Plasmon Enhanced Terahertz Emission from Single Layer Graphene
We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, ‘nonreson...
Saved in:
Published in | ACS nano Vol. 8; no. 9; pp. 9089 - 9096 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, ‘nonresonant laser-pulse-induced photon drag currents’ appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, ‘surface-plasmon-enhanced optical rectification’, made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices. |
---|---|
AbstractList | We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices. We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices. |
Author | Ramakrishnan, Gopakumar Kim, Dai-Sik Song, Hyelynn Kim, Yong Hyup Bahk, Young-Mi Ahn, Kwang Jun Choi, Geunchang Choi, Jongho Planken, Paul C. M |
AuthorAffiliation | Ajou University Center for Subwavelength Optics and Department of Physics and Astronomy Delft University of Technology Optics Research Group, Department of Imaging Physics, Faculty of Applied Sciences School of Mechanical and Aerospace Engineering Department of Energy Systems Research and Department of Physics Seoul National University Institute of Advanced Aerospace Technology |
AuthorAffiliation_xml | – name: Center for Subwavelength Optics and Department of Physics and Astronomy – name: Department of Energy Systems Research and Department of Physics – name: School of Mechanical and Aerospace Engineering – name: Institute of Advanced Aerospace Technology – name: Optics Research Group, Department of Imaging Physics, Faculty of Applied Sciences – name: Ajou University – name: Seoul National University – name: Delft University of Technology |
Author_xml | – sequence: 1 givenname: Young-Mi surname: Bahk fullname: Bahk, Young-Mi – sequence: 2 givenname: Gopakumar surname: Ramakrishnan fullname: Ramakrishnan, Gopakumar – sequence: 3 givenname: Jongho surname: Choi fullname: Choi, Jongho – sequence: 4 givenname: Hyelynn surname: Song fullname: Song, Hyelynn – sequence: 5 givenname: Geunchang surname: Choi fullname: Choi, Geunchang – sequence: 6 givenname: Yong Hyup surname: Kim fullname: Kim, Yong Hyup – sequence: 7 givenname: Kwang Jun surname: Ahn fullname: Ahn, Kwang Jun – sequence: 8 givenname: Dai-Sik surname: Kim fullname: Kim, Dai-Sik email: dsk@phya.snu.ac.kr, p.c.m.planken@tudelft.nl – sequence: 9 givenname: Paul C. M surname: Planken fullname: Planken, Paul C. M email: dsk@phya.snu.ac.kr, p.c.m.planken@tudelft.nl |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25137623$$D View this record in MEDLINE/PubMed |
BookMark | eNptkEtLw0AUhQep2Icu_AOSjaCL2nlkkslGkFKrUFCwC3fDTXLHpiSTOpMs6q830sdCuroX7ncO95wh6dnaIiHXjD4wytnEWkm55CI-IwOWiGhMVfTZO-6S9cnQ-zWlMlZxdEH6XDIRR1wMyON7Cb6qbTCzK7AZ5sESHazQNT_BrCq8L7qbcXUVfBT2q8RgAVt0wdzBZoUWL8m5gdLj1X6OyPJ5tpy-jBdv89fp02IMQrFmDKlkcZwkTAkDNE1VznNAlUKKkFNKM0hMGIXMcBDIjVSJgiyVaEDFScrEiNztbDeu_m7RN7p7LcOyBIt16zWTURhRzlnYoTd7tE0rzPXGFRW4rT5E7oDJDshc7b1Do7OigabL2TgoSs2o_itVH0vtFPf_FAfTU-ztjoXM63XdOtvVcoL7BRKQgfA |
CitedBy_id | crossref_primary_10_1063_1_4947105 crossref_primary_10_1364_OE_463568 crossref_primary_10_1002_adpr_202100218 crossref_primary_10_1016_j_carbon_2018_02_067 crossref_primary_10_1016_j_jlumin_2021_118487 crossref_primary_10_1039_D4TC01502A crossref_primary_10_1021_acsphotonics_9b01037 crossref_primary_10_1016_j_isci_2024_108939 crossref_primary_10_1109_JLT_2016_2575002 crossref_primary_10_1021_acsphotonics_2c00993 crossref_primary_10_3390_nano14131109 crossref_primary_10_1021_acs_langmuir_7b02799 crossref_primary_10_1126_sciadv_ads8786 crossref_primary_10_1088_1742_6596_1695_1_012113 crossref_primary_10_1007_s11432_019_2676_x crossref_primary_10_1016_j_apsusc_2018_04_117 crossref_primary_10_1021_acs_nanolett_5b00494 crossref_primary_10_1063_1_4943063 crossref_primary_10_1038_srep10308 crossref_primary_10_1103_PhysRevB_94_161405 crossref_primary_10_1088_1361_648X_ab00c0 crossref_primary_10_1103_PhysRevB_93_235416 crossref_primary_10_1515_nanoph_2020_0211 crossref_primary_10_1016_j_optlastec_2022_108558 crossref_primary_10_1364_OE_23_028584 crossref_primary_10_1038_s41377_020_00452_y crossref_primary_10_3390_photonics2020594 crossref_primary_10_1021_acsphotonics_9b00536 crossref_primary_10_1002_adom_201800426 crossref_primary_10_1134_S1063785019120204 crossref_primary_10_1109_MNANO_2016_2572244 crossref_primary_10_1002_adom_201500469 crossref_primary_10_1063_1_5039936 crossref_primary_10_3389_fphy_2021_726806 crossref_primary_10_1002_adom_202001500 crossref_primary_10_1109_JPHOT_2017_2691261 crossref_primary_10_1364_OE_496435 crossref_primary_10_1021_acsami_0c22772 crossref_primary_10_1515_nanoph_2021_0785 crossref_primary_10_1134_S1064226922100060 crossref_primary_10_1103_PhysRevApplied_12_044063 crossref_primary_10_1038_s41377_023_01163_w crossref_primary_10_1088_2053_1583_abf08d crossref_primary_10_7498_aps_69_20200680 crossref_primary_10_1134_S1064226921090114 crossref_primary_10_1039_C9AN00798A crossref_primary_10_1088_2040_8986_aba678 crossref_primary_10_1103_PhysRevB_94_195207 crossref_primary_10_1103_PhysRevX_10_031004 crossref_primary_10_1063_5_0048795 crossref_primary_10_1021_acsami_4c17117 crossref_primary_10_1039_C7NR02227A crossref_primary_10_1088_2053_1583_ad3135 crossref_primary_10_1063_5_0134396 crossref_primary_10_1038_s41377_024_01486_2 crossref_primary_10_1103_PhysRevB_95_075424 crossref_primary_10_1088_0256_307X_38_5_054201 crossref_primary_10_7567_APEX_9_121601 crossref_primary_10_1002_advs_202103229 crossref_primary_10_3389_fphy_2023_1217439 crossref_primary_10_1103_PhysRevResearch_2_013008 crossref_primary_10_3390_photonics10070810 crossref_primary_10_1021_acsnano_1c04601 crossref_primary_10_1364_PRJ_7_000518 crossref_primary_10_1103_PhysRevB_90_241416 crossref_primary_10_1002_adma_201504516 crossref_primary_10_1080_23746149_2022_2120416 crossref_primary_10_1088_2043_6262_7_1_013002 crossref_primary_10_1002_lpor_202301146 crossref_primary_10_1021_acsami_1c16197 crossref_primary_10_1364_OME_8_000128 crossref_primary_10_1364_OE_424230 crossref_primary_10_1063_1_4962454 crossref_primary_10_34133_ultrafastscience_0047 crossref_primary_10_1002_lpor_201600199 crossref_primary_10_1002_adom_202101860 crossref_primary_10_1021_acsami_6b13961 crossref_primary_10_1021_acsphotonics_0c01012 |
Cites_doi | 10.1038/ncomms1656 10.1364/OE.17.016092 10.1021/nl203003p 10.1103/PhysRevB.79.245311 10.1103/PhysRevLett.108.136802 10.1063/1.3559928 10.1038/nature04235 10.1007/b80319 10.1364/JOSAB.16.001204 10.1021/nl073305l 10.1063/1.3594716 10.1063/1.3151834 10.1103/PhysRevB.81.165441 10.1021/nl302656d 10.1038/ncomms1464 10.1021/nn304028b 10.1038/nmat1849 10.1021/nn300989g 10.1364/JOSAB.21.000622 10.1126/science.1102896 10.1063/1.4830370 10.1038/nphoton.2010.186 10.1103/PhysRevB.85.035443 10.1063/1.3275740 10.1364/OE.20.004067 10.1364/OL.37.003765 10.1021/nl301774e 10.1364/OL.37.003237 10.1038/nature04233 10.1103/PhysRevB.84.125429 10.1103/PhysRevLett.107.276601 10.1364/OL.36.002572 10.1016/j.physrep.2013.10.003 10.1103/PhysRevB.85.121413 10.1038/nmat3433 10.1038/nphoton.2012.147 10.1103/PhysRevB.84.045432 10.1364/OE.19.004667 10.1109/TNANO.2007.910334 10.1021/nl402120t 10.1038/nature11458 10.1038/ncomms1589 10.1103/PhysRevB.82.125411 10.1038/nmat3417 10.1038/srep04007 10.1103/PhysRevLett.105.227402 10.1063/1.4865906 10.1021/nl9040737 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/nn5025237 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 9096 |
ExternalDocumentID | 25137623 10_1021_nn5025237 a643916500 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a381t-ab517799183fa0bb8d2dae8babead000ca9f4641f2a3e2f5898acb5efa879b13 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 09:23:02 EDT 2025 Thu Apr 03 07:01:25 EDT 2025 Tue Jul 01 01:33:43 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 Thu Aug 27 13:42:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | terahertz spectroscopy ultrafast photon drag gold nanostructures graphene surface plasmon |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-ab517799183fa0bb8d2dae8babead000ca9f4641f2a3e2f5898acb5efa879b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25137623 |
PQID | 1564602214 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1564602214 pubmed_primary_25137623 crossref_citationtrail_10_1021_nn5025237 crossref_primary_10_1021_nn5025237 acs_journals_10_1021_nn5025237 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-23 |
PublicationDateYYYYMMDD | 2014-09-23 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Rana F. (ref22/cit22) 2008; 7 Irfan M. (ref31/cit31) 2013; 103 Bonaccorso F. (ref20/cit20) 2010; 4 Kim J. (ref43/cit43) 2012; 12 Novoselov K. S. (ref2/cit2) 2005; 438 Karch J. (ref29/cit29) 2011; 107 Grosse N. B. (ref48/cit48) 2012; 108 Ramakrishnan G. (ref46/cit46) 2014; 104 Glazov M. M. (ref15/cit15) 2014; 535 Novoselov K. S. (ref1/cit1) 2004; 306 Mikhailov S. A. (ref8/cit8) 2011; 84 Bykov A. Y. (ref9/cit9) 2012; 85 Novoselov K. S. (ref5/cit5) 2012; 490 Entin M. V. (ref12/cit12) 2010; 81 Lee S. H. (ref44/cit44) 2012; 11 Dean J. J. (ref7/cit7) 2010; 82 Obraztsov P. A. (ref16/cit16) 2014 Bao Q. (ref21/cit21) 2012; 6 Cheon S. (ref40/cit40) 2012; 37 Martinez J. C. (ref17/cit17) 2012; 37 Mikheev G. M. (ref36/cit36) 2011; 12 Fang Z. (ref41/cit41) 2012; 12 Ramakrishnan G. (ref49/cit49) 2011; 36 Geim A. K. (ref4/cit4) 2007; 6 Fang Z. (ref42/cit42) 2012; 6 Boubanga-Tombet S. (ref25/cit25) 2012; 85 Obraztsov P. A. (ref37/cit37) 2011; 98 Liu Y. (ref39/cit39) 2011; 2 Ryzhii V. (ref23/cit23) 2009; 79 Echtermeyer T. J. (ref38/cit38) 2011; 2 Dragoman D. (ref28/cit28) 2011; 109 Gallot G. (ref32/cit32) 1999; 16 Prechtel L. (ref19/cit19) 2012; 3 Gu T. (ref11/cit11) 2012; 6 Obraztsov A. N. (ref35/cit35) 2009; 94 Nagel M. (ref30/cit30) 2011; 19 Jiang C. Y. (ref14/cit14) 2011; 84 Zhu X. (ref45/cit45) 2013; 13 Vicarelli L. (ref24/cit24) 2012; 11 Dean J. J. (ref6/cit6) 2009; 95 Ramakrishnan G. (ref47/cit47) 2012; 20 Sun D. (ref18/cit18) 2010; 10 Newson R. W. (ref26/cit26) 2008; 8 van der Valk N. C. J. (ref33/cit33) 2004; 21 Hong S.-Y. (ref10/cit10) 2013; 3 Sakai K. (ref34/cit34) 2005 Karch J. (ref13/cit13) 2010; 105 Zhang Y. (ref3/cit3) 2005; 438 Ramakrishnan G. (ref27/cit27) 2009; 17 |
References_xml | – volume: 3 start-page: 646 year: 2012 ident: ref19/cit19 publication-title: Nat. Commun. doi: 10.1038/ncomms1656 – volume: 17 start-page: 16092 year: 2009 ident: ref27/cit27 publication-title: Opt. Express doi: 10.1364/OE.17.016092 – volume: 12 start-page: 77 year: 2011 ident: ref36/cit36 publication-title: Nano Lett. doi: 10.1021/nl203003p – volume: 79 start-page: 245311 year: 2009 ident: ref23/cit23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.245311 – volume: 108 start-page: 136802 year: 2012 ident: ref48/cit48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.136802 – volume: 98 start-page: 091903 year: 2011 ident: ref37/cit37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3559928 – volume: 438 start-page: 201 year: 2005 ident: ref3/cit3 publication-title: Nature doi: 10.1038/nature04235 – volume-title: Terahertz Optoelectronics, Topics in Applied Physics year: 2005 ident: ref34/cit34 doi: 10.1007/b80319 – volume: 16 start-page: 1204 year: 1999 ident: ref32/cit32 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.16.001204 – volume: 8 start-page: 1586 year: 2008 ident: ref26/cit26 publication-title: Nano Lett. doi: 10.1021/nl073305l – volume: 109 start-page: 124307 year: 2011 ident: ref28/cit28 publication-title: J. Appl. Phys. doi: 10.1063/1.3594716 – volume: 94 start-page: 231112 year: 2009 ident: ref35/cit35 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3151834 – volume: 81 start-page: 165441 year: 2010 ident: ref12/cit12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.165441 – volume: 12 start-page: 5598 year: 2012 ident: ref43/cit43 publication-title: Nano Lett. doi: 10.1021/nl302656d – volume: 2 start-page: 458 year: 2011 ident: ref38/cit38 publication-title: Nat. Commun. doi: 10.1038/ncomms1464 – volume: 6 start-page: 10222 year: 2012 ident: ref42/cit42 publication-title: ACS Nano doi: 10.1021/nn304028b – volume: 6 start-page: 183 year: 2007 ident: ref4/cit4 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 6 start-page: 3677 year: 2012 ident: ref21/cit21 publication-title: ACS Nano doi: 10.1021/nn300989g – volume: 21 start-page: 622 year: 2004 ident: ref33/cit33 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.21.000622 – volume: 306 start-page: 666 year: 2004 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.1102896 – volume: 103 start-page: 201108 year: 2013 ident: ref31/cit31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4830370 – volume: 4 start-page: 611 year: 2010 ident: ref20/cit20 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.186 – volume: 85 start-page: 035443 year: 2012 ident: ref25/cit25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.035443 – volume: 3 start-page: 021014 year: 2013 ident: ref10/cit10 publication-title: Phys. Rev. X – volume: 95 start-page: 261910 year: 2009 ident: ref6/cit6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3275740 – volume: 20 start-page: 4067 year: 2012 ident: ref47/cit47 publication-title: Opt. Express doi: 10.1364/OE.20.004067 – volume: 37 start-page: 3765 year: 2012 ident: ref40/cit40 publication-title: Opt. Lett. doi: 10.1364/OL.37.003765 – volume: 12 start-page: 3808 year: 2012 ident: ref41/cit41 publication-title: Nano Lett. doi: 10.1021/nl301774e – volume: 37 start-page: 3237 year: 2012 ident: ref17/cit17 publication-title: Opt. Lett. doi: 10.1364/OL.37.003237 – volume: 438 start-page: 197 year: 2005 ident: ref2/cit2 publication-title: Nature doi: 10.1038/nature04233 – volume: 84 start-page: 125429 year: 2011 ident: ref14/cit14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.125429 – volume: 107 start-page: 276601 year: 2011 ident: ref29/cit29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.276601 – volume: 36 start-page: 2572 year: 2011 ident: ref49/cit49 publication-title: Opt. Lett. doi: 10.1364/OL.36.002572 – volume: 535 start-page: 101 year: 2014 ident: ref15/cit15 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2013.10.003 – volume: 85 start-page: 121413 year: 2012 ident: ref9/cit9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.121413 – volume: 11 start-page: 936 year: 2012 ident: ref44/cit44 publication-title: Nat. Mater. doi: 10.1038/nmat3433 – volume: 6 start-page: 554 year: 2012 ident: ref11/cit11 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.147 – volume: 84 start-page: 045432 year: 2011 ident: ref8/cit8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.045432 – volume: 19 start-page: 4667 year: 2011 ident: ref30/cit30 publication-title: Opt. Express doi: 10.1364/OE.19.004667 – volume: 7 start-page: 91 year: 2008 ident: ref22/cit22 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2007.910334 – volume: 13 start-page: 4690 year: 2013 ident: ref45/cit45 publication-title: Nano Lett. doi: 10.1021/nl402120t – volume: 490 start-page: 192 year: 2012 ident: ref5/cit5 publication-title: Nature doi: 10.1038/nature11458 – volume: 2 start-page: 579 year: 2011 ident: ref39/cit39 publication-title: Nat. Commun. doi: 10.1038/ncomms1589 – volume: 82 start-page: 125411 year: 2010 ident: ref7/cit7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.125411 – volume: 11 start-page: 865 year: 2012 ident: ref24/cit24 publication-title: Nat. Mater. doi: 10.1038/nmat3417 – start-page: 4007 year: 2014 ident: ref16/cit16 publication-title: Sci. Rep. doi: 10.1038/srep04007 – volume: 105 start-page: 227402 year: 2010 ident: ref13/cit13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.227402 – volume: 104 start-page: 071104 year: 2014 ident: ref46/cit46 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4865906 – volume: 10 start-page: 1293 year: 2010 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl9040737 |
SSID | ssj0057876 |
Score | 2.4456365 |
Snippet | We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9089 |
Title | Plasmon Enhanced Terahertz Emission from Single Layer Graphene |
URI | http://dx.doi.org/10.1021/nn5025237 https://www.ncbi.nlm.nih.gov/pubmed/25137623 https://www.proquest.com/docview/1564602214 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoED-1KWyiwHLoHGcZzkgoRKS4UAIbVIvUW2YwuJKkVteunXM85Sgdju49gav8w8e-xngPNWKwlMoHBZknDuMBkaJ7Ib-czThoee0X5eLnh84r0Xdj_0hzU4-6WCT92rNPUxL1MvWIJlyvHntfyn3a_CrUUcL0rHuDRG_lDJB31ualOPmn5NPb_wyTyvdNfhtrqdUxwnebucZfJSzb-LNf415A1YK3kluSmAsAk1nW7B6ie1wW24fkamjKgjnfQ1r_uTgcZQoyfZnHRwuu2-GbHXTUgf7UeaPAjk4-TOSlpjRNyBQbczaPec8vkER2AazhwhfTcIkP-hy0VLyjChidChFBLRg5FQicgwzlxDhaep8cMoFEr62ogwiKTr7UI9Had6Hwi2V4lPFU8UZ0KpiBmr--e2NAs19tKAJro3LtE_jfPCNnXjhR8acFF5Plal9rh9AmP0k-npwvS9ENz4yeikmr4Y_WNrHCLV4xl27XPGkZe4rAF7xbwuPoNUDsMp9Q7-G-4hrCAvYvZYCPWOoJ5NZvoYuUcmmzn2PgBIvtDK |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8UD-rB7w_8wGo8eBluXddtFxNCQFQgJmDibWm7NiaSYWBc-Ot93Qaiwej9tX3pe33v1772V4SubTv2tS9hWxIzZlERaCs0B_nUVZoFrlZeVi7odFnrhT6-eq8FTY55CwNKjKGncVbE_2IXcG6TxIP0TFx_Fa0BCCHGm2v13izqGsdjeQUZdsgAI2YsQotNTQaS4-8Z6BdYmaWX5nb-T1GmWHar5L06SUVVTn9wNv5P8x20VaBMXMvdYhetqGQPbS5wD-6ju2fAzeCDuJG8ZbcAcF9B4FGjdIobYHxziobN4xPcA_mBwm0O6BzfG4JriI8HqN9s9Ostq_hMweKQlFOLC8_xfUCDYABuCxHEJOYqEFyAL0FclDzUlFFHE-4qor0gDLgUntI88EPhuIeolAwTdYwwtJexRySLJaNcypBqwwLo2IoGCkYpowpMQ1SshXGUlbmJE83noYxuZgaIZMFEbj7EGCwTvZqLfuT0G8uELmdWjGB-TMWDJ2o4gaE9RhmgFIeW0VFu3nk3AOwguBL35C91L9B6q99pR-2H7tMp2gDERM2FEeKeoVI6mqhzQCWpqGTu-Ak6Ttkr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEL8oJkYf_P7AD6zGB1-GbOu67cWEIIiKaAImvi1t18ZEMwiMF_56r2MQNBh9v7aX3vXu1177K8BlpRL72pe4LYkZs6gItBWag3zqKs0CVysvKxc8tVnzlT68eW_5RtG8hUElhtjTMCvim1Xdj3XOMGBfJ4mHKdpx_WVYMeU649HVWmcaeY3zsUkVGXfJCCWmTELzTU0WksPvWegXaJmlmMYmPM-Uy26WfJRHqSjL8Q_exv9rvwUbOdok1Yl7bMOSSnZgfY6DcBduXhA_oy-SevKe3QYgXYUBSA3SMamjE5jTNGIeoZAOyn8q0uKI0smdIbrGOLkH3Ua9W2ta-acKFsfknFpceLbvIypEQ_CKEEHsxFwFggv0KYyPkoeaMmprh7vK0V4QBlwKT2ke-KGw3X0oJL1EHQLB9jL2HMliySiXMqTasAHaFUUDhaMUoYRTEeVrYhhl5W7HjmbzUISrqREimTOSm48xPheJXsxE-xMajkVC51NLRjg_pvLBE9Ub4dAeowzRik2LcDAx8awbBHgYZB336C91z2D15bYRte7bj8ewhsCJmnsjjnsChXQwUqcITlJRyjzyC3kJ264 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmon+Enhanced+Terahertz+Emission+from+Single+Layer+Graphene&rft.jtitle=ACS+nano&rft.au=Bahk%2C+Young-Mi&rft.au=Ramakrishnan%2C+Gopakumar&rft.au=Choi%2C+Jongho&rft.au=Song%2C+Hyelynn&rft.date=2014-09-23&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=8&rft.issue=9&rft.spage=9089&rft.epage=9096&rft_id=info:doi/10.1021%2Fnn5025237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nn5025237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |