Hydrogen and Deuterium Atoms in Octasilsesquioxanes: Experimental and Computational Studies
The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydr...
Saved in:
Published in | Journal of the American Chemical Society Vol. 128; no. 18; pp. 6111 - 6125 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
10.05.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 |
DOI | 10.1021/ja055177d |
Cover
Abstract | The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydrogen atoms are found to be more strongly stabilized in homosubstituted octasilsesquioxanes compared with singly Ge-substituted cages. A kinetic isotope effect observed for the detrapping of H and D from MeT8 is ascribed to the difference in the zero-point energies of the trapped atoms. There is a secondary H/D isotope effect in the temperature dependence of the 29Si-superhyperfine splitting constants in the range 228−353 K. Cage relaxation has a substantial effect on the detrapping barrier but little influence on the intracage potential. Calculations using a rigid cage approximation give satisfactory agreement with zero-point parameters extracted from experimental data. Different model chemistries yield qualitatively different pictures of the dependence of the hyperfine coupling constant of the trapped H atom upon the detrapping coordinate. Within an isotropic approximation of the vibrational displacements, the B3LYP data give fairly close agreement with the experimental temperature dependence, subject to a shift of the absolute value related to known weaknesses of the method. For the Si7Ge cage, it is found that the transition state in which the H atom passes through a Ge-containing face is strongly favored, accounting for the larger detrapping rate parameters observed experimentally for this species. |
---|---|
AbstractList | The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydrogen atoms are found to be more strongly stabilized in homosubstituted octasilsesquioxanes compared with singly Ge-substituted cages. A kinetic isotope effect observed for the detrapping of H and D from MeT(8) is ascribed to the difference in the zero-point energies of the trapped atoms. There is a secondary H/D isotope effect in the temperature dependence of the (29)Si-superhyperfine splitting constants in the range 228-353 K. Cage relaxation has a substantial effect on the detrapping barrier but little influence on the intracage potential. Calculations using a rigid cage approximation give satisfactory agreement with zero-point parameters extracted from experimental data. Different model chemistries yield qualitatively different pictures of the dependence of the hyperfine coupling constant of the trapped H atom upon the detrapping coordinate. Within an isotropic approximation of the vibrational displacements, the B3LYP data give fairly close agreement with the experimental temperature dependence, subject to a shift of the absolute value related to known weaknesses of the method. For the Si(7)Ge cage, it is found that the transition state in which the H atom passes through a Ge-containing face is strongly favored, accounting for the larger detrapping rate parameters observed experimentally for this species.The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydrogen atoms are found to be more strongly stabilized in homosubstituted octasilsesquioxanes compared with singly Ge-substituted cages. A kinetic isotope effect observed for the detrapping of H and D from MeT(8) is ascribed to the difference in the zero-point energies of the trapped atoms. There is a secondary H/D isotope effect in the temperature dependence of the (29)Si-superhyperfine splitting constants in the range 228-353 K. Cage relaxation has a substantial effect on the detrapping barrier but little influence on the intracage potential. Calculations using a rigid cage approximation give satisfactory agreement with zero-point parameters extracted from experimental data. Different model chemistries yield qualitatively different pictures of the dependence of the hyperfine coupling constant of the trapped H atom upon the detrapping coordinate. Within an isotropic approximation of the vibrational displacements, the B3LYP data give fairly close agreement with the experimental temperature dependence, subject to a shift of the absolute value related to known weaknesses of the method. For the Si(7)Ge cage, it is found that the transition state in which the H atom passes through a Ge-containing face is strongly favored, accounting for the larger detrapping rate parameters observed experimentally for this species. The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydrogen atoms are found to be more strongly stabilized in homosubstituted octasilsesquioxanes compared with singly Ge-substituted cages. A kinetic isotope effect observed for the detrapping of H and D from MeT8 is ascribed to the difference in the zero-point energies of the trapped atoms. There is a secondary H/D isotope effect in the temperature dependence of the 29Si-superhyperfine splitting constants in the range 228−353 K. Cage relaxation has a substantial effect on the detrapping barrier but little influence on the intracage potential. Calculations using a rigid cage approximation give satisfactory agreement with zero-point parameters extracted from experimental data. Different model chemistries yield qualitatively different pictures of the dependence of the hyperfine coupling constant of the trapped H atom upon the detrapping coordinate. Within an isotropic approximation of the vibrational displacements, the B3LYP data give fairly close agreement with the experimental temperature dependence, subject to a shift of the absolute value related to known weaknesses of the method. For the Si7Ge cage, it is found that the transition state in which the H atom passes through a Ge-containing face is strongly favored, accounting for the larger detrapping rate parameters observed experimentally for this species. The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydrogen atoms are found to be more strongly stabilized in homosubstituted octasilsesquioxanes compared with singly Ge-substituted cages. A kinetic isotope effect observed for the detrapping of H and D from MeT(8) is ascribed to the difference in the zero-point energies of the trapped atoms. There is a secondary H/D isotope effect in the temperature dependence of the (29)Si-superhyperfine splitting constants in the range 228-353 K. Cage relaxation has a substantial effect on the detrapping barrier but little influence on the intracage potential. Calculations using a rigid cage approximation give satisfactory agreement with zero-point parameters extracted from experimental data. Different model chemistries yield qualitatively different pictures of the dependence of the hyperfine coupling constant of the trapped H atom upon the detrapping coordinate. Within an isotropic approximation of the vibrational displacements, the B3LYP data give fairly close agreement with the experimental temperature dependence, subject to a shift of the absolute value related to known weaknesses of the method. For the Si(7)Ge cage, it is found that the transition state in which the H atom passes through a Ge-containing face is strongly favored, accounting for the larger detrapping rate parameters observed experimentally for this species. |
Author | Macrae, Roderick M Carmichael, Ian Päch, Michael |
Author_xml | – sequence: 1 givenname: Michael surname: Päch fullname: Päch, Michael – sequence: 2 givenname: Roderick M surname: Macrae fullname: Macrae, Roderick M – sequence: 3 givenname: Ian surname: Carmichael fullname: Carmichael, Ian |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17767978$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16669680$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctu1DAUhi1URKeFBS-AsgGJRagvsZ2wK0NvolKBli2WYzvIQ2JPfZGmu277mjwJbmfoSKgr28ff_-uc8--BHeedAeA1gh8QxOhgISGliHP9DMwQxbCmCLMdMIMQ4pq3jOyCvRgX5dngFr0Au4gx1rEWzsDP0xsd_C_jKul09dnkZILNU3WY_BQr66oLlWS0YzTxOlu_ks7Ej39u76qj1bKQk3FJjg_auZ-WOclkvSuVy5S1NfEleD7IIn61OffBj-Ojq_lpfX5xcjY_PK8laVGqO9IahRvec0QbisudDQNhPWsoNEpq3XS0h8poDvvWEKXLD8N6aFhLEZWI7IN3a99l8NfZxCQmG5UZx9Kvz1Ew3hGKG1bANxsw95PRYllmkOFG_NtIAd5uABmVHIcgnbJxy3FevHhbuPdrTgUfYzDDFoHiPhXxmEphD_5jlV1vKgVpxycV9VphYzKrR2sZfpdRCKfi6uul6Jpv3z-RYyi-bLuWKoqFz6FkEJ_w_Qtwhaq2 |
CODEN | JACSAT |
CitedBy_id | crossref_primary_10_1016_j_micromeso_2010_06_013 crossref_primary_10_1021_jp1105778 crossref_primary_10_1002_cplu_202400146 crossref_primary_10_3184_003685013X13722668590726 crossref_primary_10_1155_2012_391325 crossref_primary_10_1021_acs_jpcc_1c01582 crossref_primary_10_1039_c2cp24057b crossref_primary_10_1007_s00214_007_0304_8 crossref_primary_10_1021_jp906289d crossref_primary_10_1002_adsc_201600489 crossref_primary_10_1021_acs_organomet_5b00142 crossref_primary_10_1021_jp0769882 crossref_primary_10_1021_acs_organomet_7b00599 crossref_primary_10_1016_j_cplett_2007_04_045 crossref_primary_10_1021_jp7114669 crossref_primary_10_1021_om5010918 crossref_primary_10_3390_molecules18066679 crossref_primary_10_1021_jp904488s crossref_primary_10_1021_cr900201r |
Cites_doi | 10.1063/1.466884 10.1103/PhysRevB.51.14867 10.1107/S0108270194005342 10.1063/1.432267 10.1021/jp952198t 10.1021/jp9704022 10.1021/jp0015269 10.1103/PhysRevB.45.13244 10.1002/zaac.19713840107 10.1007/b13865 10.1016/0009-2614(96)00917-7 10.1021/ic00013a002 10.1021/j100205a007 10.1103/PhysRevB.63.045421 10.1103/PhysRevA.38.3098 10.1021/ja01621a025 10.1021/jp970348p 10.1063/1.462569 10.1021/j100098a005 10.1039/B206261E 10.1103/PhysRevA.39.3761 10.1021/ja983812s 10.1063/1.438980 10.1021/ja9831498 10.1119/1.16402 10.1021/ja00084a089 10.1021/ic000803n 10.1016/S0166-1280(96)80048-0 10.1039/B206294A |
ContentType | Journal Article |
Copyright | Copyright © 2006 American Chemical Society 2006 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2006 American Chemical Society – notice: 2006 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW NPM 7X8 |
DOI | 10.1021/ja055177d |
DatabaseName | Istex CrossRef Pascal-Francis PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1520-5126 |
EndPage | 6125 |
ExternalDocumentID | 16669680 17767978 10_1021_ja055177d ark_67375_TPS_94QRB3F0_K b775648129 |
Genre | Journal Article |
GroupedDBID | - .K2 02 186 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFFDN AFFNX AFMIJ AIDAL ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F20 F5P GJ GNL IH9 IHE JG JG~ K2 K78 LG6 NHB OHT P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UNC UPT UQL VF5 VG9 VQA W1F WH7 X XFK YZZ ZCG ZE2 ZHY --- -DZ -ET -~X .DC .GJ 6TJ AAHBH AAYOK ABJNI ABQRX ACBEA ACGFO ADHLV ADOJD AGXLV AHGAQ BSCLL CUPRZ GGK IH2 XOL XSW YQT ZCA ~02 AAYXX ABBLG ABLBI ACRPL ADNMO ADXHL AEYZD AGQPQ AHDLI ANPPW CITATION YR5 .HR 1WB 3EH 3O- 41~ AAUPJ AAYJJ AAYWT ABHMW ABWLT ACBNA ACKIV AI. D0S IQODW MVM P-O RNS UBC UBX VH1 X7L YXA YXE YYP ZGI ZY4 NPM VXZ YIN 7X8 |
ID | FETCH-LOGICAL-a381t-938ec247b715452ec26ff36b6450ecadd495b0ced70b8e3cdb6462df468515a13 |
IEDL.DBID | ACS |
ISSN | 0002-7863 |
IngestDate | Fri Sep 05 13:21:54 EDT 2025 Wed Feb 19 01:53:47 EST 2025 Mon Jul 21 09:16:15 EDT 2025 Tue Jul 01 02:58:31 EDT 2025 Thu Apr 24 22:56:33 EDT 2025 Wed Oct 30 09:29:36 EDT 2024 Thu Aug 27 13:42:11 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Kinetic control Hartree-Fock calculations Hydrogen storage Cage compound Silsesquioxane polymer Silicon Organic compounds ENDOR spectrometry Theoretical study Activation parameter Experimental study Kinetic isotope effect Superhyperfine structure Density functional method Hyperfine splitting |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-938ec247b715452ec26ff36b6450ecadd495b0ced70b8e3cdb6462df468515a13 |
Notes | ark:/67375/TPS-94QRB3F0-K istex:4789AEBEDA32B67C7E21AE18FD21562F8E6A5E54 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 16669680 |
PQID | 67935246 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_67935246 pubmed_primary_16669680 pascalfrancis_primary_17767978 crossref_primary_10_1021_ja055177d crossref_citationtrail_10_1021_ja055177d istex_primary_ark_67375_TPS_94QRB3F0_K acs_journals_10_1021_ja055177d |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-05-10 |
PublicationDateYYYYMMDD | 2006-05-10 |
PublicationDate_xml | – month: 05 year: 2006 text: 2006-05-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2006 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Dunning T. H., Jr. (ja055177db00041/ja055177db00041_1) 1989; 90 Prassides K. (ja055177db00001/ja055177db00001_1) 1992; 96 ja055177db00051/ja055177db00051_1 Päch M. (ja055177db00025/ja055177db00025_1) 1997; 101 ja055177db00033/ja055177db00033_1 Davidson E. R. (ja055177db00046/ja055177db00046_1) 1996; 260 Karshenboim S. G. (ja055177db00037/ja055177db00037_1) 2003 Bornhauser P. (ja055177db00049/ja055177db00049_1) 1996; 100 Dinse K.-P. (ja055177db00032/ja055177db00032_1) 2002; 4 Hoebbel D. (ja055177db00017/ja055177db00017_1) 1971; 384 Olsson K. (ja055177db00015/ja055177db00015_1) 1958; 13 Waiblinger M. (ja055177db00010/ja055177db00010_1) 1997 Hayashino Y. (ja055177db00026/ja055177db00026_1) 2001; 748 Woon D. E. (ja055177db00043/ja055177db00043_1) 1993; 98 Kendall R. A. (ja055177db00042/ja055177db00042_1) 1992; 96 Perlson B. D. (ja055177db00048/ja055177db00048_1) 1974; 15 Liu S. Y. (ja055177db00003/ja055177db00003_1) 2000; 599 Macrae R. M. (ja055177db00050/ja055177db00050_1) 1994; 98 Weidinger A. (ja055177db00007/ja055177db00007_1) 1998 Feher F. J. (ja055177db00018/ja055177db00018_1) 1989; 111 Hayashino Y. (ja055177db00028/ja055177db00028_1) 2001; 40 Dietel E. (ja055177db00012/ja055177db00012_1) 1999; 121 JimenezVazquez H. A. (ja055177db00013/ja055177db00013_1) 1994; 229 Suryanarayana D. (ja055177db00039/ja055177db00039_1) 1976; 64 Wilson A. K. (ja055177db00045/ja055177db00045_1) 1996; 388 Peterson K. A. (ja055177db00044/ja055177db00044_1) 1994; 100 Becke A. D. (ja055177db00020/ja055177db00020_1) 1993; 98 auf der Heyde T. P. E. (ja055177db00030/ja055177db00030_1) 1991; 45 Kaupp M. (ja055177db00031/ja055177db00031_1) 2002; 4 Dilger H. (ja055177db00002/ja055177db00002_1) 2000; 289 Barry A. J. (ja055177db00016/ja055177db00016_1) 1955; 77 Barton G. (ja055177db00038/ja055177db00038_1) 1990; 58 ja055177db00034/ja055177db00034_1 Carmichael I. (ja055177db00047/ja055177db00047_1) 1997; 101 Waiblinger M. (ja055177db00006/ja055177db00006_1) 2001; 63 Saunders M. (ja055177db00005/ja055177db00005_1) 1994; 116 Becke A. D. (ja055177db00022/ja055177db00022_1) 2000; 123 Curtiss L. A. (ja055177db00024/ja055177db00024_1) 1995; 103 McLean A. D. (ja055177db00023/ja055177db00023_1) 1980; 72 ja055177db00011/ja055177db00011_1 Groβ B. (ja055177db00036/ja055177db00036_1) 2001; 105 Pople J. A. (ja055177db00021/ja055177db00021_1) 1989; 90 Saunders M. (ja055177db00004/ja055177db00004_1) 1993; 259 ja055177db00040/ja055177db00040_1 ja055177db00035/ja055177db00035_1 Mattori M. (ja055177db00029/ja055177db00029_1) 2000; 104 Rhodes C. (ja055177db00027/ja055177db00027_1) 1997 Frisch M. J. (ja055177db00019/ja055177db00019_1) 1998 Agaskar P. A. (ja055177db00014/ja055177db00014_1) 1991; 30 Yamamoto K. (ja055177db00009/ja055177db00009_1) 1999; 121 |
References_xml | – volume: 100 start-page: 7415 year: 1994 ident: ja055177db00044/ja055177db00044_1 publication-title: J. Chem. Phys. doi: 10.1063/1.466884 – ident: ja055177db00051/ja055177db00051_1 doi: 10.1103/PhysRevB.51.14867 – volume: 111 start-page: 1748 year: 1989 ident: ja055177db00018/ja055177db00018_1 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 594 year: 1974 ident: ja055177db00048/ja055177db00048_1 publication-title: J. Magn. Reson. – volume: 105 start-page: 10017 year: 2001 ident: ja055177db00036/ja055177db00036_1 publication-title: J. Phys. Chem. A – ident: ja055177db00033/ja055177db00033_1 doi: 10.1107/S0108270194005342 – volume: 64 start-page: 513 year: 1976 ident: ja055177db00039/ja055177db00039_1 publication-title: J. Chem. Phys. doi: 10.1063/1.432267 – volume: 100 start-page: 2044 year: 1996 ident: ja055177db00049/ja055177db00049_1 publication-title: J. Phys. Chem. doi: 10.1021/jp952198t – volume: 101 start-page: 4636 year: 1997 ident: ja055177db00047/ja055177db00047_1 publication-title: J. Phys. Chem. doi: 10.1021/jp9704022 – volume: 104 start-page: 10872 year: 2000 ident: ja055177db00029/ja055177db00029_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp0015269 – ident: ja055177db00035/ja055177db00035_1 doi: 10.1103/PhysRevB.45.13244 – volume: 384 start-page: 52 year: 1971 ident: ja055177db00017/ja055177db00017_1 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.19713840107 – volume: 103 start-page: 6113 year: 1995 ident: ja055177db00024/ja055177db00024_1 publication-title: J. Chem. Phys. – volume: 98 start-page: 5652 year: 1993 ident: ja055177db00020/ja055177db00020_1 publication-title: J. Chem. Phys. – start-page: 162 volume-title: Precision Physics of Simple Atomic Systems year: 2003 ident: ja055177db00037/ja055177db00037_1 doi: 10.1007/b13865 – volume-title: Process year: 1998 ident: ja055177db00007/ja055177db00007_1 – volume: 259 start-page: 1430 year: 1993 ident: ja055177db00004/ja055177db00004_1 publication-title: J. Science – volume-title: Universität Konstanz year: 1997 ident: ja055177db00010/ja055177db00010_1 – volume: 123 start-page: 4026 year: 2000 ident: ja055177db00022/ja055177db00022_1 publication-title: J. Chem. Phys. – volume: 260 start-page: 518 year: 1996 ident: ja055177db00046/ja055177db00046_1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(96)00917-7 – volume: 748 start-page: 750 year: 2001 ident: ja055177db00026/ja055177db00026_1 publication-title: ChemPhysChem – volume: 30 start-page: 2708 year: 1991 ident: ja055177db00014/ja055177db00014_1 publication-title: Inorg. Chem. doi: 10.1021/ic00013a002 – volume: 96 start-page: 10602 year: 1992 ident: ja055177db00001/ja055177db00001_1 publication-title: J. Phys. Chem. doi: 10.1021/j100205a007 – volume: 63 start-page: 5421 year: 2001 ident: ja055177db00006/ja055177db00006_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.045421 – ident: ja055177db00034/ja055177db00034_1 doi: 10.1103/PhysRevA.38.3098 – volume: 77 start-page: 4252 year: 1955 ident: ja055177db00016/ja055177db00016_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01621a025 – volume: 101 start-page: 8365 year: 1997 ident: ja055177db00025/ja055177db00025_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp970348p – volume: 96 start-page: 6806 year: 1992 ident: ja055177db00042/ja055177db00042_1 publication-title: J. Chem. Phys. doi: 10.1063/1.462569 – volume: 98 start-page: 12141 year: 1994 ident: ja055177db00050/ja055177db00050_1 publication-title: J. Phys. Chem. doi: 10.1021/j100098a005 – start-page: 335 volume-title: Peroxyl Radicals year: 1997 ident: ja055177db00027/ja055177db00027_1 – volume: 98 start-page: 1374 year: 1993 ident: ja055177db00043/ja055177db00043_1 publication-title: J. Chem. Phys. – volume: 229 start-page: 114 year: 1994 ident: ja055177db00013/ja055177db00013_1 publication-title: J. Chem. Phys. Lett. – volume: 4 start-page: 5442 year: 2002 ident: ja055177db00032/ja055177db00032_1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B206261E – ident: ja055177db00040/ja055177db00040_1 doi: 10.1103/PhysRevA.39.3761 – ident: ja055177db00011/ja055177db00011_1 – volume: 121 start-page: 2437 year: 1999 ident: ja055177db00012/ja055177db00012_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja983812s – volume: 90 start-page: 5629 year: 1989 ident: ja055177db00021/ja055177db00021_1 publication-title: J. Chem. Phys. – volume: 13 start-page: 367 year: 1958 ident: ja055177db00015/ja055177db00015_1 publication-title: Arkiv för Kemi – volume: 45 start-page: 40 year: 1991 ident: ja055177db00030/ja055177db00030_1 publication-title: Chimia – volume: 72 start-page: 5648 year: 1980 ident: ja055177db00023/ja055177db00023_1 publication-title: J. Chem. Phys. doi: 10.1063/1.438980 – volume: 121 start-page: 1596 year: 1999 ident: ja055177db00009/ja055177db00009_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9831498 – volume: 599 start-page: 86 year: 2000 ident: ja055177db00003/ja055177db00003_1 publication-title: J. Organomet. Chem. – volume: 58 start-page: 755 year: 1990 ident: ja055177db00038/ja055177db00038_1 publication-title: Am. J. Phys. doi: 10.1119/1.16402 – volume: 116 start-page: 2193 year: 1994 ident: ja055177db00005/ja055177db00005_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00084a089 – volume: 40 start-page: 2218 year: 2001 ident: ja055177db00028/ja055177db00028_1 publication-title: Inorg. Chem. doi: 10.1021/ic000803n – volume: 388 start-page: 349 year: 1996 ident: ja055177db00045/ja055177db00045_1 publication-title: J. Mol. Struct. (THEOCHEM) doi: 10.1016/S0166-1280(96)80048-0 – volume: 4 start-page: 5458 year: 2002 ident: ja055177db00031/ja055177db00031_1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B206294A – volume-title: Gaussian 98, revision A.7 year: 1998 ident: ja055177db00019/ja055177db00019_1 – volume: 289 start-page: 486 year: 2000 ident: ja055177db00002/ja055177db00002_1 publication-title: Physica B (Amsterdam) – volume: 90 start-page: 1023 year: 1989 ident: ja055177db00041/ja055177db00041_1 publication-title: J. Chem. Phys. |
SSID | ssj0004281 |
Score | 1.932388 |
Snippet | The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of... |
SourceID | proquest pubmed pascalfrancis crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6111 |
SubjectTerms | Atomic and molecular physics Exact sciences and technology Molecular properties and interactions with photons Multiple resonances (including double and higher-order resonance processes, such as double nuclear magnetic resonance, electron double resonance and microwave optical double resonance) Physics |
Title | Hydrogen and Deuterium Atoms in Octasilsesquioxanes: Experimental and Computational Studies |
URI | http://dx.doi.org/10.1021/ja055177d https://api.istex.fr/ark:/67375/TPS-94QRB3F0-K/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/16669680 https://www.proquest.com/docview/67935246 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5ROLQXXn0tT6utql6CEiexE26wsFpR9QlInBr5FWkFJLBJJODElb_JL2GcBwsqtLdIGVvxzMQz4xnPB_BJpxiUaOU52lDj2JbdjvCldowOPO1ptCB1VeW372x4GOwdhUdT8PGZDD61_YFctOqc6xcwQxmql_V_-vuTy4808jofl0fM79oHPRxqTY8qHpmeGcvFC1sKKQrkRtrAWDzvZ9b2ZjAHO92tnabM5HijKuWGuvq7ieO_ljIPs62_SbYaBVmAKZMtwst-B_P2Gv4ML_U4RzUiItNkx1iIh1F1SrbK_LQgo4z8UKUoRmhBi_NqlF8I3Bs3b69vyO4DbIB6bAMQ0R4ukrZA8Q0cDnYP-kOnBV1AGUVe6cR-ZBQNuOQ1_Dg-szT1mWRB6BqFuyFGVNJVRnNXRsZXGt8wiiJn6LuFwvPfwnSWZ-Y9EBuKSUkjm4sLQp3G3JdCKC8VXCkahz1YQ6kk7U9TJHU-nGI80rGpB186gSWqbVlukTNOniL9cE961vTpeIrocy31ewoxPraFbTxMDn7uJ3Hw6_e2P3CTr_hlj9RiMqVtfoSBdw_WOz1JUF42yYLsz6sCp4vRpw1YD9416jMZi5FizCJ36X_LXoZXzUGP7RG7AtPluDKr6PqUcq1W_TuFCv26 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BeygXKO-F0loIIS6p8rST3palq4U-eHQr9UTkV6RV26SsE6nlxJW_yS9h7CTdFhXBLVJsyx6PPTP2-PsAXqkCgxIlA0_pUHsWstvjkVCeVnGgAoUWxGVV7u3TyWH84Sg56mBy7FsY7ITBloy7xF-gC1iYIB-NO2PqNiyjExJamobh6GDxBjJMg97VZSmNehShq1WtBZLmmgVatsI8txmR3KBQipbN4u_upjM743stf5HrsMs2Od5sarEpv_-B5fh_I1qFu533SYatutyHW7p8ACujnvTtIXydXKh5hUpFeKnIO20JH2bNKRnW1akhs5J8lDU3M7Sn5lszq8457pRbv378JNtXmAJc3ZYuojtqJF264iM4HG9PRxOvo2DAGUuD2suiVMswZoI5MnL8pkURUUHjxNcS90aMr4QvtWK-SHUkFf6hISoARU8u4UH0GJbKqtRPgdjATIgwtTdzcaKKjEWCcxkUnEkZZskA1lFKebeETO5ux0OMTnoxDeBNP2-57ADMLY_GyU1FX14WPWtRO24q9NpN_mUJPj-2aW4syaefDvIs_vzlbTT28x3s2TXtWDRpoZAwDB_ARq8uOc6XvXJB8VeNweYy9HBjOoAnrRYt6mLcmNHUf_avYW_AymS6t5vvvt_feQ532iMgix67Bkv1vNEv0CmqxbpbDb8BRYgGKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BK0EvlGdZCq2FEOKSKk874bZsu1ootIW2Uk9EfkValSZlnUiFE1f-Jr-EsZPstqgIbpFiW_Z47JnJTL4P4IUqMChRMvCUDrVnIbs9HgnlaRUHKlBoQVxV5Yc9OjmO350kJ12gaP-FwUkYHMm4JL491eeq6BAGLFSQjwaeMXUTlm26zlI1DEeHi_8gwzTo3V2W0qhHErrc1Vohaa5YoWUr0AtbFckNCqZoGS3-7nI60zNehf35pF3FyelWU4st-f0PPMf_X9VduNN5oWTYqs09uKHL-3B71JO_PYDPk29qVqFyEV4qsq0t8cO0OSPDujozZFqSfVlzM0W7ar420-qC4435-tePn2TnEmOA69vSRnSfHElXtvgQjsc7R6OJ11Ex4M6lQe1lUaplGDPBHCk5PtOiiKigceJriXckxlnCl1oxX6Q6kgrf0BAVgaJHl_AgegRLZVXqx0BsgCZEmNoMXZyoImOR4FwGBWdShlkygA2UVN4dJZO7LHmIUUovpgG86vculx2QueXT-HJd0-fzpuctesd1jV46BZi34LNTW-7Gkvzo4DDP4o-f3kRjP9_FmV3RkMWQFhIJw_EBbPYqk-N-2dQLir9qDA6Xoacb0wGstZq06IvxY0ZT_8m_lr0Jtw62x_n7t3u767DSfgmyILJPYameNfoZ-ka12HAH4jfFrAit |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+and+Deuterium+Atoms+in+Octasilsesquioxanes%3A%E2%80%89+Experimental+and+Computational+Studies&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=P%C3%A4ch%2C+Michael&rft.au=Macrae%2C+Roderick+M&rft.au=Carmichael%2C+Ian&rft.date=2006-05-10&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=128&rft.issue=18&rft.spage=6111&rft.epage=6125&rft_id=info:doi/10.1021%2Fja055177d&rft.externalDocID=b775648129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |