Plasmon Enhanced Terahertz Emission from Single Layer Graphene

We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, ‘nonreson...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 8; no. 9; pp. 9089 - 9096
Main Authors Bahk, Young-Mi, Ramakrishnan, Gopakumar, Choi, Jongho, Song, Hyelynn, Choi, Geunchang, Kim, Yong Hyup, Ahn, Kwang Jun, Kim, Dai-Sik, Planken, Paul C. M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, ‘nonresonant laser-pulse-induced photon drag currents’ appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, ‘surface-plasmon-enhanced optical rectification’, made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.
AbstractList We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.
We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.
Author Ramakrishnan, Gopakumar
Kim, Dai-Sik
Song, Hyelynn
Kim, Yong Hyup
Bahk, Young-Mi
Ahn, Kwang Jun
Choi, Geunchang
Choi, Jongho
Planken, Paul C. M
AuthorAffiliation Ajou University
Center for Subwavelength Optics and Department of Physics and Astronomy
Delft University of Technology
Optics Research Group, Department of Imaging Physics, Faculty of Applied Sciences
School of Mechanical and Aerospace Engineering
Department of Energy Systems Research and Department of Physics
Seoul National University
Institute of Advanced Aerospace Technology
AuthorAffiliation_xml – name: Center for Subwavelength Optics and Department of Physics and Astronomy
– name: Department of Energy Systems Research and Department of Physics
– name: School of Mechanical and Aerospace Engineering
– name: Institute of Advanced Aerospace Technology
– name: Optics Research Group, Department of Imaging Physics, Faculty of Applied Sciences
– name: Ajou University
– name: Seoul National University
– name: Delft University of Technology
Author_xml – sequence: 1
  givenname: Young-Mi
  surname: Bahk
  fullname: Bahk, Young-Mi
– sequence: 2
  givenname: Gopakumar
  surname: Ramakrishnan
  fullname: Ramakrishnan, Gopakumar
– sequence: 3
  givenname: Jongho
  surname: Choi
  fullname: Choi, Jongho
– sequence: 4
  givenname: Hyelynn
  surname: Song
  fullname: Song, Hyelynn
– sequence: 5
  givenname: Geunchang
  surname: Choi
  fullname: Choi, Geunchang
– sequence: 6
  givenname: Yong Hyup
  surname: Kim
  fullname: Kim, Yong Hyup
– sequence: 7
  givenname: Kwang Jun
  surname: Ahn
  fullname: Ahn, Kwang Jun
– sequence: 8
  givenname: Dai-Sik
  surname: Kim
  fullname: Kim, Dai-Sik
  email: dsk@phya.snu.ac.kr, p.c.m.planken@tudelft.nl
– sequence: 9
  givenname: Paul C. M
  surname: Planken
  fullname: Planken, Paul C. M
  email: dsk@phya.snu.ac.kr, p.c.m.planken@tudelft.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25137623$$D View this record in MEDLINE/PubMed
BookMark eNptkEtLw0AUhQep2Icu_AOSjaCL2nlkkslGkFKrUFCwC3fDTXLHpiSTOpMs6q830sdCuroX7ncO95wh6dnaIiHXjD4wytnEWkm55CI-IwOWiGhMVfTZO-6S9cnQ-zWlMlZxdEH6XDIRR1wMyON7Cb6qbTCzK7AZ5sESHazQNT_BrCq8L7qbcXUVfBT2q8RgAVt0wdzBZoUWL8m5gdLj1X6OyPJ5tpy-jBdv89fp02IMQrFmDKlkcZwkTAkDNE1VznNAlUKKkFNKM0hMGIXMcBDIjVSJgiyVaEDFScrEiNztbDeu_m7RN7p7LcOyBIt16zWTURhRzlnYoTd7tE0rzPXGFRW4rT5E7oDJDshc7b1Do7OigabL2TgoSs2o_itVH0vtFPf_FAfTU-ztjoXM63XdOtvVcoL7BRKQgfA
CitedBy_id crossref_primary_10_1063_1_4947105
crossref_primary_10_1364_OE_463568
crossref_primary_10_1002_adpr_202100218
crossref_primary_10_1016_j_carbon_2018_02_067
crossref_primary_10_1016_j_jlumin_2021_118487
crossref_primary_10_1039_D4TC01502A
crossref_primary_10_1021_acsphotonics_9b01037
crossref_primary_10_1016_j_isci_2024_108939
crossref_primary_10_1109_JLT_2016_2575002
crossref_primary_10_1021_acsphotonics_2c00993
crossref_primary_10_3390_nano14131109
crossref_primary_10_1021_acs_langmuir_7b02799
crossref_primary_10_1126_sciadv_ads8786
crossref_primary_10_1088_1742_6596_1695_1_012113
crossref_primary_10_1007_s11432_019_2676_x
crossref_primary_10_1016_j_apsusc_2018_04_117
crossref_primary_10_1021_acs_nanolett_5b00494
crossref_primary_10_1063_1_4943063
crossref_primary_10_1038_srep10308
crossref_primary_10_1103_PhysRevB_94_161405
crossref_primary_10_1088_1361_648X_ab00c0
crossref_primary_10_1103_PhysRevB_93_235416
crossref_primary_10_1515_nanoph_2020_0211
crossref_primary_10_1016_j_optlastec_2022_108558
crossref_primary_10_1364_OE_23_028584
crossref_primary_10_1038_s41377_020_00452_y
crossref_primary_10_3390_photonics2020594
crossref_primary_10_1021_acsphotonics_9b00536
crossref_primary_10_1002_adom_201800426
crossref_primary_10_1134_S1063785019120204
crossref_primary_10_1109_MNANO_2016_2572244
crossref_primary_10_1002_adom_201500469
crossref_primary_10_1063_1_5039936
crossref_primary_10_3389_fphy_2021_726806
crossref_primary_10_1002_adom_202001500
crossref_primary_10_1109_JPHOT_2017_2691261
crossref_primary_10_1364_OE_496435
crossref_primary_10_1021_acsami_0c22772
crossref_primary_10_1515_nanoph_2021_0785
crossref_primary_10_1134_S1064226922100060
crossref_primary_10_1103_PhysRevApplied_12_044063
crossref_primary_10_1038_s41377_023_01163_w
crossref_primary_10_1088_2053_1583_abf08d
crossref_primary_10_7498_aps_69_20200680
crossref_primary_10_1134_S1064226921090114
crossref_primary_10_1039_C9AN00798A
crossref_primary_10_1088_2040_8986_aba678
crossref_primary_10_1103_PhysRevB_94_195207
crossref_primary_10_1103_PhysRevX_10_031004
crossref_primary_10_1063_5_0048795
crossref_primary_10_1021_acsami_4c17117
crossref_primary_10_1039_C7NR02227A
crossref_primary_10_1088_2053_1583_ad3135
crossref_primary_10_1063_5_0134396
crossref_primary_10_1038_s41377_024_01486_2
crossref_primary_10_1103_PhysRevB_95_075424
crossref_primary_10_1088_0256_307X_38_5_054201
crossref_primary_10_7567_APEX_9_121601
crossref_primary_10_1002_advs_202103229
crossref_primary_10_3389_fphy_2023_1217439
crossref_primary_10_1103_PhysRevResearch_2_013008
crossref_primary_10_3390_photonics10070810
crossref_primary_10_1021_acsnano_1c04601
crossref_primary_10_1364_PRJ_7_000518
crossref_primary_10_1103_PhysRevB_90_241416
crossref_primary_10_1002_adma_201504516
crossref_primary_10_1080_23746149_2022_2120416
crossref_primary_10_1088_2043_6262_7_1_013002
crossref_primary_10_1002_lpor_202301146
crossref_primary_10_1021_acsami_1c16197
crossref_primary_10_1364_OME_8_000128
crossref_primary_10_1364_OE_424230
crossref_primary_10_1063_1_4962454
crossref_primary_10_34133_ultrafastscience_0047
crossref_primary_10_1002_lpor_201600199
crossref_primary_10_1002_adom_202101860
crossref_primary_10_1021_acsami_6b13961
crossref_primary_10_1021_acsphotonics_0c01012
Cites_doi 10.1038/ncomms1656
10.1364/OE.17.016092
10.1021/nl203003p
10.1103/PhysRevB.79.245311
10.1103/PhysRevLett.108.136802
10.1063/1.3559928
10.1038/nature04235
10.1007/b80319
10.1364/JOSAB.16.001204
10.1021/nl073305l
10.1063/1.3594716
10.1063/1.3151834
10.1103/PhysRevB.81.165441
10.1021/nl302656d
10.1038/ncomms1464
10.1021/nn304028b
10.1038/nmat1849
10.1021/nn300989g
10.1364/JOSAB.21.000622
10.1126/science.1102896
10.1063/1.4830370
10.1038/nphoton.2010.186
10.1103/PhysRevB.85.035443
10.1063/1.3275740
10.1364/OE.20.004067
10.1364/OL.37.003765
10.1021/nl301774e
10.1364/OL.37.003237
10.1038/nature04233
10.1103/PhysRevB.84.125429
10.1103/PhysRevLett.107.276601
10.1364/OL.36.002572
10.1016/j.physrep.2013.10.003
10.1103/PhysRevB.85.121413
10.1038/nmat3433
10.1038/nphoton.2012.147
10.1103/PhysRevB.84.045432
10.1364/OE.19.004667
10.1109/TNANO.2007.910334
10.1021/nl402120t
10.1038/nature11458
10.1038/ncomms1589
10.1103/PhysRevB.82.125411
10.1038/nmat3417
10.1038/srep04007
10.1103/PhysRevLett.105.227402
10.1063/1.4865906
10.1021/nl9040737
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/nn5025237
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 9096
ExternalDocumentID 25137623
10_1021_nn5025237
a643916500
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a381t-ab517799183fa0bb8d2dae8babead000ca9f4641f2a3e2f5898acb5efa879b13
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 09:23:02 EDT 2025
Thu Apr 03 07:01:25 EDT 2025
Tue Jul 01 01:33:43 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Thu Aug 27 13:42:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords terahertz spectroscopy
ultrafast photon drag
gold nanostructures
graphene
surface plasmon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-ab517799183fa0bb8d2dae8babead000ca9f4641f2a3e2f5898acb5efa879b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25137623
PQID 1564602214
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1564602214
pubmed_primary_25137623
crossref_citationtrail_10_1021_nn5025237
crossref_primary_10_1021_nn5025237
acs_journals_10_1021_nn5025237
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-23
PublicationDateYYYYMMDD 2014-09-23
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Rana F. (ref22/cit22) 2008; 7
Irfan M. (ref31/cit31) 2013; 103
Bonaccorso F. (ref20/cit20) 2010; 4
Kim J. (ref43/cit43) 2012; 12
Novoselov K. S. (ref2/cit2) 2005; 438
Karch J. (ref29/cit29) 2011; 107
Grosse N. B. (ref48/cit48) 2012; 108
Ramakrishnan G. (ref46/cit46) 2014; 104
Glazov M. M. (ref15/cit15) 2014; 535
Novoselov K. S. (ref1/cit1) 2004; 306
Mikhailov S. A. (ref8/cit8) 2011; 84
Bykov A. Y. (ref9/cit9) 2012; 85
Novoselov K. S. (ref5/cit5) 2012; 490
Entin M. V. (ref12/cit12) 2010; 81
Lee S. H. (ref44/cit44) 2012; 11
Dean J. J. (ref7/cit7) 2010; 82
Obraztsov P. A. (ref16/cit16) 2014
Bao Q. (ref21/cit21) 2012; 6
Cheon S. (ref40/cit40) 2012; 37
Martinez J. C. (ref17/cit17) 2012; 37
Mikheev G. M. (ref36/cit36) 2011; 12
Fang Z. (ref41/cit41) 2012; 12
Ramakrishnan G. (ref49/cit49) 2011; 36
Geim A. K. (ref4/cit4) 2007; 6
Fang Z. (ref42/cit42) 2012; 6
Boubanga-Tombet S. (ref25/cit25) 2012; 85
Obraztsov P. A. (ref37/cit37) 2011; 98
Liu Y. (ref39/cit39) 2011; 2
Ryzhii V. (ref23/cit23) 2009; 79
Echtermeyer T. J. (ref38/cit38) 2011; 2
Dragoman D. (ref28/cit28) 2011; 109
Gallot G. (ref32/cit32) 1999; 16
Prechtel L. (ref19/cit19) 2012; 3
Gu T. (ref11/cit11) 2012; 6
Obraztsov A. N. (ref35/cit35) 2009; 94
Nagel M. (ref30/cit30) 2011; 19
Jiang C. Y. (ref14/cit14) 2011; 84
Zhu X. (ref45/cit45) 2013; 13
Vicarelli L. (ref24/cit24) 2012; 11
Dean J. J. (ref6/cit6) 2009; 95
Ramakrishnan G. (ref47/cit47) 2012; 20
Sun D. (ref18/cit18) 2010; 10
Newson R. W. (ref26/cit26) 2008; 8
van der Valk N. C. J. (ref33/cit33) 2004; 21
Hong S.-Y. (ref10/cit10) 2013; 3
Sakai K. (ref34/cit34) 2005
Karch J. (ref13/cit13) 2010; 105
Zhang Y. (ref3/cit3) 2005; 438
Ramakrishnan G. (ref27/cit27) 2009; 17
References_xml – volume: 3
  start-page: 646
  year: 2012
  ident: ref19/cit19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1656
– volume: 17
  start-page: 16092
  year: 2009
  ident: ref27/cit27
  publication-title: Opt. Express
  doi: 10.1364/OE.17.016092
– volume: 12
  start-page: 77
  year: 2011
  ident: ref36/cit36
  publication-title: Nano Lett.
  doi: 10.1021/nl203003p
– volume: 79
  start-page: 245311
  year: 2009
  ident: ref23/cit23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.245311
– volume: 108
  start-page: 136802
  year: 2012
  ident: ref48/cit48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.136802
– volume: 98
  start-page: 091903
  year: 2011
  ident: ref37/cit37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3559928
– volume: 438
  start-page: 201
  year: 2005
  ident: ref3/cit3
  publication-title: Nature
  doi: 10.1038/nature04235
– volume-title: Terahertz Optoelectronics, Topics in Applied Physics
  year: 2005
  ident: ref34/cit34
  doi: 10.1007/b80319
– volume: 16
  start-page: 1204
  year: 1999
  ident: ref32/cit32
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.16.001204
– volume: 8
  start-page: 1586
  year: 2008
  ident: ref26/cit26
  publication-title: Nano Lett.
  doi: 10.1021/nl073305l
– volume: 109
  start-page: 124307
  year: 2011
  ident: ref28/cit28
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3594716
– volume: 94
  start-page: 231112
  year: 2009
  ident: ref35/cit35
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3151834
– volume: 81
  start-page: 165441
  year: 2010
  ident: ref12/cit12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.165441
– volume: 12
  start-page: 5598
  year: 2012
  ident: ref43/cit43
  publication-title: Nano Lett.
  doi: 10.1021/nl302656d
– volume: 2
  start-page: 458
  year: 2011
  ident: ref38/cit38
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1464
– volume: 6
  start-page: 10222
  year: 2012
  ident: ref42/cit42
  publication-title: ACS Nano
  doi: 10.1021/nn304028b
– volume: 6
  start-page: 183
  year: 2007
  ident: ref4/cit4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 6
  start-page: 3677
  year: 2012
  ident: ref21/cit21
  publication-title: ACS Nano
  doi: 10.1021/nn300989g
– volume: 21
  start-page: 622
  year: 2004
  ident: ref33/cit33
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.21.000622
– volume: 306
  start-page: 666
  year: 2004
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 103
  start-page: 201108
  year: 2013
  ident: ref31/cit31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4830370
– volume: 4
  start-page: 611
  year: 2010
  ident: ref20/cit20
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.186
– volume: 85
  start-page: 035443
  year: 2012
  ident: ref25/cit25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.035443
– volume: 3
  start-page: 021014
  year: 2013
  ident: ref10/cit10
  publication-title: Phys. Rev. X
– volume: 95
  start-page: 261910
  year: 2009
  ident: ref6/cit6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3275740
– volume: 20
  start-page: 4067
  year: 2012
  ident: ref47/cit47
  publication-title: Opt. Express
  doi: 10.1364/OE.20.004067
– volume: 37
  start-page: 3765
  year: 2012
  ident: ref40/cit40
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.003765
– volume: 12
  start-page: 3808
  year: 2012
  ident: ref41/cit41
  publication-title: Nano Lett.
  doi: 10.1021/nl301774e
– volume: 37
  start-page: 3237
  year: 2012
  ident: ref17/cit17
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.003237
– volume: 438
  start-page: 197
  year: 2005
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 84
  start-page: 125429
  year: 2011
  ident: ref14/cit14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.125429
– volume: 107
  start-page: 276601
  year: 2011
  ident: ref29/cit29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.276601
– volume: 36
  start-page: 2572
  year: 2011
  ident: ref49/cit49
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.002572
– volume: 535
  start-page: 101
  year: 2014
  ident: ref15/cit15
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2013.10.003
– volume: 85
  start-page: 121413
  year: 2012
  ident: ref9/cit9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.121413
– volume: 11
  start-page: 936
  year: 2012
  ident: ref44/cit44
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3433
– volume: 6
  start-page: 554
  year: 2012
  ident: ref11/cit11
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.147
– volume: 84
  start-page: 045432
  year: 2011
  ident: ref8/cit8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.045432
– volume: 19
  start-page: 4667
  year: 2011
  ident: ref30/cit30
  publication-title: Opt. Express
  doi: 10.1364/OE.19.004667
– volume: 7
  start-page: 91
  year: 2008
  ident: ref22/cit22
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2007.910334
– volume: 13
  start-page: 4690
  year: 2013
  ident: ref45/cit45
  publication-title: Nano Lett.
  doi: 10.1021/nl402120t
– volume: 490
  start-page: 192
  year: 2012
  ident: ref5/cit5
  publication-title: Nature
  doi: 10.1038/nature11458
– volume: 2
  start-page: 579
  year: 2011
  ident: ref39/cit39
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1589
– volume: 82
  start-page: 125411
  year: 2010
  ident: ref7/cit7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.125411
– volume: 11
  start-page: 865
  year: 2012
  ident: ref24/cit24
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3417
– start-page: 4007
  year: 2014
  ident: ref16/cit16
  publication-title: Sci. Rep.
  doi: 10.1038/srep04007
– volume: 105
  start-page: 227402
  year: 2010
  ident: ref13/cit13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.227402
– volume: 104
  start-page: 071104
  year: 2014
  ident: ref46/cit46
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4865906
– volume: 10
  start-page: 1293
  year: 2010
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl9040737
SSID ssj0057876
Score 2.4456365
Snippet We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9089
Title Plasmon Enhanced Terahertz Emission from Single Layer Graphene
URI http://dx.doi.org/10.1021/nn5025237
https://www.ncbi.nlm.nih.gov/pubmed/25137623
https://www.proquest.com/docview/1564602214
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoED-1KWyiwHLoHGcZzkgoRKS4UAIbVIvUW2YwuJKkVteunXM85Sgdju49gav8w8e-xngPNWKwlMoHBZknDuMBkaJ7Ib-czThoee0X5eLnh84r0Xdj_0hzU4-6WCT92rNPUxL1MvWIJlyvHntfyn3a_CrUUcL0rHuDRG_lDJB31ualOPmn5NPb_wyTyvdNfhtrqdUxwnebucZfJSzb-LNf415A1YK3kluSmAsAk1nW7B6ie1wW24fkamjKgjnfQ1r_uTgcZQoyfZnHRwuu2-GbHXTUgf7UeaPAjk4-TOSlpjRNyBQbczaPec8vkER2AazhwhfTcIkP-hy0VLyjChidChFBLRg5FQicgwzlxDhaep8cMoFEr62ogwiKTr7UI9Had6Hwi2V4lPFU8UZ0KpiBmr--e2NAs19tKAJro3LtE_jfPCNnXjhR8acFF5Plal9rh9AmP0k-npwvS9ENz4yeikmr4Y_WNrHCLV4xl27XPGkZe4rAF7xbwuPoNUDsMp9Q7-G-4hrCAvYvZYCPWOoJ5NZvoYuUcmmzn2PgBIvtDK
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8UD-rB7w_8wGo8eBluXddtFxNCQFQgJmDibWm7NiaSYWBc-Ot93Qaiwej9tX3pe33v1772V4SubTv2tS9hWxIzZlERaCs0B_nUVZoFrlZeVi7odFnrhT6-eq8FTY55CwNKjKGncVbE_2IXcG6TxIP0TFx_Fa0BCCHGm2v13izqGsdjeQUZdsgAI2YsQotNTQaS4-8Z6BdYmaWX5nb-T1GmWHar5L06SUVVTn9wNv5P8x20VaBMXMvdYhetqGQPbS5wD-6ju2fAzeCDuJG8ZbcAcF9B4FGjdIobYHxziobN4xPcA_mBwm0O6BzfG4JriI8HqN9s9Ostq_hMweKQlFOLC8_xfUCDYABuCxHEJOYqEFyAL0FclDzUlFFHE-4qor0gDLgUntI88EPhuIeolAwTdYwwtJexRySLJaNcypBqwwLo2IoGCkYpowpMQ1SshXGUlbmJE83noYxuZgaIZMFEbj7EGCwTvZqLfuT0G8uELmdWjGB-TMWDJ2o4gaE9RhmgFIeW0VFu3nk3AOwguBL35C91L9B6q99pR-2H7tMp2gDERM2FEeKeoVI6mqhzQCWpqGTu-Ak6Ttkr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEL8oJkYf_P7AD6zGB1-GbOu67cWEIIiKaAImvi1t18ZEMwiMF_56r2MQNBh9v7aX3vXu1177K8BlpRL72pe4LYkZs6gItBWag3zqKs0CVysvKxc8tVnzlT68eW_5RtG8hUElhtjTMCvim1Xdj3XOMGBfJ4mHKdpx_WVYMeU649HVWmcaeY3zsUkVGXfJCCWmTELzTU0WksPvWegXaJmlmMYmPM-Uy26WfJRHqSjL8Q_exv9rvwUbOdok1Yl7bMOSSnZgfY6DcBduXhA_oy-SevKe3QYgXYUBSA3SMamjE5jTNGIeoZAOyn8q0uKI0smdIbrGOLkH3Ua9W2ta-acKFsfknFpceLbvIypEQ_CKEEHsxFwFggv0KYyPkoeaMmprh7vK0V4QBlwKT2ke-KGw3X0oJL1EHQLB9jL2HMliySiXMqTasAHaFUUDhaMUoYRTEeVrYhhl5W7HjmbzUISrqREimTOSm48xPheJXsxE-xMajkVC51NLRjg_pvLBE9Ub4dAeowzRik2LcDAx8awbBHgYZB336C91z2D15bYRte7bj8ewhsCJmnsjjnsChXQwUqcITlJRyjzyC3kJ264
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmon+Enhanced+Terahertz+Emission+from+Single+Layer+Graphene&rft.jtitle=ACS+nano&rft.au=Bahk%2C+Young-Mi&rft.au=Ramakrishnan%2C+Gopakumar&rft.au=Choi%2C+Jongho&rft.au=Song%2C+Hyelynn&rft.date=2014-09-23&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=8&rft.issue=9&rft.spage=9089&rft.epage=9096&rft_id=info:doi/10.1021%2Fnn5025237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nn5025237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon