Highly Conjugated Graphitic Carbon Nitride Nanofoam for Photocatalytic Hydrogen Evolution
As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN na...
Saved in:
Published in | Langmuir Vol. 38; no. 4; pp. 1471 - 1478 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h–1 g–1 under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C–NH x defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity. |
---|---|
AbstractList | As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h
g
under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C-NH
defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity. As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h-1 g-1 under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C-NHx defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity.As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h-1 g-1 under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C-NHx defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity. As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h–1 g–1 under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C–NH x defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity. As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h–¹ g–¹ under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C–NHₓ defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity. |
Author | Feng, Yi Dong, Cun-Ku Mao, Jing Shi, Zi-Zheng Du, Xi-Wen Cheng, Chuan-Qi Li, Zhe Shen, Gu-Rong Liu, Hui Kang, Wen-Jing Zhou, Yun-Long |
AuthorAffiliation | School of Chemistry and Materials Institute of New Energy Materials, School of Materials Science and Engineering |
AuthorAffiliation_xml | – name: School of Chemistry and Materials – name: Institute of New Energy Materials, School of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Chuan-Qi orcidid: 0000-0002-3366-8395 surname: Cheng fullname: Cheng, Chuan-Qi organization: Institute of New Energy Materials, School of Materials Science and Engineering – sequence: 2 givenname: Yi surname: Feng fullname: Feng, Yi organization: Institute of New Energy Materials, School of Materials Science and Engineering – sequence: 3 givenname: Zi-Zheng surname: Shi fullname: Shi, Zi-Zheng organization: Institute of New Energy Materials, School of Materials Science and Engineering – sequence: 4 givenname: Yun-Long surname: Zhou fullname: Zhou, Yun-Long organization: School of Chemistry and Materials – sequence: 5 givenname: Wen-Jing surname: Kang fullname: Kang, Wen-Jing organization: Institute of New Energy Materials, School of Materials Science and Engineering – sequence: 6 givenname: Zhe surname: Li fullname: Li, Zhe organization: Institute of New Energy Materials, School of Materials Science and Engineering – sequence: 7 givenname: Jing surname: Mao fullname: Mao, Jing email: jingmao@tju.edu.cn organization: Institute of New Energy Materials, School of Materials Science and Engineering – sequence: 8 givenname: Gu-Rong surname: Shen fullname: Shen, Gu-Rong email: grsheng@tju.edu.cn organization: Institute of New Energy Materials, School of Materials Science and Engineering – sequence: 9 givenname: Cun-Ku orcidid: 0000-0001-8277-6707 surname: Dong fullname: Dong, Cun-Ku organization: Institute of New Energy Materials, School of Materials Science and Engineering – sequence: 10 givenname: Hui orcidid: 0000-0001-8183-9446 surname: Liu fullname: Liu, Hui organization: Institute of New Energy Materials, School of Materials Science and Engineering – sequence: 11 givenname: Xi-Wen orcidid: 0000-0002-2811-147X surname: Du fullname: Du, Xi-Wen email: xwdu@tju.edu.cn organization: Institute of New Energy Materials, School of Materials Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35042330$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkTtv2zAURonCRe08_kFRaMwi5_IhSuoWGE4cwHA7tEMngeLDpiGRLkkV8L-vDDsdOiSZOPCcO5zvCk2cdxqhzxjmGAi-FzLOO-G2_WDDHEsgJeYf0AwXBPKiIuUEzaBkNC8Zp1N0FeMeAGrK6k9oSgtghFKYoV8ru911x2zh3X7YiqRV9hTEYWeTldlChNa7bGNTsEpnG-G88aLPjA_Z951PXookuuMJXR1V8FvtsuUf3w3JeneDPhrRRX17ea_Rz8flj8UqX397el48rHNBK5xyShSFohaaK8aJAKKIoa1qjSmKipY1xqo2rAZa1ZxjygwnFZGsJZISrDjQa3R3vnsI_vegY2p6G6XuxjbaD7EhvCwKDmXJ34ESTFjNGR7RLxd0aHutmkOwvQjH5qXcCLAzIIOPMWjzD8HQnAZqxoGal4Gay0Cj9vU_TdokTr1SELZ7S4azfPrd-yG4Mezryl9kBaqS |
CitedBy_id | crossref_primary_10_1021_acs_iecr_4c02725 crossref_primary_10_1016_j_ijbiomac_2023_123393 crossref_primary_10_1016_j_jechem_2023_02_008 crossref_primary_10_3390_nano14010103 crossref_primary_10_1016_j_mseb_2023_116278 crossref_primary_10_1016_j_jcis_2024_08_032 crossref_primary_10_1557_s43578_024_01388_4 crossref_primary_10_1021_acs_iecr_4c01086 crossref_primary_10_1021_acs_langmuir_4c01115 crossref_primary_10_1039_D3NJ02817H crossref_primary_10_1016_j_arabjc_2023_104542 crossref_primary_10_1016_j_nanoms_2024_10_014 crossref_primary_10_1039_D2NA00909A |
Cites_doi | 10.1103/PhysRevLett.77.3865 10.1016/j.nanoen.2017.05.038 10.1002/cssc.201403278 10.1039/D0TA11201A 10.1021/ja402521s 10.1002/adma.201400573 10.1039/C7EE03592F 10.1103/PhysRevB.54.11169 10.1021/acs.chemrev.6b00075 10.1021/acs.jpcc.5b03538 10.1016/j.apcatb.2015.08.018 10.1021/acs.langmuir.1c00594 10.1038/ncomms2152 10.1002/adma.201903545 10.1103/PhysRevB.50.17953 10.1126/science.1200448 10.1021/acscatal.6b00922 10.1016/j.cej.2020.126685 10.1016/j.commatsci.2016.10.015 10.1002/smll.202100296 10.1016/j.apsusc.2015.03.086 10.1016/j.apsusc.2016.07.030 10.1002/adfm.201203732 10.1016/j.cpc.2021.108033 10.1002/smll.202007523 10.1016/j.polymer.2003.11.004 10.1039/C9GC01084J 10.1038/nmat2317 10.1002/adfm.201901024 10.1039/C3CS60378D 10.1021/acs.jpcc.8b01388 10.1002/anie.201915774 10.1039/C9TA13685A 10.1021/jacs.8b12428 10.1021/ma0021803 10.1016/j.apcatb.2017.10.042 10.1021/acs.chemmater.5b02344 10.1021/acsmaterialslett.0c00205 10.1016/j.nanoen.2017.11.059 10.1039/C4TA06778A 10.1016/j.commatsci.2010.05.010 10.1002/anie.201802014 10.1016/j.apcatb.2017.11.041 10.1021/ma00128a012 10.1039/C4NR05732E |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.langmuir.1c02716 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 1478 |
ExternalDocumentID | 35042330 10_1021_acs_langmuir_1c02716 a95546207 |
Genre | Journal Article |
GroupedDBID | - 02 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED F5P GGK GNL IH9 IHE JG K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X .K2 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV CITATION CUPRZ ED~ JG~ YQT ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a381t-32d3059ae6d462a02d2f3bdbff55837911d9f49038966134f6282c4b2c321d603 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Thu Jul 10 19:31:30 EDT 2025 Fri Jul 11 12:28:27 EDT 2025 Thu Jan 02 22:56:31 EST 2025 Thu Apr 24 23:07:06 EDT 2025 Tue Jul 01 03:28:08 EDT 2025 Thu Feb 03 05:58:54 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-32d3059ae6d462a02d2f3bdbff55837911d9f49038966134f6282c4b2c321d603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8277-6707 0000-0002-3366-8395 0000-0002-2811-147X 0000-0001-8183-9446 |
PMID | 35042330 |
PQID | 2621249641 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2675560776 proquest_miscellaneous_2621249641 pubmed_primary_35042330 crossref_primary_10_1021_acs_langmuir_1c02716 crossref_citationtrail_10_1021_acs_langmuir_1c02716 acs_journals_10_1021_acs_langmuir_1c02716 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 Luis A. (ref24/cit24) 2007 ref1/cit1 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref30/cit30 doi: 10.1103/PhysRevLett.77.3865 – ident: ref20/cit20 doi: 10.1016/j.nanoen.2017.05.038 – start-page: 273 volume-title: Chemical Kinetics: From Molecular Structure to Chemical Reactivity year: 2007 ident: ref24/cit24 – ident: ref39/cit39 doi: 10.1002/cssc.201403278 – ident: ref5/cit5 doi: 10.1039/D0TA11201A – ident: ref21/cit21 doi: 10.1021/ja402521s – ident: ref16/cit16 doi: 10.1002/adma.201400573 – ident: ref42/cit42 doi: 10.1039/C7EE03592F – ident: ref28/cit28 doi: 10.1103/PhysRevB.54.11169 – ident: ref8/cit8 doi: 10.1021/acs.chemrev.6b00075 – ident: ref13/cit13 doi: 10.1021/acs.jpcc.5b03538 – ident: ref4/cit4 doi: 10.1016/j.apcatb.2015.08.018 – ident: ref41/cit41 doi: 10.1021/acs.langmuir.1c00594 – ident: ref17/cit17 doi: 10.1038/ncomms2152 – ident: ref43/cit43 doi: 10.1002/adma.201903545 – ident: ref29/cit29 doi: 10.1103/PhysRevB.50.17953 – ident: ref10/cit10 doi: 10.1126/science.1200448 – ident: ref36/cit36 doi: 10.1021/acscatal.6b00922 – ident: ref12/cit12 doi: 10.1016/j.cej.2020.126685 – ident: ref32/cit32 doi: 10.1016/j.commatsci.2016.10.015 – ident: ref3/cit3 doi: 10.1002/smll.202100296 – ident: ref37/cit37 doi: 10.1016/j.apsusc.2015.03.086 – ident: ref9/cit9 doi: 10.1016/j.apsusc.2016.07.030 – ident: ref22/cit22 doi: 10.1002/adfm.201203732 – ident: ref33/cit33 doi: 10.1016/j.cpc.2021.108033 – ident: ref23/cit23 doi: 10.1002/smll.202007523 – ident: ref27/cit27 doi: 10.1016/j.polymer.2003.11.004 – ident: ref38/cit38 doi: 10.1039/C9GC01084J – ident: ref7/cit7 doi: 10.1038/nmat2317 – ident: ref40/cit40 doi: 10.1002/adfm.201901024 – ident: ref1/cit1 doi: 10.1039/C3CS60378D – ident: ref15/cit15 doi: 10.1021/acs.jpcc.8b01388 – ident: ref35/cit35 doi: 10.1002/anie.201915774 – ident: ref11/cit11 doi: 10.1039/C9TA13685A – ident: ref19/cit19 doi: 10.1021/jacs.8b12428 – ident: ref26/cit26 doi: 10.1021/ma0021803 – ident: ref45/cit45 doi: 10.1016/j.apcatb.2017.10.042 – ident: ref2/cit2 doi: 10.1021/acs.chemmater.5b02344 – ident: ref46/cit46 doi: 10.1021/acsmaterialslett.0c00205 – ident: ref34/cit34 doi: 10.1016/j.nanoen.2017.11.059 – ident: ref6/cit6 doi: 10.1039/C4TA06778A – ident: ref31/cit31 doi: 10.1016/j.commatsci.2010.05.010 – ident: ref44/cit44 doi: 10.1002/anie.201802014 – ident: ref14/cit14 doi: 10.1016/j.apcatb.2017.11.041 – ident: ref25/cit25 doi: 10.1021/ma00128a012 – ident: ref18/cit18 doi: 10.1039/C4NR05732E |
SSID | ssj0009349 |
Score | 2.458874 |
Snippet | As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1471 |
SubjectTerms | carbon nitride graphene hydrogen production irradiation light photocatalysis photocatalysts polymerization surface area |
Title | Highly Conjugated Graphitic Carbon Nitride Nanofoam for Photocatalytic Hydrogen Evolution |
URI | http://dx.doi.org/10.1021/acs.langmuir.1c02716 https://www.ncbi.nlm.nih.gov/pubmed/35042330 https://www.proquest.com/docview/2621249641 https://www.proquest.com/docview/2675560776 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKPcAFaKEtr8qVeuGQZWM7Dj6iCFhVKq3UIsEpcvwQ20KMskml7a9nJg8QrYD2Go0d2R57vrFnviHko_JGCiV9hFUHImELFRVWqMj7lDtpLJhETHD-fConZ-LTeXJ-7yj--YLP4n1tZiO8u7tuptUoNuBGxXKBvGQS9jFCoezbPcku7-Au0m6mQvIhVe6RXtAgmdlDg_QIymytzfEq-TLk7HRBJj9HTV2MzO-_KRz_cSBrZKUHnvSw05RX5IUrX5OlbKj3tk4uMOTjak6zUP5o8HLN0hNks8bwOJrpqgglPZ3W1dQ6Cmdy8EFfU4C89OtlqEN7DTRH0cncVgHUkh796tV6g5wdH33PJlFfeCHSYMDriDMLx4DSTlohmR4zyzwvbOF9koBDC-ejVV4o5OYD886Fl-C4GVEww1ls5Zi_IYtlKN07Qg2Ixsp5p2wqvE0PtACzDF6kMYDctN0kezAveb9xZnn7Js7iHD8Ok5X3k7VJ-LBSuekZzLGQxtUzraK7Vjcdg8cz8h8GJchhBfD9RJcuNLOcSYaluqWIn5JJEwCRaQr9vO006O6vPMEgJD7e-o8xb5NlhgkXbZz4Dlmsq8btAgyqi_et7t8CRZUFeg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VciiX8qblaSQuHLJsbMfBxypqWaBdIdGicooSP8RCG6M8kJZfz0w22QqkUvVqTRw_xp7P9sw3AK-0N0pq5SPKOhBJW-qotFJH3qfCKWPRJFKA89FczU7kh9PkdAOSMRYGG9FgTU3_iH_BLhC_oTK6wjvvFvUkNniaitUNuIl4hJNi72WfL7h2xQr1EvtmKpUYI-YuqYXskmn-tkuXgM3e6Bzchi_r5va-Jj8mXVtOzO9_mByv3Z87sD3AULa30pu7sOGqe7CVjdnf7sNXcgA5W7IsVN87umqz7B1xW5OzHMuKugwVmy_aemEdwx06-FCcMwTA7NO30Ib-UmhJorOlrQMqKdv_NSj5Azg52D_OZtGQhiEq0Jy3keAWNwVdOGWl4sWUW-5FaUvvkwSPt7hbWu2lJqY-NPZCeoXHOCNLbgSPrZqKh7BZhcrtADMoGmvnnbap9DZ9W0g00nimNAZxXGF34TWOSz4soybvX8h5nFPhOFj5MFi7IMYJy83AZ05pNc6u-Cpaf_VzxedxhfzLURdynAF6TSkqF7om54pT4m4l4__JpAlCyjTFeh6tFGn9V5GQS5KYPr5Gn1_A1uz46DA_fD__-ARucQrF6D3In8JmW3fuGQKktnzeL4c_sAkN2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9swDBbWDFj30t1rd2rAXvrgNJZkeXoMvGTZFRRYC3R7MWwdWHpYhY8B2a8f6djZAXRF-ypQNyWSIvWRkNfKaSmUdAFmHQiEyVWQG6EC52JupTYgEvGD8-e5nB2KD0fR0R-pvmAQFbRUtU58PNXnxnUIA-EeluMz3lmzKIehBosqlBvkJnrukLnHyZffeLt8pfkiAmcsJO9_zV3QCsomXf0tmy5QOFvBM71Dvq2H3MabnAybOh_qn_-gOV5rTnfJVqeO0vGKf-6RG7a4TzaTPgvcA_IVA0FOlzTxxXGDT26GvkOMawyao0lW5r6g80VdLoylcFN757MzCoow3f_ua98-Di2RdLY0pQdmpZMfHbM_JIfTyUEyC7p0DEEGYr0OODNwOajMSiMky0bMMMdzkzsXRWDmwq1plBMKEftA6HPhJJhzWuRMcxYaOeKPyKDwhd0mVANpqKyzysTCmfhNJkBYg22pNehzmdkhu7AuaXecqrT1lLMwxcJ-sdJusXYI7zct1R2uOabXOL2kVrCudb7C9biE_lXPDynsAHpVssL6pkqZZJjAW4rwfzRxBKplHEM7j1fMtO6VRxiaxEdPrjDnl-TW_ttp-un9_ONTcpvhj4w2kPwZGdRlY5-DnlTnL9oT8QtRIRBe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Conjugated+Graphitic+Carbon+Nitride+Nanofoam+for+Photocatalytic+Hydrogen+Evolution&rft.jtitle=Langmuir&rft.au=Cheng%2C+Chuan-Qi&rft.au=Feng%2C+Yi&rft.au=Shi%2C+Zi-Zheng&rft.au=Zhou%2C+Yun-Long&rft.date=2022-02-01&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=38&rft.issue=4&rft.spage=1471&rft.epage=1478&rft_id=info:doi/10.1021%2Facs.langmuir.1c02716&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_1c02716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |