RGD and Interleukin-13 Peptide Functionalized Nanoparticles for Enhanced Glioblastoma Cells and Neovasculature Dual Targeting Delivery and Elevated Tumor Penetration
As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to neovasculature and GBM cells could deliver cargoes to these two kinds of cells, leading to a combination treatment. In this study, polymeric nan...
Saved in:
Published in | Molecular pharmaceutics Vol. 11; no. 3; pp. 1042 - 1052 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to neovasculature and GBM cells could deliver cargoes to these two kinds of cells, leading to a combination treatment. In this study, polymeric nanoparticles were functionalized with RGD and interleukin-13 peptide (IRNPs) to construct a neovasculature and tumor cell dual targeting delivery system in which RGD could target αvβ3 on neovasculature and interleukin-13 peptide could target IL13Rα2 on GBM cells. In vitro, interleukin-13 peptide and RGD could enhance the uptake by corresponding cells (C6 and human umbilical vein endothelial cells). Due to the expression of both receptors on C6 cells, RGD also could enhance the uptake by C6 cells. Through receptor labeling, it clearly showed that αvβ3 could mediate the internalization of RGD modified nanoparticles and IL13Rα2 could mediate the internalization of interleukin-13 peptide modified nanoparticles. The ligand functionalization also resulted in a modification on endocytosis pathways, which changed the main endocytosis pathways from macropinocytosis for unmodified nanoparticles to clathrin-mediated endocytosis for IRNPs. IRNPs also displayed the strongest penetration ability according to tumor spheroid analysis. In vivo, IRNPs could effectively deliver cargoes to GBM with higher intensity than monomodified nanoparticles. After CD31-staining, it demonstrated IRNPs could target both neovasculature and GBM cells. In conclusion, IRNPs showed promising ability in dual targeting both neovasculature and GBM cells. |
---|---|
AbstractList | As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to neovasculature and GBM cells could deliver cargoes to these two kinds of cells, leading to a combination treatment. In this study, polymeric nanoparticles were functionalized with RGD and interleukin-13 peptide (IRNPs) to construct a neovasculature and tumor cell dual targeting delivery system in which RGD could target αvβ3 on neovasculature and interleukin-13 peptide could target IL13Rα2 on GBM cells. In vitro, interleukin-13 peptide and RGD could enhance the uptake by corresponding cells (C6 and human umbilical vein endothelial cells). Due to the expression of both receptors on C6 cells, RGD also could enhance the uptake by C6 cells. Through receptor labeling, it clearly showed that αvβ3 could mediate the internalization of RGD modified nanoparticles and IL13Rα2 could mediate the internalization of interleukin-13 peptide modified nanoparticles. The ligand functionalization also resulted in a modification on endocytosis pathways, which changed the main endocytosis pathways from macropinocytosis for unmodified nanoparticles to clathrin-mediated endocytosis for IRNPs. IRNPs also displayed the strongest penetration ability according to tumor spheroid analysis. In vivo, IRNPs could effectively deliver cargoes to GBM with higher intensity than monomodified nanoparticles. After CD31-staining, it demonstrated IRNPs could target both neovasculature and GBM cells. In conclusion, IRNPs showed promising ability in dual targeting both neovasculature and GBM cells.As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to neovasculature and GBM cells could deliver cargoes to these two kinds of cells, leading to a combination treatment. In this study, polymeric nanoparticles were functionalized with RGD and interleukin-13 peptide (IRNPs) to construct a neovasculature and tumor cell dual targeting delivery system in which RGD could target αvβ3 on neovasculature and interleukin-13 peptide could target IL13Rα2 on GBM cells. In vitro, interleukin-13 peptide and RGD could enhance the uptake by corresponding cells (C6 and human umbilical vein endothelial cells). Due to the expression of both receptors on C6 cells, RGD also could enhance the uptake by C6 cells. Through receptor labeling, it clearly showed that αvβ3 could mediate the internalization of RGD modified nanoparticles and IL13Rα2 could mediate the internalization of interleukin-13 peptide modified nanoparticles. The ligand functionalization also resulted in a modification on endocytosis pathways, which changed the main endocytosis pathways from macropinocytosis for unmodified nanoparticles to clathrin-mediated endocytosis for IRNPs. IRNPs also displayed the strongest penetration ability according to tumor spheroid analysis. In vivo, IRNPs could effectively deliver cargoes to GBM with higher intensity than monomodified nanoparticles. After CD31-staining, it demonstrated IRNPs could target both neovasculature and GBM cells. In conclusion, IRNPs showed promising ability in dual targeting both neovasculature and GBM cells. As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to neovasculature and GBM cells could deliver cargoes to these two kinds of cells, leading to a combination treatment. In this study, polymeric nanoparticles were functionalized with RGD and interleukin-13 peptide (IRNPs) to construct a neovasculature and tumor cell dual targeting delivery system in which RGD could target αvβ3 on neovasculature and interleukin-13 peptide could target IL13Rα2 on GBM cells. In vitro, interleukin-13 peptide and RGD could enhance the uptake by corresponding cells (C6 and human umbilical vein endothelial cells). Due to the expression of both receptors on C6 cells, RGD also could enhance the uptake by C6 cells. Through receptor labeling, it clearly showed that αvβ3 could mediate the internalization of RGD modified nanoparticles and IL13Rα2 could mediate the internalization of interleukin-13 peptide modified nanoparticles. The ligand functionalization also resulted in a modification on endocytosis pathways, which changed the main endocytosis pathways from macropinocytosis for unmodified nanoparticles to clathrin-mediated endocytosis for IRNPs. IRNPs also displayed the strongest penetration ability according to tumor spheroid analysis. In vivo, IRNPs could effectively deliver cargoes to GBM with higher intensity than monomodified nanoparticles. After CD31-staining, it demonstrated IRNPs could target both neovasculature and GBM cells. In conclusion, IRNPs showed promising ability in dual targeting both neovasculature and GBM cells. |
Author | Xiong, Yang Zhang, Shuang Cao, Shijie Gao, Huile Yang, Zhi Jiang, Xinguo |
AuthorAffiliation | Fudan University Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics Sciences, School of Pharmacy |
AuthorAffiliation_xml | – name: Fudan University – name: Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics Sciences, School of Pharmacy |
Author_xml | – sequence: 1 givenname: Huile surname: Gao fullname: Gao, Huile – sequence: 2 givenname: Yang surname: Xiong fullname: Xiong, Yang – sequence: 3 givenname: Shuang surname: Zhang fullname: Zhang, Shuang – sequence: 4 givenname: Zhi surname: Yang fullname: Yang, Zhi – sequence: 5 givenname: Shijie surname: Cao fullname: Cao, Shijie – sequence: 6 givenname: Xinguo surname: Jiang fullname: Jiang, Xinguo email: xgjiang@shmu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24521297$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctO3DAUhi1EVS7tgheovKlUFilx4iTOspoZBiREUTX76OCcTE0dO_VlJPo-vCeeGWBRsTqW_J3P-v2fkENjDRJyxvLvLC_YxTjxPG8qtj4gx6ziZSbKtjh8Owt-RE68f8jzgldF-ZEcbScr2uaYPP1azimYnl6bgE5j_KNMxkp6h1NQPdLLaGRQ1oBW_7Cnt2DsBC4oqdHTwTq6ML_ByHS11Mrea_DBjkBnqLXfeW_RbsDLqCFEh3QeQdMVuDUGZdZ0jlpt0D3u0IXGDYSkWsUxme_QYHCwff0T-TCA9vj5ZZ6S1eViNbvKbn4ur2c_bjIoBQtZA20_4NAOVY4VF8jrgclc1DX2oh0kNrICjrWoy1KAEE1Vc4kSEtsDYlGekm977eTs34g-dKPyMkUBgzb6jlU1a-uWcZbQLy9ovB-x7yanRnCP3evPJuBiD0hnvXc4dFKFXZiUSemO5d22u-6tu7Rx_t_Gq_Q99uueBem7BxtdKsi_wz0DeJioqg |
CitedBy_id | crossref_primary_10_3390_pharmaceutics10040193 crossref_primary_10_1016_j_apsb_2016_05_013 crossref_primary_10_1002_wnan_1387 crossref_primary_10_1186_s12951_020_00685_4 crossref_primary_10_1039_C5RA12436K crossref_primary_10_1016_j_pneurobio_2017_07_003 crossref_primary_10_1039_D4NR03224A crossref_primary_10_1248_cpb_c20_00041 crossref_primary_10_1021_acs_biomac_7b00068 crossref_primary_10_1016_j_cclet_2020_07_030 crossref_primary_10_1016_j_jddst_2024_105924 crossref_primary_10_1002_mabi_201600138 crossref_primary_10_1021_acs_molpharmaceut_1c00455 crossref_primary_10_1021_acsami_1c07297 crossref_primary_10_3109_10717544_2015_1064186 crossref_primary_10_2174_2405461504666190510121911 crossref_primary_10_1021_acs_molpharmaceut_3c00348 crossref_primary_10_1002_pep2_24205 crossref_primary_10_1016_j_jconrel_2019_11_037 crossref_primary_10_1016_j_jconrel_2017_02_017 crossref_primary_10_1021_acsnano_4c01790 crossref_primary_10_1016_j_jconrel_2017_12_028 crossref_primary_10_1002_adfm_202103272 crossref_primary_10_1038_s41578_024_00684_z crossref_primary_10_1080_1061186X_2018_1473409 crossref_primary_10_1016_j_mtbio_2023_100671 crossref_primary_10_1007_s40263_016_0405_9 crossref_primary_10_1007_s12032_014_0110_9 crossref_primary_10_3109_1061186X_2015_1029930 crossref_primary_10_3390_nano10112236 crossref_primary_10_1016_j_nantod_2017_12_007 crossref_primary_10_2217_nnm_2022_0287 crossref_primary_10_1126_sciadv_aav5010 crossref_primary_10_3390_nano6010003 crossref_primary_10_2217_nnm_2017_0223 crossref_primary_10_1021_acs_molpharmaceut_9b01215 crossref_primary_10_1039_D1CS00659B crossref_primary_10_1039_C5NR01408E crossref_primary_10_1016_j_addr_2022_114482 crossref_primary_10_1186_s40580_018_0168_8 crossref_primary_10_18632_oncotarget_5354 crossref_primary_10_1039_C7TB02804K crossref_primary_10_1039_C9NH00628A crossref_primary_10_2217_nnm_2017_0193 crossref_primary_10_1016_j_jconrel_2022_06_044 crossref_primary_10_1016_j_ijpharm_2014_08_020 crossref_primary_10_1039_C9TB02957E crossref_primary_10_3748_wjg_v24_i47_5379 crossref_primary_10_1080_21691401_2019_1699821 crossref_primary_10_1021_acs_chemrev_0c00779 crossref_primary_10_1021_acsami_7b14083 crossref_primary_10_1615_JEnvironPatholToxicolOncol_2022044456 crossref_primary_10_4155_fmc_2018_0521 crossref_primary_10_1021_acsami_7b03518 crossref_primary_10_1007_s11481_016_9687_4 crossref_primary_10_1021_acsami_7b02303 crossref_primary_10_1021_acsami_6b08239 crossref_primary_10_1021_acs_biomac_5b00244 crossref_primary_10_2174_1389201020666190204141046 crossref_primary_10_1021_acsnano_8b09786 crossref_primary_10_1080_09205063_2017_1348739 crossref_primary_10_3390_pharmaceutics13122045 crossref_primary_10_1039_D1NR07591H crossref_primary_10_1016_j_actbio_2018_10_012 crossref_primary_10_1016_j_jddst_2025_106817 crossref_primary_10_1002_ardp_201800219 crossref_primary_10_1016_j_neuroscience_2022_03_030 crossref_primary_10_1021_acsami_6b04442 crossref_primary_10_1021_acsnano_5b01552 crossref_primary_10_1016_j_jconrel_2020_01_009 crossref_primary_10_1080_1061186X_2019_1706095 crossref_primary_10_3389_fchem_2014_00105 crossref_primary_10_1039_C7TB02163A crossref_primary_10_1080_15548627_2025_2452149 crossref_primary_10_1039_C7PY00559H crossref_primary_10_1039_C9BM01813A crossref_primary_10_3390_nano13071140 crossref_primary_10_1080_15384047_2015_1071739 crossref_primary_10_1016_j_jconrel_2022_07_023 crossref_primary_10_18632_oncotarget_17976 crossref_primary_10_3109_1061186X_2015_1070854 crossref_primary_10_1007_s00726_015_2043_9 crossref_primary_10_1007_s10989_019_09834_2 crossref_primary_10_1016_j_jconrel_2018_02_020 crossref_primary_10_1208_s12249_021_01928_9 crossref_primary_10_1186_s12951_020_00684_5 crossref_primary_10_1038_srep16589 crossref_primary_10_1016_j_drudis_2019_01_006 crossref_primary_10_1016_j_phrs_2016_08_004 crossref_primary_10_1021_acs_biomac_5b00193 crossref_primary_10_1039_C7RA12376K crossref_primary_10_1080_17425247_2016_1211637 crossref_primary_10_1016_j_jddst_2023_104562 crossref_primary_10_1002_wnan_1893 crossref_primary_10_1021_acsami_7b03682 crossref_primary_10_1039_D2BM00500J crossref_primary_10_6000_1929_5995_2023_12_17 crossref_primary_10_3390_pharmaceutics10040181 crossref_primary_10_18632_oncotarget_24562 crossref_primary_10_1016_j_ijpharm_2014_04_008 crossref_primary_10_1039_D1CS00707F crossref_primary_10_1039_C9RA04513A crossref_primary_10_1080_17425247_2019_1598375 crossref_primary_10_1002_adma_201606628 |
Cites_doi | 10.1158/1535-7163.MCT-05-0327 10.1016/S0142-9612(02)00248-X 10.1021/nn203749v 10.1016/j.jconrel.2012.09.003 10.1517/17425247.2012.682726 10.1073/pnas.0503879102 10.1016/j.biomaterials.2012.10.048 10.1016/j.jconrel.2013.10.002 10.1016/j.jconrel.2011.10.032 10.1091/mbc.e05-12-1112 10.1126/science.2821619 10.1016/j.biomaterials.2012.03.058 10.1016/j.jconrel.2009.09.020 10.1016/j.jconrel.2011.06.001 10.1016/j.jconrel.2008.03.007 10.1021/bc900228m 10.1016/j.biomaterials.2011.02.044 10.2217/nnm.11.79 10.1021/mp800218q 10.1038/nrd2614 10.1016/j.jconrel.2009.01.018 10.1038/nnano.2007.387 10.1021/bc800233a 10.3727/096504001108747468 10.1021/nn400548g 10.1016/j.ijpharm.2013.12.016 10.1016/j.biomaterials.2012.09.044 10.1007/s11095-010-0308-2 10.1038/nrn2175 10.1016/j.ijpharm.2009.04.035 10.1016/S0378-5173(02)00129-1 10.1007/s11095-013-1122-4 10.1038/sj.neo.7900234 10.1016/S1535-6108(03)00336-2 10.1016/j.biomaterials.2011.08.055 10.1021/ja312221g 10.1158/0008-5472.CAN-06-2354 10.1021/pr2012472 10.1016/j.actbio.2013.11.003 10.1038/nature03794 10.1177/1099800403256860 10.1586/ern.12.53 10.1016/j.jconrel.2009.12.020 10.1016/j.biomaterials.2011.07.069 10.1371/journal.pone.0038737 10.1111/j.1742-4658.2009.07173.x 10.1073/pnas.072586399 10.1016/j.biomaterials.2013.11.076 10.1021/cr1003166 10.1021/mp800049w 10.1038/srep02534 10.1016/j.ijpharm.2011.05.063 10.1016/j.biomaterials.2012.11.016 10.1021/mp800051m 10.1016/j.addr.2012.06.012 10.1002/bit.23255 10.1016/j.jconrel.2011.10.004 10.1016/j.biomaterials.2012.05.020 10.1016/j.biomaterials.2012.04.055 10.1016/j.biomaterials.2012.02.004 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/mp400751g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1543-8392 |
EndPage | 1052 |
ExternalDocumentID | 24521297 10_1021_mp400751g g5999854 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 123 4.4 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL H~9 IH9 JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F X --- -~X 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a381t-7a9dfef9f50e548e46f1c0866ed89fce7c5a4e686338a887564cecae54daee23 |
IEDL.DBID | ACS |
ISSN | 1543-8384 1543-8392 |
IngestDate | Fri Jul 11 05:28:13 EDT 2025 Mon Jul 21 05:34:44 EDT 2025 Thu Apr 24 23:03:50 EDT 2025 Tue Jul 01 04:33:34 EDT 2025 Thu Aug 27 13:43:00 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | interleukin-13 peptide glioma neovasculature dual targeting delivery RGD |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-7a9dfef9f50e548e46f1c0866ed89fce7c5a4e686338a887564cecae54daee23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24521297 |
PQID | 1561969141 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1561969141 pubmed_primary_24521297 crossref_citationtrail_10_1021_mp400751g crossref_primary_10_1021_mp400751g acs_journals_10_1021_mp400751g |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-03 |
PublicationDateYYYYMMDD | 2014-03-03 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular pharmaceutics |
PublicationTitleAlternate | Mol. Pharmaceutics |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Wang Z. (ref14/cit14) 2011; 28 Gao H. (ref21/cit21) 2011; 32 Scherzinger-Laude K. (ref30/cit30) 2013; 8 Mintz A. (ref18/cit18) 2002; 4 Gao H. (ref42/cit42) 2005; 102 McMahon K. M. (ref51/cit51) 2012; 11 Jo J. (ref7/cit7) 2012; 12 Almeida J. P. (ref62/cit62) 2011; 6 Jones-Bolin S. (ref23/cit23) 2006; 5 Pang Z. (ref20/cit20) 2008; 128 Liu Y. (ref1/cit1) 2012; 9 Gao H. (ref2/cit2) 2013; 30 Goodman T. T. (ref53/cit53) 2008; 19 Jain R. K. (ref10/cit10) 2007; 8 Kim S. Y. (ref25/cit25) 2003; 24 Ryu J. H. (ref6/cit6) 2012; 64 Mahmoudi M. (ref46/cit46) 2011; 111 Gao H. (ref54/cit54) 2014; 10 Gao H. (ref32/cit32) 2012; 33 Kluza E. (ref61/cit61) 2012; 158 Gu G. (ref55/cit55) 2013; 34 Gao H. (ref41/cit41) 2014; 461 Huang S. (ref9/cit9) 2013; 7 Yonenaga N. (ref34/cit34) 2012; 160 Kawakami M. (ref17/cit17) 2001; 12 Blagosklonny M. V. (ref11/cit11) 2004; 5 Peer D. (ref3/cit3) 2007; 2 Pang Z. (ref39/cit39) 2011; 415 Gao H. (ref19/cit19) 2014; 35 Gao H. (ref63/cit63) 2013; 172 Jiang S. (ref44/cit44) 2006; 17 Bae Y. H. (ref5/cit5) 2011; 153 Du J. (ref49/cit49) 2009; 6 Jiang X. (ref47/cit47) 2013; 34 Lu W. (ref37/cit37) 2006; 66 Davis M. E. (ref4/cit4) 2008; 7 Li S. D. (ref28/cit28) 2008; 5 Wang Y. (ref33/cit33) 2013; 135 Liu J. (ref45/cit45) 2003; 5 Tran J. (ref12/cit12) 2002; 99 Jiang X. (ref58/cit58) 2011; 32 Xin H. (ref24/cit24) 2011; 32 Li Y. (ref60/cit60) 2012; 33 Zhan C. (ref59/cit59) 2010; 143 Levchenko T. S. (ref27/cit27) 2002; 240 Chang J. (ref40/cit40) 2009; 379 Bello L. (ref15/cit15) 2001; 49 Liu C. (ref35/cit35) 2013; 126 Perche F. (ref50/cit50) 2012; 164 Gao H. (ref31/cit31) 2013; 3 Ying X. (ref36/cit36) 2010; 141 Ding H. M. (ref43/cit43) 2012; 33 Yan H. (ref29/cit29) 2012; 6 Waite C. L. (ref56/cit56) 2011; 108 Waite C. L. (ref57/cit57) 2009; 20 Sengupta S. (ref13/cit13) 2005; 436 Ou J. (ref52/cit52) 2012; 7 Ruoslahti E. (ref16/cit16) 1987; 238 Gao H. (ref22/cit22) 2012; 33 Alexis F. (ref26/cit26) 2008; 5 Kim K. W. (ref8/cit8) 2009; 276 Nam H. Y. (ref38/cit38) 2009; 135 Hu Q. (ref48/cit48) 2013; 34 |
References_xml | – volume: 5 start-page: 1744 year: 2006 ident: ref23/cit23 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-05-0327 – volume: 24 start-page: 55 year: 2003 ident: ref25/cit25 publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00248-X – volume: 6 start-page: 410 year: 2012 ident: ref29/cit29 publication-title: ACS Nano doi: 10.1021/nn203749v – volume: 164 start-page: 95 year: 2012 ident: ref50/cit50 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2012.09.003 – volume: 9 start-page: 671 year: 2012 ident: ref1/cit1 publication-title: Expert Opin. Drug Delivery doi: 10.1517/17425247.2012.682726 – volume: 102 start-page: 9469 year: 2005 ident: ref42/cit42 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0503879102 – volume: 34 start-page: 1135 year: 2013 ident: ref48/cit48 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.10.048 – volume: 172 start-page: 921 year: 2013 ident: ref63/cit63 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2013.10.002 – volume: 158 start-page: 207 year: 2012 ident: ref61/cit61 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2011.10.032 – volume: 17 start-page: 4105 year: 2006 ident: ref44/cit44 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-12-1112 – volume: 238 start-page: 491 year: 1987 ident: ref16/cit16 publication-title: Science doi: 10.1126/science.2821619 – volume: 33 start-page: 5115 year: 2012 ident: ref32/cit32 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.03.058 – volume: 141 start-page: 183 year: 2010 ident: ref36/cit36 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2009.09.020 – volume: 153 start-page: 198 year: 2011 ident: ref5/cit5 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2011.06.001 – volume: 128 start-page: 120 year: 2008 ident: ref20/cit20 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2008.03.007 – volume: 20 start-page: 1908 year: 2009 ident: ref57/cit57 publication-title: Bioconjugate Chem. doi: 10.1021/bc900228m – volume: 32 start-page: 4293 year: 2011 ident: ref24/cit24 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.02.044 – volume: 6 start-page: 815 year: 2011 ident: ref62/cit62 publication-title: Nanomedicine (London, U. K.) doi: 10.2217/nnm.11.79 – volume: 6 start-page: 905 year: 2009 ident: ref49/cit49 publication-title: Mol. Pharm. doi: 10.1021/mp800218q – volume: 7 start-page: 771 year: 2008 ident: ref4/cit4 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2614 – volume: 135 start-page: 259 year: 2009 ident: ref38/cit38 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2009.01.018 – volume: 2 start-page: 751 year: 2007 ident: ref3/cit3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.387 – volume: 19 start-page: 1951 year: 2008 ident: ref53/cit53 publication-title: Bioconjugate Chem. doi: 10.1021/bc800233a – volume: 12 start-page: 459 year: 2001 ident: ref17/cit17 publication-title: Oncol. Res. doi: 10.3727/096504001108747468 – volume: 7 start-page: 2860 year: 2013 ident: ref9/cit9 publication-title: ACS Nano doi: 10.1021/nn400548g – volume: 461 start-page: 478 year: 2014 ident: ref41/cit41 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2013.12.016 – volume: 34 start-page: 196 year: 2013 ident: ref55/cit55 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.09.044 – volume: 28 start-page: 585 year: 2011 ident: ref14/cit14 publication-title: Pharm. Res. doi: 10.1007/s11095-010-0308-2 – volume: 8 start-page: 610 year: 2007 ident: ref10/cit10 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2175 – volume: 379 start-page: 285 year: 2009 ident: ref40/cit40 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2009.04.035 – volume: 240 start-page: 95 year: 2002 ident: ref27/cit27 publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(02)00129-1 – volume: 49 start-page: 390 issue: 380 year: 2001 ident: ref15/cit15 publication-title: Neurosurgery – volume: 30 start-page: 2485 year: 2013 ident: ref2/cit2 publication-title: Pharm. Res. doi: 10.1007/s11095-013-1122-4 – volume: 4 start-page: 388 year: 2002 ident: ref18/cit18 publication-title: Neoplasia doi: 10.1038/sj.neo.7900234 – volume: 5 start-page: 13 year: 2004 ident: ref11/cit11 publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00336-2 – volume: 32 start-page: 9457 year: 2011 ident: ref58/cit58 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.055 – volume: 135 start-page: 4799 year: 2013 ident: ref33/cit33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312221g – volume: 66 start-page: 11878 year: 2006 ident: ref37/cit37 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-2354 – volume: 11 start-page: 2863 year: 2012 ident: ref51/cit51 publication-title: J. Proteome Res. doi: 10.1021/pr2012472 – volume: 10 start-page: 858 year: 2014 ident: ref54/cit54 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.11.003 – volume: 436 start-page: 568 year: 2005 ident: ref13/cit13 publication-title: Nature doi: 10.1038/nature03794 – volume: 5 start-page: 117 year: 2003 ident: ref45/cit45 publication-title: Biol. Res. Nurs. doi: 10.1177/1099800403256860 – volume: 12 start-page: 733 year: 2012 ident: ref7/cit7 publication-title: Expert Rev. Neurother. doi: 10.1586/ern.12.53 – volume: 143 start-page: 136 year: 2010 ident: ref59/cit59 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2009.12.020 – volume: 126 start-page: 2242 year: 2013 ident: ref35/cit35 publication-title: Chin. Med. J. (Beijing, China, Engl. Ed.) – volume: 32 start-page: 8669 year: 2011 ident: ref21/cit21 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.07.069 – volume: 7 start-page: e38737 year: 2012 ident: ref52/cit52 publication-title: PLoS One doi: 10.1371/journal.pone.0038737 – volume: 276 start-page: 4621 year: 2009 ident: ref8/cit8 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.07173.x – volume: 99 start-page: 4349 year: 2002 ident: ref12/cit12 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.072586399 – volume: 35 start-page: 2374 year: 2014 ident: ref19/cit19 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.11.076 – volume: 111 start-page: 3407 year: 2011 ident: ref46/cit46 publication-title: Chem. Rev. doi: 10.1021/cr1003166 – volume: 5 start-page: 496 year: 2008 ident: ref28/cit28 publication-title: Mol. Pharm. doi: 10.1021/mp800049w – volume: 8 start-page: 2197 year: 2013 ident: ref30/cit30 publication-title: Int. J. Nanomed. – volume: 3 start-page: 2534 year: 2013 ident: ref31/cit31 publication-title: Sci. Rep. doi: 10.1038/srep02534 – volume: 415 start-page: 284 year: 2011 ident: ref39/cit39 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.05.063 – volume: 34 start-page: 1739 year: 2013 ident: ref47/cit47 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.11.016 – volume: 5 start-page: 505 year: 2008 ident: ref26/cit26 publication-title: Mol. Pharm. doi: 10.1021/mp800051m – volume: 64 start-page: 1447 year: 2012 ident: ref6/cit6 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2012.06.012 – volume: 108 start-page: 2999 year: 2011 ident: ref56/cit56 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.23255 – volume: 160 start-page: 177 year: 2012 ident: ref34/cit34 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2011.10.004 – volume: 33 start-page: 6264 year: 2012 ident: ref22/cit22 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.05.020 – volume: 33 start-page: 5798 year: 2012 ident: ref43/cit43 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.04.055 – volume: 33 start-page: 3899 year: 2012 ident: ref60/cit60 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.02.004 |
SSID | ssj0024523 |
Score | 2.436865 |
Snippet | As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1042 |
SubjectTerms | Animals Blood-Brain Barrier - drug effects Blotting, Western Brain Neoplasms - blood supply Brain Neoplasms - drug therapy Brain Neoplasms - pathology Cell Membrane Permeability - drug effects Cell Proliferation Cells, Cultured Drug Delivery Systems Endocytosis Flow Cytometry Glioblastoma - blood supply Glioblastoma - drug therapy Glioblastoma - pathology Human Umbilical Vein Endothelial Cells - drug effects Human Umbilical Vein Endothelial Cells - metabolism Humans Integrin alphaVbeta3 - antagonists & inhibitors Interleukin-13 - administration & dosage Interleukin-13 - pharmacology Interleukin-13 Receptor alpha2 Subunit - antagonists & inhibitors Mice Mice, Inbred BALB C Nanoparticles - administration & dosage Nanoparticles - chemistry Neovascularization, Pathologic - prevention & control Oligopeptides - administration & dosage Oligopeptides - pharmacology |
Title | RGD and Interleukin-13 Peptide Functionalized Nanoparticles for Enhanced Glioblastoma Cells and Neovasculature Dual Targeting Delivery and Elevated Tumor Penetration |
URI | http://dx.doi.org/10.1021/mp400751g https://www.ncbi.nlm.nih.gov/pubmed/24521297 https://www.proquest.com/docview/1561969141 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYovfRS6JMFityHUA8YSOI4yRHtA1SpaNWmErfIjwmsyGYRm1Ra_k__J2Mn2W1VaO8Tx5LHnm88n78h5FMoMaP2Zc4CdRwynvuKWRTOVKB0BLaUZex9x9dzcfaDf7kIL9bIx0cq-L53NL2xrbtD7_IJeeqLOLIZ1kn_-0pQL3Q93BAKBCwOYt7JB_3-qQ09ev5n6HkET7q4Mtogg-51TkMnuT6sK3Wo7_4Wa_zXlDfJ8xZX0pPGEV6QNShfkv1xI0y9OKDp6p3V_IDu0_FKsnrxivz6djqgsjTUXRAWUF9PSuYFdGw5LwboCKNfc2k4uQND8UjGXLul1FGEvXRYXjkqAT0tJjOFiLyaTSXtQ1HM3bjn0HFebcWCDmqca-pI6Bg66QAKSw9ZONNhAT8RABua1lMceYyHcSvt-5qko2HaP2NtAwcmEQhULJKJySFP8vAYMDMCLnJPYw4lwMRJriHSoeQgYoF5ssTTLhRcg5ZoaySAH7wh6-WshC1CPa4izMxUhNGUJ1IojcDCYK6ZmwCkH_fIHi5w1u6_eeZK676XLVeiRz53a5_pVv3cNuEoHjL9sDS9aSQ_HjJ63zlQhhvSVllkCbMaf42INBGJx70eedt41nIY66wIsKLt_013hzxDZMYd2S3YJevVbQ3vEP1Uas95_z3VAwEm |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4ALhQJleRSDUMWhbpvEeR2rfXQL7WoFQeot8mNSVs1mqyZB2v4f_idjJ7tbqiK4TyYjeez5xjP-hpCPvsCM2hUZ8-Shz3jmSmZQOJOeVCGYUpY29x1no2D4nX8-989bmhzzFgaNKFFTaYv4K3YB52B6ZSZ4-87FA7KBIMQ1idZR99uKV8-3o9wQEXgs8iK-YBG6_amJQKr8MwL9BVba8DLYbOYUWcNsV8nlfl3JfXVzh7Px_yx_Qh63KJMeNW7xlKxBsUV2xw1N9XyPJqtXV-Ue3aXjFYH1_Bn59fW4R0Whqb0uzKG-nBTM8ejYdMBooAOMhc0V4uQGNMUDGjPvtsGOIgim_eKHbSygx_lkJhGfV7OpoF3I89LqHcGiA9bUL2ivRlsT25KOgZT2IDfNInMr2s_hJ8JhTZN6iprHeDS3RL_PSTLoJ90ha8c5MIGwoGKhiHUGWZz5h4B5EvAgcxRmVAHoKM4UhMoXHIIowKxZ4NnnB1yBEiirBYDrvSDrxayAl4Q6XIaYp8kQYyuPRSAVwgyNmWemPRBu1CE7uBBpuxvL1BbaXSddrkSHfFq4QKpaLnQzkiO_T_TDUvSqIQC5T-j9wo9S3J6m5iIKmNX4a8SncRA73OmQ7cbBlmqMzyLcCl_9y9x35OEwOTtNT09GX16TR4jZuG2D896Q9eq6hreIiyq5YzfEb9NxCYc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagSIgX7mM5ikGo4qEuTeJcj9UeLdcSQZD6FvkYw6rZ7IokSNv_w_9k7GR3ARXB-8QZyWPP93nGnwl5EQpk1L4wLJCHIePGl8yicCYDqWKwpSxtzzveT6OTz_zNaXjaE0V7FwadqHGk2hXx7apeatMrDHiv5kv7infofblMrthynSVbR8NPW2290D3nhqggYEmQ8LWS0K-f2iyk6t-z0F-gpUsxkxvkw8Y511lydtA28kCd_6Hb-P_e3yTXe7RJj7rwuEUuQXWb7GWdXPVqn-bb21f1Pt2j2VbIenWH_Ph4PKKi0tQdG5bQns0q5gU0s50wGugEc2J3lDg7B01xo0YG3jfaUQTDdFx9dQ0G9LicLSTi9GYxF3QIZVm7caew7oS1dQw6atHX3LWmY0KlIyht08jKmY5L-I6wWNO8nePIGW7RveDvXZJPxvnwhPXPOjCB8KBhsUi1AZOa8BCQLwGPjKeQWUWgk9QoiFUoOERJhOxZ4B4YRlyBEmirBYAf3CM71aKCB4R6XMbI12SMOZanIpIK4YZGBmp0AMJPBmQXJ6PoV2VduIK77xWbmRiQl-swKFSviW6f5igvMn2-MV12QiAXGT1bx1KBy9TWXkQFixZ_jTg1jVKPewNyvwuyzTA2bhF2xQ__5e5TcjUbTYp3r6dvH5FrCN2464YLHpOd5lsLTxAeNXLXrYmfWG8MCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RGD+and+interleukin-13+peptide+functionalized+nanoparticles+for+enhanced+glioblastoma+cells+and+neovasculature+dual+targeting+delivery+and+elevated+tumor+penetration&rft.jtitle=Molecular+pharmaceutics&rft.au=Gao%2C+Huile&rft.au=Xiong%2C+Yang&rft.au=Zhang%2C+Shuang&rft.au=Yang%2C+Zhi&rft.date=2014-03-03&rft.eissn=1543-8392&rft.volume=11&rft.issue=3&rft.spage=1042&rft_id=info:doi/10.1021%2Fmp400751g&rft_id=info%3Apmid%2F24521297&rft.externalDocID=24521297 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon |