Highly Conjugated Graphitic Carbon Nitride Nanofoam for Photocatalytic Hydrogen Evolution

As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN na...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 38; no. 4; pp. 1471 - 1478
Main Authors Cheng, Chuan-Qi, Feng, Yi, Shi, Zi-Zheng, Zhou, Yun-Long, Kang, Wen-Jing, Li, Zhe, Mao, Jing, Shen, Gu-Rong, Dong, Cun-Ku, Liu, Hui, Du, Xi-Wen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h–1 g–1 under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C–NH x defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity.
AbstractList As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h g under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C-NH defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity.
As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h-1 g-1 under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C-NHx defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity.As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h-1 g-1 under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C-NHx defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity.
As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h–1 g–1 under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C–NH x defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity.
As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h–¹ g–¹ under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C–NHₓ defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity.
Author Feng, Yi
Dong, Cun-Ku
Mao, Jing
Shi, Zi-Zheng
Du, Xi-Wen
Cheng, Chuan-Qi
Li, Zhe
Shen, Gu-Rong
Liu, Hui
Kang, Wen-Jing
Zhou, Yun-Long
AuthorAffiliation School of Chemistry and Materials
Institute of New Energy Materials, School of Materials Science and Engineering
AuthorAffiliation_xml – name: School of Chemistry and Materials
– name: Institute of New Energy Materials, School of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Chuan-Qi
  orcidid: 0000-0002-3366-8395
  surname: Cheng
  fullname: Cheng, Chuan-Qi
  organization: Institute of New Energy Materials, School of Materials Science and Engineering
– sequence: 2
  givenname: Yi
  surname: Feng
  fullname: Feng, Yi
  organization: Institute of New Energy Materials, School of Materials Science and Engineering
– sequence: 3
  givenname: Zi-Zheng
  surname: Shi
  fullname: Shi, Zi-Zheng
  organization: Institute of New Energy Materials, School of Materials Science and Engineering
– sequence: 4
  givenname: Yun-Long
  surname: Zhou
  fullname: Zhou, Yun-Long
  organization: School of Chemistry and Materials
– sequence: 5
  givenname: Wen-Jing
  surname: Kang
  fullname: Kang, Wen-Jing
  organization: Institute of New Energy Materials, School of Materials Science and Engineering
– sequence: 6
  givenname: Zhe
  surname: Li
  fullname: Li, Zhe
  organization: Institute of New Energy Materials, School of Materials Science and Engineering
– sequence: 7
  givenname: Jing
  surname: Mao
  fullname: Mao, Jing
  email: jingmao@tju.edu.cn
  organization: Institute of New Energy Materials, School of Materials Science and Engineering
– sequence: 8
  givenname: Gu-Rong
  surname: Shen
  fullname: Shen, Gu-Rong
  email: grsheng@tju.edu.cn
  organization: Institute of New Energy Materials, School of Materials Science and Engineering
– sequence: 9
  givenname: Cun-Ku
  orcidid: 0000-0001-8277-6707
  surname: Dong
  fullname: Dong, Cun-Ku
  organization: Institute of New Energy Materials, School of Materials Science and Engineering
– sequence: 10
  givenname: Hui
  orcidid: 0000-0001-8183-9446
  surname: Liu
  fullname: Liu, Hui
  organization: Institute of New Energy Materials, School of Materials Science and Engineering
– sequence: 11
  givenname: Xi-Wen
  orcidid: 0000-0002-2811-147X
  surname: Du
  fullname: Du, Xi-Wen
  email: xwdu@tju.edu.cn
  organization: Institute of New Energy Materials, School of Materials Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35042330$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtv2zAURonCRe08_kFRaMwi5_IhSuoWGE4cwHA7tEMngeLDpiGRLkkV8L-vDDsdOiSZOPCcO5zvCk2cdxqhzxjmGAi-FzLOO-G2_WDDHEsgJeYf0AwXBPKiIuUEzaBkNC8Zp1N0FeMeAGrK6k9oSgtghFKYoV8ru911x2zh3X7YiqRV9hTEYWeTldlChNa7bGNTsEpnG-G88aLPjA_Z951PXookuuMJXR1V8FvtsuUf3w3JeneDPhrRRX17ea_Rz8flj8UqX397el48rHNBK5xyShSFohaaK8aJAKKIoa1qjSmKipY1xqo2rAZa1ZxjygwnFZGsJZISrDjQa3R3vnsI_vegY2p6G6XuxjbaD7EhvCwKDmXJ34ESTFjNGR7RLxd0aHutmkOwvQjH5qXcCLAzIIOPMWjzD8HQnAZqxoGal4Gay0Cj9vU_TdokTr1SELZ7S4azfPrd-yG4Mezryl9kBaqS
CitedBy_id crossref_primary_10_1021_acs_iecr_4c02725
crossref_primary_10_1016_j_ijbiomac_2023_123393
crossref_primary_10_1016_j_jechem_2023_02_008
crossref_primary_10_3390_nano14010103
crossref_primary_10_1016_j_mseb_2023_116278
crossref_primary_10_1016_j_jcis_2024_08_032
crossref_primary_10_1557_s43578_024_01388_4
crossref_primary_10_1021_acs_iecr_4c01086
crossref_primary_10_1021_acs_langmuir_4c01115
crossref_primary_10_1039_D3NJ02817H
crossref_primary_10_1016_j_arabjc_2023_104542
crossref_primary_10_1016_j_nanoms_2024_10_014
crossref_primary_10_1039_D2NA00909A
Cites_doi 10.1103/PhysRevLett.77.3865
10.1016/j.nanoen.2017.05.038
10.1002/cssc.201403278
10.1039/D0TA11201A
10.1021/ja402521s
10.1002/adma.201400573
10.1039/C7EE03592F
10.1103/PhysRevB.54.11169
10.1021/acs.chemrev.6b00075
10.1021/acs.jpcc.5b03538
10.1016/j.apcatb.2015.08.018
10.1021/acs.langmuir.1c00594
10.1038/ncomms2152
10.1002/adma.201903545
10.1103/PhysRevB.50.17953
10.1126/science.1200448
10.1021/acscatal.6b00922
10.1016/j.cej.2020.126685
10.1016/j.commatsci.2016.10.015
10.1002/smll.202100296
10.1016/j.apsusc.2015.03.086
10.1016/j.apsusc.2016.07.030
10.1002/adfm.201203732
10.1016/j.cpc.2021.108033
10.1002/smll.202007523
10.1016/j.polymer.2003.11.004
10.1039/C9GC01084J
10.1038/nmat2317
10.1002/adfm.201901024
10.1039/C3CS60378D
10.1021/acs.jpcc.8b01388
10.1002/anie.201915774
10.1039/C9TA13685A
10.1021/jacs.8b12428
10.1021/ma0021803
10.1016/j.apcatb.2017.10.042
10.1021/acs.chemmater.5b02344
10.1021/acsmaterialslett.0c00205
10.1016/j.nanoen.2017.11.059
10.1039/C4TA06778A
10.1016/j.commatsci.2010.05.010
10.1002/anie.201802014
10.1016/j.apcatb.2017.11.041
10.1021/ma00128a012
10.1039/C4NR05732E
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.langmuir.1c02716
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 1478
ExternalDocumentID 35042330
10_1021_acs_langmuir_1c02716
a95546207
Genre Journal Article
GroupedDBID -
02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
.K2
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
CITATION
CUPRZ
ED~
JG~
YQT
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a381t-32d3059ae6d462a02d2f3bdbff55837911d9f49038966134f6282c4b2c321d603
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Thu Jul 10 19:31:30 EDT 2025
Fri Jul 11 12:28:27 EDT 2025
Thu Jan 02 22:56:31 EST 2025
Thu Apr 24 23:07:06 EDT 2025
Tue Jul 01 03:28:08 EDT 2025
Thu Feb 03 05:58:54 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-32d3059ae6d462a02d2f3bdbff55837911d9f49038966134f6282c4b2c321d603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8277-6707
0000-0002-3366-8395
0000-0002-2811-147X
0000-0001-8183-9446
PMID 35042330
PQID 2621249641
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2675560776
proquest_miscellaneous_2621249641
pubmed_primary_35042330
crossref_primary_10_1021_acs_langmuir_1c02716
crossref_citationtrail_10_1021_acs_langmuir_1c02716
acs_journals_10_1021_acs_langmuir_1c02716
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
Luis A. (ref24/cit24) 2007
ref1/cit1
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref30/cit30
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref20/cit20
  doi: 10.1016/j.nanoen.2017.05.038
– start-page: 273
  volume-title: Chemical Kinetics: From Molecular Structure to Chemical Reactivity
  year: 2007
  ident: ref24/cit24
– ident: ref39/cit39
  doi: 10.1002/cssc.201403278
– ident: ref5/cit5
  doi: 10.1039/D0TA11201A
– ident: ref21/cit21
  doi: 10.1021/ja402521s
– ident: ref16/cit16
  doi: 10.1002/adma.201400573
– ident: ref42/cit42
  doi: 10.1039/C7EE03592F
– ident: ref28/cit28
  doi: 10.1103/PhysRevB.54.11169
– ident: ref8/cit8
  doi: 10.1021/acs.chemrev.6b00075
– ident: ref13/cit13
  doi: 10.1021/acs.jpcc.5b03538
– ident: ref4/cit4
  doi: 10.1016/j.apcatb.2015.08.018
– ident: ref41/cit41
  doi: 10.1021/acs.langmuir.1c00594
– ident: ref17/cit17
  doi: 10.1038/ncomms2152
– ident: ref43/cit43
  doi: 10.1002/adma.201903545
– ident: ref29/cit29
  doi: 10.1103/PhysRevB.50.17953
– ident: ref10/cit10
  doi: 10.1126/science.1200448
– ident: ref36/cit36
  doi: 10.1021/acscatal.6b00922
– ident: ref12/cit12
  doi: 10.1016/j.cej.2020.126685
– ident: ref32/cit32
  doi: 10.1016/j.commatsci.2016.10.015
– ident: ref3/cit3
  doi: 10.1002/smll.202100296
– ident: ref37/cit37
  doi: 10.1016/j.apsusc.2015.03.086
– ident: ref9/cit9
  doi: 10.1016/j.apsusc.2016.07.030
– ident: ref22/cit22
  doi: 10.1002/adfm.201203732
– ident: ref33/cit33
  doi: 10.1016/j.cpc.2021.108033
– ident: ref23/cit23
  doi: 10.1002/smll.202007523
– ident: ref27/cit27
  doi: 10.1016/j.polymer.2003.11.004
– ident: ref38/cit38
  doi: 10.1039/C9GC01084J
– ident: ref7/cit7
  doi: 10.1038/nmat2317
– ident: ref40/cit40
  doi: 10.1002/adfm.201901024
– ident: ref1/cit1
  doi: 10.1039/C3CS60378D
– ident: ref15/cit15
  doi: 10.1021/acs.jpcc.8b01388
– ident: ref35/cit35
  doi: 10.1002/anie.201915774
– ident: ref11/cit11
  doi: 10.1039/C9TA13685A
– ident: ref19/cit19
  doi: 10.1021/jacs.8b12428
– ident: ref26/cit26
  doi: 10.1021/ma0021803
– ident: ref45/cit45
  doi: 10.1016/j.apcatb.2017.10.042
– ident: ref2/cit2
  doi: 10.1021/acs.chemmater.5b02344
– ident: ref46/cit46
  doi: 10.1021/acsmaterialslett.0c00205
– ident: ref34/cit34
  doi: 10.1016/j.nanoen.2017.11.059
– ident: ref6/cit6
  doi: 10.1039/C4TA06778A
– ident: ref31/cit31
  doi: 10.1016/j.commatsci.2010.05.010
– ident: ref44/cit44
  doi: 10.1002/anie.201802014
– ident: ref14/cit14
  doi: 10.1016/j.apcatb.2017.11.041
– ident: ref25/cit25
  doi: 10.1021/ma00128a012
– ident: ref18/cit18
  doi: 10.1039/C4NR05732E
SSID ssj0009349
Score 2.458874
Snippet As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1471
SubjectTerms carbon nitride
graphene
hydrogen production
irradiation
light
photocatalysis
photocatalysts
polymerization
surface area
Title Highly Conjugated Graphitic Carbon Nitride Nanofoam for Photocatalytic Hydrogen Evolution
URI http://dx.doi.org/10.1021/acs.langmuir.1c02716
https://www.ncbi.nlm.nih.gov/pubmed/35042330
https://www.proquest.com/docview/2621249641
https://www.proquest.com/docview/2675560776
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKPcAFaKEtr8qVeuGQZWM7Dj6iCFhVKq3UIsEpcvwQ20KMskml7a9nJg8QrYD2Go0d2R57vrFnviHko_JGCiV9hFUHImELFRVWqMj7lDtpLJhETHD-fConZ-LTeXJ-7yj--YLP4n1tZiO8u7tuptUoNuBGxXKBvGQS9jFCoezbPcku7-Au0m6mQvIhVe6RXtAgmdlDg_QIymytzfEq-TLk7HRBJj9HTV2MzO-_KRz_cSBrZKUHnvSw05RX5IUrX5OlbKj3tk4uMOTjak6zUP5o8HLN0hNks8bwOJrpqgglPZ3W1dQ6Cmdy8EFfU4C89OtlqEN7DTRH0cncVgHUkh796tV6g5wdH33PJlFfeCHSYMDriDMLx4DSTlohmR4zyzwvbOF9koBDC-ejVV4o5OYD886Fl-C4GVEww1ls5Zi_IYtlKN07Qg2Ixsp5p2wqvE0PtACzDF6kMYDctN0kezAveb9xZnn7Js7iHD8Ok5X3k7VJ-LBSuekZzLGQxtUzraK7Vjcdg8cz8h8GJchhBfD9RJcuNLOcSYaluqWIn5JJEwCRaQr9vO006O6vPMEgJD7e-o8xb5NlhgkXbZz4Dlmsq8btAgyqi_et7t8CRZUFeg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VciiX8qblaSQuHLJsbMfBxypqWaBdIdGicooSP8RCG6M8kJZfz0w22QqkUvVqTRw_xp7P9sw3AK-0N0pq5SPKOhBJW-qotFJH3qfCKWPRJFKA89FczU7kh9PkdAOSMRYGG9FgTU3_iH_BLhC_oTK6wjvvFvUkNniaitUNuIl4hJNi72WfL7h2xQr1EvtmKpUYI-YuqYXskmn-tkuXgM3e6Bzchi_r5va-Jj8mXVtOzO9_mByv3Z87sD3AULa30pu7sOGqe7CVjdnf7sNXcgA5W7IsVN87umqz7B1xW5OzHMuKugwVmy_aemEdwx06-FCcMwTA7NO30Ib-UmhJorOlrQMqKdv_NSj5Azg52D_OZtGQhiEq0Jy3keAWNwVdOGWl4sWUW-5FaUvvkwSPt7hbWu2lJqY-NPZCeoXHOCNLbgSPrZqKh7BZhcrtADMoGmvnnbap9DZ9W0g00nimNAZxXGF34TWOSz4soybvX8h5nFPhOFj5MFi7IMYJy83AZ05pNc6u-Cpaf_VzxedxhfzLURdynAF6TSkqF7om54pT4m4l4__JpAlCyjTFeh6tFGn9V5GQS5KYPr5Gn1_A1uz46DA_fD__-ARucQrF6D3In8JmW3fuGQKktnzeL4c_sAkN2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9swDBbWDFj30t1rd2rAXvrgNJZkeXoMvGTZFRRYC3R7MWwdWHpYhY8B2a8f6djZAXRF-ypQNyWSIvWRkNfKaSmUdAFmHQiEyVWQG6EC52JupTYgEvGD8-e5nB2KD0fR0R-pvmAQFbRUtU58PNXnxnUIA-EeluMz3lmzKIehBosqlBvkJnrukLnHyZffeLt8pfkiAmcsJO9_zV3QCsomXf0tmy5QOFvBM71Dvq2H3MabnAybOh_qn_-gOV5rTnfJVqeO0vGKf-6RG7a4TzaTPgvcA_IVA0FOlzTxxXGDT26GvkOMawyao0lW5r6g80VdLoylcFN757MzCoow3f_ua98-Di2RdLY0pQdmpZMfHbM_JIfTyUEyC7p0DEEGYr0OODNwOajMSiMky0bMMMdzkzsXRWDmwq1plBMKEftA6HPhJJhzWuRMcxYaOeKPyKDwhd0mVANpqKyzysTCmfhNJkBYg22pNehzmdkhu7AuaXecqrT1lLMwxcJ-sdJusXYI7zct1R2uOabXOL2kVrCudb7C9biE_lXPDynsAHpVssL6pkqZZJjAW4rwfzRxBKplHEM7j1fMtO6VRxiaxEdPrjDnl-TW_ttp-un9_ONTcpvhj4w2kPwZGdRlY5-DnlTnL9oT8QtRIRBe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Conjugated+Graphitic+Carbon+Nitride+Nanofoam+for+Photocatalytic+Hydrogen+Evolution&rft.jtitle=Langmuir&rft.au=Cheng%2C+Chuan-Qi&rft.au=Feng%2C+Yi&rft.au=Shi%2C+Zi-Zheng&rft.au=Zhou%2C+Yun-Long&rft.date=2022-02-01&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=38&rft.issue=4&rft.spage=1471&rft.epage=1478&rft_id=info:doi/10.1021%2Facs.langmuir.1c02716&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_1c02716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon