Switching principal component analysis for modeling means and covariance changes over time

Many psychological theories predict that cognitions, affect, action tendencies, and other variables change across time in mean level as well as in covariance structure. Often such changes are rather abrupt, because they are caused by sudden events. To capture such changes, one may repeatedly measure...

Full description

Saved in:
Bibliographic Details
Published inPsychological methods Vol. 19; no. 1; p. 113
Main Authors De Roover, Kim, Timmerman, Marieke E, Van Diest, Ilse, Onghena, Patrick, Ceulemans, Eva
Format Journal Article
LanguageEnglish
Published United States 01.03.2014
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Many psychological theories predict that cognitions, affect, action tendencies, and other variables change across time in mean level as well as in covariance structure. Often such changes are rather abrupt, because they are caused by sudden events. To capture such changes, one may repeatedly measure the variables under study for a single individual and examine whether the resulting multivariate time series contains a number of phases with different means and covariance structures. The latter task is challenging, however. First, in many cases, it is unknown how many phases there are and when new phases start. Second, often a rather large number of variables is involved, complicating the interpretation of the covariance pattern within each phase. To take up this challenge, we present switching principal component analysis (PCA). Switching PCA detects phases of consecutive observations or time points (in single subject data) with similar means and/or covariation structures, and performs a PCA per phase to yield insight into its covariance structure. An algorithm for fitting switching PCA solutions as well as a model selection procedure are presented and evaluated in a simulation study. Finally, we analyze empirical data on cardiorespiratory recordings.
AbstractList Many psychological theories predict that cognitions, affect, action tendencies, and other variables change across time in mean level as well as in covariance structure. Often such changes are rather abrupt, because they are caused by sudden events. To capture such changes, one may repeatedly measure the variables under study for a single individual and examine whether the resulting multivariate time series contains a number of phases with different means and covariance structures. The latter task is challenging, however. First, in many cases, it is unknown how many phases there are and when new phases start. Second, often a rather large number of variables is involved, complicating the interpretation of the covariance pattern within each phase. To take up this challenge, we present switching principal component analysis (PCA). Switching PCA detects phases of consecutive observations or time points (in single subject data) with similar means and/or covariation structures, and performs a PCA per phase to yield insight into its covariance structure. An algorithm for fitting switching PCA solutions as well as a model selection procedure are presented and evaluated in a simulation study. Finally, we analyze empirical data on cardiorespiratory recordings.
Author Van Diest, Ilse
Ceulemans, Eva
De Roover, Kim
Timmerman, Marieke E
Onghena, Patrick
Author_xml – sequence: 1
  givenname: Kim
  surname: De Roover
  fullname: De Roover, Kim
  organization: Faculty of Psychology and Educational Sciences, KU Leuven
– sequence: 2
  givenname: Marieke E
  surname: Timmerman
  fullname: Timmerman, Marieke E
  organization: Heymans Institute of Psychology, University of Groningen
– sequence: 3
  givenname: Ilse
  surname: Van Diest
  fullname: Van Diest, Ilse
  organization: Faculty of Psychology and Educational Sciences, KU Leuven
– sequence: 4
  givenname: Patrick
  surname: Onghena
  fullname: Onghena, Patrick
  organization: Faculty of Psychology and Educational Sciences, KU Leuven
– sequence: 5
  givenname: Eva
  surname: Ceulemans
  fullname: Ceulemans, Eva
  organization: Faculty of Psychology and Educational Sciences, KU Leuven
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24127987$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAYRoMozkXBJ5C8QDXXJlnKoKMw4ELduBn-pMlMpElLU0fm7a2oq7P4Dge-BTrNXfYIXVFyQwlXt0AIF5LJEzSnhpuKiprP0KKUD0Ko4FqcoxkTlCmj1Ry9v3zF0e1j3uF-iNnFHlrsutRP0TxiyNAeSyw4dANOXePbHzN5yGXamsk8wBAhO4_dHvLOF9wd_IDHmPwFOgvQFn_5xyV6e7h_XT1Wm-f10-puUwHXdKxETYOppZackGCDEtoSrRUzMkCjjSYSrNLCWWpVmCCcsiZI520DJjDGluj6t9t_2uSb7fQjwXDc_p9k30mkU_A
CitedBy_id crossref_primary_10_1080_13603116_2019_1572233
crossref_primary_10_3758_s13428_021_01603_8
crossref_primary_10_1371_journal_pone_0062280
crossref_primary_10_3758_s13428_015_0626_8
crossref_primary_10_3758_s13428_015_0687_8
crossref_primary_10_1080_00273171_2018_1516540
crossref_primary_10_1111_bmsp_12372
crossref_primary_10_1080_00273171_2021_1967715
crossref_primary_10_1080_10705511_2018_1554445
crossref_primary_10_1177_1754073915590619
crossref_primary_10_3758_s13428_019_01222_4
ContentType Journal Article
Copyright (c) 2014 APA, all rights reserved.
Copyright_xml – notice: (c) 2014 APA, all rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1037/a0034525
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Psychology
EISSN 1939-1463
ExternalDocumentID 24127987
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-~X
.-4
07C
0R~
123
29P
354
53G
5VS
7RZ
ABIVO
ABNCP
ABVOZ
ACHQT
ACPQG
AEHFB
AETEA
ALMA_UNASSIGNED_HOLDINGS
AWKKM
AZXWR
CGNQK
CGR
CS3
CUY
CVF
ECM
EIF
EPA
F5P
FTD
HVGLF
HZ~
ISO
LW5
NPM
O9-
OHT
OPA
OVD
P2P
PHGZT
ROL
SES
SPA
TEORI
TN5
UHS
XJT
YNT
ZPI
ID FETCH-LOGICAL-a381t-461f96585300fbf748b0887295fad89805ab784cb1b7f4cb4c7b9f5cebda9f222
IngestDate Thu Apr 03 07:06:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License (c) 2014 APA, all rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a381t-461f96585300fbf748b0887295fad89805ab784cb1b7f4cb4c7b9f5cebda9f222
OpenAccessLink https://pure.rug.nl/ws/files/13253400/KDeRoover_final_edits_SwitchingPCA.pdf
PMID 24127987
ParticipantIDs pubmed_primary_24127987
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Psychological methods
PublicationTitleAlternate Psychol Methods
PublicationYear 2014
SSID ssj0014384
Score 2.1613579
Snippet Many psychological theories predict that cognitions, affect, action tendencies, and other variables change across time in mean level as well as in covariance...
SourceID pubmed
SourceType Index Database
StartPage 113
SubjectTerms Algorithms
Humans
Models, Statistical
Multivariate Analysis
Principal Component Analysis
Time Factors
Title Switching principal component analysis for modeling means and covariance changes over time
URI https://www.ncbi.nlm.nih.gov/pubmed/24127987
Volume 19
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVauPSC2HfkA7cqJanjJj4iFhUQIEGLKi6VndhQlS4SBQRfz9jO0gUQcEmiOImivOfxzGQWhPZBRQ1DFTInIq50fClhzpGYOlIxqgjjjMYmQPaqVm_65y3aKhTGo5ZeRqISfXyZV_IfVOEc4KqzZP-AbPZQOAHHgC9sAWHY_grj27fOyMZCDq3P3BT76A0HfRs5ntQb0ZGEpuONvrInYXFKstlewVA2KQM2_fe5rOM5Tbv5cZ11UkbaltN5O3pZvhmkYaAXnV7mCehoj3jiXr3UBnlX5lkPdyBVjsFGNyvA2VP-g-i6__AobZqabR7QHXdLeH4el1WRVpQywhyQw2RC1rIZTlnB6dmM1BmBbksCcF1Gh9oM6TFchz0DLCgh1YDZdfvn0anS2ulQERXByNBdU7WrJ_kF5ZPQT6sVk-AgfQVdPTq5bcoSMRpJYxEtJKYEPrS8WEIF2V9GpQyt9xV0nxEEZwTBGUFwShAMBMEpQbAhCIzFOCcITgiCNdJYE2QVNU9PGkd1J2mm4XBQykaOX_OULvRDiesqoWCKCr3AVGFK8jhkoUu5CEI_Ep4IFOz8KBBM0UiKmDMFWuQamuvD220grGKPB9XYrQagTcsaF4QIDre6nBERenQTrdvv0h7aiint9IttfTuyjUo5i3bQvIIpKndB3xuJPYPLJ1ywWg0
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switching+principal+component+analysis+for+modeling+means+and+covariance+changes+over+time&rft.jtitle=Psychological+methods&rft.au=De+Roover%2C+Kim&rft.au=Timmerman%2C+Marieke+E&rft.au=Van+Diest%2C+Ilse&rft.au=Onghena%2C+Patrick&rft.date=2014-03-01&rft.eissn=1939-1463&rft.volume=19&rft.issue=1&rft.spage=113&rft_id=info:doi/10.1037%2Fa0034525&rft_id=info%3Apmid%2F24127987&rft_id=info%3Apmid%2F24127987&rft.externalDocID=24127987