Hydrogen and Deuterium Atoms in Octasilsesquioxanes:  Experimental and Computational Studies

The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydr...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 128; no. 18; pp. 6111 - 6125
Main Authors Päch, Michael, Macrae, Roderick M, Carmichael, Ian
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 10.05.2006
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
DOI10.1021/ja055177d

Cover

Abstract The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydrogen atoms are found to be more strongly stabilized in homosubstituted octasilsesquioxanes compared with singly Ge-substituted cages. A kinetic isotope effect observed for the detrapping of H and D from MeT8 is ascribed to the difference in the zero-point energies of the trapped atoms. There is a secondary H/D isotope effect in the temperature dependence of the 29Si-superhyperfine splitting constants in the range 228−353 K. Cage relaxation has a substantial effect on the detrapping barrier but little influence on the intracage potential. Calculations using a rigid cage approximation give satisfactory agreement with zero-point parameters extracted from experimental data. Different model chemistries yield qualitatively different pictures of the dependence of the hyperfine coupling constant of the trapped H atom upon the detrapping coordinate. Within an isotropic approximation of the vibrational displacements, the B3LYP data give fairly close agreement with the experimental temperature dependence, subject to a shift of the absolute value related to known weaknesses of the method. For the Si7Ge cage, it is found that the transition state in which the H atom passes through a Ge-containing face is strongly favored, accounting for the larger detrapping rate parameters observed experimentally for this species.
AbstractList The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydrogen atoms are found to be more strongly stabilized in homosubstituted octasilsesquioxanes compared with singly Ge-substituted cages. A kinetic isotope effect observed for the detrapping of H and D from MeT(8) is ascribed to the difference in the zero-point energies of the trapped atoms. There is a secondary H/D isotope effect in the temperature dependence of the (29)Si-superhyperfine splitting constants in the range 228-353 K. Cage relaxation has a substantial effect on the detrapping barrier but little influence on the intracage potential. Calculations using a rigid cage approximation give satisfactory agreement with zero-point parameters extracted from experimental data. Different model chemistries yield qualitatively different pictures of the dependence of the hyperfine coupling constant of the trapped H atom upon the detrapping coordinate. Within an isotropic approximation of the vibrational displacements, the B3LYP data give fairly close agreement with the experimental temperature dependence, subject to a shift of the absolute value related to known weaknesses of the method. For the Si(7)Ge cage, it is found that the transition state in which the H atom passes through a Ge-containing face is strongly favored, accounting for the larger detrapping rate parameters observed experimentally for this species.The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydrogen atoms are found to be more strongly stabilized in homosubstituted octasilsesquioxanes compared with singly Ge-substituted cages. A kinetic isotope effect observed for the detrapping of H and D from MeT(8) is ascribed to the difference in the zero-point energies of the trapped atoms. There is a secondary H/D isotope effect in the temperature dependence of the (29)Si-superhyperfine splitting constants in the range 228-353 K. Cage relaxation has a substantial effect on the detrapping barrier but little influence on the intracage potential. Calculations using a rigid cage approximation give satisfactory agreement with zero-point parameters extracted from experimental data. Different model chemistries yield qualitatively different pictures of the dependence of the hyperfine coupling constant of the trapped H atom upon the detrapping coordinate. Within an isotropic approximation of the vibrational displacements, the B3LYP data give fairly close agreement with the experimental temperature dependence, subject to a shift of the absolute value related to known weaknesses of the method. For the Si(7)Ge cage, it is found that the transition state in which the H atom passes through a Ge-containing face is strongly favored, accounting for the larger detrapping rate parameters observed experimentally for this species.
The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydrogen atoms are found to be more strongly stabilized in homosubstituted octasilsesquioxanes compared with singly Ge-substituted cages. A kinetic isotope effect observed for the detrapping of H and D from MeT8 is ascribed to the difference in the zero-point energies of the trapped atoms. There is a secondary H/D isotope effect in the temperature dependence of the 29Si-superhyperfine splitting constants in the range 228−353 K. Cage relaxation has a substantial effect on the detrapping barrier but little influence on the intracage potential. Calculations using a rigid cage approximation give satisfactory agreement with zero-point parameters extracted from experimental data. Different model chemistries yield qualitatively different pictures of the dependence of the hyperfine coupling constant of the trapped H atom upon the detrapping coordinate. Within an isotropic approximation of the vibrational displacements, the B3LYP data give fairly close agreement with the experimental temperature dependence, subject to a shift of the absolute value related to known weaknesses of the method. For the Si7Ge cage, it is found that the transition state in which the H atom passes through a Ge-containing face is strongly favored, accounting for the larger detrapping rate parameters observed experimentally for this species.
The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydrogen atoms are found to be more strongly stabilized in homosubstituted octasilsesquioxanes compared with singly Ge-substituted cages. A kinetic isotope effect observed for the detrapping of H and D from MeT(8) is ascribed to the difference in the zero-point energies of the trapped atoms. There is a secondary H/D isotope effect in the temperature dependence of the (29)Si-superhyperfine splitting constants in the range 228-353 K. Cage relaxation has a substantial effect on the detrapping barrier but little influence on the intracage potential. Calculations using a rigid cage approximation give satisfactory agreement with zero-point parameters extracted from experimental data. Different model chemistries yield qualitatively different pictures of the dependence of the hyperfine coupling constant of the trapped H atom upon the detrapping coordinate. Within an isotropic approximation of the vibrational displacements, the B3LYP data give fairly close agreement with the experimental temperature dependence, subject to a shift of the absolute value related to known weaknesses of the method. For the Si(7)Ge cage, it is found that the transition state in which the H atom passes through a Ge-containing face is strongly favored, accounting for the larger detrapping rate parameters observed experimentally for this species.
Author Macrae, Roderick M
Carmichael, Ian
Päch, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Päch
  fullname: Päch, Michael
– sequence: 2
  givenname: Roderick M
  surname: Macrae
  fullname: Macrae, Roderick M
– sequence: 3
  givenname: Ian
  surname: Carmichael
  fullname: Carmichael, Ian
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17767978$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16669680$$D View this record in MEDLINE/PubMed
BookMark eNptkctu1DAUhi1URKeFBS-AsgGJRagvsZ2wK0NvolKBli2WYzvIQ2JPfZGmu277mjwJbmfoSKgr28ff_-uc8--BHeedAeA1gh8QxOhgISGliHP9DMwQxbCmCLMdMIMQ4pq3jOyCvRgX5dngFr0Au4gx1rEWzsDP0xsd_C_jKul09dnkZILNU3WY_BQr66oLlWS0YzTxOlu_ks7Ej39u76qj1bKQk3FJjg_auZ-WOclkvSuVy5S1NfEleD7IIn61OffBj-Ojq_lpfX5xcjY_PK8laVGqO9IahRvec0QbisudDQNhPWsoNEpq3XS0h8poDvvWEKXLD8N6aFhLEZWI7IN3a99l8NfZxCQmG5UZx9Kvz1Ew3hGKG1bANxsw95PRYllmkOFG_NtIAd5uABmVHIcgnbJxy3FevHhbuPdrTgUfYzDDFoHiPhXxmEphD_5jlV1vKgVpxycV9VphYzKrR2sZfpdRCKfi6uul6Jpv3z-RYyi-bLuWKoqFz6FkEJ_w_Qtwhaq2
CODEN JACSAT
CitedBy_id crossref_primary_10_1016_j_micromeso_2010_06_013
crossref_primary_10_1021_jp1105778
crossref_primary_10_1002_cplu_202400146
crossref_primary_10_3184_003685013X13722668590726
crossref_primary_10_1155_2012_391325
crossref_primary_10_1021_acs_jpcc_1c01582
crossref_primary_10_1039_c2cp24057b
crossref_primary_10_1007_s00214_007_0304_8
crossref_primary_10_1021_jp906289d
crossref_primary_10_1002_adsc_201600489
crossref_primary_10_1021_acs_organomet_5b00142
crossref_primary_10_1021_jp0769882
crossref_primary_10_1021_acs_organomet_7b00599
crossref_primary_10_1016_j_cplett_2007_04_045
crossref_primary_10_1021_jp7114669
crossref_primary_10_1021_om5010918
crossref_primary_10_3390_molecules18066679
crossref_primary_10_1021_jp904488s
crossref_primary_10_1021_cr900201r
Cites_doi 10.1063/1.466884
10.1103/PhysRevB.51.14867
10.1107/S0108270194005342
10.1063/1.432267
10.1021/jp952198t
10.1021/jp9704022
10.1021/jp0015269
10.1103/PhysRevB.45.13244
10.1002/zaac.19713840107
10.1007/b13865
10.1016/0009-2614(96)00917-7
10.1021/ic00013a002
10.1021/j100205a007
10.1103/PhysRevB.63.045421
10.1103/PhysRevA.38.3098
10.1021/ja01621a025
10.1021/jp970348p
10.1063/1.462569
10.1021/j100098a005
10.1039/B206261E
10.1103/PhysRevA.39.3761
10.1021/ja983812s
10.1063/1.438980
10.1021/ja9831498
10.1119/1.16402
10.1021/ja00084a089
10.1021/ic000803n
10.1016/S0166-1280(96)80048-0
10.1039/B206294A
ContentType Journal Article
Copyright Copyright © 2006 American Chemical Society
2006 INIST-CNRS
Copyright_xml – notice: Copyright © 2006 American Chemical Society
– notice: 2006 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1021/ja055177d
DatabaseName Istex
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1520-5126
EndPage 6125
ExternalDocumentID 16669680
17767978
10_1021_ja055177d
ark_67375_TPS_94QRB3F0_K
b775648129
Genre Journal Article
GroupedDBID -
.K2
02
186
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F20
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
NHB
OHT
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZCG
ZE2
ZHY
---
-DZ
-ET
-~X
.DC
.GJ
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
ADOJD
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
IH2
XOL
XSW
YQT
ZCA
~02
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
ADXHL
AEYZD
AGQPQ
AHDLI
ANPPW
CITATION
YR5
.HR
1WB
3EH
3O-
41~
AAUPJ
AAYJJ
AAYWT
ABHMW
ABWLT
ACBNA
ACKIV
AI.
D0S
IQODW
MVM
P-O
RNS
UBC
UBX
VH1
X7L
YXA
YXE
YYP
ZGI
ZY4
NPM
VXZ
YIN
7X8
ID FETCH-LOGICAL-a381t-938ec247b715452ec26ff36b6450ecadd495b0ced70b8e3cdb6462df468515a13
IEDL.DBID ACS
ISSN 0002-7863
IngestDate Fri Sep 05 13:21:54 EDT 2025
Wed Feb 19 01:53:47 EST 2025
Mon Jul 21 09:16:15 EDT 2025
Tue Jul 01 02:58:31 EDT 2025
Thu Apr 24 22:56:33 EDT 2025
Wed Oct 30 09:29:36 EDT 2024
Thu Aug 27 13:42:11 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Kinetic control
Hartree-Fock calculations
Hydrogen storage
Cage compound
Silsesquioxane polymer
Silicon Organic compounds
ENDOR spectrometry
Theoretical study
Activation parameter
Experimental study
Kinetic isotope effect
Superhyperfine structure
Density functional method
Hyperfine splitting
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-938ec247b715452ec26ff36b6450ecadd495b0ced70b8e3cdb6462df468515a13
Notes ark:/67375/TPS-94QRB3F0-K
istex:4789AEBEDA32B67C7E21AE18FD21562F8E6A5E54
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16669680
PQID 67935246
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_67935246
pubmed_primary_16669680
pascalfrancis_primary_17767978
crossref_primary_10_1021_ja055177d
crossref_citationtrail_10_1021_ja055177d
istex_primary_ark_67375_TPS_94QRB3F0_K
acs_journals_10_1021_ja055177d
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-05-10
PublicationDateYYYYMMDD 2006-05-10
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-10
  day: 10
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2006
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Dunning T. H., Jr. (ja055177db00041/ja055177db00041_1) 1989; 90
Prassides K. (ja055177db00001/ja055177db00001_1) 1992; 96
ja055177db00051/ja055177db00051_1
Päch M. (ja055177db00025/ja055177db00025_1) 1997; 101
ja055177db00033/ja055177db00033_1
Davidson E. R. (ja055177db00046/ja055177db00046_1) 1996; 260
Karshenboim S. G. (ja055177db00037/ja055177db00037_1) 2003
Bornhauser P. (ja055177db00049/ja055177db00049_1) 1996; 100
Dinse K.-P. (ja055177db00032/ja055177db00032_1) 2002; 4
Hoebbel D. (ja055177db00017/ja055177db00017_1) 1971; 384
Olsson K. (ja055177db00015/ja055177db00015_1) 1958; 13
Waiblinger M. (ja055177db00010/ja055177db00010_1) 1997
Hayashino Y. (ja055177db00026/ja055177db00026_1) 2001; 748
Woon D. E. (ja055177db00043/ja055177db00043_1) 1993; 98
Kendall R. A. (ja055177db00042/ja055177db00042_1) 1992; 96
Perlson B. D. (ja055177db00048/ja055177db00048_1) 1974; 15
Liu S. Y. (ja055177db00003/ja055177db00003_1) 2000; 599
Macrae R. M. (ja055177db00050/ja055177db00050_1) 1994; 98
Weidinger A. (ja055177db00007/ja055177db00007_1) 1998
Feher F. J. (ja055177db00018/ja055177db00018_1) 1989; 111
Hayashino Y. (ja055177db00028/ja055177db00028_1) 2001; 40
Dietel E. (ja055177db00012/ja055177db00012_1) 1999; 121
JimenezVazquez H. A. (ja055177db00013/ja055177db00013_1) 1994; 229
Suryanarayana D. (ja055177db00039/ja055177db00039_1) 1976; 64
Wilson A. K. (ja055177db00045/ja055177db00045_1) 1996; 388
Peterson K. A. (ja055177db00044/ja055177db00044_1) 1994; 100
Becke A. D. (ja055177db00020/ja055177db00020_1) 1993; 98
auf der Heyde T. P. E. (ja055177db00030/ja055177db00030_1) 1991; 45
Kaupp M. (ja055177db00031/ja055177db00031_1) 2002; 4
Dilger H. (ja055177db00002/ja055177db00002_1) 2000; 289
Barry A. J. (ja055177db00016/ja055177db00016_1) 1955; 77
Barton G. (ja055177db00038/ja055177db00038_1) 1990; 58
ja055177db00034/ja055177db00034_1
Carmichael I. (ja055177db00047/ja055177db00047_1) 1997; 101
Waiblinger M. (ja055177db00006/ja055177db00006_1) 2001; 63
Saunders M. (ja055177db00005/ja055177db00005_1) 1994; 116
Becke A. D. (ja055177db00022/ja055177db00022_1) 2000; 123
Curtiss L. A. (ja055177db00024/ja055177db00024_1) 1995; 103
McLean A. D. (ja055177db00023/ja055177db00023_1) 1980; 72
ja055177db00011/ja055177db00011_1
Groβ B. (ja055177db00036/ja055177db00036_1) 2001; 105
Pople J. A. (ja055177db00021/ja055177db00021_1) 1989; 90
Saunders M. (ja055177db00004/ja055177db00004_1) 1993; 259
ja055177db00040/ja055177db00040_1
ja055177db00035/ja055177db00035_1
Mattori M. (ja055177db00029/ja055177db00029_1) 2000; 104
Rhodes C. (ja055177db00027/ja055177db00027_1) 1997
Frisch M. J. (ja055177db00019/ja055177db00019_1) 1998
Agaskar P. A. (ja055177db00014/ja055177db00014_1) 1991; 30
Yamamoto K. (ja055177db00009/ja055177db00009_1) 1999; 121
References_xml – volume: 100
  start-page: 7415
  year: 1994
  ident: ja055177db00044/ja055177db00044_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466884
– ident: ja055177db00051/ja055177db00051_1
  doi: 10.1103/PhysRevB.51.14867
– volume: 111
  start-page: 1748
  year: 1989
  ident: ja055177db00018/ja055177db00018_1
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 594
  year: 1974
  ident: ja055177db00048/ja055177db00048_1
  publication-title: J. Magn. Reson.
– volume: 105
  start-page: 10017
  year: 2001
  ident: ja055177db00036/ja055177db00036_1
  publication-title: J. Phys. Chem. A
– ident: ja055177db00033/ja055177db00033_1
  doi: 10.1107/S0108270194005342
– volume: 64
  start-page: 513
  year: 1976
  ident: ja055177db00039/ja055177db00039_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.432267
– volume: 100
  start-page: 2044
  year: 1996
  ident: ja055177db00049/ja055177db00049_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952198t
– volume: 101
  start-page: 4636
  year: 1997
  ident: ja055177db00047/ja055177db00047_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9704022
– volume: 104
  start-page: 10872
  year: 2000
  ident: ja055177db00029/ja055177db00029_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0015269
– ident: ja055177db00035/ja055177db00035_1
  doi: 10.1103/PhysRevB.45.13244
– volume: 384
  start-page: 52
  year: 1971
  ident: ja055177db00017/ja055177db00017_1
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.19713840107
– volume: 103
  start-page: 6113
  year: 1995
  ident: ja055177db00024/ja055177db00024_1
  publication-title: J. Chem. Phys.
– volume: 98
  start-page: 5652
  year: 1993
  ident: ja055177db00020/ja055177db00020_1
  publication-title: J. Chem. Phys.
– start-page: 162
  volume-title: Precision Physics of Simple Atomic Systems
  year: 2003
  ident: ja055177db00037/ja055177db00037_1
  doi: 10.1007/b13865
– volume-title: Process
  year: 1998
  ident: ja055177db00007/ja055177db00007_1
– volume: 259
  start-page: 1430
  year: 1993
  ident: ja055177db00004/ja055177db00004_1
  publication-title: J. Science
– volume-title: Universität Konstanz
  year: 1997
  ident: ja055177db00010/ja055177db00010_1
– volume: 123
  start-page: 4026
  year: 2000
  ident: ja055177db00022/ja055177db00022_1
  publication-title: J. Chem. Phys.
– volume: 260
  start-page: 518
  year: 1996
  ident: ja055177db00046/ja055177db00046_1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00917-7
– volume: 748
  start-page: 750
  year: 2001
  ident: ja055177db00026/ja055177db00026_1
  publication-title: ChemPhysChem
– volume: 30
  start-page: 2708
  year: 1991
  ident: ja055177db00014/ja055177db00014_1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00013a002
– volume: 96
  start-page: 10602
  year: 1992
  ident: ja055177db00001/ja055177db00001_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100205a007
– volume: 63
  start-page: 5421
  year: 2001
  ident: ja055177db00006/ja055177db00006_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.045421
– ident: ja055177db00034/ja055177db00034_1
  doi: 10.1103/PhysRevA.38.3098
– volume: 77
  start-page: 4252
  year: 1955
  ident: ja055177db00016/ja055177db00016_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01621a025
– volume: 101
  start-page: 8365
  year: 1997
  ident: ja055177db00025/ja055177db00025_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp970348p
– volume: 96
  start-page: 6806
  year: 1992
  ident: ja055177db00042/ja055177db00042_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462569
– volume: 98
  start-page: 12141
  year: 1994
  ident: ja055177db00050/ja055177db00050_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100098a005
– start-page: 335
  volume-title: Peroxyl Radicals
  year: 1997
  ident: ja055177db00027/ja055177db00027_1
– volume: 98
  start-page: 1374
  year: 1993
  ident: ja055177db00043/ja055177db00043_1
  publication-title: J. Chem. Phys.
– volume: 229
  start-page: 114
  year: 1994
  ident: ja055177db00013/ja055177db00013_1
  publication-title: J. Chem. Phys. Lett.
– volume: 4
  start-page: 5442
  year: 2002
  ident: ja055177db00032/ja055177db00032_1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B206261E
– ident: ja055177db00040/ja055177db00040_1
  doi: 10.1103/PhysRevA.39.3761
– ident: ja055177db00011/ja055177db00011_1
– volume: 121
  start-page: 2437
  year: 1999
  ident: ja055177db00012/ja055177db00012_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja983812s
– volume: 90
  start-page: 5629
  year: 1989
  ident: ja055177db00021/ja055177db00021_1
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 367
  year: 1958
  ident: ja055177db00015/ja055177db00015_1
  publication-title: Arkiv för Kemi
– volume: 45
  start-page: 40
  year: 1991
  ident: ja055177db00030/ja055177db00030_1
  publication-title: Chimia
– volume: 72
  start-page: 5648
  year: 1980
  ident: ja055177db00023/ja055177db00023_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438980
– volume: 121
  start-page: 1596
  year: 1999
  ident: ja055177db00009/ja055177db00009_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9831498
– volume: 599
  start-page: 86
  year: 2000
  ident: ja055177db00003/ja055177db00003_1
  publication-title: J. Organomet. Chem.
– volume: 58
  start-page: 755
  year: 1990
  ident: ja055177db00038/ja055177db00038_1
  publication-title: Am. J. Phys.
  doi: 10.1119/1.16402
– volume: 116
  start-page: 2193
  year: 1994
  ident: ja055177db00005/ja055177db00005_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00084a089
– volume: 40
  start-page: 2218
  year: 2001
  ident: ja055177db00028/ja055177db00028_1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic000803n
– volume: 388
  start-page: 349
  year: 1996
  ident: ja055177db00045/ja055177db00045_1
  publication-title: J. Mol. Struct. (THEOCHEM)
  doi: 10.1016/S0166-1280(96)80048-0
– volume: 4
  start-page: 5458
  year: 2002
  ident: ja055177db00031/ja055177db00031_1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B206294A
– volume-title: Gaussian 98, revision A.7
  year: 1998
  ident: ja055177db00019/ja055177db00019_1
– volume: 289
  start-page: 486
  year: 2000
  ident: ja055177db00002/ja055177db00002_1
  publication-title: Physica B (Amsterdam)
– volume: 90
  start-page: 1023
  year: 1989
  ident: ja055177db00041/ja055177db00041_1
  publication-title: J. Chem. Phys.
SSID ssj0004281
Score 1.932388
Snippet The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of...
SourceID proquest
pubmed
pascalfrancis
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6111
SubjectTerms Atomic and molecular physics
Exact sciences and technology
Molecular properties and interactions with photons
Multiple resonances (including double and higher-order resonance processes, such as double nuclear magnetic resonance, electron double resonance and microwave optical double resonance)
Physics
Title Hydrogen and Deuterium Atoms in Octasilsesquioxanes:  Experimental and Computational Studies
URI http://dx.doi.org/10.1021/ja055177d
https://api.istex.fr/ark:/67375/TPS-94QRB3F0-K/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/16669680
https://www.proquest.com/docview/67935246
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5ROLQXXn0tT6utql6CEiexE26wsFpR9QlInBr5FWkFJLBJJODElb_JL2GcBwsqtLdIGVvxzMQz4xnPB_BJpxiUaOU52lDj2JbdjvCldowOPO1ptCB1VeW372x4GOwdhUdT8PGZDD61_YFctOqc6xcwQxmql_V_-vuTy4808jofl0fM79oHPRxqTY8qHpmeGcvFC1sKKQrkRtrAWDzvZ9b2ZjAHO92tnabM5HijKuWGuvq7ieO_ljIPs62_SbYaBVmAKZMtwst-B_P2Gv4ML_U4RzUiItNkx1iIh1F1SrbK_LQgo4z8UKUoRmhBi_NqlF8I3Bs3b69vyO4DbIB6bAMQ0R4ukrZA8Q0cDnYP-kOnBV1AGUVe6cR-ZBQNuOQ1_Dg-szT1mWRB6BqFuyFGVNJVRnNXRsZXGt8wiiJn6LuFwvPfwnSWZ-Y9EBuKSUkjm4sLQp3G3JdCKC8VXCkahz1YQ6kk7U9TJHU-nGI80rGpB186gSWqbVlukTNOniL9cE961vTpeIrocy31ewoxPraFbTxMDn7uJ3Hw6_e2P3CTr_hlj9RiMqVtfoSBdw_WOz1JUF42yYLsz6sCp4vRpw1YD9416jMZi5FizCJ36X_LXoZXzUGP7RG7AtPluDKr6PqUcq1W_TuFCv26
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BeygXKO-F0loIIS6p8rST3palq4U-eHQr9UTkV6RV26SsE6nlxJW_yS9h7CTdFhXBLVJsyx6PPTP2-PsAXqkCgxIlA0_pUHsWstvjkVCeVnGgAoUWxGVV7u3TyWH84Sg56mBy7FsY7ITBloy7xF-gC1iYIB-NO2PqNiyjExJamobh6GDxBjJMg97VZSmNehShq1WtBZLmmgVatsI8txmR3KBQipbN4u_upjM743stf5HrsMs2Od5sarEpv_-B5fh_I1qFu533SYatutyHW7p8ACujnvTtIXydXKh5hUpFeKnIO20JH2bNKRnW1akhs5J8lDU3M7Sn5lszq8457pRbv378JNtXmAJc3ZYuojtqJF264iM4HG9PRxOvo2DAGUuD2suiVMswZoI5MnL8pkURUUHjxNcS90aMr4QvtWK-SHUkFf6hISoARU8u4UH0GJbKqtRPgdjATIgwtTdzcaKKjEWCcxkUnEkZZskA1lFKebeETO5ux0OMTnoxDeBNP2-57ADMLY_GyU1FX14WPWtRO24q9NpN_mUJPj-2aW4syaefDvIs_vzlbTT28x3s2TXtWDRpoZAwDB_ARq8uOc6XvXJB8VeNweYy9HBjOoAnrRYt6mLcmNHUf_avYW_AymS6t5vvvt_feQ532iMgix67Bkv1vNEv0CmqxbpbDb8BRYgGKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BK0EvlGdZCq2FEOKSKk874bZsu1ootIW2Uk9EfkValSZlnUiFE1f-Jr-EsZPstqgIbpFiW_Z47JnJTL4P4IUqMChRMvCUDrVnIbs9HgnlaRUHKlBoQVxV5Yc9OjmO350kJ12gaP-FwUkYHMm4JL491eeq6BAGLFSQjwaeMXUTlm26zlI1DEeHi_8gwzTo3V2W0qhHErrc1Vohaa5YoWUr0AtbFckNCqZoGS3-7nI60zNehf35pF3FyelWU4st-f0PPMf_X9VduNN5oWTYqs09uKHL-3B71JO_PYDPk29qVqFyEV4qsq0t8cO0OSPDujozZFqSfVlzM0W7ar420-qC4435-tePn2TnEmOA69vSRnSfHElXtvgQjsc7R6OJ11Ex4M6lQe1lUaplGDPBHCk5PtOiiKigceJriXckxlnCl1oxX6Q6kgrf0BAVgaJHl_AgegRLZVXqx0BsgCZEmNoMXZyoImOR4FwGBWdShlkygA2UVN4dJZO7LHmIUUovpgG86vculx2QueXT-HJd0-fzpuctesd1jV46BZi34LNTW-7Gkvzo4DDP4o-f3kRjP9_FmV3RkMWQFhIJw_EBbPYqk-N-2dQLir9qDA6Xoacb0wGstZq06IvxY0ZT_8m_lr0Jtw62x_n7t3u767DSfgmyILJPYameNfoZ-ka12HAH4jfFrAit
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+and+Deuterium+Atoms+in+Octasilsesquioxanes%3A%E2%80%89+Experimental+and+Computational+Studies&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=P%C3%A4ch%2C+Michael&rft.au=Macrae%2C+Roderick+M&rft.au=Carmichael%2C+Ian&rft.date=2006-05-10&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=128&rft.issue=18&rft.spage=6111&rft.epage=6125&rft_id=info:doi/10.1021%2Fja055177d&rft.externalDocID=b775648129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon