary_10_15406_ppij_2018_06_00177
crossref_primary_10_1039_C7RA09102H
crossref_primary_10_1039_D3SC01874A
crossref_primary_10_1039_C8MT00111A
crossref_primary_10_1002_aoc_70050
crossref_primary_10_1039_D4DT02643H
crossref_primary_10_1002_anie_201400142
crossref_primary_10_1021_acs_organomet_5b00097
crossref_primary_10_3390_molecules28062499
crossref_primary_10_1016_j_jinorgbio_2019_110754
crossref_primary_10_1039_D0NJ06210C
crossref_primary_10_1021_acs_molpharmaceut_8b00045
crossref_primary_10_3390_inorganics8090049
crossref_primary_10_1016_j_ica_2020_119542
crossref_primary_10_1016_j_jinorgbio_2016_06_018
Cites_doi 10.1021/tx300057y
10.1016/0090-8258(83)90100-2
10.1021/ja3074159
10.1021/ic971047x
10.1039/c2cc30678f
10.1089/ars.2009.2541
10.1021/ja053387k
10.1021/jm070740j
10.1039/C2DT32617E
10.1016/j.ica.2011.07.032
10.1002/asia.200800149
10.1016/j.jinorgbio.2006.02.015
10.2174/187152007779314044
10.1038/nm1001-1111
10.1007/s00775-011-0841-4
10.1146/annurev.med.53.082901.103929
10.1039/b913570g
10.1634/theoncologist.6-suppl_2-3
10.1016/j.drup.2008.02.002
10.1021/cr068207j
10.1016/j.jinorgbio.2007.11.003
10.1007/s00280-002-0504-9
10.1002/anie.201108175
10.1021/ic700799w
10.1073/pnas.0805965105
10.1158/1535-7163.MCT-08-0298
10.1016/j.tox.2009.12.010
10.1124/mol.106.022624
10.1039/c3sc21972k
10.2174/1874846501003020029
10.1182/asheducation.V2006.1.219.0010219
10.1089/ars.2011.3993
10.1111/j.1476-5381.2009.00341.x
10.1007/s13361-012-0539-z
10.1021/jo00067a060
10.1039/c2cc36808k
10.1016/j.biopha.2011.07.001
10.1007/s10863-006-9059-5
10.1016/j.canlet.2005.07.046
10.1039/c2sc20220d
10.1039/b902861g
10.1158/1535-7163.MCT-11-0959
10.1039/B916860P
10.1016/j.freeradbiomed.2010.09.008
10.1016/j.taap.2012.09.001
10.1039/c1md00075f
10.1111/j.2042-7158.2012.01470.x
10.1021/jm010051m
10.1038/nrc2167
10.1038/nrc903
10.1002/jcp.21966
10.1074/jbc.M703973200
10.1634/theoncologist.6-suppl_2-1
10.1007/s10637-010-9395-5
10.1002/anie.201003399
10.1351/pac199870040863
10.1351/pac198759020181
10.1002/jat.1284
10.1007/s10863-008-9188-0
10.1007/978-0-387-89445-4_2
10.1007/s00280-005-0069-5
10.1021/cr020010d
10.1016/j.ica.2006.12.005
10.1146/annurev.pharmtox.48.080907.180426
10.1007/s00280-010-1293-1
10.1016/S0027-5107(01)00141-5
10.1016/j.drudis.2009.07.011
10.1016/S0010-8545(02)00026-7
10.1039/B511792E
10.1098/rsob.120144
10.1073/pnas.0800076105
10.3390/toxins2112490
10.1016/j.ica.2011.08.047
10.1039/b821603g
10.1016/j.jinorgbio.2011.09.008
10.1038/nprot.2006.179
10.1007/BF00744664
10.1016/j.ica.2012.06.046
10.1158/0008-5472.CAN-04-1830
10.1039/b508531b
10.1021/jm050015d
10.1007/s00775-007-0272-4
10.1016/j.jinorgbio.2007.10.015
10.1177/107327480901600204
10.1073/pnas.0505798102
10.1016/j.ejmech.2011.01.019
10.1002/ardp.200600151
10.1007/BF02703651
10.1038/sj.bjc.6600906
10.1016/j.chembiol.2004.11.008
10.1021/jm2000932
10.1039/c1mt00062d
10.1002/(SICI)1521-3773(19991004)38:19<2949::AID-ANIE2949>3.0.CO;2-Q
10.1038/nrc2817
10.1158/1078-0432.CCR-06-1037
10.1016/j.biochi.2011.07.025
10.1002/anie.200352303
10.1038/bjc.1992.249
10.1021/ic030045b
10.1038/nrd2803
10.1021/jm900138u
10.1016/j.ica.2012.06.003
10.1016/j.bcp.2005.11.009
10.1016/j.jinorgbio.2006.07.003
10.1002/cmdc.201200505
10.1038/nrc3297
10.1016/j.freeradbiomed.2008.05.031
10.1039/C1CC15378A
10.1016/j.jinorgbio.2007.04.018
10.1039/c1cc10860c
10.1016/j.poly.2012.01.024
10.1016/S0021-9258(18)96186-7
10.1021/jm3017442
10.1016/S0898-8838(08)60035-5
10.1016/j.jinorgbio.2012.06.013
10.1016/S0162-0134(99)00147-6
10.1002/anie.200502925
10.3322/caac.20107
10.1074/jbc.M709062200
10.1158/0008-5472.CAN-12-0979
10.1002/ijc.21484
10.1038/nature07733
10.1523/JNEUROSCI.1544-10.2010
10.1242/jcs.110486
10.1016/j.jinorgbio.2009.10.005
10.1016/S0021-9258(20)80702-9
10.1016/j.bcp.2009.07.023
10.1007/PL00010658
10.1073/pnas.1105941108
10.1039/c2dt31654d
10.1002/ejic.200900054
10.1089/ars.2010.3663
10.1089/ars.2012.4880
10.1038/sj.bjc.6600176
10.1039/b705551j
10.1038/205698a0
10.1021/ic8020222
10.1021/ja1112996
10.1158/0008-5472.CAN-07-6611
10.1021/ic061460h
10.1002/9783906390420
10.1002/anie.201202939
10.1002/ejic.200390156
10.1158/0008-5472.948.65.3
10.1002/cbdv.200890195
10.1186/1471-2407-12-147
10.1039/c2mt20189e
10.1007/s00775-008-0460-x
10.1097/MAJ.0b013e31812dfe1e
10.1007/s00775-009-0558-9
10.1124/mol.59.4.657
10.1038/sj.bmt.1703605
10.1021/bc100369p
10.1039/c2dt30727h
10.1021/ja805555a
10.1002/cncr.23651
10.1021/jm301648f
10.1021/jm060436a
10.2533/chimia.2007.692
10.1021/ja056726i
10.1021/jm060596m
10.1124/pr.111.005637
10.1016/S0162-0134(99)00135-X
10.2174/156800909789056962
10.1021/jm3014713
10.1038/sj.bjc.6600290
10.1007/BF02307573
10.1039/c1dt10084j
10.1002/chem.201103378
10.1074/jbc.273.24.14721
10.1093/jnci/92.16.1295
10.1016/j.jasms.2007.12.002
10.1038/nature10167
10.1021/jm100560f
10.1358/dof.2012.037.011.1830167
10.4155/fmc.12.69
10.1021/cb400070a
10.1016/j.bbrc.2004.09.047
10.1021/jm8003043
10.1021/jm8006678
10.1517/13543780903362437
10.1021/ic100277w
10.1071/CH06307
10.1007/s00280-004-0932-9
10.1039/c0dt00292e
10.1021/ja055886r
10.1016/j.addr.2012.01.007
10.1007/s10637-009-9336-3
10.1016/j.jinorgbio.2004.04.020
10.1016/S1470-2045(07)70342-X
10.1016/j.drup.2012.01.008
10.1016/j.jinorgbio.2004.05.017
10.1038/bjc.1993.221
10.1016/S1040-8428(01)00225-6
10.1042/bj3460001
10.1595/147106710X534326
10.1007/s00775-003-0471-6
10.1007/s00775-009-0506-8
10.1021/ja804027j
10.1158/1535-7163.MCT-08-0840
10.1016/j.addr.2009.05.010
10.1016/j.chembiol.2007.08.016
10.1002/ejic.200700206
10.1002/anie.201300747
10.4161/cbt.7.12.7067
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/ic400835n
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 12291
ExternalDocumentID 23879584
10_1021_ic400835n
g20529982
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.K2
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH2
IH9
IHE
JG~
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YZZ
~02
AAYXX
ABBLG
ABLBI
AGXLV
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
ID FETCH-LOGICAL-a381t-b3b3276b42235f1f1f568a5d1e05482512c263d823a9f7e671320f1f515d5c4c3
IEDL.DBID ACS
ISSN 0020-1669
1520-510X
IngestDate Fri Jul 11 11:23:06 EDT 2025
Wed Feb 19 02:06:38 EST 2025
Tue Jul 01 03:40:46 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Thu Dec 07 09:20:08 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-b3b3276b42235f1f1f568a5d1e05482512c263d823a9f7e671320f1f515d5c4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23879584
PQID 1449274765
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_1449274765
pubmed_primary_23879584
crossref_citationtrail_10_1021_ic400835n
crossref_primary_10_1021_ic400835n
acs_journals_10_1021_ic400835n
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-04
PublicationDateYYYYMMDD 2013-11-04
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Yao X. (ref63/cit63) 2007; 334
Sadler P. J. (ref55/cit55) 1998; 70
Peacock A. (ref184/cit184) 2008; 3
Dahan L. (ref78/cit78) 2009; 158
McWhinney S. R. (ref65/cit65) 2009; 8
Jung Y. (ref51/cit51) 2007; 107
Pizarro A. M. (ref170/cit170) 2010; 32
Collins Y. (ref25/cit25) 2012; 125
Kim K. K. (ref208/cit208) 2012; 12
Süss-Fink G. (ref131/cit131) 2010; 39
Peacock A. F. A. (ref128/cit128) 2006; 128
Carr J. L. (ref159/cit159) 2006; 57
Bock C. (ref21/cit21) 2012; 12
Navakoski de Oliveira K. (ref209/cit209) 2013; 8
Reedijk J. (ref49/cit49) 1985; 7
ref42/cit42
Van Rijt S. H. (ref187/cit187) 2009; 48
Allen T. M. (ref10/cit10) 2002; 2
Lessa J. (ref92/cit92) 2011; 105
Billecke C. (ref83/cit83) 2006; 8
Antonarakis E. S. (ref121/cit121) 2010; 66
Raj L. (ref33/cit33) 2011; 475
Fu Y. (ref189/cit189) 2012; 3
Rigobello M. P. (ref91/cit91) 2004; 98
Morbidelli L. (ref171/cit171) 2003; 88
Fakih S. (ref82/cit82) 2003; 2003
Brown R. L. (ref66/cit66) 1983; 16
Vashisht Gopal Y. N. (ref136/cit136) 2001; 26
Wang F. (ref175/cit175) 2008; 19
Sultana S. (ref73/cit73) 2012; 64
Sun R. W. Y. (ref102/cit102) 2013; 4
Hickey J. L. (ref95/cit95) 2008; 130
Frausin F. (ref166/cit166) 2002; 50
Scolaro C. (ref124/cit124) 2005; 48
Pizarro A. M. (ref89/cit89) 2003; 42
Goldie J. H. (ref11/cit11) 1984; 44
Vera-Ramirez L. (ref39/cit39) 2011; 15
Saggioro D. (ref90/cit90) 2007; 14
Gonzalez V. M. (ref53/cit53) 2001; 59
Casini A. (ref105/cit105) 2009; 14
Casini A. (ref103/cit103) 2006; 49
Berners-Price S. J. (ref97/cit97) 2011; 3
Wexselblatt E. (ref204/cit204) 2012; 117
Timmer-Bosscha H. (ref58/cit58) 1992; 66
Cepeda V. (ref52/cit52) 2007; 7
Chitambar C. R. (ref107/cit107) 2012; 4
Dougan S. J. (ref138/cit138) 2006; 45
Gottesman M. M. (ref61/cit61) 2002; 53
Betanzos-Lara S. (ref193/cit193) 2012; 51
Bonnitcha P. D. (ref216/cit216) 2006; 100
Liu Z. (ref190/cit190) 2011; 54
Casini A. (ref132/cit132) 2010; 32
Apperley J. F. (ref17/cit17) 2007; 8
Wang F. (ref126/cit126) 2005; 102
Ishikawas T. (ref68/cit68) 1993; 268
More S. S. (ref67/cit67) 2010; 30
Cullen K. J. (ref76/cit76) 2007; 39
Feng L. (ref150/cit150) 2011; 133
Geldmacher Y. (ref149/cit149) 2012; 393
Van Rijt S. H. (ref186/cit186) 2011; 22
Hegreness M. (ref20/cit20) 2008; 105
Martins N. M. (ref75/cit75) 2008; 28
Bugarcic T. (ref172/cit172) 2008; 51
Reedijk J. (ref50/cit50) 1987; 59
Osinsky S. (ref220/cit220) 2004; 26
Kluza J. (ref34/cit34) 2012; 72
Hong R. (ref157/cit157) 2006; 128
Gandin V. (ref93/cit93) 2010; 79
Wilting R. H. (ref19/cit19) 2012; 15
Zhang C. (ref119/cit119) 2010; 222
Rosenberg B. (ref1/cit1) 1965; 200
Yu J. (ref206/cit206) 2003; 63
Morris R. E. (ref123/cit123) 2001; 44
Lemma K. (ref154/cit154) 2000; 5
Graf N. (ref156/cit156) 2012; 64
Anderson C. P. (ref198/cit198) 2002; 30
Antman K. H. (ref117/cit117) 2001; 6
Reisner E. (ref168/cit168) 2008; 361
Wang F. (ref176/cit176) 2005; 127
Waxman S. (ref120/cit120) 2001; 6
Watson J. (ref30/cit30) 2013; 3
Gately D. P. (ref57/cit57) 1993; 67
Baerga R. (ref114/cit114) 2012
Chen H. H. W. (ref199/cit199) 2010; 2010
Hall M. D. (ref158/cit158) 2002; 232
Shnyder S. D. (ref195/cit195) 2011; 2
Ivanov I. (ref44/cit44) 1998; 273
Wu K. (ref177/cit177) 2013; 24
Jie W. (ref27/cit27) 2008; 7
Mauro M. J. (ref18/cit18) 2006
Jemal A. (ref7/cit7) 2011; 61
Aldinucci D. (ref99/cit99) 2009; 14
Gianferrara T. (ref5/cit5) 2009
Romero-Canelón I. (ref182/cit182) 2013; 56
Bonnitcha P. D. (ref219/cit219) 2012; 41
Liebmann J. E. (ref200/cit200) 1993; 53
Kachadourian R. (ref222/cit222) 2010; 268
Schäfer S. (ref125/cit125) 2007
Schluga P. (ref169/cit169) 2006
ref15/cit15
Hall M. D. (ref56/cit56) 2008; 48
Kruidering M. (ref74/cit74) 1997; 280
Prast-Nielsen S. (ref70/cit70) 2010; 49
Screnci D. (ref64/cit64) 1999; 77
Diehn M. (ref26/cit26) 2009; 458
Maksimoska J. (ref140/cit140) 2008; 130
Mulcahy S. P. (ref6/cit6) 2010; 32
Rashed L. (ref72/cit72) 2011; 65
Olszewski U. (ref210/cit210) 2011; 29
Oehlsen M. E. (ref87/cit87) 2003; 42
Wondrak G. T. (ref23/cit23) 2009; 11
Chen T. (ref144/cit144) 2010; 49
Meyer A. (ref94/cit94) 2012; 51
Romero-Canelón I. (ref181/cit181) 2012; 4
Tennant D. (ref9/cit9) 2010; 10
Quintás-Cardama A. (ref16/cit16) 2009; 16
Ruiz J. (ref211/cit211) 2012; 41
Nemirovski A. (ref160/cit160) 2007; 50
Jungwirth U. (ref22/cit22) 2011; 15
Florian J. (ref86/cit86) 2012; 17
Borst P. (ref14/cit14) 2000; 92
Lum C. T. (ref101/cit101) 2006; 118
Choi S. (ref227/cit227) 1998; 37
Shaw A. T. (ref32/cit32) 2011; 108
Raymond E. (ref79/cit79) 2002; 1
Lessa J. (ref110/cit110) 2012; 393
Hall M. D. (ref155/cit155) 2003; 8
Mustacich D. (ref71/cit71) 2000; 346
Timerbaev A. R. (ref112/cit112) 2009; 1
Lippert B. (ref3/cit3) 1999
Chen X. (ref142/cit142) 2011; 378
Trachootham D. (ref31/cit31) 2009; 8
Wang Y. (ref81/cit81) 2012; 265
Kim J. S. (ref36/cit36) 2008; 40
Fuertes M. (ref48/cit48) 2003; 103
Yang X. (ref146/cit146) 2011; 94
Fu Y. (ref188/cit188) 2010; 53
Casini A. (ref104/cit104) 2008; 102
Dy G. K. (ref12/cit12) 2008; 113
ref191/cit191
ref13/cit13
Kartalou M. (ref59/cit59) 2001; 478
Yamamoto N. (ref218/cit218) 2012; 55
Halliwell B. (ref29/cit29) 2007
Marverti G. (ref196/cit196) 2008; 102
Bergamo A. (ref183/cit183) 2010; 104
Holzer A. K. (ref45/cit45) 2006; 70
Pathania D. (ref28/cit28) 2009; 61
Kirshner J. R. (ref35/cit35) 2008; 7
Marverti G. (ref197/cit197) 2011; 29
Gaiddon C. (ref145/cit145) 2005; 315
Safaei R. (ref47/cit47) 2006; 234
Aird R. E. (ref178/cit178) 2002; 86
Murdoch S. (ref88/cit88) 1999; 38
Casini A. (ref148/cit148) 2008; 51
Reedijk J. (ref80/cit80) 2009
Farrell N. P. (ref85/cit85) 2012; 37
Millis K. K. (ref225/cit225) 1993; 58
Ott I. (ref98/cit98) 2007; 340
Miller R. P. (ref62/cit62) 2010; 2
Vichai V. (ref212/cit212) 2006; 1
Sinani D. (ref46/cit46) 2007; 282
Du K. J. (ref135/cit135) 2011; 46
Melchart M. (ref173/cit173) 2007; 46
Sadler P. J. (ref4/cit4) 1991; 36
Trapasso F. (ref205/cit205) 2008; 283
Heffeter P. (ref113/cit113) 2008; 11
Melchart M. (ref137/cit137) 2007; 101
Oehninger L. (ref96/cit96) 2013; 42
Dougan S. J. (ref180/cit180) 2008; 105
Heffeter P. (ref223/cit223) 2009; 9
Hwang P. M. (ref207/cit207) 2001; 7
Hayward R. L. (ref179/cit179) 2005; 55
Yang M. (ref109/cit109) 2008; 45
Rudnev A. V. (ref111/cit111) 2006; 100
Corral E. (ref141/cit141) 2009; 14
Hillard E. (ref214/cit214) 2006; 45
Laurent A. (ref38/cit38) 2005; 65
Novakova O. (ref174/cit174) 2005; 12
Ganusevich I. I. (ref221/cit221) 2007; 29
Collery P. (ref108/cit108) 2002; 42
Yang Z. (ref77/cit77) 2006; 12
Bernstein L. R. (ref116/cit116) 1998; 50
Yan Y. K. (ref130/cit130) 2005
Gabbiani C. (ref106/cit106) 2010; 3
Lincoln K. M. (ref24/cit24) 2013; 49
Tan Y. L. K. (ref215/cit215) 2009
Messina P. (ref213/cit213) 2012; 18
Habtemariam A. (ref127/cit127) 2006; 49
Wheate N. J. (ref153/cit153) 2010; 39
Ford J. M. (ref54/cit54) 1993; 12
Ko Y. H. (ref37/cit37) 2004; 324
Kasherman Y. (ref69/cit69) 2009; 52
Bratsos I. (ref122/cit122) 2007; 61
Bruijnincx P. C. (ref129/cit129) 2009
DeVita V. T. (ref8/cit8) 2008; 68
Farrer N. J. (ref161/cit161) 2010; 49
Kang Y. H. (ref118/cit118) 2004; 64
Vacca A. (ref167/cit167) 2002; 4
Shen D. W. (ref60/cit60) 2012; 64
Rosenberg B. (ref2/cit2) 1967; 242
Che C. M. (ref100/cit100) 2011; 47
Kauffman G. B. (ref40/cit40) 2010; 54
Pracharova J. (ref163/cit163) 2012; 25
Gao F. (ref134/cit134) 2007; 12
Hall M. D. (ref217/cit217) 2007; 60
Fricker S. P. (ref41/cit41) 2007
ref201/cit201
Tan C. (ref147/cit147) 2011; 40
Kastl A. (ref151/cit151) 2012; 48
Hummer A. (ref202/cit202) 2013; 56
Noffke A. L. (ref185/cit185) 2012; 48
Liu Z. (ref194/cit194) 2013; 52
New E. J. (ref203/cit203) 2009
Westendorf A. F. (ref162/cit162) 2012; 11
Heffeter P. (ref224/cit224) 2006; 71
Streu C. (ref139/cit139) 2011; 377
Ali Ezadyar S. (ref143/cit143) 2012; 36
Roberts J. D. (ref84/cit84) 1999; 77
Hall M. D. (ref226/cit226) 2004; 98
ref192/cit192
Chitambar C. R. (ref115/cit115) 2013; 18
Loughrey B. T. (ref133/cit133) 2009; 14
Bhargave A. (ref152/cit152) 2009; 18
Butler J. S. (ref164/cit164) 2012; 134
Kelland L. (ref43/cit43) 2007; 7
Hartinger C. G. (ref165/cit165) 2008; 5
References_xml – volume: 8
  start-page: 215
  year: 2006
  ident: ref83/cit83
  publication-title: Neurooncology
– volume: 25
  start-page: 1099
  year: 2012
  ident: ref163/cit163
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx300057y
– volume: 16
  start-page: 254
  year: 1983
  ident: ref66/cit66
  publication-title: Gynecol. Oncol.
  doi: 10.1016/0090-8258(83)90100-2
– volume: 134
  start-page: 16508
  year: 2012
  ident: ref164/cit164
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3074159
– volume: 37
  start-page: 2500
  year: 1998
  ident: ref227/cit227
  publication-title: Inorg. Chem.
  doi: 10.1021/ic971047x
– volume: 48
  start-page: 5219
  year: 2012
  ident: ref185/cit185
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc30678f
– volume: 11
  start-page: 3013
  year: 2009
  ident: ref23/cit23
  publication-title: Antioxid. Redox Signaling
  doi: 10.1089/ars.2009.2541
– volume: 127
  start-page: 17734
  year: 2005
  ident: ref176/cit176
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja053387k
– volume: 50
  start-page: 5554
  year: 2007
  ident: ref160/cit160
  publication-title: J. Med. Chem.
  doi: 10.1021/jm070740j
– volume: 42
  start-page: 3269
  year: 2013
  ident: ref96/cit96
  publication-title: Dalton Trans.
  doi: 10.1039/C2DT32617E
– volume: 377
  start-page: 34
  year: 2011
  ident: ref139/cit139
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2011.07.032
– volume: 3
  start-page: 1890
  year: 2008
  ident: ref184/cit184
  publication-title: Chem.—Asian J.
  doi: 10.1002/asia.200800149
– volume: 100
  start-page: 963
  year: 2006
  ident: ref216/cit216
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2006.02.015
– volume: 7
  start-page: 3
  year: 2007
  ident: ref52/cit52
  publication-title: Anti-Cancer Agents Med. Chem.
  doi: 10.2174/187152007779314044
– volume: 7
  start-page: 1111
  year: 2001
  ident: ref207/cit207
  publication-title: Nat. Med.
  doi: 10.1038/nm1001-1111
– volume: 17
  start-page: 187
  year: 2012
  ident: ref86/cit86
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-011-0841-4
– volume: 53
  start-page: 615
  year: 2002
  ident: ref61/cit61
  publication-title: Annu. Rev. Med.
  doi: 10.1146/annurev.med.53.082901.103929
– start-page: 10871
  year: 2009
  ident: ref215/cit215
  publication-title: Dalton Trans.
  doi: 10.1039/b913570g
– volume: 6
  start-page: 3
  year: 2001
  ident: ref120/cit120
  publication-title: Oncologist
  doi: 10.1634/theoncologist.6-suppl_2-3
– volume: 11
  start-page: 1
  year: 2008
  ident: ref113/cit113
  publication-title: Drug Resist. Update
  doi: 10.1016/j.drup.2008.02.002
– volume: 107
  start-page: 1387
  year: 2007
  ident: ref51/cit51
  publication-title: Chem. Rev.
  doi: 10.1021/cr068207j
– volume: 102
  start-page: 564
  year: 2008
  ident: ref104/cit104
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2007.11.003
– volume: 50
  start-page: 405
  year: 2002
  ident: ref166/cit166
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-002-0504-9
– volume: 51
  start-page: 3897
  year: 2012
  ident: ref193/cit193
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201108175
– volume: 46
  start-page: 8950
  year: 2007
  ident: ref173/cit173
  publication-title: Inorg. Chem.
  doi: 10.1021/ic700799w
– volume: 105
  start-page: 13977
  year: 2008
  ident: ref20/cit20
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0805965105
– volume: 7
  start-page: 2319
  year: 2008
  ident: ref35/cit35
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-08-0298
– volume: 268
  start-page: 176
  year: 2010
  ident: ref222/cit222
  publication-title: Toxicology
  doi: 10.1016/j.tox.2009.12.010
– volume: 70
  start-page: 1390
  year: 2006
  ident: ref45/cit45
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.106.022624
– volume: 4
  start-page: 1979
  year: 2013
  ident: ref102/cit102
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc21972k
– volume: 3
  start-page: 29
  year: 2010
  ident: ref106/cit106
  publication-title: Open Crystallogr. J.
  doi: 10.2174/1874846501003020029
– ident: ref192/cit192
– start-page: 219
  year: 2006
  ident: ref18/cit18
  publication-title: Hematology
  doi: 10.1182/asheducation.V2006.1.219.0010219
– volume: 15
  start-page: 903
  year: 2011
  ident: ref39/cit39
  publication-title: Antioxid. Redox Signaling
  doi: 10.1089/ars.2011.3993
– volume: 158
  start-page: 610
  year: 2009
  ident: ref78/cit78
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2009.00341.x
– volume: 24
  start-page: 410
  year: 2013
  ident: ref177/cit177
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-012-0539-z
– volume: 58
  start-page: 4144
  year: 1993
  ident: ref225/cit225
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00067a060
– volume: 49
  start-page: 2712
  year: 2013
  ident: ref24/cit24
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc36808k
– volume: 65
  start-page: 474
  year: 2011
  ident: ref72/cit72
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2011.07.001
– volume: 280
  start-page: 638
  year: 1997
  ident: ref74/cit74
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 39
  start-page: 43
  year: 2007
  ident: ref76/cit76
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1007/s10863-006-9059-5
– volume: 50
  start-page: 665
  year: 1998
  ident: ref116/cit116
  publication-title: Pharmacol. Rev.
– volume: 234
  start-page: 34
  year: 2006
  ident: ref47/cit47
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2005.07.046
– volume: 3
  start-page: 2485
  year: 2012
  ident: ref189/cit189
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20220d
– volume: 1
  start-page: 193
  year: 2009
  ident: ref112/cit112
  publication-title: Metallomics
  doi: 10.1039/b902861g
– volume: 11
  start-page: 1894
  year: 2012
  ident: ref162/cit162
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-11-0959
– volume: 44
  start-page: 3643
  year: 1984
  ident: ref11/cit11
  publication-title: Cancer Res.
– volume: 39
  start-page: 1673
  year: 2010
  ident: ref131/cit131
  publication-title: Dalton Trans.
  doi: 10.1039/B916860P
– volume: 49
  start-page: 1765
  year: 2010
  ident: ref70/cit70
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2010.09.008
– volume: 265
  start-page: 342
  year: 2012
  ident: ref81/cit81
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2012.09.001
– volume: 2
  start-page: 666
  year: 2011
  ident: ref195/cit195
  publication-title: MedChemComm
  doi: 10.1039/c1md00075f
– volume: 64
  start-page: 872
  year: 2012
  ident: ref73/cit73
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.2012.01470.x
– volume: 44
  start-page: 3616
  year: 2001
  ident: ref123/cit123
  publication-title: J. Med. Chem.
  doi: 10.1021/jm010051m
– volume: 7
  start-page: 573
  year: 2007
  ident: ref43/cit43
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2167
– volume: 29
  start-page: 203
  year: 2007
  ident: ref221/cit221
  publication-title: Exp. Oncol.
– volume: 2
  start-page: 750
  year: 2002
  ident: ref10/cit10
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc903
– volume: 222
  start-page: 444
  year: 2010
  ident: ref119/cit119
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21966
– volume: 282
  start-page: 26775
  year: 2007
  ident: ref46/cit46
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M703973200
– volume: 6
  start-page: 1
  year: 2001
  ident: ref117/cit117
  publication-title: Oncologist
  doi: 10.1634/theoncologist.6-suppl_2-1
– volume: 29
  start-page: 607
  year: 2011
  ident: ref210/cit210
  publication-title: Invest. New Drugs
  doi: 10.1007/s10637-010-9395-5
– volume: 49
  start-page: 8905
  year: 2010
  ident: ref161/cit161
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201003399
– volume: 70
  start-page: 863
  year: 1998
  ident: ref55/cit55
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199870040863
– volume: 59
  start-page: 181
  year: 1987
  ident: ref50/cit50
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198759020181
– volume: 28
  start-page: 337
  year: 2008
  ident: ref75/cit75
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.1284
– volume: 40
  start-page: 607
  year: 2008
  ident: ref36/cit36
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1007/s10863-008-9188-0
– ident: ref13/cit13
  doi: 10.1007/978-0-387-89445-4_2
– volume: 57
  start-page: 483
  year: 2006
  ident: ref159/cit159
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-005-0069-5
– volume: 103
  start-page: 645
  year: 2003
  ident: ref48/cit48
  publication-title: Chem. Rev.
  doi: 10.1021/cr020010d
– volume: 361
  start-page: 1569
  year: 2008
  ident: ref168/cit168
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2006.12.005
– volume: 48
  start-page: 495
  year: 2008
  ident: ref56/cit56
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pharmtox.48.080907.180426
– volume: 66
  start-page: 1
  year: 2010
  ident: ref121/cit121
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-010-1293-1
– volume: 478
  start-page: 23
  year: 2001
  ident: ref59/cit59
  publication-title: Mutat. Res.
  doi: 10.1016/S0027-5107(01)00141-5
– volume: 14
  start-page: 1075
  year: 2009
  ident: ref99/cit99
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2009.07.011
– volume: 232
  start-page: 49
  year: 2002
  ident: ref158/cit158
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(02)00026-7
– start-page: 1796
  year: 2006
  ident: ref169/cit169
  publication-title: Dalton Trans.
  doi: 10.1039/B511792E
– volume: 3
  start-page: 120144
  year: 2013
  ident: ref30/cit30
  publication-title: Open Biol.
  doi: 10.1098/rsob.120144
– volume: 105
  start-page: 11628
  year: 2008
  ident: ref180/cit180
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0800076105
– volume: 2
  start-page: 2490
  year: 2010
  ident: ref62/cit62
  publication-title: Toxins
  doi: 10.3390/toxins2112490
– volume: 378
  start-page: 140
  year: 2011
  ident: ref142/cit142
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2011.08.047
– start-page: 3092
  year: 2009
  ident: ref203/cit203
  publication-title: Dalton Trans.
  doi: 10.1039/b821603g
– volume: 105
  start-page: 1729
  year: 2011
  ident: ref92/cit92
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2011.09.008
– volume: 1
  start-page: 1112
  year: 2006
  ident: ref212/cit212
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.179
– volume: 12
  start-page: 171
  year: 1993
  ident: ref54/cit54
  publication-title: Cytotechnology
  doi: 10.1007/BF00744664
– ident: ref42/cit42
– volume: 393
  start-page: 84
  year: 2012
  ident: ref149/cit149
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2012.06.046
– volume: 64
  start-page: 8960
  year: 2004
  ident: ref118/cit118
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-1830
– start-page: 4764
  year: 2005
  ident: ref130/cit130
  publication-title: Chem. Commun.
  doi: 10.1039/b508531b
– volume: 48
  start-page: 4161
  year: 2005
  ident: ref124/cit124
  publication-title: J. Med. Chem.
  doi: 10.1021/jm050015d
– volume: 12
  start-page: 1015
  year: 2007
  ident: ref134/cit134
  publication-title: J. Inorg. Chem.
  doi: 10.1007/s00775-007-0272-4
– volume: 102
  start-page: 699
  year: 2008
  ident: ref196/cit196
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2007.10.015
– volume: 16
  start-page: 122
  year: 2009
  ident: ref16/cit16
  publication-title: Cancer Control
  doi: 10.1177/107327480901600204
– volume: 102
  start-page: 18269
  year: 2005
  ident: ref126/cit126
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0505798102
– volume: 32
  start-page: 57
  year: 2010
  ident: ref132/cit132
  publication-title: Top. Organomet. Chem.
– volume: 46
  start-page: 1056
  year: 2011
  ident: ref135/cit135
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2011.01.019
– volume: 340
  start-page: 117
  year: 2007
  ident: ref98/cit98
  publication-title: Arch. Pharm.
  doi: 10.1002/ardp.200600151
– volume: 26
  start-page: 271
  year: 2001
  ident: ref136/cit136
  publication-title: J. Biosci.
  doi: 10.1007/BF02703651
– volume: 88
  start-page: 1484
  year: 2003
  ident: ref171/cit171
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6600906
– volume: 12
  start-page: 121
  year: 2005
  ident: ref174/cit174
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2004.11.008
– volume: 54
  start-page: 3011
  year: 2011
  ident: ref190/cit190
  publication-title: J. Med. Chem.
  doi: 10.1021/jm2000932
– volume: 3
  start-page: 863
  year: 2011
  ident: ref97/cit97
  publication-title: Metallomics
  doi: 10.1039/c1mt00062d
– volume: 38
  start-page: 2949
  year: 1999
  ident: ref88/cit88
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19991004)38:19<2949::AID-ANIE2949>3.0.CO;2-Q
– volume: 10
  start-page: 267
  year: 2010
  ident: ref9/cit9
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2817
– volume: 12
  start-page: 5817
  year: 2006
  ident: ref77/cit77
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-1037
– volume: 94
  start-page: 345
  year: 2011
  ident: ref146/cit146
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2011.07.025
– volume: 42
  start-page: 5339
  year: 2003
  ident: ref89/cit89
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200352303
– volume: 66
  start-page: 227
  year: 1992
  ident: ref58/cit58
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1992.249
– start-page: 1
  year: 2009
  ident: ref129/cit129
  publication-title: Adv. Inorg. Chem.
– volume: 42
  start-page: 5498
  year: 2003
  ident: ref87/cit87
  publication-title: Inorg. Chem.
  doi: 10.1021/ic030045b
– volume: 8
  start-page: 579
  year: 2009
  ident: ref31/cit31
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2803
– volume: 52
  start-page: 4319
  year: 2009
  ident: ref69/cit69
  publication-title: J. Med. Chem.
  doi: 10.1021/jm900138u
– volume: 393
  start-page: 53
  year: 2012
  ident: ref110/cit110
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2012.06.003
– volume: 71
  start-page: 426
  year: 2006
  ident: ref224/cit224
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2005.11.009
– volume: 100
  start-page: 1819
  year: 2006
  ident: ref111/cit111
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2006.07.003
– volume: 8
  start-page: 256
  year: 2013
  ident: ref209/cit209
  publication-title: Chem. Med. Chem.
  doi: 10.1002/cmdc.201200505
– volume: 12
  start-page: 494
  year: 2012
  ident: ref21/cit21
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3297
– volume: 45
  start-page: 763
  year: 2008
  ident: ref109/cit109
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2008.05.031
– volume: 48
  start-page: 1863
  year: 2012
  ident: ref151/cit151
  publication-title: Chem. Commun.
  doi: 10.1039/C1CC15378A
– volume: 101
  start-page: 1903
  year: 2007
  ident: ref137/cit137
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2007.04.018
– volume: 47
  start-page: 9554
  year: 2011
  ident: ref100/cit100
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc10860c
– volume: 36
  start-page: 45
  year: 2012
  ident: ref143/cit143
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2012.01.024
– volume: 1
  start-page: 227
  year: 2002
  ident: ref79/cit79
  publication-title: Mol. Cancer Ther.
– volume: 242
  start-page: 1347
  year: 1967
  ident: ref2/cit2
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)96186-7
– volume: 56
  start-page: 1291
  year: 2013
  ident: ref182/cit182
  publication-title: J. Med. Chem.
  doi: 10.1021/jm3017442
– volume: 36
  start-page: 1
  year: 1991
  ident: ref4/cit4
  publication-title: Adv. Inorg. Chem.
  doi: 10.1016/S0898-8838(08)60035-5
– volume: 53
  start-page: 2066
  year: 1993
  ident: ref200/cit200
  publication-title: Cancer Res.
– volume: 117
  start-page: 220
  year: 2012
  ident: ref204/cit204
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2012.06.013
– volume: 77
  start-page: 51
  year: 1999
  ident: ref84/cit84
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/S0162-0134(99)00147-6
– volume: 45
  start-page: 285
  year: 2006
  ident: ref214/cit214
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200502925
– volume: 61
  start-page: 69
  year: 2011
  ident: ref7/cit7
  publication-title: Ca-Cancer J. Clin.
  doi: 10.3322/caac.20107
– volume-title: AACR 103rd Annual Meeting 2012—Targeting Metabolism and Gene Expression
  year: 2012
  ident: ref114/cit114
– volume: 283
  start-page: 13736
  year: 2008
  ident: ref205/cit205
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M709062200
– volume: 72
  start-page: 5035
  year: 2012
  ident: ref34/cit34
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-0979
– volume: 118
  start-page: 1527
  year: 2006
  ident: ref101/cit101
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.21484
– volume: 458
  start-page: 780
  year: 2009
  ident: ref26/cit26
  publication-title: Nature
  doi: 10.1038/nature07733
– volume: 30
  start-page: 9500
  year: 2010
  ident: ref67/cit67
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1544-10.2010
– volume: 125
  start-page: 1837
  year: 2012
  ident: ref25/cit25
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.110486
– volume: 104
  start-page: 79
  year: 2010
  ident: ref183/cit183
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2009.10.005
– volume: 268
  start-page: 20116
  year: 1993
  ident: ref68/cit68
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(20)80702-9
– volume: 79
  start-page: 90
  year: 2010
  ident: ref93/cit93
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2009.07.023
– volume: 5
  start-page: 300
  year: 2000
  ident: ref154/cit154
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/PL00010658
– volume: 108
  start-page: 8773
  year: 2011
  ident: ref32/cit32
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1105941108
– volume: 41
  start-page: 12847
  year: 2012
  ident: ref211/cit211
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt31654d
– start-page: 1303
  year: 2009
  ident: ref80/cit80
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200900054
– volume: 15
  start-page: 1085
  year: 2011
  ident: ref22/cit22
  publication-title: Antioxid. Redox Signaling
  doi: 10.1089/ars.2010.3663
– volume: 18
  start-page: 956
  year: 2013
  ident: ref115/cit115
  publication-title: . Redox Signaling
  doi: 10.1089/ars.2012.4880
– volume: 4
  start-page: 993
  year: 2002
  ident: ref167/cit167
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6600176
– start-page: 4903
  year: 2007
  ident: ref41/cit41
  publication-title: Dalton Trans.
  doi: 10.1039/b705551j
– volume: 200
  start-page: 698
  year: 1965
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/205698a0
– volume: 48
  start-page: 1753
  year: 2009
  ident: ref187/cit187
  publication-title: Inorg. Chem.
  doi: 10.1021/ic8020222
– volume: 133
  start-page: 5976
  year: 2011
  ident: ref150/cit150
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1112996
– volume: 68
  start-page: 8643
  year: 2008
  ident: ref8/cit8
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-6611
– volume: 45
  start-page: 10882
  year: 2006
  ident: ref138/cit138
  publication-title: Inorg. Chem.
  doi: 10.1021/ic061460h
– volume-title: Cisplatin
  year: 1999
  ident: ref3/cit3
  doi: 10.1002/9783906390420
– volume: 51
  start-page: 8895
  year: 2012
  ident: ref94/cit94
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201202939
– volume: 2003
  start-page: 1206
  year: 2003
  ident: ref82/cit82
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200390156
– volume: 65
  start-page: 948
  year: 2005
  ident: ref38/cit38
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.948.65.3
– volume: 5
  start-page: 2140
  year: 2008
  ident: ref165/cit165
  publication-title: Chem. Biodiversity
  doi: 10.1002/cbdv.200890195
– volume: 12
  start-page: 147
  year: 2012
  ident: ref208/cit208
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-12-147
– volume: 4
  start-page: 1271
  year: 2012
  ident: ref181/cit181
  publication-title: Metallomics
  doi: 10.1039/c2mt20189e
– volume: 14
  start-page: 439
  year: 2009
  ident: ref141/cit141
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-008-0460-x
– volume: 334
  start-page: 115
  year: 2007
  ident: ref63/cit63
  publication-title: Am. J. Med. Sci.
  doi: 10.1097/MAJ.0b013e31812dfe1e
– volume: 14
  start-page: 1139
  year: 2009
  ident: ref105/cit105
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-009-0558-9
– volume: 59
  start-page: 657
  year: 2001
  ident: ref53/cit53
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.59.4.657
– ident: ref15/cit15
– volume: 30
  start-page: 135
  year: 2002
  ident: ref198/cit198
  publication-title: Bone Marrow Transplant.
  doi: 10.1038/sj.bmt.1703605
– volume: 22
  start-page: 218
  year: 2011
  ident: ref186/cit186
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc100369p
– volume: 41
  start-page: 11293
  year: 2012
  ident: ref219/cit219
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt30727h
– volume: 130
  start-page: 15764
  year: 2008
  ident: ref140/cit140
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja805555a
– volume: 113
  start-page: 1857
  year: 2008
  ident: ref12/cit12
  publication-title: Cancer
  doi: 10.1002/cncr.23651
– volume: 56
  start-page: 1182
  year: 2013
  ident: ref202/cit202
  publication-title: J. Med. Chem.
  doi: 10.1021/jm301648f
– volume: 49
  start-page: 5524
  year: 2006
  ident: ref103/cit103
  publication-title: J. Med. Chem.
  doi: 10.1021/jm060436a
– volume: 61
  start-page: 692
  year: 2007
  ident: ref122/cit122
  publication-title: Chimia
  doi: 10.2533/chimia.2007.692
– volume: 128
  start-page: 1078
  year: 2006
  ident: ref157/cit157
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056726i
– volume: 49
  start-page: 6858
  year: 2006
  ident: ref127/cit127
  publication-title: J. Med. Chem.
  doi: 10.1021/jm060596m
– volume: 64
  start-page: 706
  year: 2012
  ident: ref60/cit60
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.111.005637
– volume: 77
  start-page: 105
  year: 1999
  ident: ref64/cit64
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/S0162-0134(99)00135-X
– volume: 9
  start-page: 595
  year: 2009
  ident: ref223/cit223
  publication-title: Curr. Cancer Drug Targets
  doi: 10.2174/156800909789056962
– volume: 55
  start-page: 11013
  year: 2012
  ident: ref218/cit218
  publication-title: J. Med. Chem.
  doi: 10.1021/jm3014713
– volume: 86
  start-page: 1652
  year: 2002
  ident: ref178/cit178
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6600290
– volume: 7
  start-page: 173
  year: 1985
  ident: ref49/cit49
  publication-title: Pharm. Weekbl.
  doi: 10.1007/BF02307573
– volume: 40
  start-page: 8611
  year: 2011
  ident: ref147/cit147
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt10084j
– volume: 32
  start-page: 21
  year: 2010
  ident: ref170/cit170
  publication-title: Top. Organomet. Chem.
– volume: 18
  start-page: 6581
  year: 2012
  ident: ref213/cit213
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201103378
– volume: 273
  start-page: 14721
  year: 1998
  ident: ref44/cit44
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.24.14721
– volume: 92
  start-page: 1295
  year: 2000
  ident: ref14/cit14
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/92.16.1295
– volume: 19
  start-page: 544
  year: 2008
  ident: ref175/cit175
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2007.12.002
– volume: 475
  start-page: 231
  year: 2011
  ident: ref33/cit33
  publication-title: Nature
  doi: 10.1038/nature10167
– volume: 53
  start-page: 8192
  year: 2010
  ident: ref188/cit188
  publication-title: J. Med. Chem.
  doi: 10.1021/jm100560f
– volume: 37
  start-page: 795
  year: 2012
  ident: ref85/cit85
  publication-title: Drugs Future
  doi: 10.1358/dof.2012.037.011.1830167
– start-page: 10651
  year: 2009
  ident: ref5/cit5
  publication-title: Dalton Trans.
– volume: 4
  start-page: 1257
  year: 2012
  ident: ref107/cit107
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc.12.69
– ident: ref191/cit191
  doi: 10.1021/cb400070a
– volume: 324
  start-page: 269
  year: 2004
  ident: ref37/cit37
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.09.047
– volume: 51
  start-page: 5310
  year: 2008
  ident: ref172/cit172
  publication-title: J. Med. Chem.
  doi: 10.1021/jm8003043
– volume: 63
  start-page: 6170
  year: 2003
  ident: ref206/cit206
  publication-title: Cancer Res.
– volume: 2010
  start-page: pii:430939
  year: 2010
  ident: ref199/cit199
  publication-title: Met.-Based Drugs
– volume: 51
  start-page: 6773
  year: 2008
  ident: ref148/cit148
  publication-title: J. Med. Chem.
  doi: 10.1021/jm8006678
– volume: 18
  start-page: 1787
  year: 2009
  ident: ref152/cit152
  publication-title: Expert Opin. Invest. Drugs
  doi: 10.1517/13543780903362437
– volume: 49
  start-page: 6366
  year: 2010
  ident: ref144/cit144
  publication-title: Inorg. Chem.
  doi: 10.1021/ic100277w
– volume: 60
  start-page: 180
  year: 2007
  ident: ref217/cit217
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH06307
– volume: 315
  start-page: 1403
  year: 2005
  ident: ref145/cit145
  publication-title: Pharmacology
– volume: 55
  start-page: 577
  year: 2005
  ident: ref179/cit179
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-004-0932-9
– volume: 39
  start-page: 8113
  year: 2010
  ident: ref153/cit153
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt00292e
– volume: 128
  start-page: 1739
  year: 2006
  ident: ref128/cit128
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja055886r
– volume: 64
  start-page: 993
  year: 2012
  ident: ref156/cit156
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2012.01.007
– volume: 29
  start-page: 73
  year: 2011
  ident: ref197/cit197
  publication-title: Invest. New Drugs
  doi: 10.1007/s10637-009-9336-3
– volume: 32
  start-page: 141
  year: 2010
  ident: ref6/cit6
  publication-title: Top. Organomet. Chem.
– volume: 98
  start-page: 1634
  year: 2004
  ident: ref91/cit91
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2004.04.020
– volume: 8
  start-page: 1018
  year: 2007
  ident: ref17/cit17
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(07)70342-X
– volume: 15
  start-page: 21
  year: 2012
  ident: ref19/cit19
  publication-title: Drug Resist. Update
  doi: 10.1016/j.drup.2012.01.008
– volume: 98
  start-page: 1614
  year: 2004
  ident: ref226/cit226
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2004.05.017
– volume: 67
  start-page: 1171
  year: 1993
  ident: ref57/cit57
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1993.221
– volume: 42
  start-page: 283
  year: 2002
  ident: ref108/cit108
  publication-title: CRC Crit. Rev. Oncol–Hem.
  doi: 10.1016/S1040-8428(01)00225-6
– volume: 26
  start-page: 140
  year: 2004
  ident: ref220/cit220
  publication-title: Exp. Oncol.
– volume-title: Free Radicals in Biology and Medicine
  year: 2007
  ident: ref29/cit29
– volume: 346
  start-page: 1
  issue: 1
  year: 2000
  ident: ref71/cit71
  publication-title: Biochem. J.
  doi: 10.1042/bj3460001
– volume: 54
  start-page: 250
  year: 2010
  ident: ref40/cit40
  publication-title: Platinum Met. Rev.
  doi: 10.1595/147106710X534326
– volume: 8
  start-page: 726
  year: 2003
  ident: ref155/cit155
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-003-0471-6
– volume: 14
  start-page: 935
  year: 2009
  ident: ref133/cit133
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-009-0506-8
– volume: 130
  start-page: 12570
  year: 2008
  ident: ref95/cit95
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804027j
– volume: 8
  start-page: 10
  year: 2009
  ident: ref65/cit65
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-08-0840
– volume: 61
  start-page: 1250
  year: 2009
  ident: ref28/cit28
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2009.05.010
– volume: 14
  start-page: 1128
  year: 2007
  ident: ref90/cit90
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2007.08.016
– start-page: 3034
  year: 2007
  ident: ref125/cit125
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200700206
– ident: ref201/cit201
– volume: 52
  start-page: 4194
  year: 2013
  ident: ref194/cit194
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300747
– volume: 7
  start-page: 1875
  year: 2008
  ident: ref27/cit27
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.7.12.7067
SSID ssj0009346
Score 2.573506
Snippet Platinum complexes are widely used anticancer drugs. New generations of metal chemotherapeutics offer the prospect of combating platinum resistance and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12276
SubjectTerms Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Cell Line, Tumor
Drug Screening Assays, Antitumor - methods
Humans
Iridium - chemistry
Organometallic Compounds - chemical synthesis
Organometallic Compounds - chemistry
Organometallic Compounds - pharmacology
Osmium - chemistry
Oxidation-Reduction
Ruthenium - chemistry
Title Next-Generation Metal Anticancer Complexes: Multitargeting via Redox Modulation
URI http://dx.doi.org/10.1021/ic400835n
https://www.ncbi.nlm.nih.gov/pubmed/23879584
https://www.proquest.com/docview/1449274765
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoAL-1KWKiwHLgHi2E7DDRWqCqlFAir1FnmVKqoEtSmq-HrsLAVEC8p1nFgzduaNx_MG4JwZTM-xxK7QSLuYCO0ygqjLkWZKap-GGZF2p0vbPfzQJ_0KnC3I4CPvaiBwhhPiJVhG1Gxei3-az1_Mun5ejWPjII_SsKQP-j7Uuh4x_ul6FuDJzK-01uGurM7Jr5O8Xk5Sfik-fpM1_jXlDVgrcKVzmy-ETaioeAtWmmU7t2147NoYN2eZtsZwOiq1A2J7mG0sP3Lsr2Gopmp84-RludklcePanPcBc56UTKZOJ5FFv68d6LXuX5ptt-im4DLjlVOX-9xHAeXYAAKiPfMQ2mBEesqgNlvAigSivmwgn4U6UDSwxdVWyiOSCCz8XajGSaz2wUGcUX1tbOxrghlWDCFp1C8CSRgLuKxB3ag7KnbDOMoS3ciLZnqpwUVpiUgUXOS2JcZwnujpTPQtJ-CYJ3RSmjMyarU5DxarZGI-jXFoA29KarCX23n2GoNWgtAAsIP_pnsIq8h2wbCnyfgIqulooo4NFkl5PVuLnx_V1wo
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEA4eD_rifaxnFR98qdo0Sa1vsijrsSt4gG8lJyxKV2xXxF_vTNpdDxSlr5N0yEw7XzKZbwjZkYDpFTMs1I66kHHtQsmpCBV10hoXi9QTabc7onXHzu_5fU2Tg7UwoEQBMxU-if_BLhDtdzXzcCEfJeMAQih683Hz5oNgN66KcnA7FAmRDliEPg_FCKSLrxHoF1jpw8vpdNWnyCvmb5U87PVLtaffvnE2_k_zGTJVo8zguHKLWTJi8zky0Rw0d5snVx3c8Vac02iaoG1LHJDj0Tb4wXOAP4pH-2qLo6Aq0vVXxiHQBS9dGVxb03sN2j1Td_9aIHenJ7fNVlj3VgglxOgyVLGKaSIUA3jAXQQPF4eSm8gChsNyVqqpiM0hjWXqEisSLLVGqYgbrpmOF8lY3svtMgmoksIdgMVjx5lkVlJqwAo6MVzKRJkG2YBlyepvo8h82ptG2XBdGmR3YJBM18zk2CDj8SfR7aHoU0XH8ZPQ1sCqGSwrZkBkbnt9eDVjKW7DBW-Qpcrcw2kAuyQpwLGVv9TdJBOt2_ZldnnWuVglkxT7Y-A5M1sjY-Vz364DSinVhnfPd8IJ32s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4VKpVe6LukUOpWHHpxqNe7a9wbShvRR0JFGyk3a59SBLKj2EGov54ZP1JAVCBfx-vRzqzn252dbwD2FGJ6zS0PjWc-5ML4UAkmQ828ctbHMq2JtEdjeTTh36di2m4UqRYGlShxpLJO4tOqnlvfMgxE-zPDa8iQr8FDSteRRx8Ofv8j2Y2bwhzaEkVSph2T0NVXKQqZ8noU-g-0rEPM8Akcr5Srb5ac9peV7pu_N3gb76_9U9hs0WZw2LjHM3jg8uewMeiavL2A4zHtfBvuaTJRMHIVvZDTETf6wyKgH8aZu3Dl56Ap1q2vjmPAC85nKjhxtrgIRoVtu4C9hMnw65_BUdj2WAgVxuoq1LGOWSI1R5ggfISPkAdK2MghlqOyVmaYjO0Bi1XqEycTKrkmqUhYYbiJX8F6XuRuCwKmlfSf0PKxF1xxpxizaAmTWKFUom0PdnFqsnaNlFmd_mZRtpqXHnzsjJKZlqGcGmWc3Sb6YSU6b2g5bhN631k2w2mlTIjKXbHET3Oe0nZcih68bky-GgYxTJIiLHtzl7rv4NGvL8Ps57fxj214zKhNBh038x1YrxZL9xbBSqV3aw-9BDBa4e4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Next-Generation+Metal+Anticancer+Complexes%3A+Multitargeting+via+Redox+Modulation&rft.jtitle=Inorganic+chemistry&rft.au=Romero-Canelo%CC%81n%2C+Isolda&rft.au=Sadler%2C+Peter+J.&rft.date=2013-11-04&rft.pub=American+Chemical+Society&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=52&rft.issue=21&rft.spage=12276&rft.epage=12291&rft_id=info:doi/10.1021%2Fic400835n&rft.externalDocID=g20529982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon