RGD and Interleukin-13 Peptide Functionalized Nanoparticles for Enhanced Glioblastoma Cells and Neovasculature Dual Targeting Delivery and Elevated Tumor Penetration

As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to neovasculature and GBM cells could deliver cargoes to these two kinds of cells, leading to a combination treatment. In this study, polymeric nan...

Full description

Saved in:
Bibliographic Details
Published inMolecular pharmaceutics Vol. 11; no. 3; pp. 1042 - 1052
Main Authors Gao, Huile, Xiong, Yang, Zhang, Shuang, Yang, Zhi, Cao, Shijie, Jiang, Xinguo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to neovasculature and GBM cells could deliver cargoes to these two kinds of cells, leading to a combination treatment. In this study, polymeric nanoparticles were functionalized with RGD and interleukin-13 peptide (IRNPs) to construct a neovasculature and tumor cell dual targeting delivery system in which RGD could target αvβ3 on neovasculature and interleukin-13 peptide could target IL13Rα2 on GBM cells. In vitro, interleukin-13 peptide and RGD could enhance the uptake by corresponding cells (C6 and human umbilical vein endothelial cells). Due to the expression of both receptors on C6 cells, RGD also could enhance the uptake by C6 cells. Through receptor labeling, it clearly showed that αvβ3 could mediate the internalization of RGD modified nanoparticles and IL13Rα2 could mediate the internalization of interleukin-13 peptide modified nanoparticles. The ligand functionalization also resulted in a modification on endocytosis pathways, which changed the main endocytosis pathways from macropinocytosis for unmodified nanoparticles to clathrin-mediated endocytosis for IRNPs. IRNPs also displayed the strongest penetration ability according to tumor spheroid analysis. In vivo, IRNPs could effectively deliver cargoes to GBM with higher intensity than monomodified nanoparticles. After CD31-staining, it demonstrated IRNPs could target both neovasculature and GBM cells. In conclusion, IRNPs showed promising ability in dual targeting both neovasculature and GBM cells.
AbstractList As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to neovasculature and GBM cells could deliver cargoes to these two kinds of cells, leading to a combination treatment. In this study, polymeric nanoparticles were functionalized with RGD and interleukin-13 peptide (IRNPs) to construct a neovasculature and tumor cell dual targeting delivery system in which RGD could target αvβ3 on neovasculature and interleukin-13 peptide could target IL13Rα2 on GBM cells. In vitro, interleukin-13 peptide and RGD could enhance the uptake by corresponding cells (C6 and human umbilical vein endothelial cells). Due to the expression of both receptors on C6 cells, RGD also could enhance the uptake by C6 cells. Through receptor labeling, it clearly showed that αvβ3 could mediate the internalization of RGD modified nanoparticles and IL13Rα2 could mediate the internalization of interleukin-13 peptide modified nanoparticles. The ligand functionalization also resulted in a modification on endocytosis pathways, which changed the main endocytosis pathways from macropinocytosis for unmodified nanoparticles to clathrin-mediated endocytosis for IRNPs. IRNPs also displayed the strongest penetration ability according to tumor spheroid analysis. In vivo, IRNPs could effectively deliver cargoes to GBM with higher intensity than monomodified nanoparticles. After CD31-staining, it demonstrated IRNPs could target both neovasculature and GBM cells. In conclusion, IRNPs showed promising ability in dual targeting both neovasculature and GBM cells.As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to neovasculature and GBM cells could deliver cargoes to these two kinds of cells, leading to a combination treatment. In this study, polymeric nanoparticles were functionalized with RGD and interleukin-13 peptide (IRNPs) to construct a neovasculature and tumor cell dual targeting delivery system in which RGD could target αvβ3 on neovasculature and interleukin-13 peptide could target IL13Rα2 on GBM cells. In vitro, interleukin-13 peptide and RGD could enhance the uptake by corresponding cells (C6 and human umbilical vein endothelial cells). Due to the expression of both receptors on C6 cells, RGD also could enhance the uptake by C6 cells. Through receptor labeling, it clearly showed that αvβ3 could mediate the internalization of RGD modified nanoparticles and IL13Rα2 could mediate the internalization of interleukin-13 peptide modified nanoparticles. The ligand functionalization also resulted in a modification on endocytosis pathways, which changed the main endocytosis pathways from macropinocytosis for unmodified nanoparticles to clathrin-mediated endocytosis for IRNPs. IRNPs also displayed the strongest penetration ability according to tumor spheroid analysis. In vivo, IRNPs could effectively deliver cargoes to GBM with higher intensity than monomodified nanoparticles. After CD31-staining, it demonstrated IRNPs could target both neovasculature and GBM cells. In conclusion, IRNPs showed promising ability in dual targeting both neovasculature and GBM cells.
As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to neovasculature and GBM cells could deliver cargoes to these two kinds of cells, leading to a combination treatment. In this study, polymeric nanoparticles were functionalized with RGD and interleukin-13 peptide (IRNPs) to construct a neovasculature and tumor cell dual targeting delivery system in which RGD could target αvβ3 on neovasculature and interleukin-13 peptide could target IL13Rα2 on GBM cells. In vitro, interleukin-13 peptide and RGD could enhance the uptake by corresponding cells (C6 and human umbilical vein endothelial cells). Due to the expression of both receptors on C6 cells, RGD also could enhance the uptake by C6 cells. Through receptor labeling, it clearly showed that αvβ3 could mediate the internalization of RGD modified nanoparticles and IL13Rα2 could mediate the internalization of interleukin-13 peptide modified nanoparticles. The ligand functionalization also resulted in a modification on endocytosis pathways, which changed the main endocytosis pathways from macropinocytosis for unmodified nanoparticles to clathrin-mediated endocytosis for IRNPs. IRNPs also displayed the strongest penetration ability according to tumor spheroid analysis. In vivo, IRNPs could effectively deliver cargoes to GBM with higher intensity than monomodified nanoparticles. After CD31-staining, it demonstrated IRNPs could target both neovasculature and GBM cells. In conclusion, IRNPs showed promising ability in dual targeting both neovasculature and GBM cells.
Author Xiong, Yang
Zhang, Shuang
Cao, Shijie
Gao, Huile
Yang, Zhi
Jiang, Xinguo
AuthorAffiliation Fudan University
Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics Sciences, School of Pharmacy
AuthorAffiliation_xml – name: Fudan University
– name: Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics Sciences, School of Pharmacy
Author_xml – sequence: 1
  givenname: Huile
  surname: Gao
  fullname: Gao, Huile
– sequence: 2
  givenname: Yang
  surname: Xiong
  fullname: Xiong, Yang
– sequence: 3
  givenname: Shuang
  surname: Zhang
  fullname: Zhang, Shuang
– sequence: 4
  givenname: Zhi
  surname: Yang
  fullname: Yang, Zhi
– sequence: 5
  givenname: Shijie
  surname: Cao
  fullname: Cao, Shijie
– sequence: 6
  givenname: Xinguo
  surname: Jiang
  fullname: Jiang, Xinguo
  email: xgjiang@shmu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24521297$$D View this record in MEDLINE/PubMed
BookMark eNptkctO3DAUhi1EVS7tgheovKlUFilx4iTOspoZBiREUTX76OCcTE0dO_VlJPo-vCeeGWBRsTqW_J3P-v2fkENjDRJyxvLvLC_YxTjxPG8qtj4gx6ziZSbKtjh8Owt-RE68f8jzgldF-ZEcbScr2uaYPP1azimYnl6bgE5j_KNMxkp6h1NQPdLLaGRQ1oBW_7Cnt2DsBC4oqdHTwTq6ML_ByHS11Mrea_DBjkBnqLXfeW_RbsDLqCFEh3QeQdMVuDUGZdZ0jlpt0D3u0IXGDYSkWsUxme_QYHCwff0T-TCA9vj5ZZ6S1eViNbvKbn4ur2c_bjIoBQtZA20_4NAOVY4VF8jrgclc1DX2oh0kNrICjrWoy1KAEE1Vc4kSEtsDYlGekm977eTs34g-dKPyMkUBgzb6jlU1a-uWcZbQLy9ovB-x7yanRnCP3evPJuBiD0hnvXc4dFKFXZiUSemO5d22u-6tu7Rx_t_Gq_Q99uueBem7BxtdKsi_wz0DeJioqg
CitedBy_id crossref_primary_10_3390_pharmaceutics10040193
crossref_primary_10_1016_j_apsb_2016_05_013
crossref_primary_10_1002_wnan_1387
crossref_primary_10_1186_s12951_020_00685_4
crossref_primary_10_1039_C5RA12436K
crossref_primary_10_1016_j_pneurobio_2017_07_003
crossref_primary_10_1039_D4NR03224A
crossref_primary_10_1248_cpb_c20_00041
crossref_primary_10_1021_acs_biomac_7b00068
crossref_primary_10_1016_j_cclet_2020_07_030
crossref_primary_10_1016_j_jddst_2024_105924
crossref_primary_10_1002_mabi_201600138
crossref_primary_10_1021_acs_molpharmaceut_1c00455
crossref_primary_10_1021_acsami_1c07297
crossref_primary_10_3109_10717544_2015_1064186
crossref_primary_10_2174_2405461504666190510121911
crossref_primary_10_1021_acs_molpharmaceut_3c00348
crossref_primary_10_1002_pep2_24205
crossref_primary_10_1016_j_jconrel_2019_11_037
crossref_primary_10_1016_j_jconrel_2017_02_017
crossref_primary_10_1021_acsnano_4c01790
crossref_primary_10_1016_j_jconrel_2017_12_028
crossref_primary_10_1002_adfm_202103272
crossref_primary_10_1038_s41578_024_00684_z
crossref_primary_10_1080_1061186X_2018_1473409
crossref_primary_10_1016_j_mtbio_2023_100671
crossref_primary_10_1007_s40263_016_0405_9
crossref_primary_10_1007_s12032_014_0110_9
crossref_primary_10_3109_1061186X_2015_1029930
crossref_primary_10_3390_nano10112236
crossref_primary_10_1016_j_nantod_2017_12_007
crossref_primary_10_2217_nnm_2022_0287
crossref_primary_10_1126_sciadv_aav5010
crossref_primary_10_3390_nano6010003
crossref_primary_10_2217_nnm_2017_0223
crossref_primary_10_1021_acs_molpharmaceut_9b01215
crossref_primary_10_1039_D1CS00659B
crossref_primary_10_1039_C5NR01408E
crossref_primary_10_1016_j_addr_2022_114482
crossref_primary_10_1186_s40580_018_0168_8
crossref_primary_10_18632_oncotarget_5354
crossref_primary_10_1039_C7TB02804K
crossref_primary_10_1039_C9NH00628A
crossref_primary_10_2217_nnm_2017_0193
crossref_primary_10_1016_j_jconrel_2022_06_044
crossref_primary_10_1016_j_ijpharm_2014_08_020
crossref_primary_10_1039_C9TB02957E
crossref_primary_10_3748_wjg_v24_i47_5379
crossref_primary_10_1080_21691401_2019_1699821
crossref_primary_10_1021_acs_chemrev_0c00779
crossref_primary_10_1021_acsami_7b14083
crossref_primary_10_1615_JEnvironPatholToxicolOncol_2022044456
crossref_primary_10_4155_fmc_2018_0521
crossref_primary_10_1021_acsami_7b03518
crossref_primary_10_1007_s11481_016_9687_4
crossref_primary_10_1021_acsami_7b02303
crossref_primary_10_1021_acsami_6b08239
crossref_primary_10_1021_acs_biomac_5b00244
crossref_primary_10_2174_1389201020666190204141046
crossref_primary_10_1021_acsnano_8b09786
crossref_primary_10_1080_09205063_2017_1348739
crossref_primary_10_3390_pharmaceutics13122045
crossref_primary_10_1039_D1NR07591H
crossref_primary_10_1016_j_actbio_2018_10_012
crossref_primary_10_1016_j_jddst_2025_106817
crossref_primary_10_1002_ardp_201800219
crossref_primary_10_1016_j_neuroscience_2022_03_030
crossref_primary_10_1021_acsami_6b04442
crossref_primary_10_1021_acsnano_5b01552
crossref_primary_10_1016_j_jconrel_2020_01_009
crossref_primary_10_1080_1061186X_2019_1706095
crossref_primary_10_3389_fchem_2014_00105
crossref_primary_10_1039_C7TB02163A
crossref_primary_10_1080_15548627_2025_2452149
crossref_primary_10_1039_C7PY00559H
crossref_primary_10_1039_C9BM01813A
crossref_primary_10_3390_nano13071140
crossref_primary_10_1080_15384047_2015_1071739
crossref_primary_10_1016_j_jconrel_2022_07_023
crossref_primary_10_18632_oncotarget_17976
crossref_primary_10_3109_1061186X_2015_1070854
crossref_primary_10_1007_s00726_015_2043_9
crossref_primary_10_1007_s10989_019_09834_2
crossref_primary_10_1016_j_jconrel_2018_02_020
crossref_primary_10_1208_s12249_021_01928_9
crossref_primary_10_1186_s12951_020_00684_5
crossref_primary_10_1038_srep16589
crossref_primary_10_1016_j_drudis_2019_01_006
crossref_primary_10_1016_j_phrs_2016_08_004
crossref_primary_10_1021_acs_biomac_5b00193
crossref_primary_10_1039_C7RA12376K
crossref_primary_10_1080_17425247_2016_1211637
crossref_primary_10_1016_j_jddst_2023_104562
crossref_primary_10_1002_wnan_1893
crossref_primary_10_1021_acsami_7b03682
crossref_primary_10_1039_D2BM00500J
crossref_primary_10_6000_1929_5995_2023_12_17
crossref_primary_10_3390_pharmaceutics10040181
crossref_primary_10_18632_oncotarget_24562
crossref_primary_10_1016_j_ijpharm_2014_04_008
crossref_primary_10_1039_D1CS00707F
crossref_primary_10_1039_C9RA04513A
crossref_primary_10_1080_17425247_2019_1598375
crossref_primary_10_1002_adma_201606628
Cites_doi 10.1158/1535-7163.MCT-05-0327
10.1016/S0142-9612(02)00248-X
10.1021/nn203749v
10.1016/j.jconrel.2012.09.003
10.1517/17425247.2012.682726
10.1073/pnas.0503879102
10.1016/j.biomaterials.2012.10.048
10.1016/j.jconrel.2013.10.002
10.1016/j.jconrel.2011.10.032
10.1091/mbc.e05-12-1112
10.1126/science.2821619
10.1016/j.biomaterials.2012.03.058
10.1016/j.jconrel.2009.09.020
10.1016/j.jconrel.2011.06.001
10.1016/j.jconrel.2008.03.007
10.1021/bc900228m
10.1016/j.biomaterials.2011.02.044
10.2217/nnm.11.79
10.1021/mp800218q
10.1038/nrd2614
10.1016/j.jconrel.2009.01.018
10.1038/nnano.2007.387
10.1021/bc800233a
10.3727/096504001108747468
10.1021/nn400548g
10.1016/j.ijpharm.2013.12.016
10.1016/j.biomaterials.2012.09.044
10.1007/s11095-010-0308-2
10.1038/nrn2175
10.1016/j.ijpharm.2009.04.035
10.1016/S0378-5173(02)00129-1
10.1007/s11095-013-1122-4
10.1038/sj.neo.7900234
10.1016/S1535-6108(03)00336-2
10.1016/j.biomaterials.2011.08.055
10.1021/ja312221g
10.1158/0008-5472.CAN-06-2354
10.1021/pr2012472
10.1016/j.actbio.2013.11.003
10.1038/nature03794
10.1177/1099800403256860
10.1586/ern.12.53
10.1016/j.jconrel.2009.12.020
10.1016/j.biomaterials.2011.07.069
10.1371/journal.pone.0038737
10.1111/j.1742-4658.2009.07173.x
10.1073/pnas.072586399
10.1016/j.biomaterials.2013.11.076
10.1021/cr1003166
10.1021/mp800049w
10.1038/srep02534
10.1016/j.ijpharm.2011.05.063
10.1016/j.biomaterials.2012.11.016
10.1021/mp800051m
10.1016/j.addr.2012.06.012
10.1002/bit.23255
10.1016/j.jconrel.2011.10.004
10.1016/j.biomaterials.2012.05.020
10.1016/j.biomaterials.2012.04.055
10.1016/j.biomaterials.2012.02.004
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/mp400751g
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1543-8392
EndPage 1052
ExternalDocumentID 24521297
10_1021_mp400751g
g5999854
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
123
4.4
53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
H~9
IH9
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
X
---
-~X
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a381t-7a9dfef9f50e548e46f1c0866ed89fce7c5a4e686338a887564cecae54daee23
IEDL.DBID ACS
ISSN 1543-8384
1543-8392
IngestDate Fri Jul 11 05:28:13 EDT 2025
Mon Jul 21 05:34:44 EDT 2025
Thu Apr 24 23:03:50 EDT 2025
Tue Jul 01 04:33:34 EDT 2025
Thu Aug 27 13:43:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords interleukin-13 peptide
glioma
neovasculature
dual targeting delivery
RGD
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-7a9dfef9f50e548e46f1c0866ed89fce7c5a4e686338a887564cecae54daee23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24521297
PQID 1561969141
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1561969141
pubmed_primary_24521297
crossref_citationtrail_10_1021_mp400751g
crossref_primary_10_1021_mp400751g
acs_journals_10_1021_mp400751g
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-03
PublicationDateYYYYMMDD 2014-03-03
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular pharmaceutics
PublicationTitleAlternate Mol. Pharmaceutics
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Wang Z. (ref14/cit14) 2011; 28
Gao H. (ref21/cit21) 2011; 32
Scherzinger-Laude K. (ref30/cit30) 2013; 8
Mintz A. (ref18/cit18) 2002; 4
Gao H. (ref42/cit42) 2005; 102
McMahon K. M. (ref51/cit51) 2012; 11
Jo J. (ref7/cit7) 2012; 12
Almeida J. P. (ref62/cit62) 2011; 6
Jones-Bolin S. (ref23/cit23) 2006; 5
Pang Z. (ref20/cit20) 2008; 128
Liu Y. (ref1/cit1) 2012; 9
Gao H. (ref2/cit2) 2013; 30
Goodman T. T. (ref53/cit53) 2008; 19
Jain R. K. (ref10/cit10) 2007; 8
Kim S. Y. (ref25/cit25) 2003; 24
Ryu J. H. (ref6/cit6) 2012; 64
Mahmoudi M. (ref46/cit46) 2011; 111
Gao H. (ref54/cit54) 2014; 10
Gao H. (ref32/cit32) 2012; 33
Kluza E. (ref61/cit61) 2012; 158
Gu G. (ref55/cit55) 2013; 34
Gao H. (ref41/cit41) 2014; 461
Huang S. (ref9/cit9) 2013; 7
Yonenaga N. (ref34/cit34) 2012; 160
Kawakami M. (ref17/cit17) 2001; 12
Blagosklonny M. V. (ref11/cit11) 2004; 5
Peer D. (ref3/cit3) 2007; 2
Pang Z. (ref39/cit39) 2011; 415
Gao H. (ref19/cit19) 2014; 35
Gao H. (ref63/cit63) 2013; 172
Jiang S. (ref44/cit44) 2006; 17
Bae Y. H. (ref5/cit5) 2011; 153
Du J. (ref49/cit49) 2009; 6
Jiang X. (ref47/cit47) 2013; 34
Lu W. (ref37/cit37) 2006; 66
Davis M. E. (ref4/cit4) 2008; 7
Li S. D. (ref28/cit28) 2008; 5
Wang Y. (ref33/cit33) 2013; 135
Liu J. (ref45/cit45) 2003; 5
Tran J. (ref12/cit12) 2002; 99
Jiang X. (ref58/cit58) 2011; 32
Xin H. (ref24/cit24) 2011; 32
Li Y. (ref60/cit60) 2012; 33
Zhan C. (ref59/cit59) 2010; 143
Levchenko T. S. (ref27/cit27) 2002; 240
Chang J. (ref40/cit40) 2009; 379
Bello L. (ref15/cit15) 2001; 49
Liu C. (ref35/cit35) 2013; 126
Perche F. (ref50/cit50) 2012; 164
Gao H. (ref31/cit31) 2013; 3
Ying X. (ref36/cit36) 2010; 141
Ding H. M. (ref43/cit43) 2012; 33
Yan H. (ref29/cit29) 2012; 6
Waite C. L. (ref56/cit56) 2011; 108
Waite C. L. (ref57/cit57) 2009; 20
Sengupta S. (ref13/cit13) 2005; 436
Ou J. (ref52/cit52) 2012; 7
Ruoslahti E. (ref16/cit16) 1987; 238
Gao H. (ref22/cit22) 2012; 33
Alexis F. (ref26/cit26) 2008; 5
Kim K. W. (ref8/cit8) 2009; 276
Nam H. Y. (ref38/cit38) 2009; 135
Hu Q. (ref48/cit48) 2013; 34
References_xml – volume: 5
  start-page: 1744
  year: 2006
  ident: ref23/cit23
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-05-0327
– volume: 24
  start-page: 55
  year: 2003
  ident: ref25/cit25
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00248-X
– volume: 6
  start-page: 410
  year: 2012
  ident: ref29/cit29
  publication-title: ACS Nano
  doi: 10.1021/nn203749v
– volume: 164
  start-page: 95
  year: 2012
  ident: ref50/cit50
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2012.09.003
– volume: 9
  start-page: 671
  year: 2012
  ident: ref1/cit1
  publication-title: Expert Opin. Drug Delivery
  doi: 10.1517/17425247.2012.682726
– volume: 102
  start-page: 9469
  year: 2005
  ident: ref42/cit42
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0503879102
– volume: 34
  start-page: 1135
  year: 2013
  ident: ref48/cit48
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.10.048
– volume: 172
  start-page: 921
  year: 2013
  ident: ref63/cit63
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2013.10.002
– volume: 158
  start-page: 207
  year: 2012
  ident: ref61/cit61
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2011.10.032
– volume: 17
  start-page: 4105
  year: 2006
  ident: ref44/cit44
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-12-1112
– volume: 238
  start-page: 491
  year: 1987
  ident: ref16/cit16
  publication-title: Science
  doi: 10.1126/science.2821619
– volume: 33
  start-page: 5115
  year: 2012
  ident: ref32/cit32
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.03.058
– volume: 141
  start-page: 183
  year: 2010
  ident: ref36/cit36
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2009.09.020
– volume: 153
  start-page: 198
  year: 2011
  ident: ref5/cit5
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2011.06.001
– volume: 128
  start-page: 120
  year: 2008
  ident: ref20/cit20
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2008.03.007
– volume: 20
  start-page: 1908
  year: 2009
  ident: ref57/cit57
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc900228m
– volume: 32
  start-page: 4293
  year: 2011
  ident: ref24/cit24
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.02.044
– volume: 6
  start-page: 815
  year: 2011
  ident: ref62/cit62
  publication-title: Nanomedicine (London, U. K.)
  doi: 10.2217/nnm.11.79
– volume: 6
  start-page: 905
  year: 2009
  ident: ref49/cit49
  publication-title: Mol. Pharm.
  doi: 10.1021/mp800218q
– volume: 7
  start-page: 771
  year: 2008
  ident: ref4/cit4
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2614
– volume: 135
  start-page: 259
  year: 2009
  ident: ref38/cit38
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2009.01.018
– volume: 2
  start-page: 751
  year: 2007
  ident: ref3/cit3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.387
– volume: 19
  start-page: 1951
  year: 2008
  ident: ref53/cit53
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc800233a
– volume: 12
  start-page: 459
  year: 2001
  ident: ref17/cit17
  publication-title: Oncol. Res.
  doi: 10.3727/096504001108747468
– volume: 7
  start-page: 2860
  year: 2013
  ident: ref9/cit9
  publication-title: ACS Nano
  doi: 10.1021/nn400548g
– volume: 461
  start-page: 478
  year: 2014
  ident: ref41/cit41
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2013.12.016
– volume: 34
  start-page: 196
  year: 2013
  ident: ref55/cit55
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.09.044
– volume: 28
  start-page: 585
  year: 2011
  ident: ref14/cit14
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-010-0308-2
– volume: 8
  start-page: 610
  year: 2007
  ident: ref10/cit10
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2175
– volume: 379
  start-page: 285
  year: 2009
  ident: ref40/cit40
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2009.04.035
– volume: 240
  start-page: 95
  year: 2002
  ident: ref27/cit27
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(02)00129-1
– volume: 49
  start-page: 390
  issue: 380
  year: 2001
  ident: ref15/cit15
  publication-title: Neurosurgery
– volume: 30
  start-page: 2485
  year: 2013
  ident: ref2/cit2
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-013-1122-4
– volume: 4
  start-page: 388
  year: 2002
  ident: ref18/cit18
  publication-title: Neoplasia
  doi: 10.1038/sj.neo.7900234
– volume: 5
  start-page: 13
  year: 2004
  ident: ref11/cit11
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00336-2
– volume: 32
  start-page: 9457
  year: 2011
  ident: ref58/cit58
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.055
– volume: 135
  start-page: 4799
  year: 2013
  ident: ref33/cit33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312221g
– volume: 66
  start-page: 11878
  year: 2006
  ident: ref37/cit37
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-2354
– volume: 11
  start-page: 2863
  year: 2012
  ident: ref51/cit51
  publication-title: J. Proteome Res.
  doi: 10.1021/pr2012472
– volume: 10
  start-page: 858
  year: 2014
  ident: ref54/cit54
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.11.003
– volume: 436
  start-page: 568
  year: 2005
  ident: ref13/cit13
  publication-title: Nature
  doi: 10.1038/nature03794
– volume: 5
  start-page: 117
  year: 2003
  ident: ref45/cit45
  publication-title: Biol. Res. Nurs.
  doi: 10.1177/1099800403256860
– volume: 12
  start-page: 733
  year: 2012
  ident: ref7/cit7
  publication-title: Expert Rev. Neurother.
  doi: 10.1586/ern.12.53
– volume: 143
  start-page: 136
  year: 2010
  ident: ref59/cit59
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2009.12.020
– volume: 126
  start-page: 2242
  year: 2013
  ident: ref35/cit35
  publication-title: Chin. Med. J. (Beijing, China, Engl. Ed.)
– volume: 32
  start-page: 8669
  year: 2011
  ident: ref21/cit21
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.07.069
– volume: 7
  start-page: e38737
  year: 2012
  ident: ref52/cit52
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0038737
– volume: 276
  start-page: 4621
  year: 2009
  ident: ref8/cit8
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2009.07173.x
– volume: 99
  start-page: 4349
  year: 2002
  ident: ref12/cit12
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.072586399
– volume: 35
  start-page: 2374
  year: 2014
  ident: ref19/cit19
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.11.076
– volume: 111
  start-page: 3407
  year: 2011
  ident: ref46/cit46
  publication-title: Chem. Rev.
  doi: 10.1021/cr1003166
– volume: 5
  start-page: 496
  year: 2008
  ident: ref28/cit28
  publication-title: Mol. Pharm.
  doi: 10.1021/mp800049w
– volume: 8
  start-page: 2197
  year: 2013
  ident: ref30/cit30
  publication-title: Int. J. Nanomed.
– volume: 3
  start-page: 2534
  year: 2013
  ident: ref31/cit31
  publication-title: Sci. Rep.
  doi: 10.1038/srep02534
– volume: 415
  start-page: 284
  year: 2011
  ident: ref39/cit39
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.05.063
– volume: 34
  start-page: 1739
  year: 2013
  ident: ref47/cit47
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.11.016
– volume: 5
  start-page: 505
  year: 2008
  ident: ref26/cit26
  publication-title: Mol. Pharm.
  doi: 10.1021/mp800051m
– volume: 64
  start-page: 1447
  year: 2012
  ident: ref6/cit6
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2012.06.012
– volume: 108
  start-page: 2999
  year: 2011
  ident: ref56/cit56
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.23255
– volume: 160
  start-page: 177
  year: 2012
  ident: ref34/cit34
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2011.10.004
– volume: 33
  start-page: 6264
  year: 2012
  ident: ref22/cit22
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.05.020
– volume: 33
  start-page: 5798
  year: 2012
  ident: ref43/cit43
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.04.055
– volume: 33
  start-page: 3899
  year: 2012
  ident: ref60/cit60
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.02.004
SSID ssj0024523
Score 2.436865
Snippet As the most common malignant brain tumors, glioblastoma multiforme (GBM) was characterized by angiogenesis and tumor cells proliferation. Dual targeting to...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1042
SubjectTerms Animals
Blood-Brain Barrier - drug effects
Blotting, Western
Brain Neoplasms - blood supply
Brain Neoplasms - drug therapy
Brain Neoplasms - pathology
Cell Membrane Permeability - drug effects
Cell Proliferation
Cells, Cultured
Drug Delivery Systems
Endocytosis
Flow Cytometry
Glioblastoma - blood supply
Glioblastoma - drug therapy
Glioblastoma - pathology
Human Umbilical Vein Endothelial Cells - drug effects
Human Umbilical Vein Endothelial Cells - metabolism
Humans
Integrin alphaVbeta3 - antagonists & inhibitors
Interleukin-13 - administration & dosage
Interleukin-13 - pharmacology
Interleukin-13 Receptor alpha2 Subunit - antagonists & inhibitors
Mice
Mice, Inbred BALB C
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Neovascularization, Pathologic - prevention & control
Oligopeptides - administration & dosage
Oligopeptides - pharmacology
Title RGD and Interleukin-13 Peptide Functionalized Nanoparticles for Enhanced Glioblastoma Cells and Neovasculature Dual Targeting Delivery and Elevated Tumor Penetration
URI http://dx.doi.org/10.1021/mp400751g
https://www.ncbi.nlm.nih.gov/pubmed/24521297
https://www.proquest.com/docview/1561969141
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYovfRS6JMFityHUA8YSOI4yRHtA1SpaNWmErfIjwmsyGYRm1Ra_k__J2Mn2W1VaO8Tx5LHnm88n78h5FMoMaP2Zc4CdRwynvuKWRTOVKB0BLaUZex9x9dzcfaDf7kIL9bIx0cq-L53NL2xrbtD7_IJeeqLOLIZ1kn_-0pQL3Q93BAKBCwOYt7JB_3-qQ09ev5n6HkET7q4Mtogg-51TkMnuT6sK3Wo7_4Wa_zXlDfJ8xZX0pPGEV6QNShfkv1xI0y9OKDp6p3V_IDu0_FKsnrxivz6djqgsjTUXRAWUF9PSuYFdGw5LwboCKNfc2k4uQND8UjGXLul1FGEvXRYXjkqAT0tJjOFiLyaTSXtQ1HM3bjn0HFebcWCDmqca-pI6Bg66QAKSw9ZONNhAT8RABua1lMceYyHcSvt-5qko2HaP2NtAwcmEQhULJKJySFP8vAYMDMCLnJPYw4lwMRJriHSoeQgYoF5ssTTLhRcg5ZoaySAH7wh6-WshC1CPa4izMxUhNGUJ1IojcDCYK6ZmwCkH_fIHi5w1u6_eeZK676XLVeiRz53a5_pVv3cNuEoHjL9sDS9aSQ_HjJ63zlQhhvSVllkCbMaf42INBGJx70eedt41nIY66wIsKLt_013hzxDZMYd2S3YJevVbQ3vEP1Uas95_z3VAwEm
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4ALhQJleRSDUMWhbpvEeR2rfXQL7WoFQeot8mNSVs1mqyZB2v4f_idjJ7tbqiK4TyYjeez5xjP-hpCPvsCM2hUZ8-Shz3jmSmZQOJOeVCGYUpY29x1no2D4nX8-989bmhzzFgaNKFFTaYv4K3YB52B6ZSZ4-87FA7KBIMQ1idZR99uKV8-3o9wQEXgs8iK-YBG6_amJQKr8MwL9BVba8DLYbOYUWcNsV8nlfl3JfXVzh7Px_yx_Qh63KJMeNW7xlKxBsUV2xw1N9XyPJqtXV-Ue3aXjFYH1_Bn59fW4R0Whqb0uzKG-nBTM8ejYdMBooAOMhc0V4uQGNMUDGjPvtsGOIgim_eKHbSygx_lkJhGfV7OpoF3I89LqHcGiA9bUL2ivRlsT25KOgZT2IDfNInMr2s_hJ8JhTZN6iprHeDS3RL_PSTLoJ90ha8c5MIGwoGKhiHUGWZz5h4B5EvAgcxRmVAHoKM4UhMoXHIIowKxZ4NnnB1yBEiirBYDrvSDrxayAl4Q6XIaYp8kQYyuPRSAVwgyNmWemPRBu1CE7uBBpuxvL1BbaXSddrkSHfFq4QKpaLnQzkiO_T_TDUvSqIQC5T-j9wo9S3J6m5iIKmNX4a8SncRA73OmQ7cbBlmqMzyLcCl_9y9x35OEwOTtNT09GX16TR4jZuG2D896Q9eq6hreIiyq5YzfEb9NxCYc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagSIgX7mM5ikGo4qEuTeJcj9UeLdcSQZD6FvkYw6rZ7IokSNv_w_9k7GR3ARXB-8QZyWPP93nGnwl5EQpk1L4wLJCHIePGl8yicCYDqWKwpSxtzzveT6OTz_zNaXjaE0V7FwadqHGk2hXx7apeatMrDHiv5kv7infofblMrthynSVbR8NPW2290D3nhqggYEmQ8LWS0K-f2iyk6t-z0F-gpUsxkxvkw8Y511lydtA28kCd_6Hb-P_e3yTXe7RJj7rwuEUuQXWb7GWdXPVqn-bb21f1Pt2j2VbIenWH_Ph4PKKi0tQdG5bQns0q5gU0s50wGugEc2J3lDg7B01xo0YG3jfaUQTDdFx9dQ0G9LicLSTi9GYxF3QIZVm7caew7oS1dQw6atHX3LWmY0KlIyht08jKmY5L-I6wWNO8nePIGW7RveDvXZJPxvnwhPXPOjCB8KBhsUi1AZOa8BCQLwGPjKeQWUWgk9QoiFUoOERJhOxZ4B4YRlyBEmirBYAf3CM71aKCB4R6XMbI12SMOZanIpIK4YZGBmp0AMJPBmQXJ6PoV2VduIK77xWbmRiQl-swKFSviW6f5igvMn2-MV12QiAXGT1bx1KBy9TWXkQFixZ_jTg1jVKPewNyvwuyzTA2bhF2xQ__5e5TcjUbTYp3r6dvH5FrCN2464YLHpOd5lsLTxAeNXLXrYmfWG8MCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RGD+and+interleukin-13+peptide+functionalized+nanoparticles+for+enhanced+glioblastoma+cells+and+neovasculature+dual+targeting+delivery+and+elevated+tumor+penetration&rft.jtitle=Molecular+pharmaceutics&rft.au=Gao%2C+Huile&rft.au=Xiong%2C+Yang&rft.au=Zhang%2C+Shuang&rft.au=Yang%2C+Zhi&rft.date=2014-03-03&rft.eissn=1543-8392&rft.volume=11&rft.issue=3&rft.spage=1042&rft_id=info:doi/10.1021%2Fmp400751g&rft_id=info%3Apmid%2F24521297&rft.externalDocID=24521297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon